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Abstract 

Caching has shown the success in performance 

improvement for many wireless communications and 

networking systems. However, the existing researches 

generally decide whether cache the data or replace it rely 

on local content popularity on each single node. It will 

cause different nodes caching the same data and result in 

unnecessary cache redundancy. In this paper, we 

investigate the global optimal problem of cache 

placement for IoT. We first prove that finding the optimal 

data cache location from the whole network is an NP-

hard problem, and propose a centralized algorithm to 

obtain the approximate global optimal solution based on 

the Lagrangian Heuristic Algorithm. Then, inspired by 

the Lagrangian relaxation, we transform the iteration 

procedure of finding the optimal cache location into local 

decisions of cache location selection and cache 

replacement, and we propose a distributed cache 

placement algorithm. Besides, the cache replacement 

algorithm can also be used to adjust the best cache 

location when the user requirement changes. Finally, we 

implement the distributed cache placement strategy in 

NDN. The experimental results show that the distributed 

caching strategy approximates the global optimal solution 

very well, and can save the network traffic by about 

12.6% on average comparing with other caching 

strategies. 

Keywords: Information Center Network (ICN), Internet 

of Things (IoT), Lagrangian Heuristic 

Algorithm (LHA), Cache placement, Cache 

replacement 

1 Introduction 

In the traditional wireless communications and 

networking systems, it takes the TCP/IP architecture as 

the core, and the packets are forwarded according to 

the IP address in the packet header regardless of the 

data content. Different with it, in the Information-

centric network [1-2], the data not rely on IP address 

but data name to be forwarded. The data name is the 

only identifier of the information. And it has a caching 

mechanism which can cache data at the routing node, 

so that the data will be independent of the physical 

location. The ICN architecture can significantly reduce 

the data transmission, improve security and network 

mobility [3]. These features are useful for many IOT 

applications, for example, production process 

monitoring, logistics data transmission and so on. A 

typical Information-Center Network is shown in Figure 

1. The user requests the data by sending an Interest 

packet. Obviously, the transmission cost and delay are 

small, when the cache node is close to the user. 

However, it will cause the same data has been cached 

many times, especially when different access points 

request the same data.  

 

Figure 1. A typical Information-Center Network 

The ICN architecture which is suitable for 

traditional Internet is also suitable for IoT. However, 

the IoT still has some different characteristics with the 

traditional Internet. For example, in the IoT, the node 

resources and transmission bandwidth are limited. 

Therefore, the caching algorithm in the IoT must adapt 

to its characteristics when using the ICN architecture. 

In the most of existing research, the data in the cache 

node is independent, that is, each node is based on its 

local content popularity to determine whether cache the 

data or not. Therefore, the data which has high content 

popularity might be cached in multiple nodes, it means 

the cache redundancy is high. Due to the limitations of 

cache size in the IoT, it is necessary to design a better 

cache strategy from the view point of global 

optimization for users to avoid the highly cache 
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redundancy. Meanwhile, to improve the network 

performance and reduce the user's waiting time when it 

accesses the data, we also need to set the cache point to 

the end user as close as possible so as to provide the 

near-end service. So the challenge of caching strategy 

in IoT is how to balance the service quality and the 

network limitation and find the global optimal solution. 

In order to solution this problem, researchers have 

proposed many methods, such as virtual SDN 

algorithm and hierarchical optimization algorithm. 

However, these methods aren’t suitable for IoT 

environments and have low performance. Different 

with previous works, we study the problem from two 

aspects: We first model the network structure and 

define the problem as minimizing the total network 

transmission consumption with minimum cached data. 

Then, the problem is converted to Generalized Facility 

Location Problem (GFLP). In order to calculate the 

cache position in the network, a Lagrangian heuristic 

algorithm is used to find the global approximate 

optimal solution [4]. Secondly, we propose a 

distributed cache placement and replacement algorithm 

based on the idea of Lagrangian relaxation which has 

been used in finding the global approximate optimal 

solution. The distributed algorithm is executed on each 

routing node with local information while ensuring that 

there is no excessive cache redundancy. Hence it is 

effective when the global information can't be counted 

in real time. After that, we take the well-known Named 

Data Network as an example, and figure out the 

specific implementation process of the above algorithm 

[5]. Finally, we use NDNSIM platform to make 

simulation experiments [6-7], the results show that the 

average similarity between the distributed strategy and 

the global approximate optimal solution is 88.7%. 

Therefore, we conclude that the result of the distributed 

caching strategy can simulate the global approximate 

optimal solution. The main contributions of this paper 

lie in the following three aspects.  

‧ We define the data cache problem as minimizing the 

network transmission consumption and convert to 

generalized facility location problem. Since the 

problem belongs to the NP-hard problem, we use the 

Lagrangian heuristic algorithm to solve it and obtain 

the approximate global optimal solution. 

‧ We propose a distributed cache placement strategy 

which only uses local information to make the cache 

decision while ensuring that there is no excessive 

cache redundancy. 

