
Research on Cost-Driven Services Composition in an Uncertain Environment 755

Research on Cost-Driven Services Composition in

an Uncertain Environment

Honghao Gao1,2, Wanqiu Huang2, Yucong Duan3, Xiaoxian Yang4, Qiming Zou1*

1 Computing Center, Shanghai University, China
2 School of Computer Engineering and Science, Shanghai University, China
3 College of Information Science and Technology, Hainan University, China

4 School of Computer and Information Engineering, Shanghai Polytechnic University, China

gaohonghao@shu.edu.cn, vicky_2017@shu.edu.cn, duanyucong@hotmail.com, xxyang@sspu.edu.cn, kim@shu.edu.cn

*Corresponding Author: Xiaoxian Yang; E-mail: xxyang@sspu.edu.cn

DOI: 10.3966/160792642019052003009

Abstract

In recent years, increasing numbers of researchers have

concentrated on service workflow to support cross-

domain software development. However, the uncertain

characteristics of the Internet impose high risks on

service workflow reliability. The risk of failure caused by

unavailable services may increase costs when using

service workflow-based applications. Thus, it is

necessary to consider the non-functional factors, such as

service cost and reliability. In this paper, we propose a

cost-driven services composition approach for enterprise

workflows that employs formal verification to

recommend appropriate services for abstract workflows.

The services composition is measured quantitatively to

ensure that the configuration to service the workflow

solution has the best performance, high reliability and

low cost. First, this solution introduces a service search

approach based on an inverted index, and the service

recommendation method is based on an improved

Pearson formula. Next, the solution returns a minimum

set of candidate services for constructing a workflow

instance. Second, the service and workflow models are

defined to formalize the behaviour of service composition;

this is considered to be a verification model. Third,

transformation rules are provided to change BPEL4WS

into a verification model, and PCTL (Probabilistic

Computation Tree Logic) formulae are used to specify

the reliability and cost-related properties. The quantitative

verification method checks each possible plan for service

composition using probabilistic model checking. Finally,

the results of a series of experiments show that our

approach is effective in generating an optimal service

workflow.

Keywords: Service workflow, Probabilistic model

checking, Uncertain environment, Formal

verifications, Service search and

recommendation

1 Introduction

Service-Oriented Computing (SOC), which has been

widely adopted in modern industry and academia,

provides the ability to develop an information system

quickly using Web services to integrate distributed

applications [1-2]. However, a single service has

difficulty in satisfying the complex requirements of

business logic; multiple services are required instead,

which calls for service composition. As one of a

number of possible technologies, service workflows

provide a flexible way to address this problem. Each

activity of a business process in an abstract workflow

can be mapped to a service to provide the value-added

functions. The diversity and complexity of service

composition to abstract workflow involves service

search, service selection, and services verification [3-4].

However, the open, dynamic and ever-changing

features of the Internet will inevitably cause workflow

failures. Traditional workflow approaches are static

and certain. They will break down because of the risk

of failure, which can be randomly encountered in this

uncertain environment [5]. If an enterprise workflow

has no error-response mechanisms that configure

workflows dynamically with new services, the service

workflow will eventually cause serious performance

issues.

Workflow’s service selection aims to choose

services and compose them into a new composite

service to support abstract business processes.

However, most existing studies [6-10] do not consider

risk-aware workflow service composition. Instead,

these techniques require services composition only to

be consistent with the functional behaviour claims. In a

practical execution environment, service failure risks

include the possibility of service disruptions. Thus, it is

possible that even a new recommended plan of services

composition will again encounter failures. The new

recommended plan has several limitations and may

756 Journal of Internet Technology Volume 20 (2019) No.3

cause inconvenience to users. To this point, service

workflows implemented by different service

composition plans pose different risks because their

component services have different reliabilities.

Therefore, the performance of a service workflow is

dependent not only on service function but also

correlated with service quality. To minimize the risks

of the new service configuration also failing, we need

to select the optimal service workflow with the lowest

cost and the highest reliability. Consequently, the

balance between cost and reliability should be

considered, and this consideration may have a

significant impact on the efficiency of the service

workflow.

In this paper, we propose a cost-driven service

composition approach that consists of two stages: a

service search stage and a quantitative verification

stage. The former returns possible plans for service

composition, while the latter checks each plan to

evaluate the performance of such a service workflow.

First, the cost/reliability-oriented selection problem is

discussed using an example of a device purchase

auditing workflow. This example primarily

demonstrates that the risks of service composition

affect workflows in uncertain environments. Second,

the traditional service search, which uses functional

matching, is highly inefficient when the scale of

services becomes large. Therefore, the inverted index

search-based service selection and the functional

consistency-oriented service search method are

proposed. Considering the search efficiency, the

improved Pearson formula is used to recommend

related services. Third, probabilistic model checking is

employed to verify whether each service configuration

plan satisfies both the functional requirements and the

non-functional objectives. Formal models of service

workflow with cost and reliability specification are

defined, and transformation rules are proposed to

transform business processes into a formal model.

Finally, quantitative verification results are used to

guarantee that the service workflow is trustworthy.

As a core issue, we transform the problem of service

composition into the process of applying a probabilistic

model check. Each plan is checked quantitatively.

Through this check, the verification results with cost

and reliability help us to select better service matches.

The rest of this paper is organized as follows.

Section 2 reveals our motivation through a workflow

scenario. Section 3 shows the candidate service set

generation process. Section 4 introduces the formal

models and verification processes for checking service

processes. Section 5 discusses the experimental

analysis. Section 6 reviews related work, and Section 7

presents conclusions and provides future research

directions.

2 Motivation Scenario

Figure 1 describes the business processes involved

in a device purchase auditing workflow: this workflow

requires a login, then performs a search activity, an

accessories activity, a valuableDevice activity, an

auditing activity, and a print activity. In this abstract

process, each activity is mapped to a corresponding

service that implements the required business logic.

According to combinatorial theory, 2304 (4*4**4*3*3

*4) possible plans could be derived from Figure 1.

Thus, the problem of service composition is changed

into a service selection process that involves selecting

one suitable solution among the possible service

configurations. Each service has a different value of

non-functional features that will impact the service

workflow performance. Consequently, different

solutions display different results. For example,

<Login2, Search3, (Accessories3, valuableDevice3),

Audit1, Print4> would behave differently from <login3,

search4, (Accessories1, valuableDevice2), Audit2,

Print1>.

Figure 1. Example of device purchase auditing

workflow

The details of all the available services, including

cost and reliability, are presented in Table 1, in which

column R shows the service reliability as a probability,

and column C shows the cost of service execution.

Suppose that an employee wants to apply to purchase

devices via the business process depicted in Figure 1.

To provide the best service, the workflow should

provide an optimal performance. Specifically, the

service workflow selects one service from {Login1,

Login2, Login3, Login4} to fulfil the Login task, one

service from {Search1, Search2, Search3, Search4} to

fulfil the Search task, one service from {Accessories1,

Accessories2, Accessories3} to fulfil the Accessories

task, one service from {valuableDevice1, valuable

Device2, valuableDevice3, valuableDevice4} to fulfil

the valuableDevice task, one service from {Audit1,

Audit2, Audit3, Audit4} to fulfil the Audit task, and

one service from { Print1, Print2, Print3, Print4} to

fulfil the Print task.

