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Abstract 

Information-Centric Networks (ICN) have attracted 

great research interests in recent years. Due to the 

prominent feature of in-network caching, ICN can reduce 

network latency and improve network throughput. Many 

researches boost the efforts on the caching simulators. 

However, the throughput of caching is fundamental to 

wire-speed forwarding for ICN routers, and there is no 

corresponding ICN simulator for caching throughput 

evaluation. In this paper, we propose a caching 

throughput simulator named CCNHCaching. A 

reading/writing request queue mechanism is proposed to 

simulate sequential memory accesses. Combining this 

mechanism with open-source memory simulators, 

CCNHCaching can implement precise caching 

throughput and network performance simulation. Besides, 

we propose a requesting algorithm to generate realistic 

high-speed requesting traffic. We compare several state-

of-the-art caching schemes and evaluate their caching 

throughput. The results show that CCNHCaching can 

provide better evaluation for caching schemes, hence, 

promoting the development of caching mechanisms. 

Keywords: ICN, High-speed, Caching throughput, 

Simulation 

1 Introduction 

In recent decades, the Internet has evolved from an 

academic network into a global cyber. With the 

tremendous growth, enormous network applications 

such as 8K Video emerged to fulfill various needs. 

Rich and diverse needs gradually exposed the design 

problems of the Internet. Current Internet architecture 

is based on host-to-host communication model. It is 

inefficient to meet the demands such as information 

sharing and content distribution. To solve these 

problems, many researches start to integrate emerging 

arts into the design of future Internet [1-2]. A new 

clean-slate network architecture, named Information-

Centric Networking (ICN) is proposed [3-4]. ICN 

uniquely names contents and equips routers with 

caching capability. Hence, it can cache contents along 

their propagation path; The receivers can fetch contents 

from the nearest caching routers rather than the 

original provider, which reduces the network traffic 

and access latencies and enhances user experience. 

In-network caching has many advantages, and there 

are lots of caching optimization mechanisms proposed 

to improve them [5-7]. One of classic caching 

optimization mechanisms is the Least Recently Used 

(LRU) [8]. It keeps track of what was used when which 

is expensive if one wants to make sure the mechanism 

always discards the least recently used item. LRU has a 

good robustness for danymic content popularity, and a 

wide range of applicatios. Thomas et al. proposed an 

Object-oriented Packet Caching (OPC) to enlarge the 

caching capacity without additional storage resource 

[9]. Furthermore, Rossini et al. designed a novel two-

layer cache scheme primarily with DRAM and SSD 

(DRAM_SSD) to achieve multi-terabyte caching 

capacity and multi-Gb/s data rate [10]. Besides, our 

previous works have contributed to the large-capacity 

and high-speed caching mechanism [11]. We proposed 

a hierarchical caching scheme composed of both 

SRAM and DRAM. It accelerates the caching 

throughput for ICN core routers. All of these works 

needed the development of ICN simulators. 

To evaluate the above caching mechanisms, many 

ICN simulators have been proposed. ndnSim [12] is an 

ns-3 based simulator which provides caching 

simulation for typical cache replacement policies, such 

as LRU (Least Recently Used), FIFO (First In First 

Out) and LFU (Least Frequently Used). CCN-lite [13] 

is a lightweight implementation of NDN protocols. It 

supports simulator mode based on the OMNET++ 

framework and emulation mode which can run on 

multiple embedded devices. In emulation mode, CCN-

lite can evaluate the caching throughput performance 

of caching schemes; while, due to the hardware 

constraint, the link rate would be usually low.  

ICN lacks caching throughput simulator. Current 

ICN simulators only can provide the simulation for 

cooperative cache policies. They can evaluate their 

network performance, such as hit ratio, the reduction of 

network traffic and server workload. However, how to 
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evaluate the high-speed caching throughput 

performance is not investigated yet. The wire-speed 

forwarding is a fundamental issue in ICN routers, 

whose bottleneck is the throughput of caching schemes. 

Therefore, caching throughput simulation is important. 

In this paper, we propose an ICN simulator for high-

speed caching throughput simulation, called 

CCNHCaching. It can simulate a caching scheme in 

multiple aspects, including network performance and 

throughput performance. Specially, to simulate the 

caching throughput, we elaborately design the Content 

Store (CS) simulation component in CCNHCaching, 

which is composed of a reading/writing request queue 

manager, caching schemes and memory simulators. 

The main contributions can be summarized as follows: 

‧ We design and implement preliminarily an ICN 

simulator, called CCNHCaching 1 , which can 

simulate caching schemes regarding network 

performance (e.g., hit ratio) and caching throughput. 

