
CCNHCaching: A High-speed Caching Throughput Simulator for Information-Centric Networks 705

CCNHCaching: A High-speed Caching Throughput Simulator for

Information-Centric Networks

Haifeng Li, Huachun Zhou, Wei Quan, Bohao Feng, Hongke Zhang*

Institute of Electronic and Information Engineering, Beijing Jiaotong University, China

{haifengli, hchzhou, weiquan, bohaofeng, hkzhang}@bjtu.edu.cn

*Corresponding Author: Haifeng Li; E-mail: haifengli@bjtu.edu.cn

DOI: 10.3966/160792642019052003005

Abstract

Information-Centric Networks (ICN) have attracted

great research interests in recent years. Due to the

prominent feature of in-network caching, ICN can reduce

network latency and improve network throughput. Many

researches boost the efforts on the caching simulators.

However, the throughput of caching is fundamental to

wire-speed forwarding for ICN routers, and there is no

corresponding ICN simulator for caching throughput

evaluation. In this paper, we propose a caching

throughput simulator named CCNHCaching. A

reading/writing request queue mechanism is proposed to

simulate sequential memory accesses. Combining this

mechanism with open-source memory simulators,

CCNHCaching can implement precise caching

throughput and network performance simulation. Besides,

we propose a requesting algorithm to generate realistic

high-speed requesting traffic. We compare several state-

of-the-art caching schemes and evaluate their caching

throughput. The results show that CCNHCaching can

provide better evaluation for caching schemes, hence,

promoting the development of caching mechanisms.

Keywords: ICN, High-speed, Caching throughput,

Simulation

1 Introduction

In recent decades, the Internet has evolved from an

academic network into a global cyber. With the

tremendous growth, enormous network applications

such as 8K Video emerged to fulfill various needs.

Rich and diverse needs gradually exposed the design

problems of the Internet. Current Internet architecture

is based on host-to-host communication model. It is

inefficient to meet the demands such as information

sharing and content distribution. To solve these

problems, many researches start to integrate emerging

arts into the design of future Internet [1-2]. A new

clean-slate network architecture, named Information-

Centric Networking (ICN) is proposed [3-4]. ICN

uniquely names contents and equips routers with

caching capability. Hence, it can cache contents along

their propagation path; The receivers can fetch contents

from the nearest caching routers rather than the

original provider, which reduces the network traffic

and access latencies and enhances user experience.

In-network caching has many advantages, and there

are lots of caching optimization mechanisms proposed

to improve them [5-7]. One of classic caching

optimization mechanisms is the Least Recently Used

(LRU) [8]. It keeps track of what was used when which

is expensive if one wants to make sure the mechanism

always discards the least recently used item. LRU has a

good robustness for danymic content popularity, and a

wide range of applicatios. Thomas et al. proposed an

Object-oriented Packet Caching (OPC) to enlarge the

caching capacity without additional storage resource

[9]. Furthermore, Rossini et al. designed a novel two-

layer cache scheme primarily with DRAM and SSD

(DRAM_SSD) to achieve multi-terabyte caching

capacity and multi-Gb/s data rate [10]. Besides, our

previous works have contributed to the large-capacity

and high-speed caching mechanism [11]. We proposed

a hierarchical caching scheme composed of both

SRAM and DRAM. It accelerates the caching

throughput for ICN core routers. All of these works

needed the development of ICN simulators.

To evaluate the above caching mechanisms, many

ICN simulators have been proposed. ndnSim [12] is an

ns-3 based simulator which provides caching

simulation for typical cache replacement policies, such

as LRU (Least Recently Used), FIFO (First In First

Out) and LFU (Least Frequently Used). CCN-lite [13]

is a lightweight implementation of NDN protocols. It

supports simulator mode based on the OMNET++

framework and emulation mode which can run on

multiple embedded devices. In emulation mode, CCN-

lite can evaluate the caching throughput performance

of caching schemes; while, due to the hardware

constraint, the link rate would be usually low.

ICN lacks caching throughput simulator. Current

ICN simulators only can provide the simulation for

cooperative cache policies. They can evaluate their

network performance, such as hit ratio, the reduction of

network traffic and server workload. However, how to

706 Journal of Internet Technology Volume 20 (2019) No.3

evaluate the high-speed caching throughput

performance is not investigated yet. The wire-speed

forwarding is a fundamental issue in ICN routers,

whose bottleneck is the throughput of caching schemes.

Therefore, caching throughput simulation is important.

In this paper, we propose an ICN simulator for high-

speed caching throughput simulation, called

CCNHCaching. It can simulate a caching scheme in

multiple aspects, including network performance and

throughput performance. Specially, to simulate the

caching throughput, we elaborately design the Content

Store (CS) simulation component in CCNHCaching,

which is composed of a reading/writing request queue

manager, caching schemes and memory simulators.

The main contributions can be summarized as follows:

‧ We design and implement preliminarily an ICN

simulator, called CCNHCaching 1 , which can

simulate caching schemes regarding network

performance (e.g., hit ratio) and caching throughput.

Especially, it supports the caching throughput

simulation for high-speed (such as 100 Gb/s)

caching schemes.

‧ To simulate the caching throughput exactly, a

reading/writing request queue management is

proposed. Besides, combining this mechanism with

memory simulators, we implement multiple leading

caching schemes.

‧ To generate realistic high-speed requesting traffic,

we investigate the real request behaviors of the

twenty thousand users in Beijing Jiaotong University

thoroughly and design a high-speed requesting

algorithm carefully.

‧ We compare the state-of-the-art caching schemes

including LRU, OPC, DRAM_SSD, and HCaching,

and evaluate the performance of CCNHCaching.

The results demonstrate that CCNHCaching can

provide more comprehensive and rigorous

evaluation for caching schemes, hence, favoring the

large-scale development of the caching schemes in

ICN.

The remainder of this paper is organized as follows.

