
Hierarchical Access Control with Scalable Data Sharing in Cloud Storage 663 

 

Hierarchical Access Control with Scalable Data Sharing  

in Cloud Storage 

Zhenyao Qiu1, Zhiwei Zhang1, Shichong Tan1, Jianfeng Wang1, Xiaoling Tao2,3* 

1 State Key Laboratory of Integrated Services Networks (ISN), Xidian University, China 
2 Guangxi Cooperative Innovation Center of Cloud Computing and Big Data,  

Guilin University of Electronic Technology, China 
3 Guangxi Colleges and Universities Key Laboratory of Cloud Computing and Complex Systems,  

Guilin University of Electronic Technology, China 

zyqiu@stu.xidian.edu.cn, zwzhang@xidian.edu.cn, sctan@mail.xidian.edu.cn, jfwang@xidian.edu.cn, txl@guet.edu.cn 

                                                           
*Corresponding Author: Zhiwei Zhang; E-mail: zwzhang@xidian.edu.cn 

DOI: 10.3966/160792642019052003002 

Abstract 

Cloud storage is facing the contradiction between data 

security and flexible data sharing, and therefore the 

cryptographic access control mechanisms are well studied. 

In particular, hierarchical access control in cloud storage 

is significant for many application scenarios. In these 

scenarios, the users are divided into several groups 

organized in a hierarchy, and they are assigned with 

different access privileges according to their groups and 

levels. That is, the users in higher level groups can access 

the data belonging to their subordinate groups while the 

users in lower level groups cannot access the data 

belonging to their superior groups. However, most of the 

existing hierarchical access control solutions seem to be 

unpractical for their inability of scalable data sharing, 

inefficiency of key management or lack of delegated re-

encryption. In this paper, we propose a new hierarchical 

access control scheme based on key-aggregate encryption, 

and the proposed scheme realizes scalable data sharing in 

cloud storage which allows the users to share data with 

any user group. In the proposed scheme, the size of each 

key or ciphertext is constant and irrelevant to the scale of 

hierarchical user structure. Especially, our scheme 

improves the convenience of key management by cutting 

off the key derivation widely used in the existing 

hierarchical key assignment methods. Furthermore, the 

proposed scheme reduces the users’ updating overhead by 

introducing the delegated re-encryption into the 

hierarchical scenarios. Finally, the security analysis and 

the performance evaluation indicate that our scheme is 

feasible for the hierarchical data sharing applications in 

cloud storage. 

Keywords: Access control, Hierarchical key assignment, 

Data sharing, Cloud storage, Key-aggregate 

encryption 

1 Introduction 

Cloud computing has achieved the dream of 

computing being the 5th utility after water, electricity, 

gas, and telephony [1]. Based on elastic virtualization 

technology, computational services can be provided to 

resource-limited users via the Internet on demand. 

Plenty of technologies in cloud computing have been 

well studied these years, such as secure outsourcing 

computation [2-3]. With the development and maturity 

of cloud computing technologies, cloud storage service, 

a typical representative of cloud computing services, 

has attracted increasingly more organizations and 

personal users over last ten years. Compared with 

traditional data storage methods in which users should 

purchase and maintain physical devices and software 

by themselves, cloud storage has a lot of advantages 

including lower cost, on-demand selection, ease of 

management and anywhere accessibility. Nowadays, 

many information technology companies have 

launched cloud storage services such as Google Drive, 

Microsoft OneDrive, Amazon S3, etc. 

However, users’ data may contain sensitive 

information, such as government confidential 

documents, enterprise business data, and personal 

medical records. Although cloud storage may bring 

conveniences to users, it will also bring data security 

threats to them at the same time. As a result, the 

security issues of cloud storage have received 

attentions from both academia and industry, including 

data auditing [4-7], secure data deduplication [8-9] and 

searchable encryption [10-11]. On one hand, the 

adoption of outsourcing storage will cause the 

separation of data ownership and management. Once 

the data has been uploaded to the cloud server, it can 

only be accessed and processed by users in a remote 

way. That is to say, users lost the autonomy of their 

data. As the real manager of users’ data, the cloud 



664 Journal of Internet Technology Volume 20 (2019) No.3 

 

service providers are often considered to be semi-

trusted which means that they cannot be fully trusted 

by users since they may steal or even divulge users’ 

data stored in the cloud. Therefore, it is necessary for 

cloud users to utilize proper cryptographic mechanisms 

before delivering their data to cloud servers in order to 

protect data security. On the other hand, the data stored 

in the cloud sometimes needs to be accessed by 

different users within certain access control policies. 

The existing data access control solutions in cloud 

storage are generally constructed with attribute-based 

encryption (ABE) [12-17]. For instance, in ciphertext-

policy attribute-based encryption (CP-ABE) [14], a 

user will be assigned with a set of specific attributes 

according to his/her identity, while the files with 

different access permission requirements will be 

attached with different access control policies. Once a 

user’s attributes meet a file’s access control policy, 

he/she can decrypt the file. 

Secure data sharing is also an important 

functionality in cloud storage. At the first glance, the 

data owner can share data by first decrypting the data 

downloaded from the cloud server and then sending the 

plaintext to others. However, a more ideal and secure 

situation is that the users should be given proper 

decryption rights and can directly decrypt the shared 

data in the cloud server if they satisfy the conditions of 

sharing targets made by the data owner. 

Nevertheless, in some specific real-world 

application scenarios of cloud storage, such as 

enterprise cloud and government cloud, data users are 

divided into several groups in a hierarchy with 

hierarchical access privileges. Users in a higher-level 

group have the authority to access the data of their 

subordinate groups, while users in a lower-level group 

cannot access the data belonging to their superior 

groups. Under this requirement, the original ABE is 

infeasible to be directly used to solve the access control 

problem in such scenarios. Consequently, the 

hierarchical attribute-based encryption (HABE) is 

proposed to deal with the access control problems in 

hierarchical scenarios. However, the existing HABE 

schemes mainly consider the hierarchical structure of 

attribute authorities but not the hierarchical structure of 

user groups. 

For example, as shown in Figure 1, in an application 

scenario of enterprise cloud storage, the ordinary staffs 

(e.g. engineers) of each department can only access the 

data of their own groups, department managers (e.g. 

managers of R&D department) can access the data of 

their groups and all their subordinate groups, and the 

enterprise leadership (e.g. CEO) has the supreme 

seniority and can access all data of the whole company 

[18]. Another important requirement for hierarchical 

access control is flexible data sharing. For instance, an 

auditor may share some information about the 

misconduct of the managers of the financial 

department with CEO but wants to keep secret to the 

managers. In conclusion, under the condition of 

ensuring the data confidentiality in cloud storage, it is 

of great significance to solve the problem of secure 

data sharing and access control when users are 

organized in a hierarchical structure. 

 

Figure 1. An example of hierarchical sccess control 

1.1 Our Contribution 

The main contributions of this paper are listed below: 

‧ We achieve a hierarchical access control scheme 

under the public-key cryptosystem based on the key-

aggregation encryption. In our scheme, each user 

only needs to be distributed with a single secret key 

of constant size to decrypt the data belonging to 

his/her group and all its subordinate groups. 

‧ The users in our scheme can share encrypted data 

with any of the other user groups without using 

others’ secret keys, which is suitable for the scenario 

of secure data sharing in cloud storage. Unlike many 

existing hierarchical key assignment schemes, the 

decryption process of our scheme does not require a 

key derivation step. A user can directly use the 

secret key of his/her own group to decrypt the data 

of all its subordinate groups. 

‧ Our scheme also supports delegated re-encryption. 

That is to say, in the process of user revocation, the 

cloud server is delegated to re-encrypt the data 

belonging to the user group which contains the 

revoked user and its subordinate groups. 