Especially, it supports the caching throughput 

simulation for high-speed (such as 100 Gb/s) 

caching schemes. 

‧ To simulate the caching throughput exactly, a 

reading/writing request queue management is 

proposed. Besides, combining this mechanism with 

memory simulators, we implement multiple leading 

caching schemes. 

‧ To generate realistic high-speed requesting traffic, 

we investigate the real request behaviors of the 

twenty thousand users in Beijing Jiaotong University 

thoroughly and design a high-speed requesting 

algorithm carefully. 

‧ We compare the state-of-the-art caching schemes 

including LRU, OPC, DRAM_SSD, and HCaching, 

and evaluate the performance of CCNHCaching. 

The results demonstrate that CCNHCaching can 

provide more comprehensive and rigorous 

evaluation for caching schemes, hence, favoring the 

large-scale development of the caching schemes in 

ICN. 

The remainder of this paper is organized as follows. 

Section 2 overviews related works. Section 3 describes 

the CCN system model simply. Section 4 presents the 

architecture of CCNHCaching, including the overall 

design, the caching throughput simulation, and the 

high-speed requesting algorithm. In Section 5, we 

compare several leading caching schemes and evaluate 

the performance of CCNHCaching. The conclusions 

and future works are given in Section 6. 

2 Related Work 

With the ICN development, there have been large 

amounts of emerging tools to evaluate proposed ICN 

                                                           
1  The source code can be available at https://github.com/iplab-

code/ccnhcaching. 

mechanisms. We can categorize them into three groups: 

(1) ICN Simulators [12-14], (2) ICN Emulators [15-19] 

and (3) ICN Testbeds [20-21]. 

(1) ICN Simulators almost all are based on the 

discrete event simulation, allowing researchers to 

rapidly prototype and test their ICN proposals. 

The ndnSim [12] is a simulator based on ns3 for the 

Named-Data Networking (NDN). By integrating the 

Named Data Networking Forwarding Daemon (NFD) 

and ndn-cxx library with ns-3, ndnSim provides a 

realistic NDN simulation behavior. The ndnSim 

implements the full-featured processing of NDN 

selectors based on the latest NDN packet format. 

However, ndnSim has limited support for caching 

simulation. Although there are several implementations 

of typical cache replacement policies (e.g., LRU (Least 

Recently Used), FIFO (First In First Out) and LFU 

(Least Frequently Used)), it does not concentrate on 

high-speed caching throughput simulation. 

CCN-lite [13] is a lightweight yet functionally 

interoperable implementation of the CCNx and NDN 

protocols. It supports a simulation mode using 

OMNET++ simulation framework and an emulation 

mode based on Linux, Android, Arduino et al. 

platforms. CCN-lite offers a clean packet scheduler to 

support at chunk-level, packet-level, and fragment-

level. Packet fragmentation supports running the CCNx 

protocol natively over Ethernet. However, CCNx-lite 

focuses on providing a lean alternative for educational 

purposes and a tiny CCNx core (1000-2000 lines of C 

language) for embedded devices. It is not optimized for 

high performance with sophisticated data structures. 

ccnSim [14] is a scalable chunk-level simulator for 

Content-Centric Network (CCN). It is a C++ package 

built on the top of Omnet++ framework. To efficiently 

simulate large-scale CCN mechanisms, Chiocchetti et 

al. develop and optimize ccnSim in the respects of 

memory- -occupancy and CPU-time. However, ccnSim 

focuses on dealing with different caching cooperative 

algorithms or policies and cannot evaluate the 

throughput of caching schemes. 

(2) ICN Emulators are another way to evaluate ICN 

architecture, which can verify ICN schemes with the 

real operating system and the whole protocol stack. 

CCN-Joker [15] is a lightweight Java-based CCN 

emulator. It is designed to run on top of limited 

resource wireless devices, and study CCN performance 

in mobile ad hoc network or vehicular ad hoc network. 

CCN-Joker is a basic implementation of CCN, and it 

primarily focuses the CCN application on wireless 

networks. 

CCNx [16] is the emulation implementation for ICN, 

which provides the libraries and components to 

demonstrate the basic CCNx protocols. Since CCN 

proposes evolutions in the traditional Internet, CCNx 

mainly focuses on the interoperability of new protocols 

layers. Alternative similar emulation implementation is 

NDNx [17], which is a fork of CCNx. CCNx and 
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NDNx concern heavily about security issues, end-node 

and router design, while less attention is paid to 

caching operations. 

Mini-CCNx [18] is another ICN emulator, which 

extends the Mininet-HiFi [19] with CCNx 

implementation. Due to the lightweight Linux 

Container (LXC) techniques, Mini-CCNx can run CCN 

emulation with a large-scale topology. However, Mini-

CCNx is based on NDNx which an outdated model of 

NDN is. Besides, Mini-CCNx mainly pays attention to 

emulating the emulation hardware without regarding 

the throughput evaluation of caching schemes. 