Section 2 overviews related works. Section 3 describes

the CCN system model simply. Section 4 presents the

architecture of CCNHCaching, including the overall

design, the caching throughput simulation, and the

high-speed requesting algorithm. In Section 5, we

compare several leading caching schemes and evaluate

the performance of CCNHCaching. The conclusions

and future works are given in Section 6.

2 Related Work

With the ICN development, there have been large

amounts of emerging tools to evaluate proposed ICN

1 The source code can be available at https://github.com/iplab-

code/ccnhcaching.

mechanisms. We can categorize them into three groups:

(1) ICN Simulators [12-14], (2) ICN Emulators [15-19]

and (3) ICN Testbeds [20-21].

(1) ICN Simulators almost all are based on the

discrete event simulation, allowing researchers to

rapidly prototype and test their ICN proposals.

The ndnSim [12] is a simulator based on ns3 for the

Named-Data Networking (NDN). By integrating the

Named Data Networking Forwarding Daemon (NFD)

and ndn-cxx library with ns-3, ndnSim provides a

realistic NDN simulation behavior. The ndnSim

implements the full-featured processing of NDN

selectors based on the latest NDN packet format.

However, ndnSim has limited support for caching

simulation. Although there are several implementations

of typical cache replacement policies (e.g., LRU (Least

Recently Used), FIFO (First In First Out) and LFU

(Least Frequently Used)), it does not concentrate on

high-speed caching throughput simulation.

CCN-lite [13] is a lightweight yet functionally

interoperable implementation of the CCNx and NDN

protocols. It supports a simulation mode using

OMNET++ simulation framework and an emulation

mode based on Linux, Android, Arduino et al.

platforms. CCN-lite offers a clean packet scheduler to

support at chunk-level, packet-level, and fragment-

level. Packet fragmentation supports running the CCNx

protocol natively over Ethernet. However, CCNx-lite

focuses on providing a lean alternative for educational

purposes and a tiny CCNx core (1000-2000 lines of C

language) for embedded devices. It is not optimized for

high performance with sophisticated data structures.

ccnSim [14] is a scalable chunk-level simulator for

Content-Centric Network (CCN). It is a C++ package

built on the top of Omnet++ framework. To efficiently

simulate large-scale CCN mechanisms, Chiocchetti et

al. develop and optimize ccnSim in the respects of

memory- -occupancy and CPU-time. However, ccnSim

focuses on dealing with different caching cooperative

algorithms or policies and cannot evaluate the

throughput of caching schemes.

(2) ICN Emulators are another way to evaluate ICN

architecture, which can verify ICN schemes with the

real operating system and the whole protocol stack.

CCN-Joker [15] is a lightweight Java-based CCN

emulator. It is designed to run on top of limited

resource wireless devices, and study CCN performance

in mobile ad hoc network or vehicular ad hoc network.

CCN-Joker is a basic implementation of CCN, and it

primarily focuses the CCN application on wireless

networks.

CCNx [16] is the emulation implementation for ICN,

which provides the libraries and components to

demonstrate the basic CCNx protocols. Since CCN

proposes evolutions in the traditional Internet, CCNx

mainly focuses on the interoperability of new protocols

layers. Alternative similar emulation implementation is

NDNx [17], which is a fork of CCNx. CCNx and

CCNHCaching: A High-speed Caching Throughput Simulator for Information-Centric Networks 707

NDNx concern heavily about security issues, end-node

and router design, while less attention is paid to

caching operations.

Mini-CCNx [18] is another ICN emulator, which

extends the Mininet-HiFi [19] with CCNx

implementation. Due to the lightweight Linux

Container (LXC) techniques, Mini-CCNx can run CCN

emulation with a large-scale topology. However, Mini-

CCNx is based on NDNx which an outdated model of

NDN is. Besides, Mini-CCNx mainly pays attention to

emulating the emulation hardware without regarding

the throughput evaluation of caching schemes.

(3) ICN Testbeds are real hardware infrastructures that

can provide real test scenarios for ICN. The Global

Environment for Network Innovations (GENI) [20] is a

novel suite of infrastructure which is designed to

support network experiments. EmuStack [21] is a

testbed based on OpenStack. It emulates various

network architectures, such as ICN and SINET [22-23],

with overlay networking technology. Network and

computing virtualization make EmuStack flexible and

programmable to emulate experimental protocols.

However, due to limitation of physical hardware

resource, they all cannot emulate high-speed (such as

100 Gb/s) caching throughput due to the limited

hardware.

The caching throughput in ICN is crucial to the

wire-speed forwarding in ICN routers. Unfortunately,

there is a lack of ICN simulators which specially focus

on the high-speed caching throughput simulation.

Although these ICN emulators/testbeds including

CCN-Joker, CCNx/NDNx, Mini-CCNx and EmuStack

can implement the emulation of caching throughput,

they are expensive and seriously constrained by the

limited hardware resource. Therefore, in this paper, we

propose a caching throughput simulator for the high-

speed caching schemes in ICN, named CCNHCaching,

to further promote the ICN caching mechanisms

development.

3 CCN System Model

CCNHCaching is proposed to simulate caching

schemes for CCN, a specific architecture design under

the broad ICN umbrella. We outline the CCN system

model in this section.

In CCN, communications are driven by the content

receivers. There are two types of packets: interest

packet and data packet. The content is named uniquely

and requested by receiver with interest packet. The

nodes with the requested content respond interest

packets with data packets. On-path routers forward and

cache the data packets. There are three primary

components in routers: Forwarding Information Base

(FIB), Content Store (CS) and Pending Interest Table

(PIT). The FIB is a table that maintains the

relationships between prefixes of content names and

interfaces in CCN routers. The CS stores the requested

contents after forwarding them so that it can respond

the following requests quickly. The PIT keeps track of

the interest packets that have been requested recently

but not responded yet. The interest packets recorded in

the PIT are dropped and not forwarded.