‧ We provide the implementation of the proposed 

DCA in the Named Data Network and compare the 

results of the distributed caching strategy and the 

global approximate optimal solution through a large 

number of experiments. The results show that the 

distributed algorithm is 88.7% approximating to the 

global algorithm and outperforms other distributed 

algorithms. 

The rest of the paper is organized as follows. The 

section II is related work. We give the problem 

formulation in section III. In Section IV, we describe 

optimal cache position calculation in detail, and 

Section V describes the distributed caching strategy. In 

Section VI, we describe how to implement the specific 

process of achieve the distributed caching strategy in 

NDN. The experiment and performance evaluation is 

show in Section VII. Finally, conclusions and future 

work are given in Section VIII. 

2 Related Work 

In order to solve the problem of repeated data 

transmission in existing networks, the ICN's pioneer 

RTIAD proposed Information-Centric Network (ICN) 

architecture [1]. Many researches which based on the 

ICN architecture have achieved academic support and 

recognition. They have different architectural models 

and focuses [8], in which the study of Named Data 

Network project has received wide attention [5]. 

ICN in-network caching strategies are based on two 

caching models: On-path and Off-path caching [9]. 

On-path caching is implemented by storing data on the 

forwarding path, and most of caching algorithms 

belong to on-path caching. When the node doesn't have 

enough storage space, we need a suitable cache 

replacement algorithm to replace the inefficient content 

with the efficient one. At present, the existing 

algorithms include Least Recently Used (LRU), First 

in First out (FIFO), virtual SDN algorithm [10], 

hierarchical optimization algorithm [11], Content 

popularity prediction algorithm [12], MAGIC 

algorithm [13] and so on. 

The LRU and FIFO are the commonly used 

replacement algorithms, it uses short-term local history 

records to sort the content, and determines the cache 

priority of the content by the sort. As the short-term 

history does not completely reflect the regularity of 

future access [14], it may cause invalid replacement of 

content. Sun et al. considered that it incurs faster cache 

replacement and degrades the cache performance, since 

the same data is replicated in all routers along the 

request path [11]. Therefore, they proposed a hybrid 

cache strategy to overcome the drawback. 

Charpinel et al. [10] proposed a SDN method that 

can provide a programmable forwarding strategy and a 

caching strategy for CCN. This method eliminates the 

need for mapping between content names and 

identifiers. And it added a Cache Rules Table (CRT) to 

storing cache rules which inform what kind of content 

should be stored in cache. They achieved the above 

method through SDCCN. In SDCCN, the data plane 

doesn't need to recognize any frame format and the 

processing flows is similar to OpenFlow. Liu et al. 

proposed a Content Popularity Prediction method to 

achieve the popularity prediction, which is based on 

computing resources and links in the SDN [15]. 

However, since the data layer and the control layer 
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need to communicate through the Protocol-Oblivious 

Forwarding (POF) protocol, the excessive 

communication cost is increased. And the SDN 

approach increases the control layer, it is not suitable 

for the IOT environment. 

Ren et al. [13] proposed a distributed MAGIC 

(MAx-Gain In-network Caching) algorithm that use 

less inter-node communication to reduce cache 

redundancy, and it is designed for the IoT environment. 

Hence, it has a significant improvement in wireless 

networks with limited cache size at each wireless node. 

However, the method still has many problems. For 

example, the minimum penalty value may have 

changed before the data back. Then, it obtained 

conclusions by experiment just with several nodes. 

There is no theoretical proof of the effectiveness of the 

algorithm. Finally, it's important to note that MAGIC 

algorithm will cause some nodes storing a series of hot 

data which may reduce the network performance. 

Content popularity algorithm predicts the popularity 

ranking by calculating the local popularity. It replaces 

the content by ranking order. Wu et al. proposed a 

probability based heuristic caching strategy, when the 

data packet is returned back, on-path cache nodes 

decide whether to cache the content with certain 

probability [16]. Zhang et al. presented a Popularity 

Prediction Caching replacement method for chunk-

level cache by discovering the relevance among video 

chunks in ICN from the perspective of user watching 

behavior [17]. All of these methods have the following 

two problems. Firstly, the local prediction results are 

not accurate enough. Secondly, it may cause many 

nodes in the network storing the same content.  

3 Problem Formulation 

In this section, we first formally define the network 

topology and transmission consumption. Then, we 

formulate the problem as minimizing the total 

transmission consumption with minimum cached data.  

It should be noted that we use the terms “routing 

node”, “caching node”, “router” and “node” 

interchangeably to refer to cache-enabled network 

devices [18]. Furthermore, we refer to content “data”, 

“contents” and “data packet” interchangeably to refer 

to the cacheable unit. 

3.1 System Model 

Let G(V, E), a fully connected undirected weighted 

graph, where V denotes the set of nodes in the network 

and E denotes the set of communication links between 

nodes. The weight W{e|e ∈  E} indicates the 

bandwidth of the link e. Nodes are divided into three 

types: Producer (P), Router (R) and Access Point (A). 

