
A New Cache Placement Strategy for Wireless Internet of Things 717

A New Cache Placement Strategy for Wireless Internet of Things

Hua Wei, Hong Luo, Yan Sun*

Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia,

Beijing University of Posts and Telecommunications, China

weihua2015@bupt.edu.cn, luoh@bupt.edu.cn, sunyan@bupt.edu.cn

*Corresponding Author: Hua Wei; E-mail: weihua2015@bupt.edu.cn

DOI: 10.3966/160792642019052003006

Abstract

Caching has shown the success in performance

improvement for many wireless communications and

networking systems. However, the existing researches

generally decide whether cache the data or replace it rely

on local content popularity on each single node. It will

cause different nodes caching the same data and result in

unnecessary cache redundancy. In this paper, we

investigate the global optimal problem of cache

placement for IoT. We first prove that finding the optimal

data cache location from the whole network is an NP-

hard problem, and propose a centralized algorithm to

obtain the approximate global optimal solution based on

the Lagrangian Heuristic Algorithm. Then, inspired by

the Lagrangian relaxation, we transform the iteration

procedure of finding the optimal cache location into local

decisions of cache location selection and cache

replacement, and we propose a distributed cache

placement algorithm. Besides, the cache replacement

algorithm can also be used to adjust the best cache

location when the user requirement changes. Finally, we

implement the distributed cache placement strategy in

NDN. The experimental results show that the distributed

caching strategy approximates the global optimal solution

very well, and can save the network traffic by about

12.6% on average comparing with other caching

strategies.

Keywords: Information Center Network (ICN), Internet

of Things (IoT), Lagrangian Heuristic

Algorithm (LHA), Cache placement, Cache

replacement

1 Introduction

In the traditional wireless communications and

networking systems, it takes the TCP/IP architecture as

the core, and the packets are forwarded according to

the IP address in the packet header regardless of the

data content. Different with it, in the Information-

centric network [1-2], the data not rely on IP address

but data name to be forwarded. The data name is the

only identifier of the information. And it has a caching

mechanism which can cache data at the routing node,

so that the data will be independent of the physical

location. The ICN architecture can significantly reduce

the data transmission, improve security and network

mobility [3]. These features are useful for many IOT

applications, for example, production process

monitoring, logistics data transmission and so on. A

typical Information-Center Network is shown in Figure

1. The user requests the data by sending an Interest

packet. Obviously, the transmission cost and delay are

small, when the cache node is close to the user.

However, it will cause the same data has been cached

many times, especially when different access points

request the same data.

Figure 1. A typical Information-Center Network

The ICN architecture which is suitable for

traditional Internet is also suitable for IoT. However,

the IoT still has some different characteristics with the

traditional Internet. For example, in the IoT, the node

resources and transmission bandwidth are limited.

Therefore, the caching algorithm in the IoT must adapt

to its characteristics when using the ICN architecture.

In the most of existing research, the data in the cache

node is independent, that is, each node is based on its

local content popularity to determine whether cache the

data or not. Therefore, the data which has high content

popularity might be cached in multiple nodes, it means

the cache redundancy is high. Due to the limitations of

cache size in the IoT, it is necessary to design a better

cache strategy from the view point of global

optimization for users to avoid the highly cache

718 Journal of Internet Technology Volume 20 (2019) No.3

redundancy. Meanwhile, to improve the network

performance and reduce the user's waiting time when it

accesses the data, we also need to set the cache point to

the end user as close as possible so as to provide the

near-end service. So the challenge of caching strategy

in IoT is how to balance the service quality and the

network limitation and find the global optimal solution.

In order to solution this problem, researchers have

proposed many methods, such as virtual SDN

algorithm and hierarchical optimization algorithm.

However, these methods aren’t suitable for IoT

environments and have low performance. Different

with previous works, we study the problem from two

aspects: We first model the network structure and

define the problem as minimizing the total network

transmission consumption with minimum cached data.

Then, the problem is converted to Generalized Facility

Location Problem (GFLP). In order to calculate the

cache position in the network, a Lagrangian heuristic

algorithm is used to find the global approximate

optimal solution [4]. Secondly, we propose a

distributed cache placement and replacement algorithm

based on the idea of Lagrangian relaxation which has

been used in finding the global approximate optimal

solution. The distributed algorithm is executed on each

routing node with local information while ensuring that

there is no excessive cache redundancy. Hence it is

effective when the global information can't be counted

in real time. After that, we take the well-known Named

Data Network as an example, and figure out the

specific implementation process of the above algorithm

[5]. Finally, we use NDNSIM platform to make

simulation experiments [6-7], the results show that the

average similarity between the distributed strategy and

the global approximate optimal solution is 88.7%.

Therefore, we conclude that the result of the distributed

caching strategy can simulate the global approximate

optimal solution. The main contributions of this paper

lie in the following three aspects.

‧ We define the data cache problem as minimizing the

network transmission consumption and convert to

generalized facility location problem. Since the

problem belongs to the NP-hard problem, we use the

Lagrangian heuristic algorithm to solve it and obtain

the approximate global optimal solution.

‧ We propose a distributed cache placement strategy

which only uses local information to make the cache

decision while ensuring that there is no excessive

cache redundancy.

‧ We provide the implementation of the proposed

DCA in the Named Data Network and compare the

results of the distributed caching strategy and the

global approximate optimal solution through a large

number of experiments. The results show that the

distributed algorithm is 88.7% approximating to the

global algorithm and outperforms other distributed

algorithms.

The rest of the paper is organized as follows. The

section II is related work. We give the problem

formulation in section III. In Section IV, we describe

optimal cache position calculation in detail, and

Section V describes the distributed caching strategy. In

Section VI, we describe how to implement the specific

process of achieve the distributed caching strategy in

NDN. The experiment and performance evaluation is

show in Section VII. Finally, conclusions and future

work are given in Section VIII.

