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Abstract

This paper applies discrete sliding mode control to the
WSN based [oT, to ensure its robust stability under
different types of communication time-delay and
nonlinear characteristic. Due to the limited sampling
frequency, the system will approach a quasi-sliding
surface in finite time. Linear matrix inequality (LMI)
approach is used to prove the quadratically stability of the
sliding surface and suitable Lyapunov function is
constructed to obtain the appropriate control law. Two
situation will be investigated in this paper, the system
with signal time-delay and system with multiple time-
delays. Furthermore, nonlinear characteristic of system
has been taken into consideration. By employing non-
singular transformation and reduced order processing, the
proof of sliding surface stability and finite time
approaching is simplified. Finally, two numerical
simulations are employed to demonstrate the
effectiveness and applicability of the proposed approach.
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1 Introduction

Recently, with the maturity of communication
technology, sensor technology and other relative
technology, WSN based IoT shows huge potential in
many areas. Such as home appliance, logistics,
environment monitoring, military systems, security
tracking, smart grid and so on. Constituted by various
tiny sensors or devices, WSN based IoT has superiority
in aspects like easy to be deployed and extended, high
fault tolerant [1-4].

However, many challenges still exist. Each node in
WSN based [oT has limit power as well as that they
seldom simultaneously meet the design goal [5].
Distributed filtering problem for sensor networks may
cause the IoT unstable [6]. IoT is Constituted by
several sensors, and the link between nodes may failure
by various causes [7-8]. Some serious problems may
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even cause the whole system to crash [9-11].
Many researchers have done various encouraging
work in the field of WSN based IoT. [12-13] are

concerned with a new distributed H_ -consensus

filtering problem over a finite-horizon for a class of
sensor networks with multiple missing measurements
and a class of polynomial nonlinear stochastic systems.
[14] presents a decentralized event-triggered
implementation, over sensor/actuator networks, of
centralized nonlinear controllers. [15-16] classify the
coverage problem from different angles, describe the
evaluation metrics of coverage control algorithms,
analyze the relationship between coverage and
connectivity, compare typical simulation tools, and
discuss research challenges and existing problems in
this area. [17-18] use mobile sensor network in
enabling an information-theoretic distributed control
architecture to facilitate search and enabling a variety
of new applications that rely on position information.
[19] discusses the emerging application of device-free
localization (DFL) using wireless sensor networks,
which find people and objects in the environment in
which the network is deployed, even in buildings and
through walls. These networks are termed “RF sensor
networks” and [20] presents an overview of principles
and requirements for powering wireless sensors by
radio-frequency (RF) energy harvesting or transport.
[21] presents a novel vehicular clustering scheme
integrating hierarchical clustering on the basis of
classical routing algorithm. And [22] discusses the
general principles of swarm intelligence and of its
application to routing. In the aspect of environment
protecting, [23] is concerned with the application of
wireless sensor network (WSN) technology to long-
duration and large-scale environmental monitoring.
And [24] considers joint problems of control and
communication in wireless sensor and actuator
networks (WSANs) for building-environment control
systems. The sliding mode control has strong
robustness and its robustness will not be affected by
parametric uncertainty, various perturbations and time-
delay. It is very suitable for sensor network. The
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system under the sliding mode control needs to go
through two stages to reach the steady state. In the first
stage, the system moves from the initial state to the
sliding surface, and will reach the sliding surface in
finite time. In the second stage, The system state will
shake back and forth near the sliding surface and
finally be stable on the sliding surface. Once the
system state keep stable on the sliding surface, it will
not be affected by parameter and perturbation. In
recent years, many new methods about how to choose
sliding surface and obtain control law have been
proposed too. [25] deals with mismatched uncertainties
by designing a novel sliding surface based on the
disturbance estimation and [26] puts forward another
method which designing a continuous nonsingular
terminal sliding mode control approach. [27-28]
studies fault-tolerant control. [29-31] deals with
problems such as Markovian jump systems. Most
previous studies focused on continuous systems.
However, sensor network which is controlled by
computer is a typical discrete. So discrete-time sliding
mode control should be more appropriate. Compared
with continuous systems, sliding mode control in
discrete situation has some difference. The main cause
of the difference is finite sampling frequency. The time
that the state reach the sliding surface can hardly be the
sampling time, so it is difficult to make the state stable
on the sliding surface. Instead, the system state will
form a quasi-sliding surface around the ideal sliding
surface. In recent years, many methods to deal with
discrete sliding mode control have been proposed [32-
35]. Based on a recursive analysis, [36] investigates he
dynamical behaviors of discrete-time terminal sliding
mode control systems based on Euler’s discretization.
[37-39] puts forward many other ways to design the
sliding surface and control method.

This paper applies the discrete sliding mode control
in the WSN based [oT to make the control protocol
more suitable in practical situation. This paper mainly
researches two types of WSN based IoT with different
types of time-delay: signal time-delay and multiple
time-delay, both of the two situation are under external
nonlinear perturbation. To deal with the first situation,
An LMI approach is used to solve appropriate
parameter matrix and then demonstrating the stability
of the system. Based on the first situation, the system
with multiple time-delay uses equivalent order
reduction to reduce the difficulty in proof of the
stability. Suitable Lyapunov equation is constructed to
prove the system will reach the steady state in finite
time. The correctness of the two situation are proved
by simulation.

The remainder of this paper is organized as follows.
In section 2, the model of the systems are constructed
by graph theory and main problems are put forward. In
section 3, the proof process of signal and multiple
time-delay is given. In section 4, the simulation
numbers and result are provided to certify the property.

Finally, in section 5, we conclude the whole paper
briefly and raise some suppose of future research.