P = {1, 2, ... m, ..., M} is the set of producers 

representing the nodes which are data sources. R = {1, 

2, ... i, ..., N} is the set of routers representing the 

nodes which can forward and cache data. A = {1, 2, ... 

j, ..., Q} is the set of access points representing the 

nodes which gather the user’s query and request the 

data. For simplicity, let P (m) be the m-th data source 

node which the number is m. Similarly, let R(i) and A(j) 

be the i-th router node and j-th access point, 

respectively. Obviously, V = P ∪ R ∪ A.  

Suppose that there are k-types of data in the network. 

The data types are indexed by k ∈ K and the data 

source node m produce the k-type data. ijkx  indicates 

whether the type-k data requested by the j-th AP node 

is cached in the router node i. 

 
0,

1,
ijk

Not being cached
x

Being cached

⎧
= ⎨
⎩

 (1) 

In order to minimize the cached data in the network, 

the same data type on a single link can only be cached 

once, i.e. 

 1,ijk

i R

x

∈

=∑ ,j A k K∈ ∈  (2) 

Assume that the size of each data type is same and 

denoted by s. Let s be the size of the data. The Ui be 

the size of cache space at the router node i. 

 * ,ijk i

k K

x s U

∈

≤∑ ,i R j A∈ ∈  (3) 

The communication cost between node i and node j 

is denoted by .ijc  And ijkc  represents the communication 

cost of transmitting type-k data between node i and 

node j.  

 * ,ijk ij ijkc d f= , ,i R j A k K∈ ∈ ∈  (4) 

where 
ij

d  is the distance between node i and node j, 

ijkf  is the request frequency of node j for type-k data at 

node i. 

And we use the ( )
mi
c k  define the fixed cost which is 

transfer the type-k data from data source node m to the 

router node i. Now, we have the second constraint of 

link capacity. 

 ,

e
ijk ijk

k K j A

W
f x

s
∈ ∈

≤∑∑ , , { , }i R e E e i j∈ ∈ =  (5) 

We use a Boolean factor 
i
y  to indicate whether the 

cache space is full or not, and set 1
i
y =  if it is full; 

otherwise, 0
i
y = . 

 ,
i

i R

y N i R
∈

≤ ∈∑  (6) 

The cache cost P is the added transmission 

consumption due to cache replacement. 
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 * , ,ijk mi

j A

P Min f d i R k K
=

= ∈ ∈∑  (7) 

Here, type-k data is produced by data source node m, 

and 
mi

d  represents the distance from data source node 

m to router node i. For simplicity, we assume that the 

routing interface will not be changed and data request 

frequency is stable. Meanwhile there is no packet loss 

in the network. 

3.2 Problem Definition 

Based on the discussed above, we can calculate the 

total costs in the network. The aim is to minimize the 

cost with the constraints (1) to (7). The objective 

function can be formulated as Equation (8). 

 ( )i mi ijk ijk

i R i R k K i R k K j A

Min Py c k c x
∈ ∈ ∈ ∈ = ∈

+ +∑ ∑∑ ∑∑∑  (8) 

subject to  1, ,ijk

i R

x j A k K
∈

= ∈ ∈∑  (9) 

 * , ,ijk i

k K

x s U i R j A
∈

≤ ∈ ∈∑  (10) 

 * , , ,ijk ijk ijkc d f i R j A k K= ∈ ∈ ∈  (11) 

 , , , { , }e
ijk ijk

k K j A

W
f x i R e E e i j

s
∈ =

≤ ∈ ∈ =∑∑  (12) 

 * , ,ijk mi

j A

P Min f d i R k K
∈

= ∈ ∈∑  (13) 

 ( ) 1* , ,
mi k mi
c d i R k K= ∈ ∈  (14) 

 {0,1}, , ,ijkx i R j A k K∈ ∈ ∈ ∈  (15) 

 1, {0,1},
i i

i R

y y i R
∈

≤ ∈ ∈∑  (16) 

where the P is the replacement cache cost, dmi is the 

fixed data transmission costs and ijkc  is variable 

transmission costs. 

4 Optimal Cache Position Calculation 

Facility location problem is to find locations for new 

facilities such that the conveying cost from facilities to 

customers is minimized. Consider taking cache cost 

P(k) as fixed site setup cost, fixed data transmission 

cost 
mi
c  as facility setup cost and variable transmission 

costs ijkc  as the connection cost of satisfying the type-k 

demand of customer j by the facilities in site i. Then, 

the problem is converted to Generalized Facility 

Location Problem (GFLP). As we know, the classical 

NP-hard problem Capacitated Facility Location 

Problem (CFLP) is a special case of GFLP with 

0
mi
c = . GFLP is an NP-hard problem obviously. 

Wu et al. proposed an efficient Lagrangian heuristic 

algorithm (LHA) to solve the GFLP [4]. In this paper, 

firstly, we use the Lagrangian relaxation method to 

estimation the lower bound and the upper bound [19-

20]. Then, we implemented the classical subgradient 

method to find the optimal Lagrangian multipliers [21-

22]. Finally, we list the complete Lagrangian Heuristic 

Algorithm (LHA) to calculate the cache location. 