1.2 Related Work 

Akl and Taylor [19] first proposed the problem of 

hierarchical access control and presented a cryptographic 

solution. They described the hierarchical structure of 

user groups as the partial order relations among 

security classes, and presented a collusion-resistant 

hierarchical key assignment scheme based on some 

theorems in number theory. However, the key size in 

this scheme will increase rapidly with the increasing of 

breadth and depth of the hierarchical user structure. 

Then, Sandhu [20] proposed an implementation of 

hierarchical access control in a tree structure based on 

the idea of one-way function to keep the key size of 



Hierarchical Access Control with Scalable Data Sharing in Cloud Storage 665 

 

each user constant. Damiani et al. [21] presented an 

access control scheme of outsourced databases for 

multi-user in a tree hierarchy using the key derivation 

method based on one-way function proposed in [20]. 

Atallah et al. [22] proposed a dynamic hierarchical key 

assignment scheme which represents the partial order 

relations among security classes as a directed acyclic 

graph (DAG) and gives a specific public information 

for each vertex and edge in the graph. The scheme 

utilizes hash function to achieve the key derivation 

from any security class to its descendant classes and 

the dynamic updates of the hierarchy only occur 

locally. Later, Crampton et al. [23] analyzed and 

compared these hierarchical access control schemes 

and defined a general model of hierarchical key 

assignment. 

In recent years, Chen et al. [24-25] constructed two 

hierarchical access control schemes under Bell-

LaPadula security model based on proxy re-encryption 

and all-or-nothing transformation, identity-based 

broadcast encryption and strong one-time signature 

scheme, respectively. Castiglione et al. [26-28] 

proposed several solutions for different application 

scenarios. They presented a new hierarchical and 

shared access control model and constructed two 

concrete schemes [26] based on symmetric encryption 

and public-key threshold broadcast encryption, and 

then they achieved a new scheme [28] supporting 

dynamic updates in cloud storage based on Akl-Taylor 

scheme [19]. Tang et al. [18] proposed a solution of 

hierarchical key assignment with efficient key 

derivation based on linear geometry. Alderman et al. 

[29] proposed a tree-based cryptographic access 

control scheme mapping the access policy into a binary 

tree and achieving key derivation without public 

system information. Zhang et al. [30] proposed a 

hierarchical verifiable database scheme supporting 

partial verification and tampered record location based 

on a new cryptographic primitive called vector 

commitment tree, which beyond the verifiable database 

schemes [31-32] based on vector commitments [33] in 

both function and efficiency. 

Based on ABE, Wang et al. [34] first proposed 

HABE for fine-grained access control in cloud storage 

by combining hierarchical identity-based encryption 

and CP-ABE. The HABE scheme achieves scalable 

user revocation via proxy re-encryption and lazy re-

encryption. Wan et al. [35] proposed the hierarchical 

attribute-set-based encryption by extending ciphertext-

policy attribute-set-based encryption with a 

hierarchical structure of users. Huang et al. [36] 

presented a data collaboration scheme with hierarchical 

attribute-based encryption in cloud computing based 

on HABE and attribute-based signature. 

In the field of secure data sharing in cloud 

computing, there are some new schemes proposed 

recently. Shen et al. [37-38] first proposed a block 

design-based key agreement protocol for group data 

sharing based on symmetric balanced incomplete block 

design (SBIBD), and then proposed a traceable group 

data sharing scheme with traceability and anonymity 

utilizing SBIBD. Li et al. [39] presented a secure 

attribute-based data sharing scheme for resource-

limited users based on ABE. Zhang et al. [40] proposed 

a location-sensitive secure data sharing scheme for 

cyber-physical systems with cloud computing. 

Most of the existing hierarchical access control 

solutions are under the symmetric cryptosystem which 

do not well solve the problem of scalable and secure 

data sharing in cloud storage, while HABE-based 

schemes are costly in computational overhead and are 

not suitable for the scenarios of hierarchical user 

groups. 

1.3 Organization 

The rest of this paper is organized as follows. In 

Section 2, we introduce some preliminaries used in our 

concrete scheme. In Section 3, we present the system 

description and security model of our scheme. The 

framework and concrete construction of our 

hierarchical access control scheme are provided in 

Section 4. Then, Section 5 and Section 6 present the 

security analysis and performance analysis of the 

scheme respectively. Finally, we conclude this paper in 

Section 7. 

2 Preliminaries 

In this section, we first briefly introduce the bilinear 

pairing, which is a main building block of our concrete 

scheme. Then, we introduce the framework of key-

aggregate cryptosystem, on which our proposed 

scheme is based. 

2.1 Bilinear Pairings 

Let G  and 
T

G  be two multiplicative cyclic groups 

of prime order p . Let g  be a generator of G . A 

bilinear pairing ˆ :
T

e × →G G G  is a map with the 

following properties: 

‧ Bilinear: 
1 2
,g g∀ ∈G  and , ,a b∀ ∈�  we have 

1 2 1 2
ˆ ˆ( , ) ( , )a b ab
e g g e g g= . 

‧ Non-degenerate: ˆ( , ) 1e g g ≠ . 

‧ Computable: 
1 2
, ,g g∀ ∈G  there is an efficient 

algorithm to compute 
1 2

ˆ( , )e g g . 

The group G  is called a bilinear group. Many 

classes of elliptic curves feature bilinear groups. 

2.2 Key-Aggregate Encryption 

The key-aggregate cryptosystem (KAC) is proposed 

in [41] to address the flexible one-to-one data sharing 

problem in cloud storage. It allows a data owner to 

choose any set of different data classes and share them 

with a user (delegatee) by aggregating the decryption 



666 Journal of Internet Technology Volume 20 (2019) No.3 

 

power of different ciphertext classes into a single key 

for the delegatee to obtain the original data in the pre-

chosen data set. 

A KAC scheme consists of five polynomial-time 

algorithms as follows. 

The data owner establishes the public system 

parameter via Setup  and generates a public/master-

secret key pair via KeyGen . Messages can be 

encrypted via Encrypt  by anyone who also decides 

what ciphertext class is associated with the plaintext 

message to be encrypted. The data owner can use the 

master-secret key to generate an aggregate decryption 

key for a set of ciphertext classes via Extract . The 

generated keys can be passed to delegatees securely 

(via secure e-mails or secure devices). Finally, any user 

with an aggregate key can decrypt any ciphertext 

provided that the ciphertext’s class is contained in the 

aggregate key via Decrypt . 

‧ (1 , )nλ
Setup : executed by the data owner to setup 

an account on an untrusted server. On input a 

security level parameter 1λ  and the number of 

ciphertext classes n  (i.e., the class index should be 

an integer bounded by 1  and n ), it outputs the 

public system parameter param , which is omitted 

from the input of the other algorithms for brevity. 

‧ KeyGen : executed by the data owner to randomly 

generate a public/master-secret key pair ( , )pk msk . 

‧ ( , , )pk i mEncrypt : executed by anyone who wants 

to encrypt data. On input a public-key pk , an index 

i  denoting the ciphertext class, and a message m , it 

outputs a ciphertext C . 

‧ ( , )mskExtract S : executed by the data owner for 

delegating the decrypting power for a certain set of 

ciphertext classes to a delegatee. On input the 

master-secret key msk  and a set S  of indices 

corresponding to different classes, it outputs the 

aggregate key for set S  denoted by K
S

. 

‧ ( , , , )K iDecrypt
S
S C : executed by a delegatee who 

received an aggregate key K
S

 generated by 

.Extract  On input ,K
S

 the set ,S  an index i  

denoting the ciphertext class the ciphertext C  

belongs to, and C , it outputs the decrypted result m  

if i∈S . 

With the inspiration of KAC, we construct a 

cryptographic access control scheme to fit the scenario 

of users with a hierarchical structure. 

3 Models and Assumptions 

In this section, we first describe the system model 

and problem statement for our scheme. Then we give 

the security assumptions and definitions in the scenario 

of hierarchical access control in cloud computing. 