(3) ICN Testbeds are real hardware infrastructures that 

can provide real test scenarios for ICN. The Global 

Environment for Network Innovations (GENI) [20] is a 

novel suite of infrastructure which is designed to 

support network experiments. EmuStack [21] is a 

testbed based on OpenStack. It emulates various 

network architectures, such as ICN and SINET [22-23], 

with overlay networking technology. Network and 

computing virtualization make EmuStack flexible and 

programmable to emulate experimental protocols. 

However, due to limitation of physical hardware 

resource, they all cannot emulate high-speed (such as 

100 Gb/s) caching throughput due to the limited 

hardware.  

The caching throughput in ICN is crucial to the 

wire-speed forwarding in ICN routers. Unfortunately, 

there is a lack of ICN simulators which specially focus 

on the high-speed caching throughput simulation. 

Although these ICN emulators/testbeds including 

CCN-Joker, CCNx/NDNx, Mini-CCNx and EmuStack 

can implement the emulation of caching throughput, 

they are expensive and seriously constrained by the 

limited hardware resource. Therefore, in this paper, we 

propose a caching throughput simulator for the high-

speed caching schemes in ICN, named CCNHCaching, 

to further promote the ICN caching mechanisms 

development. 

3 CCN System Model 

CCNHCaching is proposed to simulate caching 

schemes for CCN, a specific architecture design under 

the broad ICN umbrella. We outline the CCN system 

model in this section. 

In CCN, communications are driven by the content 

receivers. There are two types of packets: interest 

packet and data packet. The content is named uniquely 

and requested by receiver with interest packet. The 

nodes with the requested content respond interest 

packets with data packets. On-path routers forward and 

cache the data packets. There are three primary 

components in routers: Forwarding Information Base 

(FIB), Content Store (CS) and Pending Interest Table 

(PIT). The FIB is a table that maintains the 

relationships between prefixes of content names and 

interfaces in CCN routers. The CS stores the requested 

contents after forwarding them so that it can respond 

the following requests quickly. The PIT keeps track of 

the interest packets that have been requested recently 

but not responded yet. The interest packets recorded in 

the PIT are dropped and not forwarded. 

The packet flow in this model is presented in Figure 

1. Upon reception of an interest packet on an interface 

I, a lookup operation is issued to the CS, checking for 

whether the requested content is cached in the CS (the 

first step in Figure 1). If the content is available, the 

CCN router reads the content from the CS and sends it 

back on I (the eighth step in Figure 1). Otherwise, the 

CCN router checks in the PIT whether the requested 

content has been already forwarded upward (the 

second step in Figure 1); if an entry is found in the PIT, 

the CCN router updates the entry to track that the 

interface I is waiting for the requested content. If the 

entry is not found, a new entry is added and the interest 

packet is forwarded to at least one interfaces based on 

longest prefix match on the content name prefix in the 

FIB (the third and fourth steps in Figure 1). When a 

data packet is received after a Round-Trip Time (RTT) 

(the fifth step in Figure 1), the CCN router checks for 

the pending requests in the PIT. If the entry is found, 

the data packet is stored in the CS and forwarded 

toward all the requesting interfaces as listed in the PIT 

(the seventh and eighth steps in Figure 1); otherwise, 

the data packet is discarded (the sixth step in Figure 1). 
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Figure 1. Packet flow in the CCN system model 

As shown in Figure 1, the delays in the packet flow 

are composed of three types: reading/writing CS delay, 

Round-Trip Time (RTT) and processing delay. For the 

caching throughput simulation, we disregard the packet 

processing delays, focusing on the reading/writing CS 

latency, which is the main bottleneck. The reading/ 

writing CS latency directly determines the caching 

throughput which is equal to the transmitted data size 

divided by the latency.  

4 Simulator Architecture 

In this section, we discuss the design details in 

CCNHCaching. First, we introduce the design 

architecture to explain what the difference of 
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CCNHCaching is. Second, we discuss in detail the 

implementation of high-speed caching throughput 

simulation, presenting why and how CCNHCaching 

can realize the caching throughput simulation. Third, a 

high-speed requesting algorithm is proposed to 

generate the high-speed realistic simulation traffic. 

4.1 Design Overview 

Figure 2(a) illustrates the overall structure of 

CCNHCaching. In essence, it is a C++ module built on 

the top of the ns-3 which is a discrete-event network 

simulator framework towards network research. 