The packet flow in this model is presented in Figure

1. Upon reception of an interest packet on an interface

I, a lookup operation is issued to the CS, checking for

whether the requested content is cached in the CS (the

first step in Figure 1). If the content is available, the

CCN router reads the content from the CS and sends it

back on I (the eighth step in Figure 1). Otherwise, the

CCN router checks in the PIT whether the requested

content has been already forwarded upward (the

second step in Figure 1); if an entry is found in the PIT,

the CCN router updates the entry to track that the

interface I is waiting for the requested content. If the

entry is not found, a new entry is added and the interest

packet is forwarded to at least one interfaces based on

longest prefix match on the content name prefix in the

FIB (the third and fourth steps in Figure 1). When a

data packet is received after a Round-Trip Time (RTT)

(the fifth step in Figure 1), the CCN router checks for

the pending requests in the PIT. If the entry is found,

the data packet is stored in the CS and forwarded

toward all the requesting interfaces as listed in the PIT

(the seventh and eighth steps in Figure 1); otherwise,

the data packet is discarded (the sixth step in Figure 1).

Egress

Ingress

Egress

Ingress

CS PIT FIB

Interface I

Interface J

/A/B/s2
/A/B/s3

Prefix
0
0

Face(s)

Reading/Writing CS RTT Processing

/A/B/s1
Name

...
Data

/A/B
Prefix

0,1
Face(s)

Interest packet Data packet n n step

1
2

3

4

5

7

6

8

Discarded

Figure 1. Packet flow in the CCN system model

As shown in Figure 1, the delays in the packet flow

are composed of three types: reading/writing CS delay,

Round-Trip Time (RTT) and processing delay. For the

caching throughput simulation, we disregard the packet

processing delays, focusing on the reading/writing CS

latency, which is the main bottleneck. The reading/

writing CS latency directly determines the caching

throughput which is equal to the transmitted data size

divided by the latency.

4 Simulator Architecture

In this section, we discuss the design details in

CCNHCaching. First, we introduce the design

architecture to explain what the difference of

708 Journal of Internet Technology Volume 20 (2019) No.3

CCNHCaching is. Second, we discuss in detail the

implementation of high-speed caching throughput

simulation, presenting why and how CCNHCaching

can realize the caching throughput simulation. Third, a

high-speed requesting algorithm is proposed to

generate the high-speed realistic simulation traffic.

4.1 Design Overview

Figure 2(a) illustrates the overall structure of

CCNHCaching. In essence, it is a C++ module built on

the top of the ns-3 which is a discrete-event network

simulator framework towards network research.

CCNHCaching keeps track of some events in an ns3

event queue (NSEQ), which are scheduled to execute

at a specified simulation time. The job of the simulator

is to execute the events in sequential time order. Once

the completion of an event occurs, the simulator will

move to the next event or will exit if there are no more

events in the event queue. Note that the framework

implements the full-duplex network interfaces without

ingress queues as shown in Figure 2(a). Therefore, it

only indirectly controls the receiving rate by

controlling the end-to-end transmitting rate with egress

queue.

Caching Schemes

CS

Egress

Ingress

Request
queue

managerCS

PIT

FIB

Interest

Egress

Ingress

Egress

Ingress

Interface 0

Interface 1

Interface 2

Writing
request
queue

Reading
request
queue

CCN
Receiver

CCN
Sender

Data

CCN Router

1

2

3
4

5

6

Interest packet Data packetn n step

......

SSD
Simulator

DRAM
Simulator

SRAM
Simulator

Reading/Writing
Scheduler

DATA

 (a) overall structure (b) CS component

Figure 2. Implementation of CCNHCaching

There are three types of nodes in CCNHCaching,

namely, CCN routers, CCN receivers and CCN senders.

The CCN router is mainly composed of three

components: Content Store (CS), Pending Interest

Table (PIT) and Forwarding Information Base (FIB).

The CCN receiver and CCN sender consist of PIT and

FIB components. These components play the same

roles in the CCN system model described in Section 3.

The details of the three nodes are described as follows.

The CCN receiver represents users to request

contents according to the given traffic trace data. The

traffic trace data can be created by traffic generator or

formatted with the data set collected from actual

network traffic. The CCN receiver is linked to the

access router, which only has a neighbor router. One

access router can connect amounts of CCN receivers

where the requesting algorithm runs to send interest

packets at a customizable rate. The requesting

algorithm is key to generate high-speed link throughput,

which will be further discussed in Subsection 4.3.

The CCN router is the crucial node to simulate the

throughput of caching schemes. As shown in Figure 2,

the CCN router aggregates interest packets with the

PIT and forwards the unrequested interest packets

based on the FIB (the second and third steps in Figure

2). Upon the arrival of data packets, the CCN router

forwards them by the PIT and stores them into the CS

(the fourth and fifth steps in Figure 2). Hence, when

the cached data packets are requested again, the CCN

router can respond directly with the content that has

been cached in the CS (the first and sixth steps in

Figure 2).

The CCN sender is an aggregation of content

providers. It is responsible for responding interest

packets with the data packets. In CCNHCaching,

content providers are not CCN nodes and do not

contain the whole CCN stack. In fact, all of the content

providers reside in a CCN sender, serving all content

requests without regard to whether the requested

contents exist.

In CCNHCaching, there are three different cache

placement policies, including edge caching, universal

caching and caching based on betweenness centrality.

In the edge caching, caches are placed only at the

access CCN routers in the network. In the universal

caching, all CCN routers are equipped with the CS and

allowed to cache data packets. In the betweenness

centrality caching, all CCN routers can cache data

packets, but data packets are stored at the on-path

routers with the highest betweenness centrality [24].

In CCNHCaching, the most important feature is

supporting the high-speed caching throughput

simulation. As shown in Figure 2(b), we design a

request queue simulation mechanism to manage

reading/writing requests for the CS. We combine this

mechanism with various memories simulators, such as

DRAM simulator and SSD simulator, to provide the

exact access time for different reading/writing

operations. Besides, between the request queue

manager and memories simulators, the caching

schemes can be implemented. Currently, there are four

leading caching schemes which have been

implemented in CCNHCaching, including LRU, OPC,

DRAM_SSD, and HCaching.