3.1 System Description 

The system model for our proposed scheme consists 

of three parties: Central Authority, Cloud Server and 

Hierarchical User Structure described as follows. 

Figure 2 shows a simple framework of our system 

model. 

 

Figure 2. System model 

‧ Central Authority: Central Authority (CA) is a 

trusted party for both cloud server and hierarchical 

user structure whose responsibilities are generating 

system parameters, distributing keys and public 

parameters to each user and providing some 

materials for the cloud server to update the data 

when needed. 

‧ Cloud Server: The cloud server is a virtualized 

storage service provided by a cloud service provider. 

It is responsible for storing data, handling 

upload/download requests and updating data. It is 

said to be a semi-trusted one in our proposed scheme. 

‧ Hierarchical User Structure: The hierarchical user 

structure consists of several user groups organized in 

a hierarchy and each group has one or more user(s) 

with the same level of access privilege. The users 

can send upload/download requests to the cloud 

server for the purpose of data sharing or data 

accessing. A user can share data with any user group 

in the structure, but can only access the data 

belonging to his/her group or its subordinate groups. 

That is to say, he/she cannot access any datum of 

his/her superior groups. 

The hierarchical structure of user groups can be 

represented as a partial order set ( , )V � , where 

{ }1
, ,

n
V SC SC= �  is the set of user groups. The 

element 
i

SC  represents a single user or an access 

group which consists of several users with the same 

access privilege. The binary relation �  represents the 

hierarchical relations among the elements in V . For 

example, 
i j

SC SC�  means that the users in group 



Hierarchical Access Control with Scalable Data Sharing in Cloud Storage 667 

 

j
SC  have the permission to access the data belonging 

to group 
i

SC . That is to say, the access priority of 

group 
j

SC  is higher than or equal to that of group 
i

SC . 

If 
i j

SC SC�  and 
i j

SC SC≠ , then 
i j

SC SC≺ . 

In the view of graph theory, any partial order set 

( , )V �  can be represented as a DAG ( , )G V E= . If 

,
i j

SC SC V∈  and 
i j

SC SC≺ , there exists an edge from 

j
SC  to 

i
SC  in E . As shown in Figure 3, we can see 

that 
2 4 5 2
, ,SC SC SC SC�  but 

1 3 6 2
, ,SC SC SC SC� . In 

this paper, we use DAG ( , )G V E=  as the parameter 

describing the hierarchical structure of user groups. 

 

Figure 3. A DAG with 6 vertices and 6 edges 

3.2 Security Model 

In our scheme, we consider the cloud server as a 

semi-trusted one or in other words an honest-but-

curious one. That is to say, the cloud server will 

execute every operation honestly in general, but can be 

interested in viewing user’s content and try to find out 

as much secret information as possible based on their 

inputs. We assume that the cloud server would not 

collude with malicious users including someone whose 

access privileges were revoked. The communication 

channel between CA and both users and the cloud 

server are assumed to be secured under existing 

security protocols such as SSL. Users would try to 

access files either within or beyond the scope of their 

access privileges. To achieve this goal, unauthorized 

users may work independently or cooperatively. 

The following security requirements should be 

guaranteed in our system. 

‧ Data Confidentiality: A user or external attacker 

cannot access the data belonging to users with 

higher access privilege using his/her own group key. 

That is to say, users in group i  cannot decrypt the 

data belonging to group j  if 
j i

SC SC� . 

‧ Collusion Resistant: Multiple malicious users 

(including external attackers) cannot collude to 

obtain the data belonging to a user with hierarchical 

access privilege beyond these colluded users. 

‧ Forward Security: A user u  cannot access the future 

uploaded data of his/her past group i  and all its 

descendant groups { }|
j i

j SC SC�  after u ’s access 

privilege is revoked from 
i

SC . 

4 Our Proposed Scheme 

In this section, we first introduce the overview of 

our hierarchical access control scheme with data 

sharing. Then, we present a concrete construction of 

the scheme. Finally, we give some advice in handling 

dynamic updates of hierarchical user structure. 

Table 1 lists the main symbols used in our scheme. 

Table 1. Symbols and their meanings 

Symbols Meanings 

G  Graph of hierarchical user structure 
n  Total number of user groups in G  

i
SC  User group with index i  

i
S  Indices set of 

i
SC ’s subordinate groups 

msk  System master secret key 

i
γ  System secret parameter of user group i  

paramf Public parameters 

M  Public matrix 

i
dk  Private decryption key of user group i  

i
ek  Public encryption key of user group i  

m
C  Ciphertext of message m  

d
m  Decrypted plaintext of ciphertext 

m
C  

i
rk  Re-encryption token of user group i  

4.1 Framework 

Our scheme is inspired by [41] which uses the 

collusion-resistant broadcast encryption scheme 

proposed by [42] as the building block. The main 

procedures and functions contained in our scheme are 

described as follows. 

System Initialization: CA runs the system setup 

algorithm Setup . On input the security parameter 1λ  

and the DAG G  representing the hierarchical structure 

of user groups, Setup  algorithm outputs the system 

master secret key msk , the system parameters { }
i

γ  

representing n  user groups, a public matrix M  and the 

system public parameter param . CA makes M  and 

param  public, and keeps msk  and { }
i

γ  secret. 

Hierarchical Key Assignment: CA runs the key 

generation algorithm KeyGen  to generate private 

decryption keys and public encryption keys for all user 

groups. On input the hierarchical structure G , system 

public parameter param , index j  of the group to be 

distributed key to and the system parameters { }
i

γ  

representing n  user groups, KeyGen  algorithm 

outputs the private decryption key 
j

dk  and the public 

encryption key 
j

ek  for group j . CA distributes 
j

dk  to 



668 Journal of Internet Technology Volume 20 (2019) No.3 

 

all users in group j  and makes 
j

ek  public. 

Data Sharing: A user can choose any group to share 

data with when needed, including his/her own group, 

one of his/her subordinate groups, one of his/her 

superior groups or any other group. Once an encrypted 

file is uploaded, only the users in the target group and 

its superior groups can decrypt the file. 

Once a user wants to share a file DataFile  to a 

target group k , he/she can first choose a symmetric 

encryption algorithm, randomly generate a symmetric 

encryption key DEK , and encrypt the file into 

{ }
DEK

DataFile  with the chosen symmetric encryption 

algorithm, then she can run the data encryption 

algorithm Encrypt  to generate the ciphertext header. 

On input the system public parameter param , the 

symmetric encryption key DEK  of the file to be 

shared, the index k  of target group and its public 

encryption key 
k

ek , Encrypt  algorithm outputs the 

ciphertext header .

DEK
C  The user uploads the 

ciphertext header ,
DEK

k〈 〉C  with the ciphertext body 

{ }
DEK

DataFile  to the cloud server. 

Data Decryption: Any user can download the 

ciphertext header ,
DEK

k〈 〉C  with the ciphertext body 

{ }
DEK

DataFile , and run the data decryption algorithm 

Decrypt  to attempt to decrypt the data. On input the 

hierarchical structure G , public matrix M , system 

public parameter param , the index j  of the group 

where the user is, the corresponding private decryption 

key 
j

dk  and the ciphertext header ,
DEK

k〈 〉C , Decrypt  

algorithm outputs the symmetric encryption key DEK  

of the file if group j  is a subordinate group of group 

k . The user can then decrypt the ciphertext body 

{ }
DEK

DataFile  with DEK  to obtain the original file 

DataFile . 

User Revocation: Once a user in group l  needs to be 

removed from the group, to ensure the forward security, 

his/her access permissions to group l  and its 

subordinate groups should be revoked from the system. 