4.1 The Lower Bound and the Upper Bound 

We relax constraints (12) in objective function (8) 

with multipliers λi, i R∈ . Then we get a Lagrangian 

relaxation of the objective function (8) as Equation 

(17). 

 

( )

( )

i mi ijk ijk

i R i R k K i R k K j A

e
i ijk ijk

i R k K j A

Min Py c k c x

W
f x

s
λ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

+ +

+ −

∑ ∑∑ ∑∑∑

∑ ∑∑

 (17) 

subject to (9)-(11) and (13)-(16). 

Then, we can decompose the above problem into N 

subproblems, one for each routing node, by leaving 

constraints (16) aside. 

 ( ) ( )i mi mi i ijk ijk

k K k K j A

Min Py c k c f xλ

∈ ∈ ∈

+ +∑ ∑∑  (18) 

subject to (9)-(11) and (13)-(15). For each subproblem, 

yi is either equal to 0 or 1. If yi = 0, then 0
i

Py = . Then 

the objective function (18) can be further decomposed 

into K subproblems, one for each data type. The 

objective function is 

 ( ) ( )mi ijk i ijk ijk

j A

Min c k c f xλ

∈

+ +∑  (19) 

Subject to * ,ijk i

k K

x s U

∈

≤∑  ,i R j A∈ ∈  

 * ,ijk ij ijkc d f=  , ,i R j A k K∈ ∈ ∈  

 ( ) 1* ,
mi mi
c k d=  ,i R k K∈ ∈  

 {0,1}ijkx ∈  , ,i R j A k K∈ ∈ ∈  

For each data request frequency ijkf , the problem 

(19) is an integer knapsack problem that can be solved 

by the greedy algorithm. Then, we can get the optimal 

solution *( )ijkR x  and the minimal objective function 

value *

L . 
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Let *

L ik denote the minimal objective function value 

of the subproblem (19), then the minimal objective 

function value of the subproblem (18) is 

 

*

*

*

, 1

, 0

ik i

k K

i

ik i

k K

P L y

L

L y

∈

∈

⎧
+ =⎪

⎪
= ⎨
⎪ =
⎪⎩

∑

∑

 (20) 

Finally, the minimal solution can be obtained by 

adding the constraints (16) after solving the N 

subproblem. The solution to the objective function (17) 

provides a lower bound to the original problem. 

In order to get the upper bound of the problem, we 

solve the following linear programming problem to 

find a feasible solution of the original objective 

function (8). 

 
*

ijk ijk

j A k Ki R

Min c x

= =∈

∑∑∑  (21) 

subject to 1,ijk

i R

x

∈

=∑  ,j A k K∈ ∈  

 * ,ijk ij ijkc d f=  

*

, ,i R j A k K∈ ∈ ∈  

 * ,ijk i

k K

x s U

∈

≤∑  

*

,i R j A∈ ∈  

 {0,1}ijkx ∈  

*

, ,i R j A k K∈ ∈ ∈  

The optimal solution is an upper bound on the 

original problem. If it is smaller than the existing upper 

bound, the upper bound is improved. 

The solution for objective function (17) not always 

be feasible to the original problem. In other words, the 

total cost defined by the set of router node R* and 
*

ijkx  

is smaller than the total demand. We can use the simple 

greedy heuristic to adjust the 
*

R  and 
*

ijkx  ijk so that all 

demands can be satisfied. By this way, the upper bound 

U can be get. 

4.2 Lagrangian Heuristic Algorithm 

In order to update the Lagrangian multipliers, we 

use the classical subgradient method [21-22]. First, the 

subgradients and step size are calculated by Equation 

(22) and (23). 

 ( ) 1, ,ijk

i R

i x j A k Kψ

∈

= − ∈ ∈∑  (22) 

 
2

( )

( )j A k K

U L

i

σ
μ

ψ
∈ ∈

−
=
Σ Σ

 (23) 

where U is the upper bound and L is the optimal lower 

bound solved above. σ  is a customize parameters with 

initial value between 0 and 2. The Lagrangian 

multipliers 
i

λ  can be calculating by Equation (24). 

 ( ) *
i i

iλ λ ψ μ= +  (24) 

The complete Lagrangian heuristic algorithm is 

illustrated in Algorithm 1. Let G(V,E) denote the 

network topology, MAXT denote the maximum number 

of iterations and ε  denote the allowed maximum 

interval between the lower and upper bounds. After 

iterative calculation, the set of optimal solution R* and 
*

ijkx , the lower bound L and the interval between the 

lower and upper bounds GAP can be obtained. 