2 Related Work

In order to solve the problem of repeated data

transmission in existing networks, the ICN's pioneer

RTIAD proposed Information-Centric Network (ICN)

architecture [1]. Many researches which based on the

ICN architecture have achieved academic support and

recognition. They have different architectural models

and focuses [8], in which the study of Named Data

Network project has received wide attention [5].

ICN in-network caching strategies are based on two

caching models: On-path and Off-path caching [9].

On-path caching is implemented by storing data on the

forwarding path, and most of caching algorithms

belong to on-path caching. When the node doesn't have

enough storage space, we need a suitable cache

replacement algorithm to replace the inefficient content

with the efficient one. At present, the existing

algorithms include Least Recently Used (LRU), First

in First out (FIFO), virtual SDN algorithm [10],

hierarchical optimization algorithm [11], Content

popularity prediction algorithm [12], MAGIC

algorithm [13] and so on.

The LRU and FIFO are the commonly used

replacement algorithms, it uses short-term local history

records to sort the content, and determines the cache

priority of the content by the sort. As the short-term

history does not completely reflect the regularity of

future access [14], it may cause invalid replacement of

content. Sun et al. considered that it incurs faster cache

replacement and degrades the cache performance, since

the same data is replicated in all routers along the

request path [11]. Therefore, they proposed a hybrid

cache strategy to overcome the drawback.

Charpinel et al. [10] proposed a SDN method that

can provide a programmable forwarding strategy and a

caching strategy for CCN. This method eliminates the

need for mapping between content names and

identifiers. And it added a Cache Rules Table (CRT) to

storing cache rules which inform what kind of content

should be stored in cache. They achieved the above

method through SDCCN. In SDCCN, the data plane

doesn't need to recognize any frame format and the

processing flows is similar to OpenFlow. Liu et al.

proposed a Content Popularity Prediction method to

achieve the popularity prediction, which is based on

computing resources and links in the SDN [15].

However, since the data layer and the control layer

A New Cache Placement Strategy for Wireless Internet of Things 719

need to communicate through the Protocol-Oblivious

Forwarding (POF) protocol, the excessive

communication cost is increased. And the SDN

approach increases the control layer, it is not suitable

for the IOT environment.

Ren et al. [13] proposed a distributed MAGIC

(MAx-Gain In-network Caching) algorithm that use

less inter-node communication to reduce cache

redundancy, and it is designed for the IoT environment.

Hence, it has a significant improvement in wireless

networks with limited cache size at each wireless node.

However, the method still has many problems. For

example, the minimum penalty value may have

changed before the data back. Then, it obtained

conclusions by experiment just with several nodes.

There is no theoretical proof of the effectiveness of the

algorithm. Finally, it's important to note that MAGIC

algorithm will cause some nodes storing a series of hot

data which may reduce the network performance.

Content popularity algorithm predicts the popularity

ranking by calculating the local popularity. It replaces

the content by ranking order. Wu et al. proposed a

probability based heuristic caching strategy, when the

data packet is returned back, on-path cache nodes

decide whether to cache the content with certain

probability [16]. Zhang et al. presented a Popularity

Prediction Caching replacement method for chunk-

level cache by discovering the relevance among video

chunks in ICN from the perspective of user watching

behavior [17]. All of these methods have the following

two problems. Firstly, the local prediction results are

not accurate enough. Secondly, it may cause many

nodes in the network storing the same content.

3 Problem Formulation

In this section, we first formally define the network

topology and transmission consumption. Then, we

formulate the problem as minimizing the total

transmission consumption with minimum cached data.

It should be noted that we use the terms “routing

node”, “caching node”, “router” and “node”

interchangeably to refer to cache-enabled network

devices [18]. Furthermore, we refer to content “data”,

“contents” and “data packet” interchangeably to refer

to the cacheable unit.

3.1 System Model

Let G(V, E), a fully connected undirected weighted

graph, where V denotes the set of nodes in the network

and E denotes the set of communication links between

nodes. The weight W{e|e ∈ E} indicates the

bandwidth of the link e. Nodes are divided into three

types: Producer (P), Router (R) and Access Point (A).

P = {1, 2, ... m, ..., M} is the set of producers

representing the nodes which are data sources. R = {1,

2, ... i, ..., N} is the set of routers representing the

nodes which can forward and cache data. A = {1, 2, ...

j, ..., Q} is the set of access points representing the

nodes which gather the user’s query and request the

data. For simplicity, let P (m) be the m-th data source

node which the number is m. Similarly, let R(i) and A(j)

be the i-th router node and j-th access point,

respectively. Obviously, V = P ∪ R ∪ A.

Suppose that there are k-types of data in the network.

The data types are indexed by k ∈ K and the data

source node m produce the k-type data. ijkx indicates

whether the type-k data requested by the j-th AP node

is cached in the router node i.

0,

1,
ijk

Not being cached
x

Being cached

⎧
= ⎨
⎩

 (1)

In order to minimize the cached data in the network,

the same data type on a single link can only be cached

once, i.e.

 1,ijk

i R

x

∈

=∑ ,j A k K∈ ∈ (2)

Assume that the size of each data type is same and

denoted by s. Let s be the size of the data. The Ui be

the size of cache space at the router node i.

 * ,ijk i

k K

x s U

∈

≤∑ ,i R j A∈ ∈ (3)

The communication cost between node i and node j

is denoted by .ijc And ijkc represents the communication

cost of transmitting type-k data between node i and

node j.

 * ,ijk ij ijkc d f= , ,i R j A k K∈ ∈ ∈ (4)

where
ij

d is the distance between node i and node j,

ijkf is the request frequency of node j for type-k data at

node i.

And we use the ()
mi
c k define the fixed cost which is

transfer the type-k data from data source node m to the

router node i. Now, we have the second constraint of

link capacity.