Research on Cost-Driven Services Composition in an Uncertain Environment 757

Table 1. Information details of all available services

Service R C Service R C

Login1 0.91 10 Print4 0.56 9

Login2 0.9 20 Accessories1 0.99 42

Login3 0.94 15 Accessories2 0.91 33

Login4 0.78 14 Accessories3 0.83 35

Search1 0.93 11 ValuableDevice1 0.56 13

Search2 0.89 23 ValuableDevice2 0.92 32

Search3 0.8 30 ValuableDevice3 0.87 45

Search4 0.91 21 Audit1 0.91 45

Print1 0.45 30 Audit2 0.93 24

Print2 0.93 20 Audit3 0.9 33

Print3 0.42 32 Audit4 0.85 52

Suppose the cost of Login2 is 20, and the cost of

Search3 is 30. If these tasks are invoked in sequence,

the total cost will be 50. Further, assume that the

reliability of Login2 is 0.9, and the reliability of

Search3 is 0.8; the total reliability is 0.72. However, if

the reliability of non-functional objectives does not

satisfy the users’ expectations, the current service plan

will be unacceptable. Thus, it is reasonable to consider

both functional behaviours and non-functional features.

Users may select component services with high

reliability or low cost, because not all of the services in

Table 1 have both low cost and high reliability. If only

the reliability of each feasible solution is considered,

the service composition result is {Login3, Search1,

Print2, Accessories1, ValuableDevice2, Audit2}, while

if only the cost of each feasible solution is considered,

the service composition result is {Login1, Search1,

Print4, Accessories2, ValuableDevice1, Audit2}.

These two cases imply that attending to only one factor

of non-functional requirements does not provide the

optimal solution.

In contrast, when both cost and reliability features

are considered during service selection, the ultimate

result will be significantly improved and will bring

more benefits to service workflow. However, it is not

easy to solve the problem of cost-driven services

composition in an uncertain environment.

The traditional service selection methods focus on

maximizing one-dimensional benefits. Figure 2 shows

four possible service composition plans for the

workflow in Figure 1. However, we cannot judge

which of those is the best service configuration for the

current workflow. Based on the cost and reliability

values of the available services in Table 1, Figure 2(c)

shows the maximum reliability version in the form of a

probability, Figure 2(d) shows the maximum cost

version, and Figure 2(a) and Figure 2(b) show the

general composition plans. Unfortunately, it is difficult

to handle two- or more-dimensional evaluations, such

as considering both cost and reliability. A number of

alternative solutions used in service workflow may

provide higher reliability, but cost more money than

less reliable solutions. For example, although the cost

of the workflow in Figure 2(d) is greater than that

shown in Figure 2(c), the reliability of the workflow in

Figure 2(c) is lower than that shown in Figure 2(d).

Figure 2. Service instances for the workflow in Figure 1

Thus, if there are service composition plans that

meet threshold values for both cost and reliability, we

would consider those to be better plans. However,

solving this problem requires a method for

quantitatively verifying a service workflow to consider

each service composition plan in order to distinguish

which single solution is best and return one that

satisfies both the functional and non-functional

requirements.

3 Service Selection for Composition

In this section, formal models are proposed for Web

service and abstract workflow. The problems involved

in service search and service recommendation to

generate a service candidate set are discussed.

3.1 Formal Models and Problem Definitions

Definition 1 (Web Service). A Web service is defined

as a tuple ws::=(id,F,I,O), where

(1) id is the identifier for each Web service;

(2) F is the functional description for each Web

service;

(3) I={i1,i2,…,in} is a set of inputs received from the

invoker;

(4) O={o1,o2,…,om} is a set of outputs returned to

the invoker.

A Web service receives the inputs I from an invoker

and returns the outputs O to the invoker via interface

operations. In general, the inputs and outputs are basic

value or object types described in WSDL1 files. The

functional description F represents the service

functionality, which can be considered to be the source

used for function matching.

1 WSDL. http://www.w3.org/TR/wsdl.

758 Journal of Internet Technology Volume 20 (2019) No.3

Definition 2 (Web Service Performance). To formalize

non-functional behaviour, the cost and reliability of a

Web service ws are defined as follows.

(1) The reliability of a Web service ws is denoted as

R(ws)∈[0,1], which represents the probability of

reliable execution when a request is sent to invoke the

service.

(2) The cost of a Web service ws is denoted as

C(ws)∈ � , mapped to a real number, which shows

how much the user should pay when agreeing to use

service ws.

In an uncertain environment, a Web service may be

unavailable, which means that software using it will

encounter unpredictable risks. Definition 2 indicates

that each service displays both functional and non-

functional behaviours. During a service invocation, the

user should be prepared for service failures. Thus, a

service level agreement (SLA 2) is often used to

predefine different service costs under different

reliability conditions.

Definition 3 (Business Workflow Model). A business

workflow describes business logic in an abstract

manner, and is defined as the tuple BWM::=(N,C,T,s,e),

where

(1) N is a set of logic tasks that can be mapped to

different services;

(2) C is a set of control conditions for a workflow,

e.g., the execution probabilities of branch and loop

structures;

(3) T ⊆ C×N ∪ N×N ∪ N×C is a set of transitions,

which are divided into three types: C×N, N×N, and

N×C;

(4) s∈N is the starting node of the logic task, and

e∈N is the ending node of the logic task.

The enterprise information integration task involves

mapping corresponding services to each logic task

node to transform abstract business logic into an actual

application. Thus, a workflow is considered to be a

remarkable and promising solution to agile software

engineering. However, how to conduct services

composition based on abstract business processes is a

key problem, because selecting different component

services will cause the workflow to display different

performances.

Definition 4 (Workflow Requirements). A workflow

includes two types of requirements. One type is

functional requirements, which are used to perform

service matching. The other type is non-functional

requirements, which are used to evaluate the service

performance.

(1) The functional requirement α(n)=Iw denotes the

inputs for each logic task n∈N. The functional

requirement β(n)=Ow denotes the outputs for each

logic task n∈N.

During service comparison, a candidate service

2 SLA.https://en.wikipedia.org/wiki/Service-level_agreement

should have functions that match the given inputs and

outputs. If Web service ws satisfies the functional

requirement of logic node n of a workflow, then it

should satisfy ws.I⊇α(n) ∧ ws.O⊇β (n).

(2) The non-functional requirements consist of local

and global requirements. The local requirement focuses

on the logic task, where δR(n) and δC(n). The global

requirement focuses on the workflow, where χR and χC.

According to non-functional requirements, there are

two major calculations. (1) For service instance, if

Web service ws satisfies the non-functional

requirement of logic node n in the workflow, then it

should satisfy R(ws)≥δR(n) ∧ C(ws)≤δC(n). (2) For

workflow instance, to compute the global values in

order to compare with χR and χC, it should pay

attention to the flow structure of Definition 3. The

general Cost/Reliability computing formulae [11-13]

for service workflow are introduced in Table 2, where

WS is a set of services that will be mapped to the

abstract workflow. Note that pws is a specified

probability for the selected branch ws in choice

structure. The Cost/Reliability computing formulae

include Sequential structure, Parallel structure and

Choice structure. However, when the workflow

contains loops, the formula above has difficulty in

handling these conditions. Note that the key issue is to

compute steady state probability when there has a

loop-carried branch in service workflow. Therefore, we

are motivated to compute these values using formal

method.

Table 2. Cost/reliability computing for service

workflow

 Cost Reliability

Sequential ()
ws WS

C ws

∈

∑ ()
ws WS

R ws

∈

∏

Parallel ()
ws WS

C ws

∈

∑ 1 (1 ())
ws WS

R ws

∈

− −∏

Choice ()
ws

ws WS

p C ws
∈

×∑ 1 (1 ())
ws

ws WS

p R ws
∈

− − ×∏

3.2 Candidate Service Selection

Given a set of interface operations with inputs and

outputs, a service search involves comparing each

service from a service repository to find matches. The

complexity of service planning is O(MN) in the worst

case, where N is the number of logic task nodes of

workflow, and M is the service number in the service

repository. Therefore, finding matches becomes a large

task as the number of workflow nodes and service

numbers increase. Considering that semantic searching

may return services with unmatched interface

operations, the keyword search can be improved by

using the inverted index method to build a service

index to enhance the searching efficiency.