 

 

Algorithm 1. Lagrangian Heuristic Algorithm 

Input: G(V,E), MAXT, ε  

Output: R*, 
*

, ,ijkx L GAP  

1.  Set: LB= −∞ , UB=+∞ , GAP=+∞ ; 

2.  Initialize 0, 0
t

i
tλ = = ; 

3.  while t MAXT<  and GAP ε<  do 

4.      Solve objective function (17) with parameter 
t

i
λ ; 

5.      Get the optimal objection value L; 

6.      Get the set of  R* and 
*

ijkx ; 

7.      if L > LB then 

8.       LB = L; 

9.   end if 

10.   Solve linear programming problem (21); 

11.   Get the optimal objection value U; 

12.   if U < UB then 

13.     UB = U; 

14.    end if 

15.    if  (UB − LB)/LB ≤  GAP then 

16.    GAP = (UB − LB)/LB; 

17.    end if 

18.    1;t t= +  

19.    Update Lagrangian multipliers t

i
λ ; 

20.  end while 

5 Distributed Caching Strategy 

The heuristic algorithm can find the approximate 

global optimal solution. However, we must obtain the 

global network topology and every node’s request 

frequency when we use it. It is difficult to achieve in 

real networks. In order to achieve the approximate 

optimal solution in the IoT environment, inspired by 

the idea of Lagrangian relaxation [23-24] which has 

been proposed in the previous section, we propose a 

distributed cache placement algorithm (DCA). 

The brief approach is as follows. Firstly, we use the 

Lagrangian relaxation process to decompose the 

distributed optimization problem into minimum 

transmission costs calculation in a single node. Then, 
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the minimum transmission costs problem is converted 

into maximizing the number of request satisfied by 

once transmission. Finally, select the best cache 

location on a transmission path. In the process of best 

cache location selection, if the selected cache is full, 

we execute a cache replacement procedure. This cache 

replacement procedure can also be used when new user 

requests come in. 

5.1 Distributed Optimization Problem 

The goal of a distributed optimization problem is to 

find at most one cache node on the path between the 

data request node and the data source node, which can 

minimize the network transmission costs. 

Let e*(m, j) represent the path between the data 

source node P(m) and the data request node A(j). 

 
*( , ) { ( ),1, 2, , , , , ( )}e m j Path P m i I A j= … …  (25) 

where the node from 1 to I denotes all the router nodes 

on the path e* (m, j). 

The objective function of distributed optimization 

problem is also can be formulated as Equation (8) with 

the constrain *( , )i e m j∈  Similar to the idea of 

Equation (18), we decompose the problem into I 

subproblems. Then, similar to the idea of Equation (19), 

the distributed optimization problem can be further 

decomposed into K subproblems. The transmission 

costs about type-k data on the path e* (m, j) can be 

formulated as Equation (26). 

 ,i mi ij ijk

j A

Py d d f i R
∈

+ + ∈∑  (26) 

5.2 Problem Transformation 

Let ( )g k  denote the benefit value of cache type-k 

data. We define the benefit value as the number of 

request satisfied by once transmission. 

 ( )
j A ijk

ij

f
g k

d

∈
Σ

=  (27) 

When the cache space is full, we set the Boolean 

factor yi = 1; otherwise, yi = 0. Let k' denote the data 

type which will be replacement when yi = 1. In the next 

section, we give a detailed process of how to choose k'. 

Furthermore, the value P can be converted to 

minimizing the value g(k'). The value of g(k') yi is 

calculated by Algorithm 3. 

 min * min ( )i ijk mi i

j A

Py f d g k y
∈

′= ⇒∑  (28) 

Then, the last two terms of equation (26) can be 

converted as follows: 

 min( ) max
j A ijk

mi ij ijk

j A ij

f
d d f

d

∈

∈

Σ
+ ⇒ =∑  (29) 

where 
ij

d  denotes the average distance from the cache 

node i to all the access point.  

Finally, the benefit of cache type-k data in node i 

can be formulating as Equation (30). 

 (1 )
( ) * , ,i

j A ijk

i

ij

f
g k y e i R k K

d

λ α∈ −
Σ⎡ ⎤

′− ∈ ∈⎢ ⎥
⎢ ⎥⎣ ⎦

 (30) 

where λ  is a parameter that determines the impact of 

bandwidth on the benefits, 
i

α  is the bandwidth usage 

ratio of link e(i, i + 1), Let Tra represent the number of 

data transmission which can be monitored during 

transmission. 
i

α  can be calculated by the Equation 

(31): 

 
( , 1)

*

i

e i i

s Tra

W
α

+

=  (31) 

5.3 Best Cache Location Selection 

Our goal is to find the best cache location with the 

maximum benefit value. Aiming at comparison of the 

benefit value of each node on the path in a distributed 

way and lower the unnecessary control cost, the 

comparison is occurs when the interest message is 

forwarded. 

The distributed cache algorithm is illustrated in 

Algorithm 2. Let e*(m, j) denote the network topology, 

Interest denote the data request packet and λ  denote 

the parameter. After network transmission, the data 

back from data source m and the maximum value of 

benefit MAX can be obtained. If MAX > 0, the data also 

be cached in the best location; otherwise, the data 

would not be cached. 