4.2 Caching Throughput Simulation

In CCNHCaching, the structure of the CS is

elaborately designed to support the throughput

simulation for caching schemes. As shown in Figure

2(b), at a high level, this key structure is composed of

three parts: (1) request queue manager, (2) caching

schemes and (3) memory simulators.

(1) Request queue manager is composed of three

CCNHCaching: A High-speed Caching Throughput Simulator for Information-Centric Networks 709

parts: reading request queue, writing request queue

and reading/writing scheduler. The reading request

queue maintains the information about users requesting

the content in the CS. The writing request queue tracks

the requests for storing the forwarded data packets into

CS. The reading/writing scheduler is responsible for

how to schedule these reading/writing requests to

access the CS.

The process flow of request queue manager is as

follow. Once the request queue manager receives a

reading request or writing request, it enqueues them to

the reading request queue or writing request queue,

respectively. Assume we use the single port memory

chips in the CS, which cannot support simultaneous

read and write operations. We use a polling mechanism

to schedule the reading and writing request queues in

reading/writing scheduler. Therefore, the CS serves the

reading requests and writing requests alternately. When

a reading request arrives in the CS, the CS calculates

its access latency based on the cache schemes and

memory simulators. The CS adds the latency to the

current simulation time, getting the specified

simulation time
e
t . It uses

e
t as the executing time of

the reading request end event and puts the request end

event into the event queue (NSEQ) in ns-3, waiting
e
t

for being executed. After the reading request end event

is executed, the request queue manager enables the

writing request to hit the CS. If the writing request

queue is empty, the request queue manager

immediately allows the reading request queue to access

the CS again; otherwise, it needs to wait for executing

the writing request end event and then enable the

reading request.

The request queue manager is the key to simulate

the throughput of the CS exactly. This mechanism

makes the access latency have the accumulative

impacts on the subsequent access requests. However,

when the speed of the CS processing requests is less

than the speed of the requests arrival, these

accumulative impacts would make the reading/writing

queues exceeded. Therefore, the size of the request

queue should be configured according to the ICN

congestion control algorithm and the requesting

algorithm, which are further discussed in Subsection

4.3.

(2) Caching scheme is responsible for organizing

memory structure and managing the cached content, to

improve the CS performance. Currently, we implement

four leading caching schemes in CCNHCaching, which

include LRU, OPC, DRAM_SSD, and HCaching.

LRU [8] is the Least Recently Used caching scheme. It

uses Static Random-Access Memory (SRAM) as index

memory, and Dynamic Random-Access Memory

(DRAM) as the primary one. The LRU algorithm runs

at the SRAM, to index and replace the content cached

in DRAM. It keeps track of what was used and when,

and always discards the least recently used item. LRU

algorithm is theoretically realizable. However, it is not

cheap. To fully implement LRU algorithm, it is usually

necessary to maintain a linked list of all data packets

cached in DRAM, which would consume large

amounts of SRAM resources.

OPC [9]0 is an Object-oriented Packet Caching

scheme. It utilizes SRAM as the index memory, and

DRAM as the primary one. Currently, SRAM is

expensive and size-limited, which restricts the caching

performance for the commodity routers seriously.

Therefore, Thomas et al. proposed the OPC to

overcome this SRAM bottleneck. OPC combines the

object-level indexing in SRAM with the packet-level

storage in DRAM. It can increase the usable DRAM

capacity for the commodity routers without additional

SRAM resources. Besides, it introduces several simple

yet effective algorithms for the content lookup,

insertion, and eviction operations. These algorithms

can address some caching problems such as the looped

replacement and the large object poisoning. However,

there is some side effect of these algorithms. For

example, when the cached content size is large, they

would result in the sharp decline on the OPC’s caching

throughput.

DRAM_SSD [10] is a two-layer caching scheme

which utilizes DRAM as cache memory and Solid-

State Drives (SSD) as primary one. The index

memories in DRAM_SSD are composed of SRAM and

DRAM. SRAM holds the index for the data packets

cached in DRAM, and a part of DRAM maintains the

index for the data packets stored in SSD. By the novel

two-layer caching structure, DRAM_SSD succeeds in

moving SSD bottleneck from access time to the

external data rate. Besides, with a triggering

prefetching mechanism, DRAM_SSD utilizes the high-

speed external data rate in SSD fully. Therefore, it can

achieve multi-Terabyte caches to sustain content

streaming at multi-Gb/s speed. DRAM_SSD can be

well qualified as the edge ICN routers. However, due

to the writing characters and lifetime of the general

SSD chips, it probably is not fast and endurable

enough to serve the core ICN routers.

HCaching [11] is a hierarchical caching scheme which

uses Static Random-Access Memory (SRAM) as cache

memory and DRAM as primary one. HCaching adopts

a two-layer structure, which maps a content chunk into

a single row of DRAM and employs a little SRAM as a

cache of a DRAM to accelerate DRAM. This design

leverages the merits of both SRAM and DRAM and

make an optimal trade-off between them. Besides,

HCaching proposes a prefetching strategy is proposed

to reduce access latency to maximize throughput.

When a chunk request is received, HCaching can

proactively fetch chunk-size packets from DRAM into

SRAM in batches. Furthermore, an improved A
2

buffering algorithm [25] is adapted to index the cached

content-chunks in DRAM efficiently. With all these

combinatorial peculiarities, HCaching has great

potential to reduce excessive utilization rate of SRAM

710 Journal of Internet Technology Volume 20 (2019) No.3

and improve total caching efficiency.

(3) Memory simulators are responsible for providing

the exact access latency for various memory

technologies. Typically, the caching schemes are

composed of multiple types of memories. For example,

the DRAM_SSD caching scheme mainly consists of

two types of memories architectures: DRAM and SSD.

These memory architectures are complex, and it is hard

to evaluate their performance. Therefore, the memory

simulators are utilized to provide a fast and early

performance estimation for the customized caching

systems. Fortunately, there have been lots of memory

simulators in the memory community, such as SRAM

simulator, DRAM simulator, and SSD simulator.