Definition 5 (Service Index). The inverted index for

service is defined as tuple SI::=(k,S,f), where

Research on Cost-Driven Services Composition in an Uncertain Environment 759

(1) k is the set of keywords against which inputs and

outputs of interface operations are compared to identify

matching services.

(2) S is a set of services related to the id of the Web

service.

(3) f(k)→2S defines that services with same keyword,

k, can be grouped into a set.

Because the service index is a one-to-many pattern,

each index is an identification that will be mapped with

different services, showing that they can support at

least one interface. From an organizational perspective,

the service index includes a set of interfaces grouped

by inputs or outputs.

A service search aims to find a set of candidate

services that match the target interface operations. This

service index method improves on traditional service

search methods because it returns target services more

quickly. For example, there are six indexes {I1, I2, I3,

O1, O2, O3} in Table 3. A search for services that

contain Output O2 returns {S1, S2, S3, S5, S7} as

candidate services without having to compare other

services.

Table 3. Example of a Service Index

k S

I1 S1 S3 S4 S6

I2 S3 S4 S7 S10 S11

I3 S1 S5

O1 S1 S4 S7 S1

O2 S1 S2 S3 S5 S7

O3 S3 S4 S5 S11

Definition 6 (Functional Consistency). Let CS={cs1,

cs2, …, csn} be a candidate service set, and let csi∈CS

be mapped to nj∈N. Functional consistency requires

that

 ∀n ∈N •(∀ i∈α(n), ∃cs∈CS • ∃i'∈cs.I∧ i=i')

 ∧(∀o∈β(n),∃cs∈CS•∃o'∈cs.O∧o=o') (1)

Note that α(n) and β(n) are functional requirements

which can be referenced to Definition 4. Functional

consistency requires that each input or output of the

task node of workflow be represented by a

corresponding service in the candidate service set.

However, there will be numerous candidate services;

thus, the current set must be refined to return the most

suitable services.

Definition 7 (Candidate Service Set Refinement).

Suppose the target interface set is {op1,op2,…,opn}.

The candidate service set refinement process is divided

into two steps.

(1) The intersection function is used to build an

initial set.

1

()
i n

i

i

CS f op
=

=

←∩ (2)

This function removes redundant services using the

intersection function. For example, let {I1, I2, O3} be

target interfaces. From Table 2, there are three sets that

f(I1)={(I1,S1), (I1,S3), (I1,S4), (I1,S6)}, f(I2)={(I2,S3),

(I2,S4), (I2,S7), (I2,S10), (I2,S11)}, and f(O3)=

{(O3,S3), (O3,S4), (O3,S5), (O3,S11)}. We can obtain

the candidate service set that CS={S3,S4}.

(2) The multi-objective selection function is used to

remove candidate services that cannot satisfy the non-

functional requirements.

\{ | () () () ()}R C
CS CS ws CS R ws n C ws nδ δ← ∈ < ∨ > (3)

With the help of multi-objective selection function,

the candidate service set can be refined by eliminating

services that have low reliability or high cost. Thus, it

can guarantee the high feasibility of services

composition.

Another way to improve the search efficiency is

through service recommendation, which is different

from general service searching. In certain cases,

dynamic services composition should be completed in

seconds. Thus, recommending related services [14-15]

for a workflow can reduce the service search duration.

In the following, we will discuss the improved service

recommendation method based on user usage records

to select services to support business processes

represented by abstract workflows.

Definition 8 (Service Recommendation). Suppose the

usage frequency of services in a service repository is

recorded and updated in real time. The service

recommendation method based on the Pearson formula

focuses on these usage records and includes the

following steps.

(1) The usage frequency of a service is in the form

of a vector. For user usi, the historical record is rws1,usi,

rws2,usi, …, rws(n-1),usi, rwsn, usi where rwsj, usi shows the

usage frequency of service wsi used by user usj.

(2) After calculating the historical records of all

users, a two-dimensional matrix of users and services

is generated as follows:

1,

1

1 1 1 1 1

1

1 2 1

1, 1 2, 1 1 , 1
1

1 , 2 2, 2 , 2 , 22

1 1, 2, , ,

1, 2, ,

.

.

....

n n

n n

m m n m n m

m m n m n m

n n

ws us ws us ws us ws us

ws us ws us ws us ws us

m ws us ws us ws us ws us

m
ws us ws us ws us ws us

ws ws ws ws

r r r r
us

r r r rus

us r r r r

us
r r r r

−

−

− − − − −

−

−

−

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

.

(3) The user-service matrix is changed into a

service-service matrix according to the Pearson

formula [16-17]:

, ', '

, '
2 2

, ', '

()()

() ()

i i

i i

ws us ws ws us ws

i n

ws ws

ws us ws ws us ws

i n i n

r R r R

v

r R r R

∈

∈ ∈

− −

=

− −

∑

∑ ∑
 (4)

where vws, wsi is a correlation value for services ws and

760 Journal of Internet Technology Volume 20 (2019) No.3

ws’, rws, usi is a count value for service ws used by user

usi, and ws
R is the average count value of user ws.

Here, rws’,usi is a count value for the service ws’ used by

user usi, and
'ws

R is the average count value of user ws.

However, this approach should also consider

interface operations, since any incompatibility will

make the service unavailable. Obviously, the

correlation value vws, ws is not sufficient to determine

whether two users are similar or not, especially if they

are incompatible with each other. To this end, the vws,

ws’ is improved to enhance the accuracy of user

similarity based on the interface operation, cost, and

reliability, allowing the Pearson formula to be suitable

for recommending related services.

, '

, '

| '. | | '. |
' (

{| () | | () |}

(') (')
)

{ ()} { ()}

ws ws

n N

ws wsw w

n N n N

ws I ws O
v

Max n n

C ws R ws
v

Min C n Max R n

λ
α β

φ ϕ

∈

∈ ∈

+
= × +

+

× + × ×

∑ ∑
 (5)

In Formula (5), we consider the interface similarity

| '. | | '. |
,

{| () | | () |}
n N

ws I ws O

Max n nα β
∈

+

+∑ ∑
the cost similarity

(')
,

{ ()}w

n N

C ws

Min C n
∈

 and the reliability similarity
(')

{ ()}w

n N

R ws

Max R n
∈

.

Then, the parameters λ, φ and ϕ are used to control the

weight values while computing the correlation value

vws, ws’, where λ+φ +ϕ=1. If cost is most important, then

φ can be greater than ϕ and λ. If reliability is most

important, then ϕ can be greater than φ and λ. Finally,

if interface is most important, then λ can be greater

than φ and ϕ.

(4) Finally, the new correlation matrix is generated

as follows:

1 2 1

1,1 1,2 1, 1 1,1

2,1 2,2 2, 1 2,2

1,1 1,2 1, 1 1,1

,1 ,2 , 1 ,

.

.

.

n n

n n

n n

n n n n n nn

n n n n n nn

ws ws ws ws

v v v vws

v v v vws

v v v vws

v v v vws

−

−

−

− − − − −

−

−

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

.

For each service, the correlation value can be ranked

from low to high for service recommendation.

However, according to the improved Pearson formula,

there will still be a huge number of candidate services.

The following function, IPS(ws), will output the top-k

related services as the recommendation set RS.

 1

() \ { | ()

() () ()}

k

R

i

C

RS IPS ws ws CS R ws

n C ws n

δ

δ

=

← ∈ <

∨ >

∪
 (6)

Thus, Formula (6) is used to eliminate services that

cannot satisfy the non-functional requirements,

especially those of reliability and cost.