2 Problem Formulation

Concerning a type of WSN based IoT, information
flow is transmitted among all sensors directly. Let
G ={v,e} be a directed graph of order » with the set of

nodes v={1,2,---,n} , set of edges ecvxv, edge
(i,j)ee indicates that node j is able to receive
information from node i. The adjacent matrix
A=[a,]e R™ of directed graph G is defined as
follows: if information exchange exists between two
nodes i and j, then a, denotes the throughput from i to

j. At the same time, node i may also receive
information from j, yet a, is not necessarily equal to

a;. Taking into account that if the node is static, the

connection structure inside the system is not varying
with time. Then the model is given as below:

x(k +1) = Ax(k) + A,x(k — d)

+Bu(k) + g (x(k)) (0]

x(k)  =y(k)  ke[-d,0]
where x(k)eR" is system state, u(k)€ R" denotes
system control input, g(x(k)) is nonlinear

characteristic, 4, 4, , and B are constant matrices
with appropriate dimensions.

However, in practical system, WSN based [oT will
change its structure by many reasons. The link between
nodes may be changed or failure, and the movement of
nodes may beyond communication range. These
uncertain factors are reasons resulting system structure
uncertainty. Then if each node only has information
exchange with its adjacent node, the system model is
described as below:

x(k+1)=(A+A)x(k) + (4, + Ad)x(k — d)

+ Bu(k) + g(x(k)) (2)
x(k) =wk) ke[-d,0]

where x(k)e R" denotes system state, u(k)e R" is
system control input, A4 and A4, are internal

parameter perturbation arising from uncertain factors,
g(x(k)) is nonlinear characteristic, 4, 4,, and B are

constant matrices with appropriate dimensions.
If a node in system is influenced by multiple time-
delays, then the model is described as below:

x(k +1)= (A +Ad)x(k) + i(Ad +Ad)x(k—d)

+ Bu(k) + g(x(k)) (©))
x(k)y =wk)  kel[-d,0]
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where x(k)e R” denotes system state, u(k)e R" is
system control input, A4 and AA4, are internal
parameter perturbation arising from uncertain factors,
g(x(k)) is nonlinear characteristic, 4, 4,, and B are
constant matrices with appropriate dimensions, N is
the number of agents in the system.

Considering the practical situation, only the system
(2) and (3) will be investigated.

For the systems shown in (2) and (3), we will use the
following assumptions:
Assumption 1. (4, B) is fully controllable and B is a
column full rank.
Assumption 2. Time delay d, is boundary, and

Id lI<d.
ieN

Assumption 3. The perturbation parameter of the
system satisfies

[Ad Ad,]=EF(k)[H H,]

Respectively, £, H and H,, are known constant
matrix, F(k) is time-delay uncertain matrix, yet
Lebesgue-measurable, and F’ (k)F(k)<1I.

Assumption 4. Suppose g(x(k)) is the nonlinear
characteristic influenced by system state x(k), then

there 1S a makes

g(x(k))" g(x(k)) < px(k)" x(k)

The designing of sliding mode control usually
conclude two parts. One part, designing a sliding
surface and then certifying its quadratical stability. An
other part is to solve the control law which can ensure
the system state reaching the sliding surface in finite
time.

Besides, some important lemmas are presented here.
Lemma 1. Let D, E, and F(k) be real matrix of proper

dimensions, and F'(k)F(k)<I , there exists a
constant £ , which makes the following equation holds.

positive  constant  p

EF(k)H+H'F"(K)E" <¢"'EE" +eH"H

Lemma 2. Let a, b be real matrix of proper dimensions,
there exists a constant matrix X >0, which makes the
following equation hold.

ab+b"a" <aXa" +b"X7'b
. . . . S S
Lemma 3. Given a symmetric matrix S = ,
S21 S22
where S|, is rxr dimensional, the following three
conditions are equivalent:
(1) §<0;
() S, <0, S, —S58,'S,<0;
3) Szz <0, Sll - S12S;2151T2 <0;

Lemma 4. Let xeR", yeR" and matricx Q>0 .
T T T
Then, we have 2x'Q <x' Q. +y O,.

3 Main Results

3.1 WSN Based IoT with Single Time-delay
and Nonlinear Characteristic

In this section, we investigate the system with single
time-delay and nonlinear characteristic.

For this system which meets assumption 1 to 4, we
construct following sliding mode function:

S(k) = Gx(k) + o(k)
o(k +1) = Gx(k) — GAx(k)

oA 4

- GA,x(k—-d)+o(k)
o(0)=-Gx(0)

where S(k)=[S,(K),S,(K),---,S, (K)]", GeR"™

and GB is
G=B'P.
According to the discrete sliding mode theory, while
the system reach the sliding surface
S(k+1)=S(k)=0, the ideal equivalent control law is

nonsingular matrix. Then choosing

u=—(GB)'[GAAx(k)+ GAA x(k—d)+Gg]  (5)

the equivalent control law (5) is only used to support
the following proof and real control law will be given
later. Substituting (5) into (2) the ideal dynamic sliding
mode function is:

x(k +1)=[A4+ A4 — B(GB) ' GAA]x(k)
+[A, + A4, — B(GB) 'GAA,1x(k—d) (6)
+g(x(k +1)) - B(GB)" Gg(x(k))

Theorem 1. The system (2), the sliding surface is (4).
If there existing positive matrix P >0 and Q>0 and

constant &, >0 (i=1, 2, 3, 4, 5, 6) to make (7)-(9) exist,
the system (2) is quadratically stable.