 

 

Algorithm 2. Distributed Cache Selection Algorithm 

Input: e*(m, j), Interest, λ . 

Output: data, MAX. 

1.   Set: MAX=0; 

2.   Send Interest from j to m. 

3.   if Router node m receive an interest then 

4.        if Cache space is full then 

5.           Set yi = 1 and Calculation g(k') by 

Algorithm 3; 

6.        else 

7.            Set yi = 0; 

8.     end if 

9.   Calculation benefit value (BV) by 

Equation(30) with parameter λ   

10.        Storage BV in the node; 

11.      if BV > MAX then 

12.          MAX=BV; 

13.      end if 

14.        Forward Interest to next node; 

15.  end if 

16.  if Router node m receive a data then 
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17.      if MAX == BV then  

18.           Cache data; 

19.      end if 

20.      Forward data to next node; 

21. end if 

22.  if Data source m receive an Interest then 

23      Get the value MAX; 

24.      Send data & MAX from m to j; 

25. end if 

 

Then, we propose a cache replacement strategy to 

calculate which type of data will be replaced. The 

strategy is based on the value of g(k). 

The cache replacement algorithm is shown in 

Algorithm 3. Let Ci denote the set of cached data in 

node i. Calculate the function value g(a) for all the 

elements in Ci. Let Gi denote the set of calculate result 

g(a) in node i. Then, we have to sort all the elements in 

Gi. The minimum value is denoted as g(k'). Compare 

g(k') with the value g(k), if g(k') < g(k), replacement 

the data k' with data k. 

 

 

Algorithm 3. Cache Replacement Algorithm 

Input: k, 
i

C . 

Output: k ′ . 

1.    Set: Min=+∞   

2.    Data k return to node i. 

3.    Calculate the function value g(k); 

4.        if Cache space is full  then 

5.              for all 
i

a C∈  do 

6.                     Calculate the function value g(a); 

7.                     if g(a) < MIN  then 

8.                        MIN = g(a); 

9.                     k ′  

10.                    end if 

11.            end for 

12.       if g(k) >MIN  then 

13.            Remove Data k ′ ; 

14.             Cache Data k; 

15.        end if 

16.    else 

17.           Cache Data k. 

18.    end if 

6 Implementation in NDN 

In this section, we take NDNSIM [5]， the well-

known Named Data Network project as the platform, 

discuss the specific process of cache location 

calculation and cache replacement strategy. In the 

NDN, communication is driven by the receiving end, 

i.e., the data consumer. In order to receive data from 

data producer, a consumer sends out an Interest packet. 

The router forwards the Interest packet relies on the 

data name instead of network address. A router 

remembers the interface from which the request comes 

in, and then forwards the Interest packet. Once the 

Interest reaches a node that has the requested data, a 

Data packet is sent back, which carries both the name 

and the content of the data. This Data packet traces in 

reverse the path created by the Interest packet back to 

the consumer [5]. 

Aiming at realizing the distributed cache algorithm, 

we modify the originally NDN model by adding the 

history access information to store access information. 

And we modify the Interest and the data packet format 

to transmit the node’s benefit value between nodes. 

Interest: The originally Interest message contains 

Content Name, Selector, Nonce. In order to transfer the 

maximum benefit value, a new field MAX is added in 

the Interest. When a router receives the Interest, it 

calculates the benefit value with Equation (30) and use 

the Algorithm 2 deal with Interest. 

 

Data Packet MetaInfo: The data packet contains four 

parts, including Name, MetaInfo, Content and 

Signature. The original structure of MetaInfo in NDN 

includes Content Type, Freshness period, etc. Now, a 

new field MAX is added in the Data Packets MetaInfo, 

too. When a data producer receives the Interest, it gets 

the MAX value from it. Then, it set the field MAX with 

the same value meanwhile send back the data packet. 

The router compares the MAX with local value when it 

forwards a data packet. 

Access Information Table (AIT): The Access 

Information Table is used to store the Interest access 

information. When an Interest arrives, the AIT will 

record the request and router hops. It should be note 

that each caching node can obtain the router hops from 

itself to the data consumer based on the information 

exchanged by the OSPFN protocol [25]. We list all the 

fields of AIT in the Table 1. The number of future data 

requests can be predicted based on the data in the AIT. 

The prediction result can be approximated as user 

access frequency. 

Table 1. Access Information Table 

Field  Data Type Meaning 

Name String Use data name as a unique identifier 

Frequency Float The number of Interest in fixed time period 

Time time Fixed time period of this data 

Hops Float The average router hops from it to the data consumer 

StoreFlag Boolean Indicates whether the corresponding data is stored 
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7 Performance Evaluation 

In this section, we evaluate the performance of the 

proposed cache placement strategy through simulations 

experiments. NDNSIM [6-7] has been chose as the 

experiment platform. 