3.3 Candidate Service Set Optimization

Under the worst conditions, candidate services from

the recommendation service set will lead to the state

space explosion problem. To obtain the minimal set,

the purpose of candidate service set optimization is to

compare each service with a logic node of the

workflow after applying the improved Pearson formula,

focusing on the service input and output.

(1) The input number of candidate services is

defined as follows:

 () :: | . | | () |
j

j

rs RS n N

IW RS rs I nα

∈ ∈

= −∑ ∑ (7)

Then, the input target is changed to compute the

minimal set RS’:

(')

' 2 (') 0RS

Min IW RS

Subject to RS IW RS∈ ∧ > .

(8)

(2) The output number of candidate services is

defined as follows:

 () :: | . | | () |
j

j

rs RS n N

OW RS rs O nβ
∈ ∈

= −∑ ∑
.

(9)

Then, the output target is changed to compute the

minimal set RS’:

(')

' 2 (') 0RS

Min OW RS

Subject to RS OW RS∈ ∧ >

 (10)

Definition 9 (The Minimal Service Set). The

requirement to find the minimal set is a multi-objective

optimization process that will return a subset, RSmin, in

which the minimal set is as small as possible while still

supporting the logic nodes. This process is defined as

follows:

(') (('), ('))

. ' 2

Min

RS

Max W RS IW RS OW RS
RS

S T RS

= − −⎧
= ⎨

∈⎩
.(11)

Considering the inputs and outputs of the interface

requirements and RSMin, the particle swarm

optimization algorithm is employed to find a global

optimal solution during multiple iterations. Thus, the

improved particle swarm optimization algorithm

(PAMS Algorithm) is designed to find an optimal set

when candidate services haves redundant input and

output. The algorithm details are as follows

Algorithm. PSO-like Algorithm for Minimal Services

(PAMS)

Input: Service SR[] and User Request UR[]

Output: The minimal service set RSmin

Research on Cost-Driven Services Composition in an Uncertain Environment 761

Function PAMS (RS[], UR[])

Inti the total best ()1 2 1
, , , ,

best M M
G G G G G

−

= …

Init totalInput=0, totalOutput=0

For each item in UR

totalInput +=UR[item].input

totalOutput +=UR[item].output

End for

For Each particle in SR.length

 Random the Position of particle, such as

 { }1 2 (1) {0,1, , , , , }
i i i i k ik ik

x x x xx x
−

∈= …

 Random the Victor of particle

 like { }1 2 (1) { 1,1, , , , , }
i i i i k ik ik

v v v vv v
−

∈ −= …

 Inti the history best ()
2 1

, , , ,

1 M M
i i i i i
p p p p p

−

= …

End For

Init 2(. .)
max
T SR length UR length+=

While t in
max
T

Init flag=0, InputCount=0, OutputCount=0

 For each particle in SR.length

 For each item in
i
x

 If []
i
x item =1 then

 InputCount +=SR[i].input

 OutputCount +=SR[i].output

 End if

 End for

 End For

 If inputCount >=totalInput and

 OutputCount>=totalOutput then

 ()()
1

([])
R

i i

j

F x t v j
=

=∑

 If ()()i
F x t < ()

i
p t then

 ()
i
p t = ()()i

F x t

 End If

 If ()
i
p t <

best
G then

 Update Gbest that best
G ← ()

i
p t

 End If

 End if

 () ()1 1
cos /

init max
c t c t* Tπ= +

 () ()22
cos /

init max
c t c t* Tπ= −

 () () ()/ 2 cos /
max min max

t t* Tω ω ω π= − +

 For each particle in SR.length

 (1)

1 2* *() *()k k k k k

i i i i best i
v v c p x c G xω

+

= + − + −

 (1) (1)
*0.5

k k k

i i i
x x v

+ +

= +

 End for

End While

RETURN
best

G

End Function

The algorithm checks the service set step by step

according to the particle swarm iteration. The position

of each particle is defined as xi={xi1, xi2,…,xi(k-1),xik },

k∈[1,R], i∈[1,N], where R is the number of particles,

and xik={0,1} corresponds to user requirement k

mapped to the ith service. The velocity of each particle

is defined as vi={vi1, vi2,…,vi(k-1),vik }where vik={-1,1}.

The initial particle positions and velocities are

randomly selected form {0,1} before iteration begins.

The historical optimal value of each particle is pi={pi1,

pi2,…,pi(M-1),piM}, and the global optimal value is

Gbest={G1, G2,…,G(M-1),GM}. Then, the updated formula

for the place of the particle and velocity is

 (1)

1 2* *() *()k k k k k

i i i i best i
v v c p x c G xω

+

= + − + − (12)

 (1) (1)
0.5*

k k k

i i i
x x v

+ +

= + . (13)

The ω is called an inertial factor and is a convex and

concave integrated function:

 () () ()/ 2 cos /
max min max

t t* Tω ω ω π= − + , (14)

where ωmax and ωmin
represent the maximum and

minimum values, respectively, t is the number of the

current iteration, and Tmax is the maximal number of

iterations. This formula guarantees that the iteration is

convergent.

The learning factor c is defined to control the

cognition degree:

() ()

() ()

1 1

22

cos /

cos /

init max

init max

c t c t* T

c t c t* T

π

π

⎧

−

= +⎪
⎨

=⎪⎩
, (15)

where c1init and c2init represent the initial value of

individual cognition and the initial value of collective

cognition, respectively. During the particle iteration

process, the criteria for historical optimal value should

be satisfy the formulae IW(RS) and OW(RS). Then, the

fitness function is defined to calculate the minimum

number of services required to build the service set.

 ()()
1

([])
R

i i

j

F x t v j
=

=∑ . (16)

Then, this equation compares pi(t) with the fitness

function. When F(xi(t))<pi(t), then the historical

optimal value is updated pi(t)=F(xi(t)). Finally, Gbest

will return the global optimal value to the user.

4 Applying Probabilistic Model Checking

to Service Composition

The challenge of service composition for abstract

workflow lies in evaluating the solution. To solve this

problem, we apply probabilistic model checking to

service composition to quantitatively verify each plan

of service configurations.

762 Journal of Internet Technology Volume 20 (2019) No.3

4.1 Verification Process Overview

According to the service plan, candidate services

will be mapped to each task to achieve the target

service workflow. The probabilistic model checking

employed to verify service workflow includes three

steps: formal modelling, verification property

generation, and verification execution. The verification

result contains not only the satisfiability assertion

between the model and the property but also

quantitative information concerning cost and reliability.

Step 1. The behavioural model is generated in the form

of a formal model that considers the temporal relations

of service invocation.

Step 2. The workflow requirements are transformed

into a verification property in the form of temporal

logic formulae.

Step 3. The model checking tool PRISM3 is used to

perform automatic verification after the formal model

and verification property are coded into PRISM input

language.

Step 4. The quantitative verification results about

probability and cost are analysed to confirm the

optimal plan to services composition.

4.2 Formal Verification Model

Definition 10 (Formal Model of Service Composition).

The verification model is a labelled transition system

defined as a tuple FWS::=(S, s0, δ, P, C, AP, L), where

- S is a finite set of states in which each state

corresponds to a Web service;

- s0 is an initial state;

- δ (S) → S is a finite set of edge relations that

represent the service invocation relations;

- P(δ)→ [0,1] is a transition probability matrix, where

∑s’∈SP(s,s’)=1 for all s∈S;

- C(S) → � is a cost function that shows the service

cost as a real number;

- AP is a finite set of atomic propositions;

- L: S → 2AP is a labelling function that assigns a set

of atomic propositions to each state s∈S.