1, 0 24" PE 0
* IT 0 2A4°PE
: ? <0
* * -&1 0
* % * —82[
-B"PB B'"PB
<0 t))
* &1
-P PE 0 )
<
* o —g,l

Where * is acquired based on matrix symmetry, and
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[, =4A4"PA+4gH H +3¢,H H +

+5¢,H"H-2pl -P+Q

1, =4A4"PA, +4&,H H, +4c,H H, +

+de,HIH, +2pl - Q

Choosing Lyapunov function as

k-1

V(k)y=x"Px(k)+ > x" ()Ox(oi) (10)

i=k—d

Substituting (6) into (10),

where

V(k)=V(k+1)-V (k)
= AV, (k) + AV, (k) (11
+AV, (k) + AV, (k)

AV, (k) =x" (k)(4

+AA)" P(A+ Ad)x(k)

—x"(k)(A+A4)

PB(B" PB)"' B" PAAx(k)

—x"(k)AA" PB(B" PB) "' B" (12)
P(A+ Ad)x(k)

+x" (k)AA" PB(B" PB)"'!

B" PAAx(k)

—x" (k)Px(k) + x" (k)Ox(k)

AV, (k)=2x"(k)(A+A4)" P(4,
+AA,))x(k —d)

-2x" (k)(A+ AA)" PB(B" PB)"!
B"PAA,x(k —d)

-2x" (k)AA" PB(B" PB)"'
B"PAA,x(k—d)

-2x" (k)AA" PB(B" PB)!
BTP(A, +Ad,)x(k—d)

+2x" (k)AA" PB(B" PB)"!
B"PAA,x(k—d)

13)

AV (k) = x" (k)(k = d)(4,

+AA4,) P(A, + A4,)x(k—d)
—2x" (k)(4+ A4)" PB(B" PB)™'
—x"(k —d)Ox(k —d)

+x" (k—d)AAl PB(B" PB)™
B"PAA,x(k—d)

~x"(k—d)AA" PB(B"PB)'B" P

(14

(4, +Ad4,)x(k—d)
—x"(k—d)(A4, +AA,)" PB
(B"PB)"'B"PAA,x(k—d)

AV, (k)= x" (k)(4+A4)
Pg(x(k+1))

+gT (x(k+1))P(A+ AA)x(k)
—x"(k)(A+ AA)" PB(B" PB)

B" Pg(x(k))

—-g" (x(k))PB(B"PB)™'

B"P(A+ AAd)x(k)

~x"(k)A4d" PB(B" PB)™

B" Pg(x(k +1))

—g" (x+ (k+))PB(B" PB)"'

B" PAA4x(k)

+x" (k)A4" PB(B" PB)™'

B" Pg(x(k))

+g" (x(k))PB(B" PB)™

B PAAx(k)

+x" (k—d)(A, + A4,)" Pg(x(k +1))
+g" (x(k+1)P(A, + A,)x(k—d)
—x" (k= d)(4, +A4,)" Pg(x(k))
~g" (x(k)P(4, +Ad4,)x(k—d)

—x"(k—-d)AA' PB(B" PB)
BTPg(x(k +1))

~g" (x(k+1))PB(B" PT)™
B"PAA,x(k—d)

+x" (k—d)AA4’ PB(B" PB)™
B' Pg(x(k))

+g" (x(k))PB(B" PB)"'
B"PAA4,x(k - d)

~g" (x(k +1))PB(B" PB)"'
B" Pg(x(k))

—g" (x(k))PB(B" PB)™
BTPg(x(k +1))

+g" (x(k +1))Pg(x(k +1))
+g" (x(k))PB(B"PB)"'

B' Pg(x(k))

15)

According to lemma 2, the second item and third

item in AV[(K) can be transformed to:
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—x"(k)(A4+A4)" +x" (k—d)AA4]
PB(B"PB)"' B" PAAx(k) PB(B"PB)™' B" PAA,x(k —d)
T T T -1
—x" (k)A4" PB(B" PB) Then about AV,(K), the first and second item:
B"P(A+ AAd)x(k)

x" (k) (A+ AA4)" Pg(x(k +1))

+g" (x(k +1))P(A+ Ad)x(k)
<x"(k)(A+ A4)" P(A+ Ad)x(k)
+g” (x(k +1)P(x(k +1))

<x"(k)(A+ A4)" P(A+ AAd)x(k)
+x" (k)AA" PB(B" PB)™' B" PAAx(k)
According to lemma 2, the first item in AV,(K) can
be transformed to:
2x" (k)(A+A4)"
P(A4,+AA4,)x(k—-d)
<x"(k)(A+ A4)" P(A+ AAd)x(k)
+x"(k—d)(A, +AA4,)"
P(A, +AA,))x(k—d)

The third and forth item:
—x"(k)(A+ AA)" PB(B"PB)' B”
Pg(x(k)) - g" (x(k))PB(B" PB)"
B"P(A+ A)x(k)
< —x"(k)(A+ A4)" P(4+ Ad)x(k)

T T -1 pT
—g" (x(k))PB(B" PB)" B' Pg(x(k))
And the second item can be transformed to: £ g

2x" (k)x" (4 + A4)"
PB(B"PB)™' B PA4,x(k —d)
<x"(k-d)AA4,xPB(B" PB)"
B"PAA,x(k—d)

+x" (k)(A+ AA)" P(A+ Ad)x(k)

According to lemma 4 The fifth and sixth item:
—x"(k)AA" PB(B" PB)™' B Pg(x(k +1))
—g" (x(k+1))PB(B" PB)"' B" PAAx(k)
<-x"(k)A4" PB(B"PB)"'B"
PPB(B"PB)"' B" PAAx(k)
—g" (x(k +1)g(x(k +1)

The third item can be transformed to: ) )
The seventh and eighth item:

—2Tx (k)AA PB(B PB)7 XT (k)AATPB(BTPB)—IBTPg(x(k))
B P(4, + A, )x(k—d) +g" (x(k))PB(B" PB)"' B PAAx(k)
<x"(k)AA" PB(B" PB)

<x"(k)AA" PB(B"PB)"'B"
PPB(B" PB)"' B" PAAx(k)
+g" (x(k))g(x(k))

As first to eighth items, the ninth to sixteenth item:

BT PAAx(k)+x" (k—d)(A4, + A4,)
P(A+Ad,)x(k - d)