SRAM simulator is responsible for providing the

access time of SRAM. One cell of SRAM is composed

of six transistors. The all-transistor structure makes its

state very stable, and the access dealy is short, and the

access timing of different access modes remains

unchanged. The SRAM has a simple interface, so the

SRAM simulator is simple to implement.

DRAM simulator is responsible for providing the

access time of DRAM. DRAM uses the two states of

the capacitor (charged or discharged) to represent

information, However, capacitor has a leakage effect.

If no periodic refresh (supplementary charge) is

performed, its state will change and the information

will fade quickly. This feature leads to DRAM chip

needing a very complex design. The access latency is

determined by its request modes. To simulate the

access latency, Wang et al. [26] implemented

DRAMsim. It can simulate various DRAM

technologies, including SDRAM, DDR, DDR2,

DRDRAM, and FB-DIMM. DRAMsim provides

access delay according to different parameters and

access modes. Besides, Kim et al. [27] designed a fast,

accurate, scalable DRAM simulator, Ramulator.

Ramulator provides many out-of-the-boxes supports

for DRAM technology standards, including DDR3/4,

LPDDR3/4, GDDR5, WIO1/2, and HBM.

SSD simulator is responsible for providing the

access time of SSD. SSD is based on flash technology.

There are two types of flash: NAND and NOR. NAND

flash has higher storage density and lower power

consumption than NOR flash. Therefore NAND-based

SSD is used widely. NAND-based SSDs support three

operations: reading, writing, and erasing. With

different operations, the granularity and delay are

different. The basic storage unit of SSD is page, and its

size is 2KB-16KB. 128 or 256 pages form a block,

hence each block size is 256KB-4MB. The minimum

unit of reading/writing operations in SSD is page.

However the minimum unit for erasing operation is

block. If you need to rewrite a page, you first need to

erase the entire corresponding block where the page

resides. Generally, the latency of writing operations is

4-5 times longer than that of reading operations. The

delay of erasing operation is much greater than that of

writing operations. Therefore, as data storing SSD

increases, its performance becomes worse and worse.

Additionally, the writing cycle of SSD is between 3K

and 100K, which is very limited for a network cache

system that frequently writes data. These SSD features

will affect the design of the caching mechanism. To

accurately assess its impact on the performance of the

cache mechanism, SSD emulators such as Flashsim [28]

need to be used.

4.3 High-speed Requesting Algorithm

To evaluate the high-speed throughput for caching

schemes, a requesting algorithm is needed to generate

the high-speed realistic network traffic. We first

investigated the users’ request characteristics at the

export gateway in Beijing Jiaotong University. There

are twenty thousand students and teachers, and the

export link peak is close to 5 Gb/s. We summarize the

characteristics of the real user requests as follows:

(1) The user requests have a great redundancy. With

the twenty seconds sampling period, the redundancy of

the requests is up to forty percent.

(2) The user requests overlap each other. The

phenomenon is presented in Figure 3, where the circles

stand for different users’ requests and their diameters

denote the life-time spans of these users’ requests. In

the real network traffic, the user requests blend each

other, rather than follow one after another.

Figure 3. Requesting time sequence of realistic

network flows (circles stand for different network

flows, and their diameters denote the life-time spans of

these network flows)

Based on the above observation, we design a high-

speed requesting algorithm to simulate the realistic

users’ requests. The request process is outlined in

Figure 4. We first generate the “traffic trace data” with

GlobeTraff traffic generator [29] or collected real

network traffic. The “request array” is employed to

send the interest packets. It loads n contents to request

from the “traffic trace data”, and then send the interest

packet of them alternately, with the rate v. The values

of both n and v can be set according to user

CCNHCaching: A High-speed Caching Throughput Simulator for Information-Centric Networks 711

requirement. When request packets for a content is sent

completely, the requesting algorithm pushes a new

content from the “traffic trace data”, until all the

contents in the “traffic trace data” are requested. The

general flow of the requesting algorithm is as follows:

First, “n” content is pushed into the “request array”

from “traffic trace data”, and then interest packets of n

content are sent alternately with rate v; if all requests of

a content are sent, the content is removed from

“request array” and a new content is loaded from

“traffic trace data”.

Sender

Receiver

2
1

i

…

Contents
IDs

…

Packets
IDs

Interest packet

Data packet Caching Router

Caching
Schemes

A
...

G

A
B
...

Content Name
8
30
...

Content Size (packets)

8
...

16

Traffic Trace Data

n

Push

Request Array

Figure 4. Simple topology to represent the way to send

users requests

The detail of the requesting algorithm is described in

Algorithm 1. Let i denotes the index number of the i-th

content in the “request array”. The algorithm first

initializes its value to zero and then fills the “request

array” with n contents from the “traffic trace data”

(lines 1 to 8). After that, it checks whether the “request

array” is empty; if it is, it means that all contents are

requested, and the algorithm ends (lines 9 to 11);

otherwise, it assembles the interest packet of the i-th

content (a content consists of multiple packets) in the

“request array” (lines 14, 15). The function also checks

whether is the last interest packet in the i-th content.

If it is, the function removes the i-th content from the

“request array” (lines 16 to 18). After that, the

algorithm sends the interest packet with rate v (line 20),

and the value of i is increased by one (line 21). When

the value of the increased i is equal to n, we reset it to

zero (line 22 to 24). Finally, it continues to request the

data packet for the next content in the “request array”,

until both “traffic trace data” and “request array” are

empty.

In the preceding algorithm, we can adjust the value

of n to control the number of parallel flow, and the

value of v to control the rate of requesting traffic

flexibly. Besides, to prevent packet loss in network, a

congestion control mechanism with an

acknowledgment would be needed. However, for

simplicity, we can set the size of the reading/writing

request queues as infinity, hence, eliminating the

impacts of various congestion control algorithms.

Algorithm 1: The high-speed requesting algorithm.

Input : i

Output: None.