 ,

e
ijk ijk

k K j A

W
f x

s
∈ ∈

≤∑∑ , , { , }i R e E e i j∈ ∈ = (5)

We use a Boolean factor
i
y to indicate whether the

cache space is full or not, and set 1
i
y = if it is full;

otherwise, 0
i
y = .

 ,
i

i R

y N i R
∈

≤ ∈∑ (6)

The cache cost P is the added transmission

consumption due to cache replacement.

720 Journal of Internet Technology Volume 20 (2019) No.3

 * , ,ijk mi

j A

P Min f d i R k K
=

= ∈ ∈∑ (7)

Here, type-k data is produced by data source node m,

and
mi

d represents the distance from data source node

m to router node i. For simplicity, we assume that the

routing interface will not be changed and data request

frequency is stable. Meanwhile there is no packet loss

in the network.

3.2 Problem Definition

Based on the discussed above, we can calculate the

total costs in the network. The aim is to minimize the

cost with the constraints (1) to (7). The objective

function can be formulated as Equation (8).

 ()i mi ijk ijk

i R i R k K i R k K j A

Min Py c k c x
∈ ∈ ∈ ∈ = ∈

+ +∑ ∑∑ ∑∑∑ (8)

subject to 1, ,ijk

i R

x j A k K
∈

= ∈ ∈∑ (9)

 * , ,ijk i

k K

x s U i R j A
∈

≤ ∈ ∈∑ (10)

 * , , ,ijk ijk ijkc d f i R j A k K= ∈ ∈ ∈ (11)

 , , , { , }e
ijk ijk

k K j A

W
f x i R e E e i j

s
∈ =

≤ ∈ ∈ =∑∑ (12)

 * , ,ijk mi

j A

P Min f d i R k K
∈

= ∈ ∈∑ (13)

 () 1* , ,
mi k mi
c d i R k K= ∈ ∈ (14)

 {0,1}, , ,ijkx i R j A k K∈ ∈ ∈ ∈ (15)

 1, {0,1},
i i

i R

y y i R
∈

≤ ∈ ∈∑ (16)

where the P is the replacement cache cost, dmi is the

fixed data transmission costs and ijkc is variable

transmission costs.

4 Optimal Cache Position Calculation

Facility location problem is to find locations for new

facilities such that the conveying cost from facilities to

customers is minimized. Consider taking cache cost

P(k) as fixed site setup cost, fixed data transmission

cost
mi
c as facility setup cost and variable transmission

costs ijkc as the connection cost of satisfying the type-k

demand of customer j by the facilities in site i. Then,

the problem is converted to Generalized Facility

Location Problem (GFLP). As we know, the classical

NP-hard problem Capacitated Facility Location

Problem (CFLP) is a special case of GFLP with

0
mi
c = . GFLP is an NP-hard problem obviously.

Wu et al. proposed an efficient Lagrangian heuristic

algorithm (LHA) to solve the GFLP [4]. In this paper,

firstly, we use the Lagrangian relaxation method to

estimation the lower bound and the upper bound [19-

20]. Then, we implemented the classical subgradient

method to find the optimal Lagrangian multipliers [21-

22]. Finally, we list the complete Lagrangian Heuristic

Algorithm (LHA) to calculate the cache location.

4.1 The Lower Bound and the Upper Bound

We relax constraints (12) in objective function (8)

with multipliers λi, i R∈ . Then we get a Lagrangian

relaxation of the objective function (8) as Equation

(17).

()

()

i mi ijk ijk

i R i R k K i R k K j A

e
i ijk ijk

i R k K j A

Min Py c k c x

W
f x

s
λ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

+ +

+ −

∑ ∑∑ ∑∑∑

∑ ∑∑

 (17)

subject to (9)-(11) and (13)-(16).

Then, we can decompose the above problem into N

subproblems, one for each routing node, by leaving

constraints (16) aside.

 () ()i mi mi i ijk ijk

k K k K j A

Min Py c k c f xλ

∈ ∈ ∈

+ +∑ ∑∑ (18)

subject to (9)-(11) and (13)-(15). For each subproblem,

yi is either equal to 0 or 1. If yi = 0, then 0
i

Py = . Then

the objective function (18) can be further decomposed

into K subproblems, one for each data type. The

objective function is

 () ()mi ijk i ijk ijk

j A

Min c k c f xλ

∈

+ +∑ (19)

Subject to * ,ijk i

k K

x s U

∈

≤∑ ,i R j A∈ ∈

 * ,ijk ij ijkc d f= , ,i R j A k K∈ ∈ ∈

 () 1* ,
mi mi
c k d= ,i R k K∈ ∈

 {0,1}ijkx ∈ , ,i R j A k K∈ ∈ ∈

For each data request frequency ijkf , the problem

(19) is an integer knapsack problem that can be solved

by the greedy algorithm. Then, we can get the optimal

solution *()ijkR x and the minimal objective function

value *

L .

A New Cache Placement Strategy for Wireless Internet of Things 721

Let *

L ik denote the minimal objective function value

of the subproblem (19), then the minimal objective

function value of the subproblem (18) is

*

*

*

, 1

, 0

ik i

k K

i

ik i

k K

P L y

L

L y

∈

∈

⎧
+ =⎪

⎪
= ⎨
⎪ =
⎪⎩

∑

∑

 (20)

Finally, the minimal solution can be obtained by

adding the constraints (16) after solving the N

subproblem. The solution to the objective function (17)

provides a lower bound to the original problem.

In order to get the upper bound of the problem, we

solve the following linear programming problem to

find a feasible solution of the original objective

function (8).