The forth item can be transformed to:

2’§T (k)A4" PB(B' PB)” 2" (k—d)(4, + Ad,) Pg(x(k +1)
B PAA4,x(k—d) +g" (x(k +1)P(A4, + Ad,)x(k - d)
<x" (k)AA" PAA,x(k)

<—x"(k—d)(4, +Ad,)"
P(A, - Ad,)x(k - d)
+g" (x(k +1))Pg(x(k +1))

+x" (k—d)AA4, PB(B" PB)™
B"PAA,x(k—d)
And the second item and third item in AV,(K) can
be transformed to:
—x"(k—d)x" (k)(A4, + A4,)"
PB(B"PB)™' B" PA4,x(k —d)

—x"(k—d)(A, +A4,)"
PB(B" PB)"' B" Pg(x(k))
~g" (x(k))PB(B"PB)'B" P(4,

—x" (k—d)AA] PB(B" PB)"! +A‘;1d )x(k—d)

B'P(A, +AA,)x(k —d) <x (kT—d)(Ad

<x(k—d)(4, +Ad,) +A4,) P4,
+A4,)x(k ~d)

P(A, + Ad)x(k—d
(4, +Ad4,)x(k—d) +g" (x(k))PB(B" PB)"' B" Pg(x(k))
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—x" (k—d)AA4]

PB(B" PB)™' B" Pg(x(k +1))
—g" (x(k+1))PB(B" PB)™
B"PAA,x(k-d)
<—x"(k—-d)A4]
PB(B"PB)"'B"

PPB(B" PB)"' B" PA4,x(k —d)
—g" (x(k +1)g(x(k +1))

x" (k—d)AA]

PB(B"PB)™' B" Pg(x(k))

+g" (x(k))PB(B" PB)"'
B'PAA,x(k - d)
<x"(k-d)AA’ PB(B"PB)"'B"
PPB(B"PB)"' B" PAA4,x(k—d)
+g" (x(k))g(x(k))

And according to lemma 2, the seventeenth and

eighteenth item:

1:

—g"(x(k+1))PB(B" PB)

B" Pg(x(k))

~g' (x(k))PB(B" PB)"

B Pg(x(k +1))

—g" (x(k +1)) Pg(x(k +1))
<x"(k—d)A4] PB(B"PB)"'B"
PPB(B"PB)"'B" PAA,x(k —d)
~g" (x(k))PB(B" PB)"' B" Pg(x(k))

Besides, there existing ¢, (i=1, 2, 3, 4), using lemma

x" (k) (A + AA)" P(A+ Ad)x(k)
=x" (k) A" PAx(k)

+x" (k)A" PA4x(k)

+x" (k)AA" PAx(k)

+x" (k)AA" PAAx(k)
<x"(k)A"PA+¢&' A"
PEE"PA+& H'H

+AA" PAAYx(k)

X (k—d)(A+Ad,)

P(A, + Ad,))x(k —d)

=x" (k- d) A} PA,x(k — d)
+x" (k- d) A} PAA x(k — d)

+x" (k= d)A4L PA,x(k - d)

+x" (k — d)AA, PAA,x(k —d)

<x"(k-d)[AA’ PA,

+¢&' A" PEE" PA,

+&,H, H,

+AATPAA, Yx(k —d)
Substituting the result above into (11), then:
x(k)

AV (k) <[x" (k) x" (k- d)M]LC(k . d)} (16)

Where,
I[I, o
M= a7
{ 0 Il
[1,=44P" A+ ¢ ' A" PEE" PA
+d4g H"H +5AA4" PAA
+3A4"PB(B" PB) ' B" PAA
—-2pl—P+
P 0 (18)

[1,=44,P" 4, +4&,' A PEE" PA,
+4e,H H, +4AA4; PAA,
+4AA4" PB(B"PB)' B PAA4,
+2pl -0
While M <0, AV(K)<0. According to lemma 3,
M <0 equals to:

11, 0 24"PE  \J3A4" PB
0 I1, 0 0
2E"PA 0 -&l 0
3BT PA4 0 0 -B'PB
0 2B"PAA, 0 0
NOV 0 0 0
0 2A4, 0 0
0 2E"PA, ] (19)
0 J5a4" 0 0
2AA! PB 0 2A4T  2AAPE
0 0 0 0
0 0 0 0
-B"PB 0 0 0 <0
0 0 0 0
0 -p! -pP! 0
0 0 0 —&,1
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Where,

[, =44"PA+4gH" +2pl - P+Q
[, =44, PA, +4,H H, +2pl - Q

20

And, (19) can be transformed into:

I, 0
0 I,
2E" PA 0
0 0
0 0
J5a4 0
0 2A4,
| 0 2E"P4,
0 NV
0
0

Where,
s 0 0 0
"lo 2, 0 o0
0 0 EP 0
0o 0 0 EPB

According to lemma 1,

24" PE

0

0
0

0

+ Q1)

WIF'Y +Y, FW, <&'% X"+,

So, (21) can be turned into (23) and (24),

I, 0
0 I,
2E" PA 0
J5A4 0
0 2A4,
|0 2E"PA,

24" PE
0

-&1

Jsa4™ 0 0
0 2A4" 24 PE
0 0 0
<0 23)
-p! 0 0
0 -p! 0
0 0 -&,1
-B"PB B'PE
. <0 (24)
E'"PB gl

Where,
I, =4A4"PA+4eH H
+3¢,H ' H+2pl - P+Q
[, =44, PA, +4¢&,H, H,
+4e,H,H +2pl —Q

(25)

Repeating the step form (21) to (25), (23) can be
transformed into

I, 0 24"PE 0
0 1 0 24" PE
, 2 d <0 (26)
2E"PA 0 -&1
0 2E"PA, 0 —&,1
-P  PE 0 an
<
E'P -¢gl

So, the proof of Theorem 1 is complete. Next part
will give the process of constructing of the control law.
Theorem 2. For a system like (2) which meets the
assumption (1) - (5), the sliding surface is shown as (4).
The system can reach the stable state under the control
law (28) no matter the initial state.