1 i ← 0

2 send Interest Packet(i):

3 while the size of requesting array is less than n do

4

5

6

7

if trace data is empty then

break

end

push a content into requesting array

8 end

9 if requesting array is empty then

10 return

11 end

12 p ← none

13 while p is none do

14

15

16

17

18

get the ith content from requesting array

p the ith content← a interest packet of
if interest packets about the ith content all were sent then

delete the ith content from requesting array

end

19 end

20 send p with the rate v

21 i ← i +1

22 if i is equal to n then
23 i ← 0

24 end

25 send Interest Packet(i)

5 Evaluation

In this section, we test the functionality and evaluate

the performance of CCNHCaching in a server. This

server is an identical DellTM PowerEdgeTM R720 2U

rack server with one 2.4GHz Intel Xeon E5-2609

processor, 10M of L3 cache per core, 32 GB RAM,

and Broadcom 5720 Quad Port 1GbE BASE-T.

Without loss of generality, we demonstrate the

throughput simulation with three nodes: a receiver, a

caching router, and a sender, as shown in Figure 4. The

link delays are set as 5 ms. Besides, to achieve a

realistic traffic mix with variable content size and

popularities, we use GlobeTraff [29] to create the

traffic trace data. The generating parameters are similar

to those in [9].

5.1 Redundancy

Link throughput has an influence on traffic

redundancy, which affects the network performance

such as hit ratio. For a given traffic trace data, the

redundancy is related to the caching throughput since

CCN has the aggregating functionality. The PIT keeps

track of the interest packets that have been requested

recently but not responded yet. The coming interest

packets recorded in the PIT will be dropped and not

forwarded by CCN routers. This leads to that the

coming time interval of the same requests would be

affected by the link throughput.

Figure 5 presents the relationship between

712 Journal of Internet Technology Volume 20 (2019) No.3

redundancy and link throughput. Note that, to eliminate

the caching throughput’s impact on link throughput,

we disable the caching capability. Besides, the link

bandwidth is set as 100 Gb/s, and the requesting

algorithm is configured to achieve different link

throughputs which range from 10 Mb/s to 100Gb/s.

When the link throughput is 10 Mb/s, the traffic

redundancy is close to the trace data redundancy,

namely, fifty-eight percent. With the increasing link

throughput, the network traffic redundancy falls off.

This is because the high-speed link throughput shortens

the sending time interval of the redundant requests, and

thus more requests are aggregated in CCN nodes.

Therefore, the link throughput decreases the traffic

redundancy, influencing the network performance of

caching schemes such as hit ratio. It is greatly

important to support the caching throughput simulation

if we want to evaluate a caching scheme

comprehensively and correctly.

Figure 5. The relationship between redundancy and

link throughput

5.2 Caching Throughput Comparisons

In CCNHCaching, the most important feature is

supporting the caching throughput simulation. We

replicate four state-of-the-art caching schemes in

CCNHCaching, including LRU, OPC, DRAM_SSD,

and HCaching. We now compare them regarding the

caching throughput, demonstrating the importance of

the caching throughput simulation. First, we used

GlobeTraff to generate three types of trace data, which

have different average content sizes: 9KB, 13KB, and

19KB. Of course, because of functional tests only,

these average content sizes are not optimally selected.

Besides, the value of v in the requesting algorithm is

configured to achieve the 100 Gb/s network traffic.

Figure 6(a), Figure 6(b) and Figure 6(c) show the

throughput performance of each caching schemes

when the average content is 9KB, 13KB, and 19KB

respectively. For HCaching, it has good support for the

caching throughput which is stable and up to 100 Gb/s.

For DRAM_SSD and LRU, the throughputs are more

than 10 Gb/s. Besides, with caching capacity

increasing, the throughput slowly increases. For OPC,

the throughputs are less than 10 Gb/s. Meanwhile, as

the capacity of cache system increases, its throughput

decreases drastically; as the average size of the content

increases, its throughput also drastically decreases. The

specific reasons for exploring these phenomena are

beyond the scope of this chapter, and explained in our

another paper [11]. Obviously, CCNHCaching can

support the high-speed caching throughput simulation

well. With this support, researchers can evaluate the

advantages or disavantages of caching mechanisms

more comprehensively, hence, designing them better.

(a) 9KB (b) 13KB (c) 19KB

Figure 6. Comparision of the caching throughput in the caching schemes, when the average sizes of contents are

5.3 Simulator Performance

In this subsection, we compare the performance

which consists of memory occupancy and the

execution time, with the different number of requests.

Figure 7 depicts the memory occupancy versus the

requests number. The size of the caching schemes is

configured as the sum of the independent contents in

the trace data. The caching schemes consume a

different number of memories. This is because

different caching schemes have individual cache data

structures, which require the different number of

CCNHCaching: A High-speed Caching Throughput Simulator for Information-Centric Networks 713

memories. Besides, when the number of requests is 107,

the largest memory occupancy is about 3 GB for

DRAM_SSD, and the lowest one is about 500 MB for

None (disabling caching capability). With the

increasing number of requests, these values of memory

occupancies rise up slowly. Therefore, the memory

occupancy in CCNHCaching always keeps on a low

level, and CCNHCaching has a good performance

regarding memory occupancy.

Figure 7. Memory occupancy versus the number of

requests

Figure 8 presents the execution time in

CCNHCaching. We can decompose the total execution

time as the sum of bootstrap time , and the

simulating time which is spent in running the CCN

node dynamically. The is composed of the times

such as filling the catalog, allocating data structures

and building the simulation network. Its value is nearly

a constant, and just with little relevance to the number

of requests. The is the CPU time which is required

to run various processing programs such as the

indexing algorithms and memory simulators. Its value

is associated with the time complexity of these

programs. Therefore, except the number of requests,

the execution times are determined by the time

complexity of the caching schemes primarily. For

example, HCaching uses the Bloom Filter to index the

cached content, which is complexity, thus the

execution time of HCaching is slightly longest in all

the caching schemes. However, the longest execution

time is just more than 1 hours for 107 requests, which is

acceptable completely.