Firstly, CA runs the key update algorithm Update  

to update the private decryption keys of group l  where 

the revoked user is and other related groups. On input 

the hierarchical structure G , the system master secret 

key msk , the system parameters { }
i

γ  representing n  

user groups, the system public parameter param  and 

the index l  of the group where the revoked user is, 

Update  algorithm outputs an updated public matrix 

M ′ , new secret parameter { }q
γ

′

, new public 

encryption keys { }q
ek

′

 and re-encryption tokens { }qrk  

of group l  and its subordinate groups { }| q lq SC SC� , 

as well as new private decryption keys { }k
dk

′

 of 

groups { }| q lq SC SC�  and their superior groups 

{ } { } { }|
i q

k q i SC SC= ∪ � . CA makes M ′  and { }q
ek

′

 

public, and distributes { }k
dk

′

 to all users in groups { }k . 

CA sends the re-encryption tokens { },
q

q rk〈 〉  to the 

cloud server. 

Then, the cloud server runs the data re-encryption 

algorithm ReEncrypt  for each involved group in 

group l  and its subordinate groups. On input the 

ciphertext header ,
DEK

q〈 〉C  and the corresponding re-

encryption token 
q

rk , ReEncrypt  algorithm outputs 

the updated ciphertext header ,

DEK
q

′
〈 〉C . The cloud 

server updates all the involved data in its storage. 

There are two functional requirements for our 

proposed scheme. 

Correctness: For any integer λ  and graph G  with 

n  vertices, any index { }1, ,j n∈ � , any index k  s.t. 

k jSC SC�  in G  and any message m , 

 [ ( , , , , , , ) ] 1
j m

Pr G M param j dk k m〈 〉 = =Decrypt C  

where 

 { }( , , ) (1 , ),
i

param M G
λ

γ ← Setup  

 { }( , , , ),
j i

dk G param j γ←KeyGen  

 { }( , , , ),
k i

ek G param k γ←KeyGen  

 ( , , , ).
m k

param m k ek←EncryptC  

Compactness: For any integer λ  and graph G  with 

n  vertices, any index { }1, ,j n∈ �  and any message m , 

 { }( , , ) (1 , ),
i

param M G
λ

γ ← Setup  

 { }( , ) ( , , , ),
j j i

dk ek G param j γ←KeyGen  

 ( , , , ),
m j

param m k ek←EncryptC  

j
dk  and 

m
C  only depend on the security parameter 

λ  but are independent of the number of vertices n  in 

G . 

4.2 Concrete Construction 

The concrete construction of the six algorithms 

( ,Setup  ,KeyGen  ,Encrypt  ,Decrypt  ,Update  

ReEncrypt ) mentioned above are defined as follows. 

(1 , )G
λ

Setup : ( , )G V E=  is a DAG representing the 

hierarchical structure of user groups, where 

{ }|1
i

V SC i n= ≤ ≤  is a set of vertices representing the 

n  user groups in the system and E  is a set of edges 

representing the partial order relations among user 

groups. 

Randomly pick a bilinear group G  of prime order 



Hierarchical Access Control with Scalable Data Sharing in Cloud Storage 669 

 

p  where 1
2 2p
λ λ+
≤ ≤  and a generator g∈G . 

Randomly pick a secret parameter R p
α ∈ �  as the 

system master secret key msk  which should be kept 

secret by CA. Compute 
i

i
g g

α

= ∈G  for 

1, , , 2, ,2i n n n= +� � . Set the system parameter as 

 
1 2 2

, , , , , ,
n n n

param g g g g g
+

= 〈 〉� � . 

Randomly pick n  random numbers { }|1
i R

i nγ ≤ ≤ ∈  

p
�  for n  user groups in the system which should be 

kept secret by CA as well. For simplicity, let 
j

S  

denote the set { }|
i j

i SC SC�  for each 
j

SC  in G  

which means the set of all subordinate groups 

(including itself) of group j . Set a n n×  public matrix  

 

1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

3,1 3,2 3,3 3,

,1 ,2 ,3 ,

n

n

n

n n n n n

t t t t

t t t t

t t t tM

t t t t

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

�

�

�

� � � � �

�

 

where 
,

k
j k

j

t
h

γ
=  ( ( )

j

j i

i

h γ

∈

= ∑
S

H , ( ) :
p p

⋅ →� �H  is a 

collision-resistant hash function mapping from 
p

�  to 

p
� ) if k jSC SC� ; otherwise, 

,

0j kt = . 

{ }( , , , )
i

G param j γKeyGen : For the set of user groups 

which includes 
j

SC  and all its descendant vertices in 

graph G , i.e., { }|
j i j

i SC SC= �S , set ( )
j

j i

i

h γ

∈

= ∑
S

H  

and compute 

 
1

j

j

h

j n i

i

dk g
+ −

∈

=∏
S

 

as the private decryption key for each group j . Set the 

public encryption keys of each group j  as j

j
ek g

γ

= . 

( , , , )
k

param m k ekEncrypt : This algorithm mainly 

supports the function of scalable data sharing. For a 

message 
T

m∈G  whose sharing target is group k , 

randomly pick 
R p

t∈ �  and compute the ciphertext as 

 
1

ˆ,( ) , ( , )kt t t

m k n
g g g m e g g

γ
= 〈 ⋅ 〉C . 

( , , , , , , )
j m

G M param j dk k〈 〉Decrypt C : Only the users 

in the sharing target group k  and its superior groups 

can decrypt the ciphertext 
m
C . 

If k jSC SC�  in graph G , the users in group j  

cannot decrypt the ciphertext 
m
C  with key 

j
dk  and the 

algorithm returns ⊥ ; 

If k jSC SC�  in graph G , the users in group j  can 

decrypt the ciphertext 
1 2 3
, ,

m
c c c= 〈 〉C  with key 

j
dk  as 

 

,

1 1

,

3

1 2

ˆ( , )

ˆ( , )

j k

j

j

t

j n i k

i S i k

d

n i

i S

e dk g c

m c
e g c

+ − +

∈ ≠

+ −

∈

⋅

= ⋅

∏

∏
 

where 
,

k
j k

j

t
h

γ
=  which can be obtained from the public 

matrix M  and the algorithm returns 
d

m . 

{ }( , , , , )
i

G msk param lα γ=Update : Randomly pick 

new random numbers { }|q q l R pSC SCγ
′

∈ ��  for 

group l  which needs to be updated and all its 

descendant groups { }| q lq SC SC�  in G , which 

should be kept secret by CA. Update the public 

encryption keys of group l  and all its descendant 

groups as { }q

q
ek g

γ
′

′

= . Update the element related to 

{ }q
γ

′

 in the public matrix M  and generate a new 

public matrix M ′ . Compute new private decryption 

keys for group l  and all its descendant groups as well 

as their ascendant groups { } { } { }|
j q

k q j SC SC= ∪ �  

as 

 
1

k

k

h

k n i

i

dk g ′

′ + −

∈

⎧ ⎫⎪ ⎪
=⎨ ⎬

⎪ ⎪⎩ ⎭
∏
S

 

where ( )
k

k i

i

h γ
′ ′

∈

= ∑
S

H , and generate re-encryption 

tokens for groups { }| q lq SC SC�  as 

 

q

q

q q

q

rk
α γ

α γ

′

⎧ ⎫+⎪ ⎪
=⎨ ⎬

+⎪ ⎪⎩ ⎭
. 

( , , )
m q

q C rk〈 〉ReEncrypt : Update the 
2

( )q t

q
c g g

γ

=  in 

all 
1 2 3 1

ˆ, , ,( ) , ( , )qt t t

m q n
C c c c g g g m e g g

γ

= 〈 〉 = 〈 ⋅ 〉  of group 

q  as 
( ) /( ) ( ) /( )

2 2 (( ) ) ( )
q q q q

q q q q q qt t

q q
c c g g g g

α γ α γ γ α γ α γ γ
′ ′ ′

+ + + +

′
= = =  

with re-encryption token 

q

q

q q

q

rk
α γ

α γ

′

+

=

+

 and obtain the 

updated ciphertext 

 
1

ˆ,( ) , ( , )qt t t

m q n
g g g m e g g

γ
′

′

= 〈 ⋅ 〉C . 