7.1 Experimental Environment 

We use the NDNSIM applications simulation to 

generate realistic synthetic workloads. The principle of 

generate is similar with [26-28]，we generate data in a 

random way. We assume that the total numbers of data 

type in the network is 103. The size of each cache data 

block is consistent with [29-30]. According to the 

research in [28], we simulate the popularity of the 

content by a Zipf law of parameter zp. In order to 

approximate the Zipf distribution, we have given five 

different zp values, i.e. zp∈Z = {0, 0.3, 0.5, 0.7, 1}. If 

zp = 0, it means that every data type has equally 

popular. 

In order to evaluate the performance of the 

algorithm, we chose two different sets of network 

topologies. The first set of network topologies is 

regular topology, e.g. star topology, grid topology and 

ring topology. The second set of network topologies 

comes from the Internet Topology Zoo dataset [32]. 

We assume that each node in the network hosts a cache 

and it can send data request. And the request rate of 

each data type at every consumer node is determined 

by its popularity. For router node, each arrival requests 

are independent. In all the experiments, we assume that 

each node generate a total of 200 requests per second. 

Thus, the request rate of each data type at each node 

varies from 0 to 200 req/sec (r/s) according to its 

popularity. At the beginning of the experiment, each 

cache node is empty by default. 

We evaluate the performance of the caching 

strategies from following aspects: 

Network traffic. The overall network traffic cost per 

second (request*hops/second). 

Replacement frequency. The replacement frequency 

represents the average number of times each node 

take cache replacement. 

Server hit reduction ratio. It reflects the load saving 

of servers due to the in-network cache hits. 

7.2 Comparison of the Lagrangian Heuristic 

Algorithm and Distributed Cache 

Algorithm 

We compare LHA and DCA through two sets of 

experiments to confirm the reliability and feasibility. 

Figure 2 and Figure 3 depict the performance 

comparison of the proposed two different algorithms, 

respectively, in the regular topology and Internet 

Topology Zoo dataset. Since the value of zp in the real 

network is between 0.6 and 0.9 [31], we set zp = 0.7 in 

this experiment. 

 

Figure 2. The performance of the proposed LHA and DCA using the regular network topology (grid topology) 

 

Figure 3. The performance of the proposed LHA and DCA using the Internet Topology Zoo dataset 
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We observe that when the number of nodes 

increased from 25 to 275, the network traffic continues 

to increase and the DCA’s network traffic is always 

more than LHA’s. However, the gap between the LHA 

and DCA did not exceed 11.7%, the average is 4.9%. 

We have analyzed the contents of the cache at different 

time points and found that the average similarity 

between them is 88.7%. And it can be seen in the 

Figure 2 and Figure 3, the replacement frequency and 

Server hit reduction ratio are also similar. This means 

that the Distributed Cache Algorithm’s performance is 

very close to LHA. 

7.3 Comparison of the Different Cache 

Algorithm 

In order to evaluate the performance of distributed 

caching algorithm, we compare it with different kind of 

cache algorithm, including First Input First Output 

algorithm (FIFO), Least Recently Used algorithm 

(LRU), Content Popularity algorithm (CPA) [12] and 

MAGIC algorithm (MAGIC) [13]. Consider the 

number of nodes, Figure 4 and Figure 5 depict the 

performance comparison of different kind of 

algorithms, respectively, in the regular topology and 

Internet Topology Zoo dataset. Since the different zp 

has implies that the aggregate request rate generated at 

each node is different, we take experiment to evaluate 

of algorithm performance under different content 

popularity. Figure 6 depict the performance 

comparison of above algorithms in the regular 

topology (grid topology) when use the zp∈Z = {0, 0.3, 

0.5, 0.7, 1} as the independent variable. And Figure 7 

and depict the performance comparison of them by 

using the Internet Topology Zoo dataset. 

We observe that the DCA can reduce the network 

traffic by about 12.6% on average compared to the 

other four types of algorithms. Among them, compared 

with the FIFO algorithm, the network traffic is reduced 

by 37.2% when the number is 275. For the permutation 

frequency, the fluctuation when using of the Internet 

Topology Zoo dataset is significantly greater than 

when using the regular topology. This fluctuation is 

particularly noticeable for FIFO and content popularity 

algorithms. It means that the above two algorithms are 

not suitable for more complex conditions network 

topology. The experimental results show that the 

replacement frequency decreased by an average of 

22.4%. Server hit reduction ratio is another important 

indicator to evaluate the algorithm. For LRU and FIFO 

algorithm, their server hit reduction ratio doesn’t 

increase as the number of nodes increases. And their 

server hit reduction ratio fluctuates around 55% and 

60%, respectively. The server hit reduction ratio of the 

remaining algorithm increases with the increase of the 

number of nodes. The highest server hit reduction ratio 

of CPA, MAGIC, DCA are 74%, 75% and 80%, 

respectively. The data with high content popularity 

can’t form a stable cache when the number of router 

nodes is less. With the increase in the number of nodes, 

most of data can be cached in the router nodes and 

hence improve the server hit reduction ratio, until they 

reach the bottleneck. 