*

ijk ijk

j A k Ki R

Min c x

= =∈

∑∑∑ (21)

subject to 1,ijk

i R

x

∈

=∑ ,j A k K∈ ∈

 * ,ijk ij ijkc d f=

*

, ,i R j A k K∈ ∈ ∈

 * ,ijk i

k K

x s U

∈

≤∑

*

,i R j A∈ ∈

 {0,1}ijkx ∈

*

, ,i R j A k K∈ ∈ ∈

The optimal solution is an upper bound on the

original problem. If it is smaller than the existing upper

bound, the upper bound is improved.

The solution for objective function (17) not always

be feasible to the original problem. In other words, the

total cost defined by the set of router node R* and
*

ijkx

is smaller than the total demand. We can use the simple

greedy heuristic to adjust the
*

R and
*

ijkx ijk so that all

demands can be satisfied. By this way, the upper bound

U can be get.

4.2 Lagrangian Heuristic Algorithm

In order to update the Lagrangian multipliers, we

use the classical subgradient method [21-22]. First, the

subgradients and step size are calculated by Equation

(22) and (23).

 () 1, ,ijk

i R

i x j A k Kψ

∈

= − ∈ ∈∑ (22)

2

()

()j A k K

U L

i

σ
μ

ψ
∈ ∈

−
=
Σ Σ

 (23)

where U is the upper bound and L is the optimal lower

bound solved above. σ is a customize parameters with

initial value between 0 and 2. The Lagrangian

multipliers
i

λ can be calculating by Equation (24).

 () *
i i

iλ λ ψ μ= + (24)

The complete Lagrangian heuristic algorithm is

illustrated in Algorithm 1. Let G(V,E) denote the

network topology, MAXT denote the maximum number

of iterations and ε denote the allowed maximum

interval between the lower and upper bounds. After

iterative calculation, the set of optimal solution R* and
*

ijkx , the lower bound L and the interval between the

lower and upper bounds GAP can be obtained.

Algorithm 1. Lagrangian Heuristic Algorithm

Input: G(V,E), MAXT, ε

Output: R*,
*

, ,ijkx L GAP

1. Set: LB= −∞ , UB=+∞ , GAP=+∞ ;

2. Initialize 0, 0
t

i
tλ = = ;

3. while t MAXT< and GAP ε< do

4. Solve objective function (17) with parameter
t

i
λ ;

5. Get the optimal objection value L;

6. Get the set of R* and
*

ijkx ;

7. if L > LB then

8. LB = L;

9. end if

10. Solve linear programming problem (21);

11. Get the optimal objection value U;

12. if U < UB then

13. UB = U;

14. end if

15. if (UB − LB)/LB ≤ GAP then

16. GAP = (UB − LB)/LB;

17. end if

18. 1;t t= +

19. Update Lagrangian multipliers t

i
λ ;

20. end while

5 Distributed Caching Strategy

The heuristic algorithm can find the approximate

global optimal solution. However, we must obtain the

global network topology and every node’s request

frequency when we use it. It is difficult to achieve in

real networks. In order to achieve the approximate

optimal solution in the IoT environment, inspired by

the idea of Lagrangian relaxation [23-24] which has

been proposed in the previous section, we propose a

distributed cache placement algorithm (DCA).

The brief approach is as follows. Firstly, we use the

Lagrangian relaxation process to decompose the

distributed optimization problem into minimum

transmission costs calculation in a single node. Then,

722 Journal of Internet Technology Volume 20 (2019) No.3

the minimum transmission costs problem is converted

into maximizing the number of request satisfied by

once transmission. Finally, select the best cache

location on a transmission path. In the process of best

cache location selection, if the selected cache is full,

we execute a cache replacement procedure. This cache

replacement procedure can also be used when new user

requests come in.

5.1 Distributed Optimization Problem

The goal of a distributed optimization problem is to

find at most one cache node on the path between the

data request node and the data source node, which can

minimize the network transmission costs.

Let e*(m, j) represent the path between the data

source node P(m) and the data request node A(j).

*(,) { (),1, 2, , , , , ()}e m j Path P m i I A j= … … (25)

where the node from 1 to I denotes all the router nodes

on the path e* (m, j).

The objective function of distributed optimization

problem is also can be formulated as Equation (8) with

the constrain *(,)i e m j∈ Similar to the idea of

Equation (18), we decompose the problem into I

subproblems. Then, similar to the idea of Equation (19),

the distributed optimization problem can be further

decomposed into K subproblems. The transmission

costs about type-k data on the path e* (m, j) can be

formulated as Equation (26).

 ,i mi ij ijk

j A

Py d d f i R
∈

+ + ∈∑ (26)

5.2 Problem Transformation

Let ()g k denote the benefit value of cache type-k

data. We define the benefit value as the number of

request satisfied by once transmission.

 ()
j A ijk

ij

f
g k

d

∈
Σ

= (27)

When the cache space is full, we set the Boolean

factor yi = 1; otherwise, yi = 0. Let k' denote the data

type which will be replacement when yi = 1. In the next

section, we give a detailed process of how to choose k'.

Furthermore, the value P can be converted to

minimizing the value g(k'). The value of g(k') yi is

calculated by Algorithm 3.

 min * min ()i ijk mi i

j A

Py f d g k y
∈

′= ⇒∑ (28)

Then, the last two terms of equation (26) can be

converted as follows:

 min() max
j A ijk

mi ij ijk

j A ij

f
d d f

d

∈

∈

Σ
+ ⇒ =∑ (29)

where
ij

d denotes the average distance from the cache

node i to all the access point.

Finally, the benefit of cache type-k data in node i

can be formulating as Equation (30).

 (1)
() * , ,i

j A ijk

i

ij

f
g k y e i R k K

d

λ α∈ −
Σ⎡ ⎤

′− ∈ ∈⎢ ⎥
⎢ ⎥⎣ ⎦

 (30)

where λ is a parameter that determines the impact of

bandwidth on the benefits,
i

α is the bandwidth usage

ratio of link e(i, i + 1), Let Tra represent the number of

data transmission which can be monitored during

transmission.
i

α can be calculated by the Equation

(31):

(, 1)

*

i

e i i

s Tra

W
α

+

= (31)

5.3 Best Cache Location Selection

Our goal is to find the best cache location with the

maximum benefit value. Aiming at comparison of the

benefit value of each node on the path in a distributed

way and lower the unnecessary control cost, the

comparison is occurs when the interest message is

forwarded.