4.3 Dynamic Updates 

Besides user revocation, here we give some tips for 

other dynamic updates of hierarchical user structure. 

‧ Relation Insertion: If a new relation ( , )i jSC SC  such 

that 
j i

SC SC≺  needs to be added to the hierarchical 



670 Journal of Internet Technology Volume 20 (2019) No.3 

 

user structure G , for all groups { }|
k i

k SC SC� , 

their decryption keys { }kdk  and the related elements 

in the public matrix M  should be updated to include 

their new subordinate groups { }| l jl SC SC�  into 

their access privileges. 

‧ Relation Deletion: If a relation ( , )i jSC SC  such that 

j i
SC SC≺  needs to be deleted from the hierarchical 

user structure G , for all groups { }|
k i

k SC SC� , 

their decryption keys { }kdk  and elements related to 

them in the public matrix M  should be updated to 

exclude their former subordinate groups 

{ }| l jl SC SC�  from their access privileges. To 

ensure the forward security, Update  and 

ReEncrypt  algorithms for groups { }| l jl SC SC�  

should be invoked, in order to prevent groups 

{ }|
k i

k SC SC�  from accessing data of their former 

subordinate groups { }| l jl SC SC�  with their old 

keys and public parameters. 

‧ Class Insertion: The class insertion problem is 

considered to be solved by the extension scheme 

described in [41]. Or in a more general way, in the 

earlier system initialization step, n  can be set as a 

larger number to reserve enough places for newly 

added classes afterward. When a new class needs to 

be added into G , CA first generates or updates all 

keys and system parameters related to it by 

allocating a reserved index i , and then inserts the 

incoming and outgoing relations of the new class 

i
SC  by the relation insertion method above. 

‧ Class Deletion: The deletion procedure of a class 

i
SC  can be done by revoking all users in 

i
SC  via 

Update  and ReEncrypt  algorithms, or deleting 

each of the incoming and outgoing relations of 
i

SC  

by the relation deletion method above. 

5 Security Analysis 

In this section, we analyze the five functional and 

security requirements mentioned previously namely 

correctness, compactness, data confidentiality, collusion 

resistant and forward security as follows. 

Correctness: For the ciphertext of message m  of 

group k  

 
1

ˆ,( ) , ( , )kt t t

m k n
g g g m e g g

γ
= 〈 ⋅ 〉C , 

we can see that 

 

,

1 1

,

3

1 2

ˆ( , )

ˆ( , )

j k

j

j

t

j n i k

i i k

d

n i

i

e dk g c

m c
e g c

+ − +

∈ ≠

+ −

∈

⋅

= ⋅

∏

∏
S

S

 

 

/

1

,

3

1

ˆ( , )

ˆ( ,( ) )

k j

j

k

j

h t

j n i k

i S i k

t

n i k

i S

e dk g g

c
e g g g

γ

γ

+ − +

∈ ≠

+ −

∈

⋅

= ⋅

∏

∏
 

 

1

,

3

1

ˆ( , )

ˆ( , )

j

j

t

n i k

i i k

t

n i k

i

e g g

c
e g g

+ − +

∈ ≠

+ −

∈

= ⋅

∏

∏
S

S

 

 

1 1

3

1

ˆ ˆ( , ) / ( , )

ˆ( , )

j

j

t t

n i k n

i

t

n i k

i

e g g e g g

c
e g g

+ − + +

∈

+ −

∈

= ⋅

∏

∏
S

S

 

 1

1

ˆ( , )

ˆ( , )

t

n

t

n

e g g
m m

e g g
+

= ⋅ = . 

Therefore, our concrete scheme is said to be correct 

since for any message m  of group k  which satisfies 

 { }( , , ) (1 , )
i

param M G
λ

γ ← Setup , 

 { }( , , , )
j i

dk G param j γ←KeyGen , 

 { }( , , , )
k i

ek G param k γ←KeyGen , 

 ( , , , )
m k

param m k ek←EncryptC , 

there is [ ( , , , , , , ) ]
j m

Pr G M param j dk k m〈 〉 =Decrypt C  

1= . 

Compactness: All calculations in our concrete 

scheme are in the finite field 
p

�  or group G , 
T

G  of 

prime order p , where 1
2 2p
λ λ+
≤ ≤ . 

For 
1

j

j

h

j n i

i

dk g
+ −

∈

=∏
S

, since ( )
j

j i p

i

h γ

∈

= ∈∑ �

S

H  

( { }i p
γ ∈� ) and 

1

1

n i

n i
g g

α
+ −

+ −
= ∈G  (

p
α ∈� ), 

1

j

j

h

n i

i

g
+ −

∈

∈∏ G

S

, 

 
1

1
j

j

h

n i

i

g λ
+ −

∈

≤ +∏
S

. 

For 
1

ˆ,( ) , ( , )kt t t

m k n
g g g m e g g

γ
= 〈 ⋅ 〉C , since t

g ∈G  

(
p

t∈� ), 

 1
t

g λ≤ + ; 

since kg
γ
∈G  ( k pγ ∈� ) and 

k

k
g g

α

= ∈G  (
p

α ∈� ), 

( )k t

k
g g
γ

∈G  (
p

t∈� ), 

 ( ) 1k t

k
g g
γ

λ≤ + ; 

since 
1

ˆ( , )
n T

e g g ∈G , 
1

ˆ( , )t
n T

e g g ∈G  (
p

t∈� ), 



Hierarchical Access Control with Scalable Data Sharing in Cloud Storage 671 

 

 
1

ˆ( , ) 1t

n
e g g λ≤ + . 

Therefore, the sizes of 
i

sk  and 
m
C  only depend on 

the security parameter λ  input in Setup  rather than 

the number of vertices n  in G . 

Data Confidentiality: The data confidentiality of our 

proposed scheme is based on the KAC scheme [41] 

which is proved to be semantically secure under the 

bilinear Diffie-Hellman Exponent assumption (BDHE) 

and collusion-resistant in [42]. 

In our scheme, if a user in group j  wants to access 

the data of group k  ( k jSC SC� ) with his/her 

decryption key 
1

j

j

h

j n i

i

dk g
+ −

∈

=∏
S

, he/she needs to know 

1

jh

n k
g

+ −
 to compute a new secret key 

 
1 1 1

j j j

j

h h h

j n k j n k n i

i

dk g dk g g
′ + − + − + −

∈

= ⋅ = ⋅∏
S

 

 
{ }

1

j

j

h

n i

i k

g
+ −

∈ ∪

= ∏
S

 

which includes the decryption privilege of group k ’s 

data. However, since ( )
j

j i

i

h γ

∈

= ∑
S

H  and the system 

parameters { }
i

γ  are kept secret by CA, the user cannot 

calculate 
1

jh

n k
g

+ −
 by himself/herself. 

In addition, 
,

k
j k

j

t
h

γ
=  is also needed for Decrypt  

procedure while actually 
,

0j kt =  in the public matrix 

M  because k jSC SC� . 

Therefore, our concrete scheme can ensure the data 

confidentiality since any user in group j  cannot access 

the data of group k  if k jSC SC� . 

Collusion Resistant: Suppose 
j

SC  is a user group at 

a higher level and 
1 2

, , ,

m
j j j

SC SC SC�  are 
j

SC ’s 

descendant groups. If users in 
1 2

, , ,

m
j j j

SC SC SC�  want 

to collude to decrypt the data of 
j

SC , they need to 

derive 

 ,

1

j j j

j

t

j n i

i

dk g
γ

+ −

∈

=∏
S

 

by their secret keys 
1 2

, , ,

m
j j j

dk dk dk�  and the public 

matrix M . 