CCNHCaching keeps track of some events in an ns3 

event queue (NSEQ), which are scheduled to execute 

at a specified simulation time. The job of the simulator 

is to execute the events in sequential time order. Once 

the completion of an event occurs, the simulator will 

move to the next event or will exit if there are no more 

events in the event queue. Note that the framework 

implements the full-duplex network interfaces without 

ingress queues as shown in Figure 2(a). Therefore, it 

only indirectly controls the receiving rate by 

controlling the end-to-end transmitting rate with egress 

queue.  
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Figure 2. Implementation of CCNHCaching 

There are three types of nodes in CCNHCaching, 

namely, CCN routers, CCN receivers and CCN senders. 

The CCN router is mainly composed of three 

components: Content Store (CS), Pending Interest 

Table (PIT) and Forwarding Information Base (FIB). 

The CCN receiver and CCN sender consist of PIT and 

FIB components. These components play the same 

roles in the CCN system model described in Section 3. 

The details of the three nodes are described as follows. 

The CCN receiver represents users to request 

contents according to the given traffic trace data. The 

traffic trace data can be created by traffic generator or 

formatted with the data set collected from actual 

network traffic. The CCN receiver is linked to the 

access router, which only has a neighbor router. One 

access router can connect amounts of CCN receivers 

where the requesting algorithm runs to send interest 

packets at a customizable rate. The requesting 

algorithm is key to generate high-speed link throughput, 

which will be further discussed in Subsection 4.3. 

The CCN router is the crucial node to simulate the 

throughput of caching schemes. As shown in Figure 2, 

the CCN router aggregates interest packets with the 

PIT and forwards the unrequested interest packets 

based on the FIB (the second and third steps in Figure 

2). Upon the arrival of data packets, the CCN router 

forwards them by the PIT and stores them into the CS 

(the fourth and fifth steps in Figure 2). Hence, when 

the cached data packets are requested again, the CCN 

router can respond directly with the content that has 

been cached in the CS (the first and sixth steps in 

Figure 2).  

The CCN sender is an aggregation of content 

providers. It is responsible for responding interest 

packets with the data packets. In CCNHCaching, 

content providers are not CCN nodes and do not 

contain the whole CCN stack. In fact, all of the content 

providers reside in a CCN sender, serving all content 

requests without regard to whether the requested 

contents exist.  

In CCNHCaching, there are three different cache 

placement policies, including edge caching, universal 

caching and caching based on betweenness centrality. 

In the edge caching, caches are placed only at the 

access CCN routers in the network. In the universal 

caching, all CCN routers are equipped with the CS and 

allowed to cache data packets. In the betweenness 

centrality caching, all CCN routers can cache data 

packets, but data packets are stored at the on-path 

routers with the highest betweenness centrality [24].  

In CCNHCaching, the most important feature is 

supporting the high-speed caching throughput 

simulation. As shown in Figure 2(b), we design a 

request queue simulation mechanism to manage 

reading/writing requests for the CS. We combine this 

mechanism with various memories simulators, such as 

DRAM simulator and SSD simulator, to provide the 

exact access time for different reading/writing 

operations. Besides, between the request queue 

manager and memories simulators, the caching 

schemes can be implemented. Currently, there are four 

leading caching schemes which have been 

implemented in CCNHCaching, including LRU, OPC, 

DRAM_SSD, and HCaching. 

4.2 Caching Throughput Simulation 

In CCNHCaching, the structure of the CS is 

elaborately designed to support the throughput 

simulation for caching schemes. As shown in Figure 

2(b), at a high level, this key structure is composed of 

three parts: (1) request queue manager, (2) caching 

schemes and (3) memory simulators. 

(1) Request queue manager is composed of three 
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parts: reading request queue, writing request queue 

and reading/writing scheduler. The reading request 

queue maintains the information about users requesting 

the content in the CS. The writing request queue tracks 

the requests for storing the forwarded data packets into 

CS. The reading/writing scheduler is responsible for 

how to schedule these reading/writing requests to 

access the CS.  

The process flow of request queue manager is as 

follow. Once the request queue manager receives a 

reading request or writing request, it enqueues them to 

the reading request queue or writing request queue, 

respectively. Assume we use the single port memory 

chips in the CS, which cannot support simultaneous 

read and write operations. We use a polling mechanism 

to schedule the reading and writing request queues in 

reading/writing scheduler. Therefore, the CS serves the 

reading requests and writing requests alternately. When 

a reading request arrives in the CS, the CS calculates 

its access latency based on the cache schemes and 

memory simulators. The CS adds the latency to the 

current simulation time, getting the specified 

simulation time 
e
t . It uses 

e
t  as the executing time of 

the reading request end event and puts the request end 

event into the event queue (NSEQ) in ns-3, waiting 
e
t  

for being executed. After the reading request end event 

is executed, the request queue manager enables the 

writing request to hit the CS. If the writing request 

queue is empty, the request queue manager 

immediately allows the reading request queue to access 

the CS again; otherwise, it needs to wait for executing 

the writing request end event and then enable the 

reading request. 