6 Conclusion and Future Work

This work proposes and evaluates an ICN simulator,

called CCNHCaching, which supports high-speed

caching throughput simulation. Through presenting the

basic CCN system model, we introduce the overall

design of CCNHCaching. The reading/writing request

queue manager is designed carefully to simulate the

Figure 8. Execution time versus the number of

requests

sequential the memory operations like hardware. By

combining the queue mechanism with memory

simulators which provides the exact access time for the

memories, we implement the evaluation of the

throughput for ICN caching schemes. Besides, to

provide realistic high-speed traffic for evaluating this

throughput, we propose a realistic high-speed

requesting algorithm. Multiple leading caching

schemes are implemented in CCNHCaching and

evaluated on throughput performance. The results

demonstrate that CCNHCaching can provide more

details of these caching schemes and can favor the

designs of ICN caching schemes better. Finally, we

evaluate the CCNHCaching performance regarding the

memory occupancy and the execution time. In the

future work, we will replicate more ICN high-speed

caching schemes and memory simulators to

CCNHCaching. Meanwhile, the preliminary code

implementation will be rewritten and optimized to

make CCNHCaching conform to the ns-3 coding style,

hence, introducing it to the official release of ns-3.

Acknowledgments

This research is supported by NSAF under Grant No.

U1530118, the National Natural Science Foundation of

China (NSFC) under Grant No. 61602030, the National

Key R&D Program under Grant No. 2016YFE0122900,

the Fundamental Research Funds for the Central

Universities under Grant No. 2017YJS032.

References

[1] H. Zhang, W. Quan, H.-C. Chao, C. Qiao, Smart Identifier

Network: A Collaborative Architecture for the Future Internet,

IEEE Network, Vol. 30, No. 3, pp. 46-51, May, 2016.

[2] N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, M.

Xue, X. S. Shen, Big Data Driven Vehicular Networks, IEEE

Network, Vol. pp, No. 99, pp. 1-7, April, 2018.

714 Journal of Internet Technology Volume 20 (2019) No.3

[3] G. Xylomenos, G. N. Ververidis, V. A. Siris, N. Fotiou, G.

Tsilopoulos, X. Vasilakos, K. V. Katsaros, G. C. Polyzos, A

Survey of Information-centric Networking Research, IEEE

Communications Surveys & Tutorials, Vol. 16, No. 2, pp.

1024-1049, July, 2014.

[4] W. Quan, C. Xu, J. Guan, H. Zhang, L. A. Grieco, Scalable

Name Lookup with Adaptive Prefix Bloom Filter for Named

Data Networking, IEEE Communications Letters, Vol. 18,

No.1, pp. 102-105, January, 2014.

[5] W. Quan, C. Xu, A. V. Vasilakos, J. Guan, H. Zhang, L. A.

Grieco, Tb2f: Tree-bitmap and Bloom-filter for a Scalable

and Efficient Name Lookup in Content-centric Networking,

IFIP Networking, Trondheim, Norway, 2014, pp. 1-9.

[6] B. Feng, H. Zhou, G. Li, H. Zhang, H. C. Chao, Least

Popularly Used: A Cache Replacement Policy for

Information-centric Networking, Journal of Internet

Technology, Vol. 17, No.1, pp. 1-10, January, 2016.

[7] Y. Zeng, M. Jin, J. Li, An Approach for Robust In-network

Caching in Information-centric Networks, Journal of Internet

Technology, Vol. 17, No. 3, pp. 503-513, January, 2016.

[8] R. P. Jelenković, A. Radovanović, Least-recently-used

Caching with Dependent Requests, Theoretical Computer

Science, Vol. 326, No. 1-3, pp. 293-327, October, 2004.

[9] Y. Thomas, G. Xylomenos, C. Tsilopoulos, G. C. Polyzos,

Object-oriented Packet Caching for Icn, Proc. 2nd Int. Conf.

Information-Centric Netw. ICN ’15, San Francisco, American,

2015, pp. 89-98.

[10] G. Rossini, D. Rossi, M. Garetto, E. Leonardi, Multi-terabyte

and Multi-gbps Information Centric Routers, Proc. IEEE

INFOCOM, Toronto, Canada, 2014, pp. 181-189.

[11] H. Li, H. Zhou, W. Quan, B. Feng, H. Zhang, S. Yu,

Hcaching: High-speed Caching for Information-centric

Networking, GLOBECOM 2017, Singapore, 2017, pp. 1-6.

[12] A. Afanasyev, I. Moiseenko, L. Zhang, Ndnsim: ndn

Simulator for ns-3, Technical Report NDN-0005, October,

2012.

[13] C. Scherb, M. Sifalakis, Lightweight Implementation of the

Content-centric Networking Protocol, https://github.com/cn-

uofbasel/ccn-lite, 2017.

[14] R. Chiocchetti, D. Rossi, G. Rossini, Ccnsim: An Highly

Scalable CCN Simulator, IEEE International Conference on

Communications, Budapest, Hungary, 2013, pp. 2309-2314.

[15] I. Cianci, L. Grieco, G. Boggia, Ccn-java Opensource Kit

Emulator for Wireless Ad Hoc Networks, ACM Proceedings

of the 7th International Conference on Future Internet

Technologies, New York, American, 2012, pp. 7-12.

[16] CCNx, http://www.ccnx.org/, April, 2018.

[17] NDNx, https://github.com/named-data/ndnx, April, 2018.

[18] C. M. S. Cabral, C. E. Rothenberg, Mini-ccnx: Fast

Prototyping for Named Data Networking, ACM SIGCOMM

workshop on Information-Centric Networking, Hong Kong,

China, 2013, pp. 33-34.

[19] N. Handigol, B. Heller, B. Lantz, N. Mckeown, Reproducible

Network Experiments Using Container-based Emulation,

Proceedings of the 8th International Conference on Emerging

Networking Experiments and Technologies, Nice, France,

2012, pp. 253-264.