The distributed cache algorithm is illustrated in

Algorithm 2. Let e*(m, j) denote the network topology,

Interest denote the data request packet and λ denote

the parameter. After network transmission, the data

back from data source m and the maximum value of

benefit MAX can be obtained. If MAX > 0, the data also

be cached in the best location; otherwise, the data

would not be cached.

Algorithm 2. Distributed Cache Selection Algorithm

Input: e*(m, j), Interest, λ .

Output: data, MAX.

1. Set: MAX=0;

2. Send Interest from j to m.

3. if Router node m receive an interest then

4. if Cache space is full then

5. Set yi = 1 and Calculation g(k') by

Algorithm 3;

6. else

7. Set yi = 0;

8. end if

9. Calculation benefit value (BV) by

Equation(30) with parameter λ

10. Storage BV in the node;

11. if BV > MAX then

12. MAX=BV;

13. end if

14. Forward Interest to next node;

15. end if

16. if Router node m receive a data then

A New Cache Placement Strategy for Wireless Internet of Things 723

17. if MAX == BV then

18. Cache data;

19. end if

20. Forward data to next node;

21. end if

22. if Data source m receive an Interest then

23 Get the value MAX;

24. Send data & MAX from m to j;

25. end if

Then, we propose a cache replacement strategy to

calculate which type of data will be replaced. The

strategy is based on the value of g(k).

The cache replacement algorithm is shown in

Algorithm 3. Let Ci denote the set of cached data in

node i. Calculate the function value g(a) for all the

elements in Ci. Let Gi denote the set of calculate result

g(a) in node i. Then, we have to sort all the elements in

Gi. The minimum value is denoted as g(k'). Compare

g(k') with the value g(k), if g(k') < g(k), replacement

the data k' with data k.

Algorithm 3. Cache Replacement Algorithm

Input: k,
i

C .

Output: k ′ .

1. Set: Min=+∞

2. Data k return to node i.

3. Calculate the function value g(k);

4. if Cache space is full then

5. for all
i

a C∈ do

6. Calculate the function value g(a);

7. if g(a) < MIN then

8. MIN = g(a);

9. k ′

10. end if

11. end for

12. if g(k) >MIN then

13. Remove Data k ′ ;

14. Cache Data k;

15. end if

16. else

17. Cache Data k.

18. end if

6 Implementation in NDN

In this section, we take NDNSIM [5]， the well-

known Named Data Network project as the platform,

discuss the specific process of cache location

calculation and cache replacement strategy. In the

NDN, communication is driven by the receiving end,

i.e., the data consumer. In order to receive data from

data producer, a consumer sends out an Interest packet.

The router forwards the Interest packet relies on the

data name instead of network address. A router

remembers the interface from which the request comes

in, and then forwards the Interest packet. Once the

Interest reaches a node that has the requested data, a

Data packet is sent back, which carries both the name

and the content of the data. This Data packet traces in

reverse the path created by the Interest packet back to

the consumer [5].

Aiming at realizing the distributed cache algorithm,

we modify the originally NDN model by adding the

history access information to store access information.

And we modify the Interest and the data packet format

to transmit the node’s benefit value between nodes.

Interest: The originally Interest message contains

Content Name, Selector, Nonce. In order to transfer the

maximum benefit value, a new field MAX is added in

the Interest. When a router receives the Interest, it

calculates the benefit value with Equation (30) and use

the Algorithm 2 deal with Interest.

Data Packet MetaInfo: The data packet contains four

parts, including Name, MetaInfo, Content and

Signature. The original structure of MetaInfo in NDN

includes Content Type, Freshness period, etc. Now, a

new field MAX is added in the Data Packets MetaInfo,

too. When a data producer receives the Interest, it gets

the MAX value from it. Then, it set the field MAX with

the same value meanwhile send back the data packet.

The router compares the MAX with local value when it

forwards a data packet.

Access Information Table (AIT): The Access

Information Table is used to store the Interest access

information. When an Interest arrives, the AIT will

record the request and router hops. It should be note

that each caching node can obtain the router hops from

itself to the data consumer based on the information

exchanged by the OSPFN protocol [25]. We list all the

fields of AIT in the Table 1. The number of future data

requests can be predicted based on the data in the AIT.

The prediction result can be approximated as user

access frequency.

Table 1. Access Information Table

Field Data Type Meaning

Name String Use data name as a unique identifier

Frequency Float The number of Interest in fixed time period

Time time Fixed time period of this data

Hops Float The average router hops from it to the data consumer

StoreFlag Boolean Indicates whether the corresponding data is stored

724 Journal of Internet Technology Volume 20 (2019) No.3

7 Performance Evaluation

In this section, we evaluate the performance of the

proposed cache placement strategy through simulations

experiments. NDNSIM [6-7] has been chose as the

experiment platform.

7.1 Experimental Environment

We use the NDNSIM applications simulation to

generate realistic synthetic workloads. The principle of

generate is similar with [26-28]，we generate data in a

random way. We assume that the total numbers of data

type in the network is 103. The size of each cache data

block is consistent with [29-30]. According to the

research in [28], we simulate the popularity of the

content by a Zipf law of parameter zp. In order to

approximate the Zipf distribution, we have given five

different zp values, i.e. zp∈Z = {0, 0.3, 0.5, 0.7, 1}. If

zp = 0, it means that every data type has equally

popular.