S(k)
ok ,
PO sl

0 1S =0

ISk %0

u(k)= (28)

Where, p(k)=p, +n([S(K)l, py(k) =| RE ||| Hx(k) ||+
IRE|[||H,x(k=d)|, ~ R=(B"PB)'B'P, 1=
P -0+ Rl £l

P51 B PB|
enter the quasi-sliding surface ® within finite time,
and then keep stable in it.

O=|Sk)|I<T,

, ¢(>2 .Then the system state can

1 1 1
,O(f[HJE?TI"J-?II(1+5€2)+5||11’13?||2]+5«9||x(k)||2 (29)

r= 1
¢l B"PB| T’
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Choosing the Lyapunov function:
Vik)= %ST (k)(B"PB)'S(k) 30)
Taking (4) into AV (k) ,
Vik)= %ST(k +1)(B"PB)'S(k+1)

1 T T -1
=2 8" (B PBY 'S () 31)

=S"(k)(B" PB)"' AS(k)
+ %AST (k)(B"PB)' AS (k)
Where, AS(k)=S(k+1)-S(k). Substituting (4) and
(28) in it, then:
AS(k)= B [AA(k)+ A4, (k- d)

S(k) (32)
—Blp(k k
¢o( )I\S(k)||+g(x( )]

Taking (32) into (31)
S"(k)(B"PB)"' AS(k)
= S" (k)R[EFHx(k)
+EFH ;x(k —d)]=Cp(k) || S(k) |
+S" (k)Rg (x(k))
<|[S"IIUIRE ||| Hx(k) ||
+|[RE ||| H jx(k = d)|]]
(oo + | SR DI S(K) ]
+[SEIIRIN g
=[p, =0+ Rl g I SK) ]
VNG

(33)

%AST(k)(BTPT)I AS”
= %[Fde(k -d)

+FHx(k)]E" PB(B" PB)" B” PE[FHx(k)

+FH jx(k - d)]
;||i(%)||zp B ok Xn&?n
—E[Fde(k —d)
+FHx(k)]TETPB(p%
—%%p(k)wTPE[FHx(k)

+FH jx(k —d))]

+%[Fde(k —d)
+FHx(k)" E" PB(B" PB)"' B' Pg(x(k))
+% g" (x(k))PB(B" PB)"' B" PE[ FHx(k)

+FH ,x(k —d)] (34)
1 87(k)
2IIS(k)H

—Eg " (x(k)PBLp(k) =

———-4p(k)B" Pg[x(k))

S(k)
| S|

% " (x(k))PB(B"PB)" B Pg(x(k)

According to lemma 2,

—%[Fde(k —d)

S(k)

FHx(k)]" E" PBlp(k
+FHx(k))' ¢o( )\|S(k)||

1 S(k) T
—— 222 5(k)(B" PE[ FHx(k
2||S(k)|\p( ) [FHx(k)
+FH jx(k —d)]
< %[Fde(k —d)

+FHx(k)]" E" PB(B" PB)™' B" PE[FHx(k)
+FH x(k—d)]

; IIi(%)II il | ggg |
+%[Fde(k ~d)
+FHx(k)]" E" PB(B" PB)™' B" Pg(x(k))
+% g" (x(k))PB(B" PB)"' B" PE[FHx(k)
+FH ;x(k —d)]
< —%[Fde(k ~d)

+FHx (k)" E" PB(B" PB)™
B"PPB(B" PB)"' B" PE[ FHx(k)
+FH ,x(k—d)]

—%g%x(k))g(x(k))
187k
215@|

——g " (x(k)PBGp(k)

Gp(k)B" Pg(x(k))

S(k)
ISl
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18" (k)
208 ||

S(k)
g2
PO S

——=-0p(k)(B" PB)

_% g’ (x(k))PB(B" PB) "' B" Pg(x(k))

Then (34) can be transformed into:

%AST(k)(BTPB)“AS(k)

=[FH ,x(k—d)
+FHx(k)IE" PB(B" PB)™' B" PE[FHx(k)
+FH x(k —d)]

1 8" (k)

L S(k)
AKG]

k
BoTk 1S |

Bp(k)' §—

+—[Fde(k —-d)
2 (35
+FHx(k)]" E" PB(B" PB)™
B"PPB(B" PB)™' B" PE[ FHx(k)
+FH ,x(k —d)]
+% px" (k)x(k)
1
=p; || B"PB]| +5/02(k)i2 | B"PB|

1 1
+—¢||x(k) |} +=p; || PB|]
2 [ x(®) |l 5P | PB|

Substituting (35) and (33) into (31),

AV (k) <[p,(1-0)
+I[ Rl g [T S|
~Tn ISk |P
+p5 || B"PB |

1
+2p (08|87 PB|
Lol
2
L,
LB
2 36)
1
=SB PB IS0}
i 2 || B7PB|
1
ALl
Lol
2
1
HISWIF 118 PB]

Cn* —Tn)

So, it is easily to gain that while ||S(k)|>T,

AV (k)<0 . Therefore, the trajectory of the system
converges to quasi-sliding surface ® .
Remark 1. Based on Theorem 1 and Theorem 2, with
the effect of sliding mode control, system (2) is
quadratically stable and will reach the stable state in
finite time.