[20] C. Elliott, GENI-global Environment for Network

Innovations, IEEE 33rd Conference on Local Computer

Networks, Hyatt Regency Montreal Montreal, Canada, 2008,

pp. 8.

[21] H. Li, H. Zhou, H. Zhang, B. Feng, W. Shi, Emustack: An

Openstack-based Dtn Network Emulation Platform (extended

version), Mobile Information Systems, Vol. 2016, No. 2016,

pp. 1-11, October, 2016.

[22] W. Quan,Y. Liu, H. Zhang, S. Yu, Enhancing Crowd

Collaborations for Software Defined Vehicular Networks,

IEEE Communications Magazine, Vol. 55, No.8, pp. 80-86,

August, 2017.

[23] W. Quan, K. Wang, Y. Liu, N. Cheng, H. Zhang, X. S. Shen,

Software-Defined Collaborative Offloading for Heterogeneous

Vehicular Networks, Wireless Communications and Mobile

Computing, Vol. 2018, Article ID 3810350, pp 1-9, April,

2018.

[24] W. Chai, D. He, L. Psaras, G. Pavlou, Cache Less for more in

Information-centric Networks (extended version), Computer

Communications, Vol. 36, No. 7, pp. 758-770, February,

2013.

[25] G. Zalateu, Aging Bloom Filter with Two Active Buffers for

Dynamic Sets, IEEE Trans. Knowl. Data Eng., Vol. 15, No.

12, pp. 1630-1632, January, 2010.

[26] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,

B. Jacob, Dramsim: A Memory System Simulator, ACM

SIGARCH Computer Architecture News, Vol. 33, No. 4, pp.

100-107, September, 2005.

[27] Y. Kim, W. Yang, O. Mutlu, Ramulator: A Fast and

Extensible Dram Simulator, IEEE Computer Architecture

Letters, Vol. 15, No. 1, pp. 45-49, June, 2016.

[28] Y. Kim and B. Tauras, A. Gupta, B. Urgaonkar, Flashsim: A

Simulator for Nand Flash-based Solid-state Drives, IEEE

First International Conference on Advances in System

Simulation, Porto, Portugal, 2009, pp. 125-131.

[29] K. Katsaros, G. Xylomenos, G. Polyzos, Globetraff: A Traffic

Workload Generator for the Performance Evaluation of

Future Internet Architectures, IEEE 5th International

Conference New Technologies, Mobility and Security (NTMS),

Istanbul, Turkey, 2012, pp. 1-5.

Biographies

Haifeng Li received the B.E. degree

in communication and information

systems from the Beijing Jiaotong

University, Beijing, China, in 2013.

He is currently working toward his

Ph.D. degree at the School of

Electronic and Information

Engineering, Beijing Jiaotong University. He has

participated in several national research programs of

China such as “973 Program” and “863 Program”. His

research interests include the future Internet, Delay

Tolerant Networking, High-Performance Computing

and Cloud Computing.

CCNHCaching: A High-speed Caching Throughput Simulator for Information-Centric Networks 715

Huachun Zhou received his B.S.

degree from People’s Police Officer

University of China in 1986. He

received his M.S. and Ph.D. degrees

from Beijing Jiaotong University in

1989 and 2009 respectively. His

research interests include mobility management,

mobile and secure computing, routing protocols and

network management technologies. His recently

research projects include Research on Models and

Algorithms of Information-Centric Mobile Internet,

supported by National Natural Science Foundation of

China, and Research on the Future Space-Ground

Integrated Network, supported by National High

Technology of China.

Wei Quan received his Ph.D. degree

in Communication and Information

System from Beijing University of

Posts and Telecommunications

(BUPT), Beijing, China in 2014.

During 2014-2016, he worked as a

post doctor at National Engineering

Lab for Next Generation Internet

Technologies (NGIT), Beijing Jiaotong University

(BJTU), Beijing, China. He currently works as a

Lecturer at School of Electronic and Information

Engineering, BJTU. He has published more than 20

papers in prestigious international journals and

conferences including IEEE Wireless Communications

Magazine, IEEE Network Magazine, IEEE

Communications Letters, IFIP Networking, IEEE

WCNC, etc. and serves as technical reviewers for some

important international journals and conferences. His

research interests include key technologies for the

future Internet, 5G network architecture, vehicular

networks and Internet of energy. He is a Member of

IEEE, ACM, and a Senior Member of CAAI (Chinese

Association of Artificial Intelligence).

Bohao Feng received the B.E. degree

in communication and information

systems from the Beijing Jiaotong

University, Beijing, China, in 2011.

He is currently pursuing the Ph.D.

degree at the School of Electronic and

Information Engineering, Beijing

Jiaotong University. He has participated in several

national research programs of China such as “973

Program” and “863 Program”. His research interests

are in the wide areas of network technologies including

future network architectures, network caching, mobile

networks and satellite networks.

Hongke Zhang received the M.S. and

Ph.D. degrees in electrical and

communication systems from the

University of Electronic Science and

Technology of China (formerly

known as Chengdu Institute of Radio

Engineering) in 1988 and 1992,

respectively. From September 1992 to June 1994, he

was a Postdoctoral Research Associate at Beijing

Jiaotong University (formerly known as Northern

Jiaotong University). In July 1994, he joined Beijing

Jiaotong University, where he is a Professor. He

currently directs a National Engineering Lab on Next

Generation Internet in China. He is a Senior member of

IEEE and has published more than 100 research papers

in the areas of communications, computer networks,

and information theory. He is the author of eight books

written in Chinese and the holder of more than 30

patents. Dr. Zhang received the Zhan Tianyou Science

and Technology Improvement Award in 2001, the Mao

Yisheng Science and Technology Improvement Award

in 2003, the First-Class Science and Technology

Improvement Award of the Beijing government in

2005, and other various awards. He is now the Chief

Scientist of a National Basic Research Program (“973

Program”).

716 Journal of Internet Technology Volume 20 (2019) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