In order to evaluate the performance of the

algorithm, we chose two different sets of network

topologies. The first set of network topologies is

regular topology, e.g. star topology, grid topology and

ring topology. The second set of network topologies

comes from the Internet Topology Zoo dataset [32].

We assume that each node in the network hosts a cache

and it can send data request. And the request rate of

each data type at every consumer node is determined

by its popularity. For router node, each arrival requests

are independent. In all the experiments, we assume that

each node generate a total of 200 requests per second.

Thus, the request rate of each data type at each node

varies from 0 to 200 req/sec (r/s) according to its

popularity. At the beginning of the experiment, each

cache node is empty by default.

We evaluate the performance of the caching

strategies from following aspects:

Network traffic. The overall network traffic cost per

second (request*hops/second).

Replacement frequency. The replacement frequency

represents the average number of times each node

take cache replacement.

Server hit reduction ratio. It reflects the load saving

of servers due to the in-network cache hits.

7.2 Comparison of the Lagrangian Heuristic

Algorithm and Distributed Cache

Algorithm

We compare LHA and DCA through two sets of

experiments to confirm the reliability and feasibility.

Figure 2 and Figure 3 depict the performance

comparison of the proposed two different algorithms,

respectively, in the regular topology and Internet

Topology Zoo dataset. Since the value of zp in the real

network is between 0.6 and 0.9 [31], we set zp = 0.7 in

this experiment.

Figure 2. The performance of the proposed LHA and DCA using the regular network topology (grid topology)

Figure 3. The performance of the proposed LHA and DCA using the Internet Topology Zoo dataset

A New Cache Placement Strategy for Wireless Internet of Things 725

We observe that when the number of nodes

increased from 25 to 275, the network traffic continues

to increase and the DCA’s network traffic is always

more than LHA’s. However, the gap between the LHA

and DCA did not exceed 11.7%, the average is 4.9%.

We have analyzed the contents of the cache at different

time points and found that the average similarity

between them is 88.7%. And it can be seen in the

Figure 2 and Figure 3, the replacement frequency and

Server hit reduction ratio are also similar. This means

that the Distributed Cache Algorithm’s performance is

very close to LHA.

7.3 Comparison of the Different Cache

Algorithm

In order to evaluate the performance of distributed

caching algorithm, we compare it with different kind of

cache algorithm, including First Input First Output

algorithm (FIFO), Least Recently Used algorithm

(LRU), Content Popularity algorithm (CPA) [12] and

MAGIC algorithm (MAGIC) [13]. Consider the

number of nodes, Figure 4 and Figure 5 depict the

performance comparison of different kind of

algorithms, respectively, in the regular topology and

Internet Topology Zoo dataset. Since the different zp

has implies that the aggregate request rate generated at

each node is different, we take experiment to evaluate

of algorithm performance under different content

popularity. Figure 6 depict the performance

comparison of above algorithms in the regular

topology (grid topology) when use the zp∈Z = {0, 0.3,

0.5, 0.7, 1} as the independent variable. And Figure 7

and depict the performance comparison of them by

using the Internet Topology Zoo dataset.

We observe that the DCA can reduce the network

traffic by about 12.6% on average compared to the

other four types of algorithms. Among them, compared

with the FIFO algorithm, the network traffic is reduced

by 37.2% when the number is 275. For the permutation

frequency, the fluctuation when using of the Internet

Topology Zoo dataset is significantly greater than

when using the regular topology. This fluctuation is

particularly noticeable for FIFO and content popularity

algorithms. It means that the above two algorithms are

not suitable for more complex conditions network

topology. The experimental results show that the

replacement frequency decreased by an average of

22.4%. Server hit reduction ratio is another important

indicator to evaluate the algorithm. For LRU and FIFO

algorithm, their server hit reduction ratio doesn’t

increase as the number of nodes increases. And their

server hit reduction ratio fluctuates around 55% and

60%, respectively. The server hit reduction ratio of the

remaining algorithm increases with the increase of the

number of nodes. The highest server hit reduction ratio

of CPA, MAGIC, DCA are 74%, 75% and 80%,

respectively. The data with high content popularity

can’t form a stable cache when the number of router

nodes is less. With the increase in the number of nodes,

most of data can be cached in the router nodes and

hence improve the server hit reduction ratio, until they

reach the bottleneck.

Figure 4. Comparison of performance between different algorithms using the regular topology (zp = 0.5)

Figure 5. Comparison of performance between different algorithms using the Internet Zoo dataset (zp = 0.5)

726 Journal of Internet Technology Volume 20 (2019) No.3

Figure 6. Comparison of performance between different algorithms using the regular topology

Figure 7. Comparison of performance between different algorithms using the Internet Zoo dataset

As is shown in Figure 6 and Figure 7, we compare

the performance of various algorithms under different

content popularity conditions. The number of nodes

used in this experiment is 200. When the zp = 0, it

means that all kind of data types has the same content

popularity. Among them, Figure 6 is shows the

experimental results using a regular topology, and

Figure 7 shows the experimental results using the

Internet Topology Zoo dataset.

We observe that the server hit reduction ratio

between 45% and 55%, when zp = 0. In this case, LRU

algorithm and FIFO algorithm’s network traffic is

lower than our DCA algorithm. However, their

replacement frequency is significantly higher than the

DCA algorithm. This is due to the fact that the

traditional FIFO and LRU algorithms can’t determine

the optimal initial position of the cache resulting in

frequent content replacement. Since the request rate of

each content is the same at this time, the algorithm

which is based on the content popularity can’t

determine the hot content. Therefore, they produce

higher network traffic. For our DCA algorithm, due to

the fact that each data type has the same request rate,

the convergence solution can’t be obtained. Hence, the

network traffic is higher than the FIFO and LRU

algorithm. When the value of zp is higher than 0.3, the

performance of our DCA algorithm is significantly

higher than other algorithms, regardless of network

traffic, replacement frequency or server hit reduction

ratio.