For state s, s’∈S, the transition probability matrix

gives the probability P(s,s’) of making a transition

from s to s’ in one discrete step. The service cost is

specified by the function C(S), which yields the cost of

each state in S. Each transition is annotated with a

probability value indicating the likelihood of its

occurrence during possible service invocations. The

transition probability matrix denotes the set of all

probabilistic distributions over the state space.

4.3 Service Workflow Transformation Rules

As one of the service workflow implementations,

BPEL4WS is a way to define an execution process

based on Web services. In practice, the user would

3 PRISM. http://www.prismmodelchecker. org

prefer to use BPEL4WS4, rather than the formal model.

The following XML tags are used to provide the rules

to transform BPEL4WS into a formal model.

The activity <invoke> consists of two sequential

transitions, including the message send activity

<reply> and receive activity <receive>, which can be

mapped to input and output actions, respectively. The

<link> activity is a sequence transition execution. The

<switch> activity is a multi-way conditional branch.

The <pick> activity combines a <switch> activity

applied to various sequences of other activities with a

condition such as <if> or <while>. Thus, the <pick>

translating activity can obtain automata branches. The

<flow> activity encompasses all the transitions, where

sub-activities are executed concurrently. Extracting the

<flow> activity returns the parallel composition of Web

services. The time restriction of <flow> activity can be

extracted as the guard to transition and invariant

condition. The <assign> activity can represent an

update function for a transition [18].

Rule 1. Each basic <invoke> activity is mapped to a

state of the FWS model. Each < link > transition among

the BPEL4WS activities is mapped to a transition of

the FWS model. The special activities <reply> and

<exit> are mapped to a state and a self-transition,

respectively, and represent terminal states because they

are the ending condition.

Rule 2. The <sequence> activity composes sub-

activities into a sequence transition. For example,

Figure 3 shows are three activities in a sequence

structure. According to the sequence transition rule, it

returns S={A, B, C} and δ={(A,B), (B,C)}.

<sequence name="S">

 <activity A>

 <activity B>

 <activity C>

</sequence>

A

B

C

Figure 3. Activity rxample of <sequence>

Rule 3. The activities <if> and <switch> are mapped to

conditional branches. For example, in Figure 4,

conditions C1 and C2 are extracted as atomic

propositions to states A and B, respectively.

Condition !C1 is extracted as an atomic proposition to

state N. In Figure 3(a), S={P, A, N}, AP={C1, !C1},

L(A)={C1}, L(N)={!C1} and δ={(P,A), (A,P), (P,N)}.

In Figure 3(b), S={P, A, B, N}, AP={C1, C2},

L(A)={C1}, L(B)={C2} and δ={(P,A), (P,B), (A,N),

(B,N)}.

4 BPEL4WS. http://ode.apache.org/ws-bpel-20.html

Research on Cost-Driven Services Composition in an Uncertain Environment 763

 <activity P>

<if name="F">

 <condition C1>

 <activity A>

 </condition>

</if>

 <activity N>

A

C1

P

N

!C1

(a)

 <activity P>

<if name="F">

 <condition C1>

 <activity A>

 </condition>

 <elseif>

 <condition C2>

 <activity B>

 </condition>

 </elseif>

</if>

 <activity N>

A

C1

B

C2

P

N

(b)

Figure 4. Activity rxample of <if> and <switch>

Rule 4. The <while> activity represents a loop

structure. The condition is mapped to atomic

propositions of the first state in the loop structure. The

opposite condition is mapped to atomic propositions of

the break state at the loop exit. For example, in Figure

5, the conditions C and !C are changed into an atomic

proposition. C is used to continue the loop, and !C is

used to exit the loop. Thus, S={P, A, B, N},δ={(P,A),

(A,B), (B,A), (B,N), (P,N)}, AP={C, !C}, and

L(A)={C}, L(N)={!C}.

 <activity P>

<while name="W">

 <condition>

 C

 </condition>

 <activity A>

 <activity B>

</while>

<activity N>

P

A

C

N

!C
B

Figure 5. Activity rxample of <while>

Rule 5. The activities <flow> and <pick> are used for

concurrent processing and changed into branches

according to different labels. For example, in Figure

6(a), the <flow> activity shows two transitions from

state P to states A and B in which S={P,A,B,N} and

δ={(P,A), (P,B), (A,N), (B,N)}. However, Figure 6(b)

is more complex; the activity <pick> carries messages

that select its successor activities. Thus, the activity

<pick> considers a message as an atomic proposition

to each state, where S={P,A,B,N}, AP={m1,m2},

L(A)={m1},L(B)={m2} and δ={(P,A), (P,B), (A,N),

(B,N)}.

 <activity P>

<flow name="F">

 <activity A>

 <activity B>

</flow>

 <activity N>

A B

P

N

(a) Activity rxample of <flow>

 <activity P>

<pick name="PK">

 <onMessage m1>

 <activity A>

 </onMessage>

 <onMessage m2>

 <activity B>

 </onMessage>

</pick>

 <activity N>

A

m1

B

m2

P

N

(b) Activity rxample of <pick>

Figure 6.

4.4 Verification Property Generation

Definition 11 (Workflow Verification Property). The

verification property is notated as Probabilistic

Computation Tree Logic (PCTL) [19], whose syntax is

defined as follows:

ϕ::=true| false | a | ϕ∧ϕ| ϕ ϕ | ϕ→ϕ | ¬ϕ |

P∼p[Xϕ] | P∼p[ϕUϕ] | P∼p[ϕ U
≤kϕ] | P∼p[Fϕ] | P∼p[Gϕ]

where ∼∈{<,≤,>,≥}, 0<p<1 is a probability bound or

threshold, a is an atomic proposition, ϕ and ϕ are

formulae, and k∈� is denoted as time steps.

The symbol P is the probability operator, and the

symbols X, F, G and U are temporal operators,

meaning “neXt state”, “Future state”, “Global state”

and “Until”, respectively. We also use P∼p(φ) and

P=?(φ). The operator P∼p(φ) yields a true value when the

probability of a path formula φ being true in state

satisfies the bound ∼p; otherwise, it outputs false. The

operator P=?(φ) returns a probability value for the given
path formula. For example,

‧ P<0.15(F state=hunger): with a probability of 0.15 or

less, the hunger state will be visited eventually.

‧ P≥0.9 (X selection): user selection will operate at a

probability of 0.9 or higher.

‧ P=?(F state=bad): represents the probability of

encountering a bad state.

The verification property also provides a reward

command to denote cost computing, that syntax is

defined as follows:

ϕ::=true| false | a | ϕ∧ϕ| ϕ ϕ | ϕ→ϕ | ¬ϕ |

 R∼p[Xϕ] | R∼p[ϕUϕ] | R∼p[ϕ U
≤kϕ] | R∼p[Fϕ] | R∼p[Gϕ]

where the reward operator R includes bound

764 Journal of Internet Technology Volume 20 (2019) No.3

computing and query computing. For example,

‧ R≤5 (true U
≤3
 login): the reward of a successful login

in 3 or fewer tries is less than or equal to 5.

‧ R=? (true U fail): represents the reward for reaching a

failed state.

Thus, using the probability operator P and the

reward operator R, it is possible to specify cost and

probability-related properties for verification

requirements. In our study, coverage criteria such as

node coverage and transition coverage are employed to

generate these properties from an abstract workflow

based on the workflow requirements in Definition 4.

For instance, global requirements about χR and χC can

be used, which are generated as reachability properties.

4.5 Model Checker PRISM and Its Language

PRISM is a probabilistic model checker that

supports various model types, including Discrete Time

Markov Chain (DTMC), Markov Decision Process

(MDP), Continuous Time Markov Chain (CTMC) and

Probabilistic Timed Automat (PTA). In this paper, we

mainly use DTMC to code the services composition

model. PRISM's DTMC syntax is in the form of

action-guard commands that force two or more

modules to make transitions simultaneously with

different probabilities.