3.2 Uncertain System with Multiple Time-
delay

The structure of WSN based [oT can be unstable. In
this section, uncertain system with multiple time-delay
will be discussed, which is shown in (3). A nonsingular

0
matrix 7 can be chosen such that TB={ (anW} )

where B, is nonsingular with rank(B, )=m . By

T

. U <
previous research T:{Uz} , where U, e R™ and

T
1

U, e R”"™ are two unitary matrices resulting from
singular value decomposition of matrix B, then:

2 T
B=[U, U], Vv
(n—m)xm

where X e R™™ is a symmetric positive-definite

mxm

matrix, V' €R is a unitary matrix, by the state

transformation y =Tx, and (2) has the regular form
y(k+1)=(4+Ad)y(k)

+ﬁ:(2d +AZd)y,-(k_di)

O 37
+ [ (”g")xm }u(k) +Tg(x(k))
y(k) =D (k)
where A=TAT™, A,=TAT", AA=TAAT",
AA, =TAA,T" and ®(k)=T¥(k), in addition we
have
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y(k+1)= (A + Adin)y, (k)
+ i(Zdll + Azcm)yi1 (k—-d,))
i=1
+(An +Adi)y, (k)
+ ﬁ:(z(m +Adamn Vy,(k—d)+g,
i=1
y,(k+1) = (421 + Adn)y, (k)

N p— p—
+ Z(AdZI +AAdan)y, (k—d,)

i=1

(38)
+ (222 +Adx )y, (k=d,)

N o _ —
+ Z(Adzz +AAan)y,(k—-d,)

i=1

+ B u(k)
yl(k):q)l(k)
Y, (k) =®, (k)

where y, eR"™, y,eR", B, =XV, A_Hz
UTAU,, A,=UTAU, A4, =U'4U, A, =
UTAU,, A, =UIGD(k)HU,, A4, =U!GD(k)H,U,,
A4, =UIGD(k)H,U,, AA,,=U!GD(k)H,U,, g, =
U, g(x(k)), & =U/ g(x(k)), ©,(k)eR"™ and ®,(k)eR"
are the sub-blocks of ®(k).

It is obvious that the first equation of (38) represents
the dynamics of sliding motion (37), so the sliding
surface is designed as

S(k) = G(k) + o (k)
o(k +1) = Gx(k) — GAx(k)

39
GA,x(k—d)+o(k)
c(0) =-Gx(0)
where Gx=Cy,+y,=[CIly, CeR™ ™ and

y z{y 1 } , substituting y, =—Cy, to the first equation
bz

of (38), then the sliding motion is
yk+1)= (le + AZI])
— AnC

—AAC)y, (k)

N _ _ 40)
+ Z(Adll +AAan —bard,,,C

il
— AZduC)y,-l(k —d)+g
yi(k)=®,(k)

Letting 1:1” = A — 41C, A;l” =Adn —AAnC =
UIGD(k)H(U, -U,C), Ay, = A — AxC, Ad,, =

Adai — AdaiC = UTGD(K)H (U, -U,C).
yi(k+1)= (4, +A4,,)y (k)

+ Z(A

+ Ay )y, (k—d)+g,
(k) =D, (k)

Theorem 3. The system (2), the sliding surface is (4).
If there existing positive matrix P>0 and O >0 and

constant g, >0 (i=1, 2, 3, 4), 1 >0 to make (42), (44)
exist, the system (3) is quadratically stable.

(41)

1 0 APE 0 Mpl ]
* I, 0 BAPE 0
. el 0 0 |42
* * * ] 0
* % * k _71
P PE
<0 43)
*o—el
U'PU< I (44)

Where * is acquired based on matrix symmetry, and

1, = A" P4, +¢,H H
+&H"H-P+NQ

1, =34} P4, +3¢,H H,
+3¢,H,H, — NQ

Choosing Lyapunov function as

k-1

V(k)=x"(k)Px(k)+ x" ()Ox(i)

i=k—d
substituting (42) into (45),
AV (k) =V (k+1) =V (k)
= AV, (k) + AV, (k)
+ AV, (k) + AV, (k)
where
AV, (k) = y] (k)(4,, + A4,)
P(4,, + A4, v, (k)

AV, (k)= y) (k)(4, + Ad,,)"
P(A,, +Ad,, )y, (k—d.)
+ yn(k—d ) (A, +Ad,,,)
P(A, +AA4,)y, (k)

45)

(46)

47)

(48)
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AV, (k)=y!(k—d, )(;ldl  + M,ﬂ D' @) Substituting the result above into (46), then:
P(‘;ldn +A;1dll)yil(k_di) le(k) » (k)
T
» (k—=d,) »(k=d,)
AV,(k)=g"U,PU’ g AM(ky<| 71 M| 1)
; ~ -
+gTU2P(~A11+A~AnT)yI (l;) y.rfn(k_d,v) yN](k_dN)
+ 0 (k)(4, +A4,) PU, g (50) Wh
T ~ ~ T T cre,
+yy(k—d )4, +A4,,) PU, g . 0
+gTU2P(Adn +AA,)y,(k—d,) M{ 03 0 } (52)
4
According to lemma 2,
VI (k)(A, +AA4,) P(4,, II ;= 1A1|Pf§| )
+ A1)y, (k=d) +1¢, 4" PEE" P4,
- - pgT
+yiT1(k_di)(Ad11 +AAd11)T +le H H
~ ~ ~T ~
P(4,,+A4,)y, (k) +1A4,, PA4,,
< 3 (A4, + A4 ~P+NQ+pAl (53)
P(;ln + Mll)yl (k) I = 3Ad11P:4d11 i
- - 15T T
+yhk=d)(A,, +Ad,,)" +3&; A PEE PAy,
- - T
P(A4,, +Ad4,,)y,(k—d) +36,H,H,

+3M§11PA;10111 _NQ
"U,P(4, +AA,)y,(k
& T2 ( ! " ll)yl( 1 While M <0, AV(k)<0. According to lemma 3,
+y (k)(A4, +A4,)PU, g M <0 equals to:
< =y (k)(4,+A4,) -