The request queue manager is the key to simulate 

the throughput of the CS exactly. This mechanism 

makes the access latency have the accumulative 

impacts on the subsequent access requests. However, 

when the speed of the CS processing requests is less 

than the speed of the requests arrival, these 

accumulative impacts would make the reading/writing 

queues exceeded. Therefore, the size of the request 

queue should be configured according to the ICN 

congestion control algorithm and the requesting 

algorithm, which are further discussed in Subsection 

4.3. 

(2) Caching scheme is responsible for organizing 

memory structure and managing the cached content, to 

improve the CS performance. Currently, we implement 

four leading caching schemes in CCNHCaching, which 

include LRU, OPC, DRAM_SSD, and HCaching. 

LRU [8] is the Least Recently Used caching scheme. It 

uses Static Random-Access Memory (SRAM) as index 

memory, and Dynamic Random-Access Memory 

(DRAM) as the primary one. The LRU algorithm runs 

at the SRAM, to index and replace the content cached 

in DRAM. It keeps track of what was used and when, 

and always discards the least recently used item. LRU 

algorithm is theoretically realizable. However, it is not 

cheap. To fully implement LRU algorithm, it is usually 

necessary to maintain a linked list of all data packets 

cached in DRAM, which would consume large 

amounts of SRAM resources. 

OPC [9]0 is an Object-oriented Packet Caching 

scheme. It utilizes SRAM as the index memory, and 

DRAM as the primary one. Currently, SRAM is 

expensive and size-limited, which restricts the caching 

performance for the commodity routers seriously. 

Therefore, Thomas et al. proposed the OPC to 

overcome this SRAM bottleneck. OPC combines the 

object-level indexing in SRAM with the packet-level 

storage in DRAM. It can increase the usable DRAM 

capacity for the commodity routers without additional 

SRAM resources. Besides, it introduces several simple 

yet effective algorithms for the content lookup, 

insertion, and eviction operations. These algorithms 

can address some caching problems such as the looped 

replacement and the large object poisoning. However, 

there is some side effect of these algorithms. For 

example, when the cached content size is large, they 

would result in the sharp decline on the OPC’s caching 

throughput. 

DRAM_SSD [10] is a two-layer caching scheme 

which utilizes DRAM as cache memory and Solid-

State Drives (SSD) as primary one. The index 

memories in DRAM_SSD are composed of SRAM and 

DRAM. SRAM holds the index for the data packets 

cached in DRAM, and a part of DRAM maintains the 

index for the data packets stored in SSD. By the novel 

two-layer caching structure, DRAM_SSD succeeds in 

moving SSD bottleneck from access time to the 

external data rate. Besides, with a triggering 

prefetching mechanism, DRAM_SSD utilizes the high-

speed external data rate in SSD fully. Therefore, it can 

achieve multi-Terabyte caches to sustain content 

streaming at multi-Gb/s speed. DRAM_SSD can be 

well qualified as the edge ICN routers. However, due 

to the writing characters and lifetime of the general 

SSD chips, it probably is not fast and endurable 

enough to serve the core ICN routers. 

HCaching [11] is a hierarchical caching scheme which 

uses Static Random-Access Memory (SRAM) as cache 

memory and DRAM as primary one. HCaching adopts 

a two-layer structure, which maps a content chunk into 

a single row of DRAM and employs a little SRAM as a 

cache of a DRAM to accelerate DRAM. This design 

leverages the merits of both SRAM and DRAM and 

make an optimal trade-off between them. Besides, 

HCaching proposes a prefetching strategy is proposed 

to reduce access latency to maximize throughput. 

When a chunk request is received, HCaching can 

proactively fetch chunk-size packets from DRAM into 

SRAM in batches. Furthermore, an improved A
2 

buffering algorithm [25] is adapted to index the cached 

content-chunks in DRAM efficiently. With all these 

combinatorial peculiarities, HCaching has great 

potential to reduce excessive utilization rate of SRAM 
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and improve total caching efficiency. 

(3) Memory simulators are responsible for providing 

the exact access latency for various memory 

technologies. Typically, the caching schemes are 

composed of multiple types of memories. For example, 

the DRAM_SSD caching scheme mainly consists of 

two types of memories architectures: DRAM and SSD. 