 []<location>→<prob>:<location’>+

 …+<prob>:<location’>

where location is a label corresponding to a state of the

FWS model, and prob∈[0,1] is the probability function
after changing the current location to a new location’.

To extend the probability for each transition, the

reliability of the mapped service is used to generate the

transition probability. The transition probability is

calculated as follows.

(')

(, ')
|{(, '') | (, '') }|

r s
p s s

s s s s δ
=

∃ ∈
. (17)

For example, in Figure 7(a), suppose state s0 has

two ongoing transitions (s0, s1) and (s0, s2). According

to formula (17), the new transition probability for (s0,

s1) is 0.91/2=0.405, and (s0, s2) is 0.95/2=0.425. In

Figure 7(b), the special state fail denotes the failure

probability when states s1 and s2 are unavailable.

(a) (b)

Figure 7. Transition probability example

PRISM supports the reward (or, equivalently, cost)

structure that assigns real values to states. The reward

expression is as follows.

rewards “name”

exp_1

….

exp_n

endrewards

where each exp_i item describes an expression in the

form of <guard>:<reward>, where guard is a condition

and reward is a value for cost.

For example, in Figure 8, states s=0, s=1, and s=2

have been denoted with costs. However, they belong to

a different cost definition. Thus, we define two reward

expressions, that is, cost r1 and cost r2. Under cost r1,

if state s=0 is visited, then the cost r1 is incremented by

1.2. If state s=1 is visited, then cost r1 is incremented

by 2.8. Under cost r2, if state s=2 is visited, then cost

r2 is incremented by 0.8.

Figure 8. Reward example of service cost

5 Experiments

In this section, we focus on the efficiency and

effectiveness of our method. We have implemented the

proposed algorithms and transformation rules

described previously in Java to select workflow

services, and integrated PRISM to verify the service

workflow quantitatively. All the experiments were

conducted on a x230i ThinkPad PC with a 2.50 GHz

Intel Core i3-3120 CPU and 3.23 GB of main memory

running Windows 7.

5.1 Data Preparation

Because no standard experimental platform and test

dataset exists, we designed workflows for device

management derived from a real system in the

Equipment Office of Shanghai University. The

procedural steps to prepare the test data and the test

scenario include the following:

(1) WSDL4J is used to generate 200 Web services;

it can automatically code the WSDL for services after

the input and output parameters have been configured.

Each service has, at most, two inputs and two outputs.

(2) To increase the number of services, the names of

services generated in Step 1 were randomly changed.

The total number of Web services was close to 500.

Research on Cost-Driven Services Composition in an Uncertain Environment 765

(3) Each service is assigned cost and reliability

values, where cost ranges from 1 to 100, and reliability

(as a probability) ranges from 0 to 1.

(4) The workflow language BPEL4WS is extended

with cost and reliability descriptions to express user

requirements.

Service composition starts with the BPEL4WS

created in step 4), and aims to map each logic task to

suitable services. Then, service selection is performed

to search for matching services in the test dataset

created in Step 1. For example, Figure 1 shows a

BPEL4WS description and Table 1 shows a service

repository. As shown in Figure 2, service composition

will return different types of composition plans.

We focus on node number, which is the number of

nodes in a service workflow, and on candidate service

number, which is the number of candidate services for

each node in a workflow. To examine the impact of

these two parameters on the cost and reliability

performance of the generated service workflow, we list

four sets of parameters in Table 4. During the

experiments, one of these two parameters is varied

while the other parameter is fixed.

Table 4. Experiments setting

ID Node Number Candidate Service Number

1 5 7

2 10 30

3 15 50

4 20 100

A series of experiments was conducted to evaluate

the performance among different methods. The first

contrast experiment compared our service selection

method with the traditional keyword matching method.

The second experiment involved using PRISM to

check the service workflow to reveal the error

discovery rate.

5.2 Performance Analysis

In the first set of experiments, we implemented the

service index method and compared it with the

traditional keyword matching method. We recorded

response times and memory consumption.

Figure 9 shows the time consumption when varying

the number of nodes from N=5 to 20 to test the

response time. The unit of measurement is ms. The

service index method (SIM) has a faster response time

than the traditional keyword matching (TKM) method.

As the number of nodes increases, the TKM response

time increases. However, SIM response time is almost

a straight line, and requires less service search time

because the service index bounds the search to a more

accurate scope. In contrast, TKM must search the full

service name space, causing increased computational

time.

Figure 9. Response time of service selection

Figure 10 shows the memory consumption when

varying the number of candidate services from N=7 to

100. The unit of measurement is bytes. As the number

of candidate services increases, the memory

consumption of TKM increases sharply. The service

index method (SIM) maintains a lower memory

consumption than does the traditional keyword

matching (TKM) method because TKM spends more

time searching for possible services among all the

services in the repository. Thus, we can conclude that

TKM requires more memory to complete the search

tasks.

Figure 10. Memory consumption of service selection

In the second set of experiments, we used PRISM to

check the service workflows. PRISM checks each

service workflow plan to find bugs.

Table 5. Capacity of “Bad” service discovery

 #7 #30 #50 #100

PMC 5 12 34 73

MC 3 5 13 27

WT 1 1 3 3

Before starting these experiments, a number of ‘bad’

services with lower cost and reliability were

766 Journal of Internet Technology Volume 20 (2019) No.3

purposefully inserted as traps. The header row of Table

5 indicates the different workflow paths, #7, #30, #50

and #100. The probabilistic model-checking method

(PMC) is compared with the model-checking (MC)

method and workflow test (WT). The model check is

performed using NuSMV. The workflow test is

conducted manually. Table 5 shows the ability to

discover ‘bad’ services under different mode sizes.

Figure 11 shows the comparison of ‘bad’ service

discovery. Obviously, the WT has difficulty finding

any ‘bad’ services because it uses function-oriented

testing, which focuses only on input and output tests

without considering temporal logic behaviours. Under

the same mode size, MC is weaker than PMC for

discovering ‘bad’ plans. Although model checking can

check temporal logic behaviours, it lacks quality

computing. The probabilistic model checking evaluates

the business process in a quantitative way to find ‘bad’

services that have low performance. Thus, our method

can efficiently scale up to large-scale datasets from

both theoretical and practical perspectives.

Figure 11. Comparison of “Bad” service discovery

6 Related Works

Web services are changing traditional business

models because they help modern enterprises to seize

business opportunities and accelerate inter-enterprise

collaborations. Much of the research on service

composition has been published from different

perspectives. We present a review of the major

techniques and methods most closely related to our

work.

Considerable research has focused on service

selection. Wang et al. [20] proposed algorithms for

QoS-aware service selection based on the artificial bee

colony (ABC) algorithm. Yue et al. [21] proposed a

skyline-based Web service selection method to address

the efficiency problem as well as to solve the frequent

requests problem. To improve service selection

efficiency, the KD-tree-based search algorithm was

designed to determine the skyline and later reduce the

search space. Wang et al. [22] proposed a type of

incentive contract that motivated the service providers

to offer higher QoS at lower prices. An incentive

mechanism for effective service selection was

proposed to fulfil global QoS requirements. Dionisis et

al. [23] considered a number of service selection issues

related to the WS-BPEL scenario adaptation, aiming to

enhance the adaptation quality and improve the QoS

offered to end users. However, none of the existing

methods considered service search in conjunction with

service recommendation to improve service selection

efficiency.

Considerable research has also focused on service

cost. Yu et al. [24] proposed a backwards composition

context-based service selection approach for service

composition. These researchers considered several

contextual factors, including cost policy and

composition time, during service selection. Marco et al.