UL — AL () I, 0 A" PE A4' P
_ v )
R 0 1, 0 0
+g U,PU, g -
E"4, 0 —&1 0
yik—d)(A,, +AAd,,) PU. g PAA, 0 0 P
+gTU2P(Ad” +AAdll)yil (k_di) 0 \BPA‘ZIGIU 0 0
S y:l-(k_dl)(gdll +A‘Zdll)rp(jdll 0 \/gETP‘ZdH 0 O
+ A, )y (k—d)+g'U,P'g L el 0 0 0 sy
Besides, there existing ¢, (i=1, 2), using lemma 1: 0 0 \/;] ]
yiT(k)(;ill +A/:111)T \/3 ;”P \/gA;”PE 0
P(All +AA11)y1 (k) 0 0 0
< Y (OLATPA, 0 0 0 <0
+&' A" PEE"PA,, -P" 0 0
+& H"H +AA4" PAA 1y, (k) 0 —&,1 0
0 0 A
T ~ ~ T T -
Yi (k_d[)(A +AA4 ) PUg
1 dll dll 2 Where’

+gTU2P(;1d11 +Md11)yil(k_di) . .
I1,=4,PA,+H H—-P+NQ

< yiTl(k_di)[IadllPZdll ! _ . (55)
+€f]gl;”PEETP;1d” g =34,,PA,, +38,H,H, - NQ

+e,H'H, And, (54) can be transformed into:

+M;11PMdll]yil(k _di)
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1, 0 A" PE 0
0 11, 0 0
E"A, 0 —&1 0
0 0 0 P
0 0 0 0
0 JE'PA,, 0 0
- Jpl 0 0 0
0 0 Jol
0 J34%, PE 0
0 0 0
0 0 0 + (56)
-P! 0 0
0 —-&,1 0
0 0 -2
F' 0
IT{O FT}YIT”{ }Wl<0
Where,
H 0 0 0 0 0 0
0 3, 0 0 0 0 0 57
o o o EP 0o 0 o0
10 0 0 0 EP 0 0
According to lemma 1,
WIF'Y +Y, FW, <&V Y +eW'W,
So, (54) can be turned into (58) and (59),
[ 0 APE 0 Jol ]
0 I, 0 BAPE 0
E'P4, 0 &1 0 0 |(58)
0  3EPA, 0 -1 0
| ol 0 0 0 S
-P  PE 0 59)
<
E'P —&,1
Multiply diag{l I I I A} on both side of (58), then
Lo, 0 A'PE 0 Apl |
0 11, 0 34% PE 0
E"PA, 0 1 0 0
0 J3E'PA,, 0 —&,1 0
Aol 0 0 0 -4

So, the proof of Theorem 3 is complete. Next part
will give the process of constructing of the control law.

Theorem 4. For a system like (3) which meets the
assumption (1) - (5), the sliding surface is shown as (4).
The system can reach the stable state under the control
law (39) no matter the initial state.

S(k)

—Cp(k)———, || S(k)||#0
¢p( )IIS(k)II ISk [ # 60)

0 1S [=0

u(k) =

Where, p(k)=p, +1( S, o (k)= RE||[| Foe(k) ||+
n:%(l—i)ﬂlrllllgl\
20,G+ 1 GBI )

(> 2. Then the system state can enter the quasi-sliding

NI RE||| Hpxk~d)|, R=(GB)'G,

surface ® within finite time, and then keep stable in it.
O =[Sk [|<T,

21 21 1 2
_PO[EIIGBIHZ GFIGBIN+— 2l x() (61)

I'= 1
(?LIIGB‘H)ZZU2 —-qn

Choosing the Lyapunov function:
V(k)= %Sr(k)(GB)‘1 S(k) (62)
Taking (39) into AV (k),

V(k)= %ST(k +1)(GB)'S(k+1)

1 r -1
~5 8" (XGB) ' S(k) )

=S"(GB) ' AS(k)
+ %AST (k)(GB)' AS (k)

Where, AS(k)=S(k+1)—S(k) . Substituting (39)
and (60) in it, then:

AS(k) = GAAx(k) + i GAA, x(k—d.)
= (64)

S(k)
G k
ISt B

—Gblp(k) +

Taking (64) into (63)
ST (k)(GB) "' AS (k)
=S" (k)R[EFHx(k) + NEFH ,x(k —d.)]
~Cp(k) || S(k) || +S (k)Rg (x(k))
<[[S() I RE ]| Hx (k) |I]
+N[|RE|[[| H x(k—d,)|]] (65)
—Upy +n ISR IDI S ||
+ISE IR g
=[Py (1 =0+ Rl g [T S(A) ||
Ll S|’



Discrete Sliding Mode Control for a Class of WSN Based IoT with Time-delay and Nonlinear Characteristic 503

%AST(k)(GB)‘I AS(k)

= %[NFde(k -d,)

+FHx(k)]E"G" (GB) ' GE[ FHx(k)
+NFH ,x(k —d.)]
1 8"(k)

N S(k)
2| S|

ISl

Cp(K)GB p(k)T

1
— INHFH jx(k ~d,)

S(k)

FHx(k)]" E"G"¢p(k
+FHx(k)] ¢p( )||S(k)||

_%% p(kKY{GE[FHx(k)
+NFH ,x(k —d.)]

+%[NFde(k ~d,)

+FHx(k)]" E"G" (GB) " Gg(x(k))
% ¢" (x(k)G" (GB)™ GE[ FHx(k)

+NFH x(k —d.)]
_1.8"h
2[|S(k) |l

—%gT(x(k»GTcp(k)

(k) Gg(x(k))

S(k)
NG

—%gT(x(k))GTGB‘Gg(x(k»

According to lemma 2,
- %[NFde(k —d.)+ FHx(k)]"

T T S(k)
E'G Zp(k)m
1 8" (k
2] S((k))np (e
GE[FH ,x(k —d)+ FHx(k)]"
E"G" (GB)'GE[FHx(k)
+ NFH x(k —d.)]
1 .87k
28|

IA

S(k)

st PP O s

Bop(k)———

%[NFde(k ~d)

+ FHx(K))" E"'G" (GB) ' Gg(x(k))
" % " (x(k)G" (GB)" - GE[FHx(k)
+ NFH x(k—d,)]

< - %[NFde(k -d)

+ NHx(l)]" ET'G" (GB) ' GE[ FHx(k)
+ NFH x(k —d.)]