Through [28], we know that the value of zp in the

network is between 0.6 and 0.9. Therefore, it can be

considered that our algorithm’s performance is higher

than other algorithms. Among them, the server hit

reduction ratio is no more than 75% no matter what

kind of zp. And when the zp is between 0.5 and 1, the

replacement frequency and network traffic are stable

for our DCA algorithm.

We do some experiments to choice the best λ value.

In Figure 8, we describe the effect of λ on our

algorithm in the case of different content popularity. In

this experiment, we just use the topology from the

Internet Zoo Topology dataset. The results show that

when the λ is between 2 and 3, our algorithm achieves

the best performance.

Finally, in order to examine the distance (hops) that

requests travel in the network until the requested item

is found at a cache, we also depict in Figure 9 the

performance of FIFO algorithm, CPA algorithm and

our distributed caching algorithm. The depicted value

is the average percentage of requests for a regular grid

topology and a topology from the Internet Zoo

Topology dataset. In this experiment, we set the zp =

0.7 and the order of send data request is random. We

observe that the data packets are found closer to the

requesting node. More than 80% of the data types are

found in less than three hops. Particularly, when using

the regular topology, more than 86% of the data types

are found in less than three hops. Therefore, the

effectiveness of our algorithm is more impressive in

the case of the regular topology when zp = 0.7.

However, no matter what kind of topology, our

algorithm is better than others.

A New Cache Placement Strategy for Wireless Internet of Things 727

Figure 8. Comparison of performance with different λ (Using the Internet Topology Zoo dataset)

(a) Using the regular topology (zp = 0.7) (b) Using the Internet Zoo topology dataset(zp = 0.7)

Figure 9. The distance (hops) between request node and closest cached node

8 Conclusion

In this paper, we proposed a new cache placement

strategy for wireless Internet of Things which can

efficiently implement data cache location calculation

and cache replacement. In order to solve the problem

of optimal cache location selection. First of all, it is

transformed into generalized facility location problem

(GFLP) by modelling the network. Then, a Lagrangian

Heuristic Algorithm (LHA) has been proposed to find

the global approximate optimal solution, since the

GFLP is an NP-hard problem. Particularly, the

Lagrangian relaxation method is used to simplify the

calculation process and accelerate the convergence

solution. Based on this, we transform the iteration

procedure of finding the optimal cache location into

local decisions of cache location selection and cache

replacement, and we propose a distributed cache

placement algorithm. Finally, we implemented the

distributed cache placement algorithm in NDN and

compared it with other algorithms. The simulation

results show that our method is superior to other

algorithms in all respects, including network traffic,

replacement frequency and server hit reduction ratio.

In particular, we use the regular topology and

Internet Zoo dataset as the experiment network

topology, since there are no suitable publicly available

datasets for our performance evaluation. In this paper,

we give the comparison of the algorithm performance

when using the two kinds of topologies. The

experimental results show that the performance of our

algorithm is superior to other algorithms in any

topology.

In the future, we will improve the distributed

caching algorithm performance by optimize the

calculation of local benefit value. Besides, we will also

consider the change of the routing interface. In addition,

the node resources will also be taken into consideration

in order to optimize the algorithm.

Acknowledgments

This work is partly supported by the National

Natural Science Foundation of China under Grant

61772085, 61672109, 61532012.

References

[1] D. R. Cheriton, M. Gritter, TRIAD: A new next-generation

Internet architecture, http://www-dsg. stanford. edu/triad,

March, 2000.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.

Kim, S. Shenker, I. Stoica, A Data-oriented (and beyond)

Network Architecture, ACM SIGCOMM Computer

728 Journal of Internet Technology Volume 20 (2019) No.3

Communication Review, Vol. 37, No. 4, pp. 181-192, October,

2007.

[3] G. Zhang, Y. Li, T. Lin, Caching in Information Centric

Networking: A Survey, Computer Networks, Vol. 57, No. 16,

pp. 3128-3141, November, 2013.

[4] L.-Y. Wu, X.-S. Zhang, J.-L. Zhang, Capacitated Facility

Location Problem with General Setup Cost, Computers &

Operations Research, Vol. 33, No. 5, pp. 1226-1241, May,

2006.

[5] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D.

K. Smetters, B. Zhang, G. Tsudik, D. Massey, C.

Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley, E. Yeh,

Named data Networking (ndn) Project, PARC Tech Report

2010-003, October, 2010.

[6] S. Mastorakis, A. Afanasyev, I. Moiseenko, L. Zhang, ndnsim

2: An Updated Ndn Simulator for ns-3, Technical Report

NDN-0028, November, 2016.

[7] A. Afanasyev, I. Moiseenko, L. Zhang, ndnsim: Ndn

Simulator for ns-3, Technical Report NDN-0005, October,

2012.

[8] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B.

Ohlman, A Survey of Information-centric Networking, IEEE

Communications Magazine, Vol. 50, No. 7, July, 2012.

[9] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira,

Cache Coherence in Machine-to-machine Information Centric

Networks, LCN '15 Proceedings of the 2015 IEEE 40th

Conference on Local Computer Networks, Clearwater Beach,

FL, 2015, pp. 430-433.

[10] S. Charpinel, C. A. S. Santos, A. B. Vieira, R. Villaca, M.

Martinello, Sdccn: A Novel Software Defined Content-centric

Networking Approach, 2016 IEEE 30th International

Conference on Advanced Information Networking and

Applications (AINA), Crans-Montana, Switzerland, 2016,

pp.87-94.

[11] X. Sun, Z. Wang, An Optimized Cache Replacement

Algorithm for Information-centric Networks, 2015 IEEE

International Conference on Smart City/

SocialCom/SustainCom (SmartCity), Chengdu, China, 2015,

pp.683-688.