However, since 
1 2

, , ,

m
j j j j

SC SC SC SC�� , these 

colluded users cannot obtain each 
1

j

n i
g
γ

+ −
 by computing 

,

/

1 1
( ) ( )j j j j j jk k k k

h t h h

n i n i
g g

γ

+ − + −
=  because 

,

0
k
j j
t =  in M , 

although 
1

jk
h

n i
g

+ −
 may be obtained by users in 

k
j

SC  from 

1 1

j jk k

k

jk

h h

j n i n i

i

dk g g
+ − + −

∈

= =∏
S

 if 
k
j

SC  has no descendant 

group. 

Therefore, our concrete scheme is said to be 

collusion-resistant. 

Forward Security: For a user u  in group j  with 

secret key 
1

j

j

h

j n i

i

dk g
+ −

∈

=∏
S

, once his/her access 

privilege is revoked from 
j

SC , the system parameters 

and secret keys related to group j  and all its 

descendant groups { }| k jk SC SC�  will be updated as 

 { } { }k k
γ γ

′

→ ,  

 ( ) ( )
j j

j i j i

i i

h hγ γ
′ ′

∈ ∈

= → =∑ ∑
S S

H H ,  

 
,

,

k k
j k j k

j j

t t
h h

γ γ
′

′

′

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
= → =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
,  

 
1 1

j j

j j

h h

j n i j n i

i i

dk g dk g ′

′+ − + −

∈ ∈

= → =∏ ∏
S S

,  

and the data of these groups will be re-encrypted into 

 { }1
ˆ,( ) , ( , )kt t t

m q n
g g g m e g g

γ
′

′

= 〈 ⋅ 〉C . 

Then, the user u  cannot use his/her old secret key 

1

j

j

h

j n i

i

dk g
+ −

∈

=∏
S

 to decrypt the updated data { }
m′

C  by 

Decrypt  unless he/she knows k

jh

γ
′

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 which would 

never appear in the public matrix M . Therefore, our 

scheme can ensure the forward security. 

6 Performance Analysis 

In this section, we first compare the features of our 

scheme with others. Then, we discuss the performance 

of our scheme by analyzing and simulation. 

6.1 Comparison 

We make a comparison of our proposed scheme 

with some other hierarchical access control schemes of 

Akl and Taylor [19], Sandhu [20], Damiani et al. [21], 

Atallah et al. [22] and Tang et al. [18] in Table 2. 



672 Journal of Internet Technology Volume 20 (2019) No.3 

 

Table 2. Comparison with related schemes 

Schemes Cryptosystem 
Supported 

hierarchy 

Key number 

of each user 

Key size 

of single key 

Data 

sharing 

Key 

derivation 

Delegated 

re-encryption

Akl-Taylor [19] Symmetric DAG Single Non-constant No Yes No 

Sandhu [20] Symmetric Tree Single Constant No Yes No 

Damiani et al. [21] Symmetric Tree Multiple Constant No Yes No 

Atallah et al. [22] Symmetric DAG Single Constant No Yes No 

Tang et al. [18] Symmetric DAG Single Constant No Yes No 

Our Scheme Public-key DAG Single Constant Yes No Yes 

 

All of these other schemes are based on symmetric 

cryptosystem while our scheme is a public-key one. 

Both schemes of Sandhu [20] and Damiani et al. [21] 

only support tree as the hierarchical structure while 

others support DAG which beyond the scope of the 

tree structure. In the scheme of Damiani et al. [21], 

each user should keep several keys which may cause 

the inconvenient of key management. In Akl-Taylor 

scheme [19], the size of each key is non-constant 

which is not suitable for a large-scale hierarchy. 

The most significant advantage of our scheme is that 

we support scalable data sharing and delegated re-

encryption which is more suitable for the cloud 

environment and can reduce the computational 

overhead of cloud users. Moreover, the key derivation 

procedure is not needed in our scheme which means 

that users can decrypt the data of their subordinate 

groups directly without deriving their descendant keys. 

6.2 Computation Complexity 

Since the schemes listed above are under the 

symmetric cryptosystem, it is meaningless to compare 

them with our scheme in computation complexity. 

Therefore, we compare our scheme with the 

hierarchical access control scheme of Chen et al. [25], 

which is also based on bilinear pairings, in terms of the 

computation complexity on a user when performing 

encryption and decryption. Suppose n  is the number of 

user groups in hierarchical user structure, j  is the 

index of the group where the current user is and 
j

S  is 

the number of group j ’s descendant groups (including 

itself) ( { }|
j i j

i SC SC= �S ). The time cost of 

multiplication operation in ,G  multiplication operation 

in 
T

G , multiplication operation in 
p

� , exponentiation 

operation in ,G  exponentiation operation in ,
T

G  

inverse operation in ,
T

G  inverse operation in ,
p

�  

pairing operation and the cryptographic hash function 

are denoted by 
1

m
T , 

2
m

T , 
3

m
T , 

1
e
T , 

2
e
T , 

1
i
T , 

2
i
T , 

p
T  and 

h
T  respectively. Besides, other operations like addition 

operation in 
p

�  are omitted here. 

In the data encryption phase, the time cost of each 

encryption operation for a user in group j  in our 

scheme is 
1 2 1 2

2
m m e e p
T T T T T+ + + +  which is (1)O . In 

addition, since 
1

ˆ( , )
n

e g g  in Encrypt  algorithm can be 

pre-computed in the process of system initialization as 

a public parameter in our scheme, the time cost can be 

reduced into 
1 2 1 2

2
m m e e
T T T T+ + + . In the scheme of 

Chen et al.  [25], the time cost of each encryption 

operation for a user in group j  is 

1 2 2 3

2 ( ) ( )e e m j m j hT T T T T+ + + +S S  which is ( )
j

O S . 

That is to say, our scheme is more efficient in the data 

encryption phase. 

In the data decryption phase, the time cost of each 

decryption operation for a user in group j  in our 

scheme is 
1 2 1 1

(2 2) 2 2
j m m e i p

T T T T T⋅ − + + + +S  which 

is ( )
j

O S . In the scheme of Chen et al. [25], the time 

cost of each decryption operation for a user in group j  

is 
2 2 1 2

2 2
m e i i p
T T T T T+ + + +  which is (1)O . In the real-

world application scenarios, however, most users are in 

bottom groups with no subordinate user. For these 

users, 
j

S  is 1 so that the efficiency of our scheme is 

also acceptable in the data decryption phase. 

6.3 Implementation and Experimental 

Evaluation 

For simplicity, we can use tree structure instead of 

DAG to represent the hierarchy of user groups since it 

would not influent the performance of our scheme but 

can be more comprehensible in programming. Actually, 

the public matrix M  can take place of the hierarchical 

user structure G  in all procedures after its generation, 

since for any two groups i  and j , 
i j

SC SC�  can be 

determined by checking whether 
,

0
j i
t ≠  in M . 

We implemented the proposed scheme to evaluate 

its performance using Java programming language 

with the Java Pairing-Based Cryptography Library 

(JPBC) [43] on an Ubuntu 14.04 LTS desktop 

computer with Intel Xeon CPU E5-1620 v3 at 3.5 GHz 

and 16 GB RAM. We utilized the SHA-256 algorithm 

as the hash function ( )⋅H . 

We tested the time cost of Setup , KeyGen , 

Encrypt , Decrypt , Update  and ReEncrypt  of our 



Hierarchical Access Control with Scalable Data Sharing in Cloud Storage 673 

 

scheme shown in Figure 4. In our implementation, we 

fixed the message size as 256 bits in testing the time 

cost of each phase of our scheme since the message of 

the public-key algorithm is the secret key of the 

symmetric algorithm (e.g. AES) in hybrid encryption. 

In our evaluation, the total number of user groups 

noted as n  is vary from 10 to 100. We compared the 

average time cost of each phase in three typical 

conditions of hierarchical structure including the full 

( 1)n − -ary tree with depth of 2, the complete binary 

tree with depth of 
2

1log n⎣ ⎦ +  and the chain (totally 

ordered set) with depth of n . 