[25] focused on the definition of cloud service

compositions driven by certified non-functional

properties. They defined a cost evaluation

methodology to provide a composition that minimized

the total costs of a cloud provider. Xiao et al. [26]

proposed a novel process algebra called PTPA that

incorporated both price and cost. They presented the

syntax and semantics of PTPA and proposed an

algorithm to construct a cost state space to select

services composition with optimal cost. Robson et al.

[27] proposed a solution to analyse the costs of service

compositions by considering service reliability and all

classes of cost behaviours. David et al. [28] presented

an approach for integrating user preferences

concerning completion time and workflow accuracy in

a workflow composition system. Philipp et al. [29]

formalized the problem of searching the optimal set.

These researchers presented algorithms to solve the

complex optimization problem. These methods are

useful for including cheaper services during service

composition. However, service workflow performance

involves non-functional requirements and should also

consider QoS features.

Another large portion of the research has focused on

service QoS. Ding et al. [30] addressed the issues of

selecting and composing services using the genetic

algorithm and proposed a transaction and QoS-aware

selection approach. Guidara et al. [31] presented a

heuristic-based time-aware service selection approach

to efficiently select a close-to-optimal combination of

services. Yin et al. [32] proposed a data filtering-

extended SlopeOne model (filtering-based CF), which

is based on the characteristics of a mobile service and

considers location when predicting QoS values. Zeng

et al. [33] presented a middleware platform that, in a

way. addressed the service selection for the purpose of

composition. It aimed to maximize user satisfaction

expressed as utility functions over QoS attributes.

Deng et al. [34] proposed a novel method of service

selection called the correlation-aware service pruning

Research on Cost-Driven Services Composition in an Uncertain Environment 767

(CASP) method. It managed QoS correlations by

accounting for all services that could be integrated into

optimal composite services and pruned suboptimal

candidate services. Tao et al. [35] designed a broker-

based architecture to facilitate the selection of QoS-

based services. The objective of service selection was

to maximize an application-specific utility function

under end-to-end QoS constraints. However, these

methods are difficult to use for dynamic service

composition because their service selections require

human intervention to make decisions during QoS

computing. Moreover, QoS is a collection of

multidimensional indexes that show how to evaluate

service composition, while QoS values should be

translated into a unified evaluation index.

In contrast to the existing research described above,

we propose a two-phase services composition approach

for abstract workflows. In the first phase, service

selection is performed through service search and

service recommendation. In the second phase,

probabilistic model checking is employed to determine

which plan of service configurations for workflow is

most optimal by considering low cost and high

reliability.

7 Conclusions

Service workflow, as one method for integrating

enterprise information, has been widely used in e-

commerce and scientific computing. However, because

of the uncertain Web service environment, workflows

have failure risks that cause component services to be

unavailable. To guarantee that a service workflow

satisfies both functional and non-functional

requirements, it is necessary to study cost-driven

services composition. The goal of this paper is to select

services that meet the demands of abstract workflows

by using probabilistic model checking to quantitatively

verify the service plan.

First, the inverted index method is used to generate a

service index to improve service search efficiency.

Next, the service search selects services based on the

interface operations of a user’s functional requirements.

Furthermore, candidate service sets matching the

abstract workflow will be returned for service

configuration. Third, usage frequency is used to

generate a service-service correlation matrix by

applying an improved Pearson formula that considers

interface, cost, and reliability factors to recommend

correlated services. Fourth, transformation rules for

changing BPEL4WS into a formal model are discussed,

and the PCTL formula is introduced to specify

quantitative properties. Finally, the PRISM model

checker is employed to perform a formal verification

whose result helps to identify the plan of service

configuration most suitable for the current workflow.

This paper discusses only cost-driven services

composition in an uncertain environment. However, in

practice, service invocations have time limitations [36].

Thus, in future work, we plan to extend the services

composition verification to consider time constraints.

Acknowledgements

This paper is supported by the National Natural

Science Foundation of China under Grant No.

61502294, 61662021, and the IIOT Innovation and

Development Special Foundation of Shanghai.

References

[1] J. J. Hu, X. L. Chen, Y. Y. Cao, L. H. Zhu, A Comprehensive

Web Service Selection Algorithm on Just-in-Time Scheduling,

Journal of Internet Technology, Vol. 17, No. 3, pp. 495-502,

May. 2016.

[2] J. Yin, X. Zhao, Y. Tang, C. Zhi, Z. Chen, Z. Wu,

CloudScout: A Non-Intrusive Approach to Service

Dependency Discovery, IEEE Transactions on Parallel &

Distributed Systems, Vol. 28, No. 5, pp. 1271-1284, May,

2017.

[3] G. S. Fan, H. Q. Yu, Q. Wu, L. Q. Chen, D. M. Liu, A

Requirement-Driven Method for Secure and Reliable Web

Service Composition, Journal of Internet Technology, Vol. 14,

No. 3, pp. 485-496, May. 2013.

[4] W. Jiang, S. Hu, D. Lee, Continuous Query for QoS-aware

Automatic Service Composition, IEEE International

Conference on Web Services (ICWS 2012), Honolulu, USA,

2012, pp. 50-57.

[5] H. H. Gao, D. Q. Chu, Y. C. Duan, The Probabilistic Model

Checking Based Service Selection Method for Business

Process Modeling, Journal of Software Engineering and

Knowledge Engineering, Vol. 27, No. 6, pp. 897-923, August,

2017.

[6] H. H. Gao, Y. C. Duan, H. K. Miao, An Approach to Data

Consistency Checking for the Dynamic Replacement of

Service Process, IEEE ACCESS, Vol. 2017, No. 5,11700-

11711, June, 2017.

[7] L. Q. Yang, G. S. Kang, L. P. Guo, Z. Y. Tian, L. Zhang, X.

N. Zhang, X. Gao, Process Mining Approach for Diverse

Application Environments, Ruan Jian Xue Bao/Journal of

Software, Vol. 26, No. 3, pp. 550-561, March, 2015.

[8] W. M. Zhang, C. C. Liu, Z. G. Luo, A Review on Scientific

Workflows, Journal of National University of Defense

Technology, Vol. 33, No. 3, pp. 56-65, June, 2011.

[9] X. X. Yang, T. Yu, H. H. Xu, A Novel Framework of Using

Petri Net to Timed Service Business Process Modeling,

International Journal of Software Engineering and

Knowledge Engineering, Vol. 26, No. 4, pp. 633-652, May,

2016.

[10] C. H. Lee, S. Y. Hwang, I. L. Yen, A Service Pattern Model

for Service Composition with Flexible Functionality,

Information Systems and E-Business Management, Vol. 13,

No. 2, pp. 235-265, May, 2014.

[11] S. Y. Hwang, H. J. Wang, J. Tang, J. Srivastava, A

768 Journal of Internet Technology Volume 20 (2019) No.3

Probabilistic Approach to Modeling and Estimating the QoS

of Web-services-based Workflows, Information Sciences, Vol.

177, No. 23, pp. 5484-5503, December, 2007.

[12] P. Podili, K. K. Pattanaik, P SinghRana, BAT and Hybrid

BAT Meta-heuristic for Quality of Service-based Web

Service Selection, Journal of Intelligent Systems, Vol. 26, No.

1, pp. 123-137, January, 2017.

[13] C. Gerardo, D. P. Massimiliano, E. Raffaele, A Famework for

QoS-aware Binding and Re-binding of Composite Web

Services, Journal of Systems and Software, Vol. 81, No. 10,

pp. 1754-1769, October, 2008.