[12] B.-H. Zhang, H.-C. Zhou, G.-L. Li, H.-K. Zhang, H.-C. Chao,

Least Popularly Used: A Cache Replacement Policy for

Information-Centric Networking, Journal Of Internet

Technology, Vol. 17, No. 1, pp.1-10, January, 2016.

[13] J. Ren, W. Qi, C. Westphal, J. Wang, K. Lu, S. Liu, S. Wang,

Magic: A Distributed Max-gain In-network Caching Strategy

in Information-centric Networks, 2014 IEEE Conference on

Computer Communications Workshops (INFOCOM

WKSHPS), Toronto, ON, Canada, pp. 470-475.

[14] X.-C. Sun, Z.-J Wang, H, Chu, Q.-R. Zhang, An Efficient

Resource Management Algorithm for Information Centric

Networks, Journal Of Internet Technology, Vol. 17, No. 5,

pp.1007-1015, September, 2016.

[15] W.-X. Liu, J. Zhang, Z.-W. Liang, L.-X. Peng, J. Cai, Content

Popularity Prediction and Caching for ICN: A Deep Learning

Approach with SDN, IEEE Access, December, 2017.

[16] H.-B. Wu, J. Li, J. Zhi, Probability-based Heuristic Content

Placement Method for ICN Caching, Journal on

Communications, Vol. 37, No. 5, pp. 62-72, May, 2016.

[17] Y. Zhang, X.-B. Tan, W.-P. Li, PPC: Popularity Prediction

Caching in ICN, IEEE Communications Letters, Vol. 22, No.

1, pp. 5-8, January, 2018.

[18] I. Psaras, W. K. Chai, G. Pavlou, In-network Cache

Management and Resource Allocation for Information-centric

Networks, IEEE Transactions on Parallel and Distributed

Systems, Vol. 25, No. 11, pp. 2920-2931, December, 2014.

[19] J. Barceló, J. Casanovas, A Heuristic Lagrangean Algorithm

for the Capacitated Plant Location Problem, European

Journal of Operational Research, Vol. 15, No. 2, pp. 212-226,

February, 1984.

[20] G. Ghiani, L. Grandinetti, F. Guerriero, R. Musmanno, A

Lagrangean Heuristic for the Plant Location Problem with

Multiple Facilities in the Same Site, Optimization Methods

and Software, Vol. 17, No. 6, pp. 1059-1076, October, 2002.

[21] N. Christofides and J. E. Beasley, Extensions to a Lagrangean

Relaxation Approach for the Capacitated Warehouse

Location Problem, European Journal of Operational

Research, Vol. 12, No. 1, pp. 19-28, Jane, 1983.

[22] M. L. Fisher, An Applications Oriented Guide to Lagrangian

Relaxation, Interfaces, Vol. 15, No. 2, pp. 10-21, April, 1985.

[23] J. E. Beasley, Lagrangean Heuristics for Location Problems,

European Journal of Operational Research, Vol. 65, No. 3,

pp. 383-399, March, 1993.

[24] J. Barcelo, E. Fernandez, K. O. Jörnsten, Computational

Results from a New Lagrangean Relaxation Algorithm for the

Capacitated Plant Location Problem, European Journal of

Operational Research, Vol. 53, No. 1, pp. 38-45, July, 1991.

[25] L. Wang, A. Hoque, C. Yi, A. Alyyan, B. Zhang, Ospfn: An

Ospf Based Routing Protocol for Named Data Networking,

Technical Report NDN-0003, July, 2012.

[26] Z.-W. Yan, H.-P. Chiang, Y.-J. Park, X.-D. Lee, Y.-M.

Huang, Scalable and Secure Information-centric Networking,

Journal of Internet Technology, Vol. 14, No. 6, pp. 867-880,

November, 2013.

[27] S. Wang, J. Bi, J. Wu, Cache Policy Performance for

Informationcentric Networking under a Hop-number-based

Metric Framework, Journal Of Internet Technology, Vol. 17,

No. 3, pp. 409-420, May, 2016.

[28] A. Majumder, N. Shrivastava, R. Rastogi, A. Srinivasan,

Scalable Content-based Routing in Pub/Sub Systems, IEEE

International Conference on Computer Communications, Rio

de Janeiro, Brazil, 2009, pp. 567-575.

[29] F. Cao, J. P. Singh, Efficient Event Routing in Content-based

Publish-subscribe Service Ntworks, IEEE International

Conference on Computer Communications, Hong Kong,

China, 2004, pp. 929-940.

[30] A. Carzaniga, M. J. Rutherford, A. L. Wolf, A Routing

Scheme for Content-based Networking, IEEE International

Conference on Computer Communications, Hong Kong,

China, 2004, pp. 918-928.

[31] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web

Caching and Zipf-like Distributions: Evidence and

Implications, IEEE International Conference on Computer

A New Cache Placement Strategy for Wireless Internet of Things 729

Communications, New York, NY, 1999, pp. 126-134.

[32] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden M.

Roughan, The Internet Topology Zoo, IEEE Journal on

Selected Areas in Communications, Vol. 29, No. 9, pp. 1765-

1775, October, 2011.

Biographies

Hua Wei is currently a Ph.D.

candidate in Beijing University of

Posts and Telecommunication. His

main research interests include

Internet of Things and Information

Center Network.

Hong Luo is a professor of the School

of Computer Science, Beijing

University of Posts and

Telecommunications, China. She is

also a research member of the Beijing

Key Lab of Intelligent

Telecommunication Software and

Multimedia. Her research interests

include Internet of Things, smart environments, data

service and communication software.

Yan Sun is a Professor of the School

of Computer Science, Beijing

University of Posts and

Telecommunications, China. She is

also a research member of the Beijing

Key Lab of Intelligent

Telecommunication Software and

Multimedia. Her research interests include Internet of

Things, sensor networks, smart environments and

embedded systems.

730 Journal of Internet Technology Volume 20 (2019) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