These memory architectures are complex, and it is hard 

to evaluate their performance. Therefore, the memory 

simulators are utilized to provide a fast and early 

performance estimation for the customized caching 

systems. Fortunately, there have been lots of memory 

simulators in the memory community, such as SRAM 

simulator, DRAM simulator, and SSD simulator. 

SRAM simulator is responsible for providing the 

access time of SRAM. One cell of SRAM is composed 

of six transistors. The all-transistor structure makes its 

state very stable, and the access dealy is short, and the 

access timing of different access modes remains 

unchanged. The SRAM has a simple interface, so the 

SRAM simulator is simple to implement. 

DRAM simulator is responsible for providing the 

access time of DRAM. DRAM uses the two states of 

the capacitor (charged or discharged) to represent 

information, However, capacitor has a leakage effect. 

If no periodic refresh (supplementary charge) is 

performed, its state will change and the information 

will fade quickly. This feature leads to DRAM chip 

needing a very complex design. The access latency is 

determined by its request modes. To simulate the 

access latency, Wang et al. [26] implemented 

DRAMsim. It can simulate various DRAM 

technologies, including SDRAM, DDR, DDR2, 

DRDRAM, and FB-DIMM. DRAMsim provides 

access delay according to different parameters and 

access modes. Besides, Kim et al. [27] designed a fast, 

accurate, scalable DRAM simulator, Ramulator. 

Ramulator provides many out-of-the-boxes supports 

for DRAM technology standards, including DDR3/4, 

LPDDR3/4, GDDR5, WIO1/2, and HBM. 

SSD simulator is responsible for providing the 

access time of SSD. SSD is based on flash technology. 

There are two types of flash: NAND and NOR. NAND 

flash has higher storage density and lower power 

consumption than NOR flash. Therefore NAND-based 

SSD is used widely. NAND-based SSDs support three 

operations: reading, writing, and erasing. With 

different operations, the granularity and delay are 

different. The basic storage unit of SSD is page, and its 

size is 2KB-16KB. 128 or 256 pages form a block, 

hence each block size is 256KB-4MB. The minimum 

unit of reading/writing operations in SSD is page. 

However the minimum unit for erasing operation is 

block. If you need to rewrite a page, you first need to 

erase the entire corresponding block where the page 

resides. Generally, the latency of writing operations is 

4-5 times longer than that of reading operations. The 

delay of erasing operation is much greater than that of 

writing operations. Therefore, as data storing SSD 

increases, its performance becomes worse and worse. 

Additionally, the writing cycle of SSD is between 3K 

and 100K, which is very limited for a network cache 

system that frequently writes data. These SSD features 

will affect the design of the caching mechanism. To 

accurately assess its impact on the performance of the 

cache mechanism, SSD emulators such as Flashsim [28] 

need to be used. 

4.3 High-speed Requesting Algorithm  

To evaluate the high-speed throughput for caching 

schemes, a requesting algorithm is needed to generate 

the high-speed realistic network traffic. We first 

investigated the users’ request characteristics at the 

export gateway in Beijing Jiaotong University. There 

are twenty thousand students and teachers, and the 

export link peak is close to 5 Gb/s. We summarize the 

characteristics of the real user requests as follows: 

(1) The user requests have a great redundancy. With 

the twenty seconds sampling period, the redundancy of 

the requests is up to forty percent.  

(2) The user requests overlap each other. The 

phenomenon is presented in Figure 3, where the circles 

stand for different users’ requests and their diameters 

denote the life-time spans of these users’ requests. In 

the real network traffic, the user requests blend each 

other, rather than follow one after another.  

 

Figure 3. Requesting time sequence of realistic 

network flows (circles stand for different network 

flows, and their diameters denote the life-time spans of 

these network flows) 

Based on the above observation, we design a high-

speed requesting algorithm to simulate the realistic 

users’ requests. The request process is outlined in 

Figure 4. We first generate the “traffic trace data” with 

GlobeTraff traffic generator [29] or collected real 

network traffic. The “request array” is employed to 

send the interest packets. It loads n contents to request 

from the “traffic trace data”, and then send the interest 

packet of them alternately, with the rate v. The values 

of both n and v can be set according to user 
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requirement. When request packets for a content is sent 

completely, the requesting algorithm pushes a new 

content from the “traffic trace data”, until all the 

contents in the “traffic trace data” are requested. The 

general flow of the requesting algorithm is as follows: 

First, “n” content is pushed into the “request array” 

from “traffic trace data”, and then interest packets of n 

content are sent alternately with rate v; if all requests of 

a content are sent, the content is removed from 

“request array” and a new content is loaded from 

“traffic trace data”. 

Sender

Receiver

2
1

i

…

Contents
IDs

…

Packets 
IDs

Interest packet

Data packet Caching Router

Caching 
Schemes

A
...