 

   

(a) Time cost of Setup  (b) Time cost of KeyGen  (c) Time cost of Encrypt  

   

(d) Time cost of Decrypt  (e) Time cost of Update  (f) Time cost of ReEncrypt  

Figure 4. Time cost of each algorithm in our concrete scheme 

In Figure 4(a) and Figure 4(b), we can see that the 

time cost of Setup  and KeyGen  increase with the 

increasing of user groups number n . However, it is 

acceptable since Setup  and KeyGen  will be executed 

only once at the beginning. In Figure 4(c), Figure 4(d), 

Figure 4(f), the average time cost of Encrypt , 

Decrypt  and ReEncrypt  are relatively stable with 

the increasing of n . In Figure 4(e), the average time 

cost of Update  when user revocation occurs increases 

rapidly if the depth of the hierarchical structure is n , 

while it increases much more slowly if the depth of the 

hierarchical structure is lower. Fortunately, the average 

time cost of Update  is much lower than that of the 

extreme case because the hierarchical user structure in 

normal scenarios is often a large-scale tree with limited 

depth. 

7 Conclusion 

In this paper, we propose a hierarchical access 

control scheme in cloud storage under the public-key 

cryptosystem, which supports scalable data sharing and 

delegated data re-encryption. Our scheme is mainly 

based on KAC, in which a user is assigned with an 

aggregate key including the decryption privileges of 

the group where the user is and all its subordinate 

groups in the hierarchical user structure. To achieve the 

scalable data sharing in our hierarchical access control 

framework, any user can encrypt data into the 

ciphertext of any group and upload the encrypted data 

to cloud storage. In addition, our scheme delegates the 

re-encryption tasks to the cloud server in order to 

reduce the computation and communication overhead 

of users, which allows the cloud server to update the 

encrypted data in its storage when user revocation 

occurs. The analyses of security and performance 

indicate that our scheme is functional, secure and 



674 Journal of Internet Technology Volume 20 (2019) No.3 

 

efficient. 

In the future, we will focus on how to achieve 

traceable anonymous data sharing and collaboration in 

hierarchical access control utilizing techniques such as 

group signature, ring signature or chameleon hashing 

and signatures [44]. 

Acknowledgments 

This work is supported by National Natural Science 

Foundation of China (No. 61572382 and No. 

61702401), Key Project of Natural Science Basic 

Research Plan in Shaanxi Province of China (No. 

2016JZ021), China 111 Project (No. B16037), 

Guangxi Cooperative Innovation Center of Cloud 

Computing and Big Data (No. YD17X07), Guangxi 

Colleges and Universities Key Laboratory of Cloud 

Computing and Complex Systems (No. YF17103), and 

the Fundamental Research Funds for the Central 

Universities (No. XJS17053 and No. JBF181501). 

References 

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, 

Cloud Computing and Emerging IT Platforms: Vision, Hype, 

and Reality for Delivering Computing as the 5th Utility, 

Future Generation Computer Systems, Vol. 25, No. 6, pp. 

599-616, June, 2009. 

[2] X. Chen, J. Li, J. Ma, Q. Tang, W. Lou, New Algorithms for 

Secure Outsourcing of Modular Exponentiations, IEEE 

Transactions on Parallel and  Distributed Systems, Vol. 25, 

No. 9, pp. 2386-2396, September, 2014. 

[3] X. Zhang, T. Jiang, K.-C. Li, A. Castiglione, X. Chen, New 

Publicly Verifiable Computation for Batch Matrix 

Multiplication, Information Sciences, December, 2017. 

[4] J. Wang, X. Chen, X. Huang, I. You, Y. Xiang, Verifiable 

Auditing for Outsourced Database in Cloud Computing, IEEE 

Transactions on Computers, Vol. 64, No. 11, pp. 3293-3303, 

November, 2015. 

[5] T. Jiang, X. Chen, J. Ma, Public Integrity Auditing for Shared 

Dynamic Cloud Data with Group User Revocation, IEEE 

Transactions on Computers, Vol. 65, No. 8, pp. 2363-2373, 

August, 2016. 

[6] J. Shen, J. Shen, X. Chen, X. Huang, W. Susilo, An Efficient 

Public Auditing Protocol with Novel Dynamic Structure for 

Cloud Data, IEEE Transactions on Information Forensics 

and Security, Vol. 12, No. 10, pp. 2402-2415, October, 2017. 

[7] Y. Ren, J. Shen, J. Wang, J. Han, S. Lee, Mutual Verifiable 

Provable Data Auditing in Public Cloud Storage, Journal of 

Internet Technology, Vol. 16, No. 2, pp. 317-323, March, 

2015. 

[8] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, W. Lou, Secure 

and Efficient Cloud Data Deduplication with Randomized 

Tag, IEEE Transactions on Information Forensics and 

Security, Vol. 12, No. 3, pp. 532-543, March, 2017. 

[9] H. Yuan, X. Chen, T. Jiang, X. Zhang, Z. Yan, Y. Xiang, 

DedupDUM: Secure and Scalable Data Deduplication with 

Dynamic User Management, Information Sciences, Vol. 456, 

pp. 159-173, August, 2018. 

[10] J. Wang, M. Miao, Y. Gao, X. Chen, Enabling Efficient 

Approximate Nearest Neighbor Search for Outsourced 

Database in Cloud Computing, Soft Computing, Vol. 20, No. 

11, pp. 4487-4495, November, 2016. 

[11] J. Wang, X. Chen, J. Li, J. Zhao, J. Shen, Towards Achieving 

Flexible and Verifiable Search for Outsourced Database in 

Cloud Computing, Future Generation Computer Systems, Vol. 

67, pp. 266-275, February, 2017. 

[12] A. Sahai, B. Waters, Fuzzy Identity-based Encryption, 

Annual International Conference on the Theory and 

Applications of Cryptographic Techniques, Aarhus, Denmark, 

2005, pp. 457-473. 

[13] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based 

Encryption for Fine-grained Access Control of Encrypted 

Data, ACM Conference on Computer and Communications 

Security, Alexandria, VA, 2006, pp. 89-98. 

[14] J. Bethencourt, A. Sahai, B. Waters, Ciphertext-Policy 

Attribute-Based Encryption, IEEE Symposium on Security 

and Privacy, Oakland, CA, 2007, pp. 321-334. 

[15] S. Yu, C. Wang, K. Ren, W. Lou, Achieving Secure, Scalable, 

and Fine-grained Data Access Control in Cloud Computing, 

IEEE International Conference on Computer Communications, 

San Diego, CA, 2010, pp. 534-542,. 

[16] J. Li, X. Huang, J. Li, X. Chen, Y. Xiang, Securely 

Outsourcing Attribute-Based Encryption with Checkability, 

IEEE Transactions on Parallel and Distributed Systems, Vol. 

25, No. 8, pp. 2201-2210, August, 2014. 

[17] Y. Zhang, X. Chen, J. Li, D. S. Wong, H. Li, I. You, Ensuring 

Attribute Privacy Protection and Fast Decryption for 

Outsourced Data Security in Mobile Cloud Computing, 

Information Sciences, Vol. 379, pp. 42-61, February, 2017. 

[18] S. Tang, X. Li, X. Huang, Y. Xiang, L. Xu, Achieving Simple, 

Secure and Efficient Hierarchical Access Control in Cloud 

Computing, IEEE Transactions on Computers, Vol. 65, No. 7, 

pp. 2325-2331, July, 2016. 

[19] S. G. Akl, P. D. Taylor, Cryptographic Solution to a Problem 

of Access Control in a Hierarchy, ACM Transactions on 

Computer Systems, Vol. 1, No. 3, pp. 239-248, August, 1983. 

[20] R. S. Sandhu, Cryptographic Implementation of a Tree 

Hierarchy for Access Control, Information Processing Letters, 

Vol. 27, No. 2, pp. 95-98, February, 1988. 

[21] E. Damiani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. 