 

Figure 4. Comparison of performance between different algorithms using the regular topology (zp = 0.5) 

 

Figure 5. Comparison of performance between different algorithms using the Internet Zoo dataset (zp = 0.5) 
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Figure 6. Comparison of performance between different algorithms using the regular topology 

 

Figure 7. Comparison of performance between different algorithms using the Internet Zoo dataset 

As is shown in Figure 6 and Figure 7, we compare 

the performance of various algorithms under different 

content popularity conditions. The number of nodes 

used in this experiment is 200. When the zp = 0, it 

means that all kind of data types has the same content 

popularity. Among them, Figure 6 is shows the 

experimental results using a regular topology, and 

Figure 7 shows the experimental results using the 

Internet Topology Zoo dataset. 

We observe that the server hit reduction ratio 

between 45% and 55%, when zp = 0. In this case, LRU 

algorithm and FIFO algorithm’s network traffic is 

lower than our DCA algorithm. However, their 

replacement frequency is significantly higher than the 

DCA algorithm. This is due to the fact that the 

traditional FIFO and LRU algorithms can’t determine 

the optimal initial position of the cache resulting in 

frequent content replacement. Since the request rate of 

each content is the same at this time, the algorithm 

which is based on the content popularity can’t 

determine the hot content. Therefore, they produce 

higher network traffic. For our DCA algorithm, due to 

the fact that each data type has the same request rate, 

the convergence solution can’t be obtained. Hence, the 

network traffic is higher than the FIFO and LRU 

algorithm. When the value of zp is higher than 0.3, the 

performance of our DCA algorithm is significantly 

higher than other algorithms, regardless of network 

traffic, replacement frequency or server hit reduction 

ratio. 

Through [28], we know that the value of zp in the 

network is between 0.6 and 0.9. Therefore, it can be 

considered that our algorithm’s performance is higher 

than other algorithms. Among them, the server hit 

reduction ratio is no more than 75% no matter what 

kind of zp. And when the zp is between 0.5 and 1, the 

replacement frequency and network traffic are stable 

for our DCA algorithm. 

We do some experiments to choice the best λ  value. 

In Figure 8, we describe the effect of λ  on our 

algorithm in the case of different content popularity. In 

this experiment, we just use the topology from the 

Internet Zoo Topology dataset. The results show that 

when the λ  is between 2 and 3, our algorithm achieves 

the best performance. 

Finally, in order to examine the distance (hops) that 

requests travel in the network until the requested item 

is found at a cache, we also depict in Figure 9 the 

performance of FIFO algorithm, CPA algorithm and 

our distributed caching algorithm. The depicted value 

is the average percentage of requests for a regular grid 

topology and a topology from the Internet Zoo 

Topology dataset. In this experiment, we set the zp = 

0.7 and the order of send data request is random. We 

observe that the data packets are found closer to the 

requesting node. More than 80% of the data types are 

found in less than three hops. Particularly, when using 

the regular topology, more than 86% of the data types 

are found in less than three hops. Therefore, the 

effectiveness of our algorithm is more impressive in 

the case of the regular topology when zp = 0.7. 

However, no matter what kind of topology, our 

algorithm is better than others. 
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Figure 8. Comparison of performance with different λ  (Using the Internet Topology Zoo dataset) 

  

(a) Using the regular topology (zp = 0.7) (b) Using the Internet Zoo topology dataset(zp = 0.7) 

Figure 9. The distance (hops) between request node and closest cached node 

8 Conclusion 

In this paper, we proposed a new cache placement 

strategy for wireless Internet of Things which can 

efficiently implement data cache location calculation 

and cache replacement. In order to solve the problem 

of optimal cache location selection. First of all, it is 

transformed into generalized facility location problem 

(GFLP) by modelling the network. Then, a Lagrangian 

Heuristic Algorithm (LHA) has been proposed to find 

the global approximate optimal solution, since the 

GFLP is an NP-hard problem. Particularly, the 

Lagrangian relaxation method is used to simplify the 

calculation process and accelerate the convergence 

solution. Based on this, we transform the iteration 

procedure of finding the optimal cache location into 

local decisions of cache location selection and cache 

replacement, and we propose a distributed cache 

placement algorithm. Finally, we implemented the 

distributed cache placement algorithm in NDN and 

compared it with other algorithms. The simulation 

results show that our method is superior to other 

algorithms in all respects, including network traffic, 

replacement frequency and server hit reduction ratio. 

In particular, we use the regular topology and 

Internet Zoo dataset as the experiment network 

topology, since there are no suitable publicly available 

datasets for our performance evaluation. In this paper, 

we give the comparison of the algorithm performance 

when using the two kinds of topologies. The 

experimental results show that the performance of our 

algorithm is superior to other algorithms in any 

topology. 

In the future, we will improve the distributed 

caching algorithm performance by optimize the 

calculation of local benefit value. Besides, we will also 

consider the change of the routing interface. In addition, 

the node resources will also be taken into consideration 

in order to optimize the algorithm. 
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