G

A
B
...

Content Name
8
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...

Content Size (packets)

8
...

16

Traffic Trace Data

n

Push

Request Array

 

Figure 4. Simple topology to represent the way to send 

users requests 

The detail of the requesting algorithm is described in 

Algorithm 1. Let i denotes the index number of the i-th 

content in the “request array”. The algorithm first 

initializes its value to zero and then fills the “request 

array” with n contents from the “traffic trace data” 

(lines 1 to 8). After that, it checks whether the “request 

array” is empty; if it is, it means that all contents are 

requested, and the algorithm ends (lines 9 to 11); 

otherwise, it assembles the interest packet  of the i-th 

content (a content consists of multiple packets) in the 

“request array” (lines 14, 15). The function also checks 

whether  is the last interest packet in the i-th content. 

If it is, the function removes the i-th content from the 

“request array” (lines 16 to 18). After that, the 

algorithm sends the interest packet with rate v (line 20), 

and the value of i is increased by one (line 21). When 

the value of the increased i is equal to n, we reset it to 

zero (line 22 to 24). Finally, it continues to request the 

data packet for the next content in the “request array”, 

until both “traffic trace data” and “request array” are 

empty.  

In the preceding algorithm, we can adjust the value 

of n to control the number of parallel flow, and the 

value of v to control the rate of requesting traffic 

flexibly. Besides, to prevent packet loss in network, a 

congestion control mechanism with an 

acknowledgment would be needed. However, for 

simplicity, we can set the size of the reading/writing 

request queues as infinity, hence, eliminating the 

impacts of various congestion control algorithms. 

Algorithm 1: The high-speed requesting algorithm.

Input  : i

Output: None.

1  i ← 0

2  send Interest Packet(i):

3  while the size of requesting array is less than n do

4

5

6

7

if trace data is empty then 

break

end

push a content into requesting array

8  end

9  if requesting array is empty then

10 return

11  end

12  p ← none

13  while p is none do

14

15

16

17

18

get   the   ith   content   from requesting   array

p the  ith  content←  a  interest  packet  of
if interest packets about the ith content all were sent then

delete the ith content from requesting array

end

19  end

20  send p with the rate v

21  i ← i +1

22  if i is equal to n then
23 i ← 0

24  end

25  send Interest Packet(i)
 

5 Evaluation 

In this section, we test the functionality and evaluate 

the performance of CCNHCaching in a server. This 

server is an identical DellTM PowerEdgeTM R720 2U 

rack server with one 2.4GHz Intel Xeon E5-2609 

processor, 10M of L3 cache per core, 32 GB RAM, 

and Broadcom 5720 Quad Port 1GbE BASE-T. 

Without loss of generality, we demonstrate the 

throughput simulation with three nodes: a receiver, a 

caching router, and a sender, as shown in Figure 4. The 

link delays are set as 5 ms. Besides, to achieve a 

realistic traffic mix with variable content size and 

popularities, we use GlobeTraff [29] to create the 

traffic trace data. The generating parameters are similar 

to those in [9]. 

5.1 Redundancy  

Link throughput has an influence on traffic 

redundancy, which affects the network performance 

such as hit ratio. For a given traffic trace data, the 

redundancy is related to the caching throughput since 

CCN has the aggregating functionality. The PIT keeps 

track of the interest packets that have been requested 

recently but not responded yet. The coming interest 

packets recorded in the PIT will be dropped and not 

forwarded by CCN routers. This leads to that the 

coming time interval of the same requests would be 

affected by the link throughput. 

Figure 5 presents the relationship between 
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redundancy and link throughput. Note that, to eliminate 

the caching throughput’s impact on link throughput, 

we disable the caching capability. Besides, the link 

bandwidth is set as 100 Gb/s, and the requesting 

algorithm is configured to achieve different link 

throughputs which range from 10 Mb/s to 100Gb/s. 

When the link throughput is 10 Mb/s, the traffic 

redundancy is close to the trace data redundancy, 

namely, fifty-eight percent. With the increasing link 

throughput, the network traffic redundancy falls off. 

This is because the high-speed link throughput shortens 

the sending time interval of the redundant requests, and 

thus more requests are aggregated in CCN nodes. 

Therefore, the link throughput decreases the traffic 

redundancy, influencing the network performance of 

caching schemes such as hit ratio. It is greatly 

important to support the caching throughput simulation 

if we want to evaluate a caching scheme 

comprehensively and correctly. 