_%gT(x(k))GT(GB)1Gg(X(k))
1 ST (k)
2||S(k)||

——g "(x(k)G"Tp(k) =< ——

L 1S
RGI

+%gf(x(k))g(x(k»

e or(8)Ge(x(k))
S(k)
NG
S"(k)
ISl

o (k) p(k)g
(66)

Then (66) can be transformed into:
1 T -1
EAS (GB) AS(k)

< %[NFde(k ~d)]

+ FHx(k)]E" G" (GB) ™' GE[ FHx(k)
+ NFH x(k —d.)]
1 87(k)
20|
i S” (k)
2SI

1 7
+2 ! (k)

S(k)
1Sl

S(k)
NG

——0p(g)GBp(k){———

o (k) p(k)g

1
=5,0§ IGB||+p* (k)T | GB |

1 2 1, 2
+E€||x(k)|\ 5P (k)¢

Substituting (67) and (65) into (63),

AV (k) <[py =0+ RIlll g [T S(K) i
YNNGl

1
+2 2 IGB 40" (R0F | G|
e xmIf + L e

2 2

1
= PGB 42 () +
1

+ AT +GBI)

+<§+ GBIV || S(h) P

~Tn’ (| S(R) |

(67)

(68

)
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So, it is easily to gain that while || S(k)||>T , 0.08* x1
AV (k) <0. Therefore, the trajectory of the system m
converges to quasi-sliding surface ® . g(x(k))=| 0.1*x2*sin(x3) |,
Remark 2. Based on Theorem 3 and Theorem 4, with
0.1* x3*cos* (x3)

the effect of sliding mode control, system (3) is
quadratically stable and will reach stable state in finite
time.

F(k) =sin(k)

The initial states are: x(0)=[-0.2-0.20.2],

4 Numerical Simulations d =1. Based on Theorem 1, we have

22.7248  6.0182 10.8938]
In this section, all the theorems above will be tested. P=| 60182 19.0537 6.2682
Consider system (2), where ’
10.8938  6.2682  29.9641 |
005 0 006 16.4676 7.0749 57473 ]
A=1001 005 0.08], O=|32684 23397 23397
0.050.23 0.0 57473 0.0627  9.4726 |
0.05- 0 0.I5 G=[0.1089 0.0627 0.2996]
4= 030 005, g =1.6358,¢, =9.3111,
0.1 017 0.1 £, =1.1291, ¢, =1.2714,
0 0.05 . _ _ -
B=| 0 |.E=|015 Then the simulation result is shown in Figure 1.
0.01 10.05 ]
0.3 [0.037
H=|015,H,=| 0 |,
0.1 | 0.1 |

= %
01 1 a1 0
00
015 4 215 1
a1

02 . . . . , P . ’ . " . . P . "
2 5 10 15 20 25 330 35 40 45 50 0 5 10 15 20 2% N B 40 4 0 1] 5 10 15 20 2 30 3 M0 5 D
tima(k) tima(k) time(k)

(a) (b) (c)

Sliding mode
=
g
5]

@
o =}
001
005
[1}
01 Rl

L L L L L . L L
0 5 M 15 22 25 3 3H 40 45 &0
time(k)

0 5‘ llU 1 ‘5 2:] wn?;‘./[k BJD ES) 4:] ﬂlﬁ 80
(d) (e)
Figure 1. States (x1, x2, x3), control input and sliding mode

In fact, it is hard to acquire ideal sliding mode. From converged within a region around the ideal sliding
the figure, we can see that the practical sliding mode is surface.
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Consider system (3), where

i 05 -023

1003 -002/
0.05 0.03

4, = ,
{o.zz 0.13}

S HES VN

0.027 0.037]
H JH, = ,
0.05 0.05

. 0.017 FOR) = sin(k
los |’ (k) =sin)
[0.08*x1/(2*x2*x2) +1)

g(x(k)){ 0.1*x2*cos(x2) }

02

015
o
005F
ok

0 5 W 15 M 25 N 3B 40 45 50
time(k)

(a)

Contral input
&
2

5 10 15 20 - 0 E-) 40 45 50
tima(k)

(©)

The initial states are: x(0)=[-0.2-0.2]",
d €[01], N=4, p=0.2. Based on Theorem 1, we
have

P=[150.0054 2.53772.5377 38.0364],

17.2764  0.5824
- [ 0.5824  1.8132 }

£ =97.0120, £, =85.0112,
£, =86.7580, A =138.0773, ¢ =1.13.

The simulation results are shown in Figure 2.

5 W0 15 20 25 30 3/ 40 45 &0
time(k)

(b)

Sliding mode

(d)

Figure 2. States (x1, x2), control input and sliding mode

From the control law, although the design method is
simplified, for systems requiring fast response, control
parameters @ should be enlarged.

5 Conclusion

In this paper, we investigate the sliding surface and
control law of WSN based [oT with different types of
time-delay and external nonlinear perturbation. LMI is
used in both of the two situation for acquiring
appropriate parameters of sliding mode controller to
ensure the system quadratic stability. By nonsingular
transformation and equivalent reduced order system,
the complexity of parameter in multiple time-delay is

reduced. It’s clear that the system is eventually
stabilized within an area called quasi-sliding surface.
However there are also some aspects needed to be
improved such as the problem of chattering, shorter
reaching time. All the problems are needed further
study.
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