Paraboschi, P. Samarati, Key Management for Multi-User 

Encrypted Databases, ACM Workshop on Storage Security 

and Survivability, Fairfax, VA, 2005, pp. 74-83. 

[22] M. J. Atallah, M. Blanton, N. Fazio, K. B. Frikken, Dynamic 

and Efficient Key Management for Access Hierarchies, ACM 

Transactions on Information System Security, Vol. 12, No. 3, 

pp. 18:1-18:43, January, 2009. 

[23] J. Crampton, K. M. Martin, P. R. Wild, On Key Assignment 

for Hierarchical Access Control, IEEE Computer Security 

Foundations Workshop, 2006, Venice, Italy, pp. 98-111. 

[24] Y.-R. Chen, C.-K. Chu, W.-G. Tzeng, J. Zhou, CloudHKA: A 



Hierarchical Access Control with Scalable Data Sharing in Cloud Storage 675 

 

Cryptographic Approach for Hierarchical Access Control in 

Cloud Computing, International Conference on Applied 

Cryptography and Network Security, Banff, Canada, 2013, pp. 

37-52. 

[25] Y.-R. Chen, W.-G. Tzeng, Hierarchical Key Assignment with 

Dynamic Read-Write Privilege Enforcement and Extended 

KI-Security, International Conference on Applied Cryptography 

and Network Security, Kanazawa, Japan, 2017, pp. 165-183. 

[26] A. Castiglione, A. D. Santis, B. Masucci, F. Palmieri, A. 

Castiglione, J. Li, X. Huang, Hierarchical and Shared Access 

Control, IEEE Transactions on Information Forensics and 

Security, Vol. 11, No. 4, pp. 850-865, April, 2016. 

[27] A. Castiglione, A. D. Santis, B. Masucci, F. Palmieri, A. 

Castiglione, X. Huang, Cryptographic Hierarchical Access 

Control for Dynamic Structures, IEEE Transactions on 

Information Forensics and Security, Vol. 11, No. 10, pp. 

2349-2364, October, 2016. 

[28] A. Castiglione, A. D. Santis, B. Masucci, F. Palmieri, X. 

Huang, A. Castiglione, Supporting Dynamic Updates in 

Storage Clouds with the Akl-Taylor Scheme, Information 

Sciences, Vol. 387, pp. 56-74, May, 2017. 

[29] J. Alderman, N. Farley, J. Crampton, Tree-based 

Cryptographic Access Control, European Symposium on 

Research in Computer Security, Oslo, Norway, 2017, pp. 47-

64. 

[30] Z. Zhang, X. Chen, J. Li, X. Tao, J. Ma, HVDB: A 

Hierarchical Verifiable Database Scheme with Scalable 

Updates, Journal of Ambient Intelligence and Humanized 

Computing, March, 2018. 

[31] X. Chen, J. Li, X. Huang, J. Ma, W. Lou, New Publicly 

Verifiable Databases with Efficient Updates, IEEE 

Transactions on Dependable and Secure Computing, Vol. 12, 

No. 5, pp. 546-556, September, 2015. 

[32] X. Chen, J. Li, J. Weng, J. Ma, W. Lou, Verifiable 

Computation over Large Database with Incremental Updates, 

IEEE Transactions on Computers, Vol. 65, No. 10, pp. 3184-

3195, October, 2016. 

[33] D. Catalano, D. Fiore, Vector Commitments and their 

Applications, International Conference on Practice and 

Theory in Public-Key Cryptography, Nara, Japan, 2013, pp. 

55-72. 

[34] G. Wang, Q. Liu, J. Wu, Hierarchical Attribute-Based 

Encryption for Fine-Grained Access Control in Cloud Storage 

Services, ACM Conference on Computer and Communications 

Security, Chicago, IL, 2010, pp. 735-737. 

[35] Z. Wan, J. Liu, R. H. Deng, HASBE: A Hierarchical 

Attribute-Based Solution for Flexible and Scalable Access 

Control in Cloud Computing, IEEE Transactions on 

Information Forensics and Security, Vol. 7, No. 2, pp. 743-

754, April, 2012. 

[36] Q. Huang, Y. Yang, M. Shen, Secure and Efficient Data 

Collaboration with Hierarchical Attribute-Based Encryption 

in Cloud Computing, Future Generation Computer Systems, 

Vol. 72, pp. 239-249, July, 2017. 

 

 

[37] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun, Y. Xiang, Block 

Design-Based Key Agreement for Group Data Sharing in 

Cloud Computing, IEEE Transactions on Dependable and 

Secure Computing, July, 2017. 

[38] J. Shen, T. Zhou, X. Chen, J. Li, W. Susilo, Anonymous and 

Traceable Group Data Sharing in Cloud Computing, IEEE 

Transactions on Information Forensics and Security, Vol. 13, 

No. 4, pp. 912-925, April, 2018. 

[39] J. Li, Y. Zhang, X. Chen, Y. Xiang, Secure Attribute-Based 

Data Sharing for Resource-Limited Users in Cloud 

Computing, Computers & Security, Vol. 72, pp. 1-12, January, 

2018. 

[40] Z. Zhang, X. Chen, J. Ma, J. Shen, SLDS: Secure and 

Location-Sensitive Data Sharing Scheme for Cloud-Assisted 

Cyber-Physical Systems, Future Generation Computer 

Systems, February, 2018. 

[41] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, R. H. Deng, 

Key-Aggregate Cryptosystem for Scalable Data Sharing in 

Cloud Storage, IEEE Transactions on Parallel and 

Distributed Systems, Vol. 25, No. 2, pp. 468-477, February, 

2014. 

[42] D. Boneh, C. Gentry, B. Waters, Collusion Resistant 

Broadcast Encryption with Short Ciphertexts and Private 

Keys, Annual International Cryptology Conference, Santa 

Barbara, CA, 2005, pp. 258-275. 

[43] A. D. Caro, V. Iovino, jPBC: Java Pairing Based 

Cryptography, IEEE Symposium on Computers and 

Communications, Kerkyra, Greece, 2011, pp. 850-855. 

[44] X. Chen, F. Zhang, W. Susilo, H. Tian, J. Li, K. Kim, 

Identity-Based Chameleon Hashing and Signatures without 

Key Exposure, Information Sciences, Vol. 265, pp. 198-210, 

May, 2014. 

Biographies 

Zhenyao Qiu received his B.S. 

degree from Central China Normal 

University in 2016. He is currently 

working toward his M.S. degree in 

information security at Xidian 

University, China. His research 

interests include data security and 

access control in cloud computing. 

 

Zhiwei Zhang received his B.S. 

degree in network engineering and 

M.S. degree in computer systems 

architecture from Xidian University, 

China, in 2008 and 2011, respectively. 

His research interests include data 

secure management, data storage 

security and data location verification 

in cloud computing. 

 

 

 



676 Journal of Internet Technology Volume 20 (2019) No.3 

 

Shichong Tan received his B.S. 

degree in telecommunications 

engineering, M.S. and Ph.D. degrees 

in cryptography from Xidian 

University, China, in 2002, 2005 and 

2009, respectively. Since 2005, he has 

been with Xidian University, where he 

is now an associate professor. His research interests 

include cloud computing, bitcoin and blockchain 

technologies. 

 

Jianfeng Wang received his M.S. 

degree in mathematics and Ph.D. 

degree in cryptography from Xidian 

University, China, in 2013 and 2016, 

respectively. Since 2016, he has been 

with Xidian University. His research 

interests include applied cryptography and cloud 

security.  

 

Xiaoling Tao received her B.S. and 

M.S. degrees from Guilin University 

of Electronic Technology, China, in 

2000 and 2008, respectively. Since 

2000, she has been with Guilin 

University of Electronic Technology, 

where she is now a professor. Her research interests 

include cloud computing, big data and cyber security. 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 400
        /LineArtTextResolution 1200
        /PresetName <FEFF005B9AD889E367905EA6005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