 

Figure 5. The relationship between redundancy and 

link throughput 

5.2 Caching Throughput Comparisons 

In CCNHCaching, the most important feature is 

supporting the caching throughput simulation. We 

replicate four state-of-the-art caching schemes in 

CCNHCaching, including LRU, OPC, DRAM_SSD, 

and HCaching. We now compare them regarding the 

caching throughput, demonstrating the importance of 

the caching throughput simulation. First, we used 

GlobeTraff to generate three types of trace data, which 

have different average content sizes: 9KB, 13KB, and 

19KB. Of course, because of functional tests only, 

these average content sizes are not optimally selected. 

Besides, the value of v in the requesting algorithm is 

configured to achieve the 100 Gb/s network traffic. 

Figure 6(a), Figure 6(b) and Figure 6(c) show the 

throughput performance of each caching schemes 

when the average content is 9KB, 13KB, and 19KB 

respectively. For HCaching, it has good support for the 

caching throughput which is stable and up to 100 Gb/s. 

For DRAM_SSD and LRU, the throughputs are more 

than 10 Gb/s. Besides, with caching capacity 

increasing, the throughput slowly increases. For OPC, 

the throughputs are less than 10 Gb/s. Meanwhile, as 

the capacity of cache system increases, its throughput 

decreases drastically; as the average size of the content 

increases, its throughput also drastically decreases. The 

specific reasons for exploring these phenomena are 

beyond the scope of this chapter, and explained in our 

another paper [11]. Obviously, CCNHCaching can 

support the high-speed caching throughput simulation 

well. With this support, researchers can evaluate the 

advantages or disavantages of caching mechanisms 

more comprehensively, hence, designing them better. 

 

(a) 9KB (b) 13KB (c) 19KB 

Figure 6. Comparision of the caching throughput in the caching schemes, when the average sizes of contents are 

5.3 Simulator Performance 

In this subsection, we compare the performance 

which consists of memory occupancy and the 

execution time, with the different number of requests. 

Figure 7 depicts the memory occupancy versus the 

requests number. The size of the caching schemes is 

configured as the sum of the independent contents in 

the trace data. The caching schemes consume a 

different number of memories. This is because 

different caching schemes have individual cache data 

structures, which require the different number of 
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memories. Besides, when the number of requests is 107, 

the largest memory occupancy is about 3 GB for 

DRAM_SSD, and the lowest one is about 500 MB for 

None (disabling caching capability). With the 

increasing number of requests, these values of memory 

occupancies rise up slowly. Therefore, the memory 

occupancy in CCNHCaching always keeps on a low 

level, and CCNHCaching has a good performance 

regarding memory occupancy. 

 

Figure 7. Memory occupancy versus the number of 

requests 

Figure 8 presents the execution time in 

CCNHCaching. We can decompose the total execution 

time as the sum of bootstrap time , and the 

simulating time  which is spent in running the CCN 

node dynamically. The  is composed of the times 

such as filling the catalog, allocating data structures 

and building the simulation network. Its value is nearly 

a constant, and just with little relevance to the number 

of requests. The  is the CPU time which is required 

to run various processing programs such as the 

indexing algorithms and memory simulators. Its value 

is associated with the time complexity of these 

programs. Therefore, except the number of requests, 

the execution times are determined by the time 

complexity of the caching schemes primarily. For 

example, HCaching uses the Bloom Filter to index the 

cached content, which is complexity, thus the 

execution time of HCaching is slightly longest in all 

the caching schemes. However, the longest execution 

time is just more than 1 hours for 107 requests, which is 

acceptable completely. 

6 Conclusion and Future Work 

This work proposes and evaluates an ICN simulator, 

called CCNHCaching, which supports high-speed 

caching throughput simulation. Through presenting the 

basic CCN system model, we introduce the overall 

design of CCNHCaching. The reading/writing request 

queue manager is designed carefully to simulate the  

 

Figure 8. Execution time versus the number of 

requests 

sequential the memory operations like hardware. By 

combining the queue mechanism with memory 

simulators which provides the exact access time for the 

memories, we implement the evaluation of the 

throughput for ICN caching schemes. Besides, to 

provide realistic high-speed traffic for evaluating this 

throughput, we propose a realistic high-speed 

requesting algorithm. Multiple leading caching 

schemes are implemented in CCNHCaching and 

evaluated on throughput performance. The results 

demonstrate that CCNHCaching can provide more 

details of these caching schemes and can favor the 

designs of ICN caching schemes better. Finally, we 

evaluate the CCNHCaching performance regarding the 

memory occupancy and the execution time. In the 

future work, we will replicate more ICN high-speed 

caching schemes and memory simulators to 

CCNHCaching. Meanwhile, the preliminary code 

implementation will be rewritten and optimized to 

make CCNHCaching conform to the ns-3 coding style, 

hence, introducing it to the official release of ns-3.  
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