[14] Y. Y. Yin, F. Z. Yu, Y. S. Xu, L. F. Yu, J. L. Mu, Network

Location-Aware Service Recommendation with Random

Walk in Cyber-Physical Systems, Sensors, Vol. 17, No. 9, pp.

2059-2079, September, 2017.

[15] Y. Y. Yin, A. H. Song, M. Gao, QoS Prediction for Web

Service Recommendation with Network Location-Aware

Neighbor Selection, International Journal of Software

Engineering and Knowledge Engineering, Vol. 26, No. 4, pp.

611-632, May, 2016.

[16] Y. C. Jiang, J. X. Liu, M. D. Tang, An Effective Web Service

Recommendation Method Based on Personalized Collaborative

Filtering, 2011 IEEE International Conference on Web

Services (ICWS 2011), Washington, DC, 2011, pp. 211-218.

[17] Z. Zheng, H. Ma, M. Lyu, I. King, WSRec: A Collaborative

Filtering Based Web Service Recommender System, IEEE

International Conference on Web Services (ICWS 2009), Los

Angeles, CA, 2009, pp. 437-444.

[18] H. H. Gao, Y. Li, Generating Quantitative Test Cases for

Probabilistic Timed Web Service Composition, 6th IEEE

Asia-Pacific Services Computing Conference (APSCC2011),

Jeju island, South Korea, 2011, pp. 275-283.

[19] M. Kwiatkowska, G. Norman, D. Parker, Probabilistic Model

checking in Practice: Case Studies with PRISM, ACM

SIGMETRICS Performance Evaluation Review, Vol. 32, No.

4, pp. 16-21, March, 2005.

[20] X. Z. Wang, X. F. Xu; Q. Z. Sheng, Z. J. Wang, L. Yao,

Novel Artificial Bee Colony Algorithms for QoS-Aware

Service Selection, IEEE Transactions on Services Computing,

Vol. PP, No. 99, 1-1. September, 2016.

[21] Y. Wang, Y. Song, M. Y. Liang, A Skyline-based Efficient

Web Service Selection Method Supporting Frequent Requests,

IEEE 20th International Conference on Computer Supported

Cooperative Work in Design (CSCWD 2016), Nanchang,

China, 2016, pp. 328 -333.

[22] P. W. Wang, X. Y. Du, QoS-aware Service Selection Using

An Incentive Mechanism, IEEE Transactions on Services

Computing, Vol. PP, No. 99, 1-1, August, 2016.

[23] D. Margaris, P. Georgiadis, C. Vassilakis, On Replacement

Service Selection in WS-BPEL Scenario Adaptation, IEEE

8th International Conference on Service-Oriented Computing

and Applications (SOCA 2015), Rome, Italy, 2015, pp. 10-17.

[24] H. Yu, S. Reiff-Marganiec, A Backwards Composition

Context based Service Selection Approach for Service

Composition, International Conference on Services

Computing SCC 2009), Bangalore, India, 2009, pp. 419-426.

[25] M. Anisetti, C. A. Ardagna, E. Damiani, F. Gaudenzi, A

Cost-Effective Certification-Based Service Composition for

the Cloud, IEEE International Conference on Services

Computing (SCC 2016), San Francisco, CA, 2016, pp. 58-65.

[26] F. X. Xiao, H. Q. Min, B. Xu, C. Q. Jiang, G. E. Xia,

Modeling Cost-aware Services Composition Using a Priced

Formal Method, The 6th IEEE International Conference on

Software Engineering and Service Science (ICSESS 2015),

Beijing,China, 2015, pp. 309-312.

[27] R. W. A. de Medeiros, N. S. Rosa, L. F. Pires, Predicting

Service Composition Costs with Complex Cost Behavior,

2015 IEEE International Conference on Services Computing

(SCC 2015), New York City, NY, 2015, pp. 419-426.

[28] D. Chiu, G. G. Agrawal, Cost and Accuracy Aware Scientific

Workflow Composition for Service-Oriented Environments,

IEEE Transactions on Services Computing, Vol. 6, No. 4, pp.

470-483, October, 2013.

[29] P. Leitner, W. Hummer, S. Dustdar, Cost-Based Optimization

of Service Compositions, IEEE Transactions on Services

Computing, Vol. 6, No. 2, 239-251, April, 2013.

[30] Z. J. Ding, J. J. Liu, Y. Q. Sun, C. J. Jiang, M. C. Zhou, A

Transaction and QoS-Aware Service Selection Approach

Based on Genetic Algorithm, IEEE Transactions on Systems,

Man, and Cybernetics: Systems, Vol. 45, No. 7, pp. 1035-

1046, July, 2015.

[31] I. Guidara, N. Guermouche, T. Chaari, S. Tazi, M. Jmaiel,

Heuristic Based Time-Aware Service Selection Approach.

2015 IEEE International Conference on Web Services ICWS

2015), New York, NY, 2015, pp. 65-72.

[32] Y. Y. Yin, W. T. Xu, Y. S. Xu, H. Li, L. F. Yu, Collaborative

QoS Prediction for Mobile Service with Data Filtering and

SlopeOne Model, Mobile Information Systems, Vol. 2017, No.

3, pp. 1-14, June, 2017.

[33] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.

Kalagnanam, H. Chang, QoS-Aware Middleware for Web

Services Composition, IEEE Transactions on Software

Engineering, Vol. 30, No. 5, pp. 311-327, May, 2004.

[34] S. G. Deng, H. Y. Wu, D. N. Hu, J. L. Zhao, Service

Selection for Composition with QoS Correlations, IEEE

Trans. Services Computing, Vol. 9, No. 2, pp. 291-303,

March, 2016.

[35] T. Yu, Y. Zhang, K. J. Lin, Efficient Algorithms for Web

Services Selection with End-to-End QoS Constraints, ACM

Transactions on the Web, Vol. 1, No. 1, pp. 1-26, May, 2007.

[36] C. C. Xiang, P. L. Yang, X. G. Wu, H. He, S. C. Xiao, QoS-

Based Service Selection with Lightweight Description for

Large-scale Service-oriented Internet of Things, Tsinghua

Science & Technology, Vol. 20, No. 4, pp. 336-347, August,

2015.

Research on Cost-Driven Services Composition in an Uncertain Environment 769

Biographies

Honghao Gao received the Ph.D.

degree in Computer Science and

started his academic career at

Shanghai University in 2012. He is an

IET Fellow, BCS Fellow, EAI Fellow,

IEEE Senior Member, CCF Senior

Member, and CAAI Senior Member.

Prof. Gao is currently a Distinguished

Professor with the Key Laboratory of Complex

Systems Modeling and Simulation, Ministry of

Education, China. His research interests include

service computing, model checking-based software

verification, wireless network and IoT, and sensors

data application.

Wanqiu Huang is M.S. Degree

candidate in Computer Science with

the School of Computer Engineering

and Science, Shanghai University,

Shanghai, China. Her research

interests include Web service and

model checking.

Yucong Duan received the PhD in

software engineering from Institute of

Software, Chinese Academy of

Sciences, China, in 2006. He is

currently a Professor and vice director

of Computer Science Department,

Hainan University, China.His research

interests include: theoretical and empirical software

engineering, model driven software development, etc.

Xiaoxian Yang, received the Ph.D.

degree in Management Science and

Engineering from Shanghai University,

Shanghai, China, in 2017. She is

currently an assistant professor at

Shanghai Polytechnic University,

China. Her research interests include

business process management, and

formal method.

Qiming Zou, received the Ph.D.

degree in Machine Manufacturing

from Shanghai University, Shanghai,

China, in 2015. He is currently an

assistant professor at Shanghai

University, China. His research

interests include cloud computing,

grid computing computer aided manufacturing.

770 Journal of Internet Technology Volume 20 (2019) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

