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Abstract 

Materialized views selection has recently received 

increasing attention in the database community. Although 

several greedy and heuristic algorithms for materialized 

views selection have already been proposed in centralized 

environments, their quality can not be guaranteed well in 

realistic distributed environments. Motivated by the 

above, under the constraint of maintenance and 

communication costs, this paper proposes two efficient 

algorithms in SPA (Super-Peer Architecture) distributed 

networks and uses the map/reduce distributed 

computation model to quickly find the optimal 

materialized views. For the first algorithm SMVSA, we 

first heuristically constructs the initial set of materialized 

views and then adjusts the set of materialized views based 

on simulated annealing. While for the second algorithm 

SMVMST, we reduce the materialized views selection to 

the problem of producing the minimum Steiner tree and 

obtain the approximate optimal set of materialized views. 

The detailed theoretical analyses and extensive 

experiments demonstrate that our proposed algorithms 

are both efficient and effective. 

Keywords: Materialized views, Map/reduce, Distributed 

networks, Simulated annealing, Minimum 

Steiner tree 

1 Introduction 

Materialized views selection has recently received 

overwhelming attention in the database community [1]. 

Given a multi-dimensional dataset, the materialized 

views selection problem is to find an optimal set of 

materialized views under a maintenance cost constraint 

(such as maintenance time or disk space) for the 

purpose of minimizing the total query processing cost 

for a given set of queries. It is easy to see that given a 

k-dimensional dataset, it totally has 2k-1 materialized 

views. And it becomes extremely difficult to obtain the 

optimal set of materialized views as k increases [2]. 

Recently, various techniques have been proposed to 

improve the efficiency and quality of materialized 

views selection. Aouiche et al. [3] presented a 

framework for materialized views selection that 

exploits a data mining technique in order to determine 

clusters of similar queries. Gou et al. [4] considered the 

problem of materialized view selection under a disk-

space constraint and proposed an innovative 

competitive A* algorithm [5]. The authors showed that 

it is just the distinctive topological structure of the 

dependent lattice that makes the A* search a very 

competitive strategy for this problem. Kumar et al. [6] 

designed an approach for selecting materialized views 

using the genetic algorithm [7]. The proposed approach 

computed the top-k views from a multidimensional 

lattice by exploring and exploiting the search space 

containing all possible views. Vishwanath et al. [8] 

applied the advanced concepts of frequent rule mining 

[9] of the data mining approach to select and maintain 

materialized views, which can decrease the query 

response time greatly. Jogekar et al. [10] presented a 

framework for selecting best materialized views so as 

to achieve the effective combination of good query 

response time, low query processing cost and low view 

maintenance cost in a specified storage space 

constraint. The parameters in the proposed framework 

included query frequency cost, query storage cost and 

query processing cost. Yu et al. [11] proposed a novel 

approach to the materialized view selection problem 

based on an adaptive genetic algorithm. The authors 

established a cost model that integrates the query, 

maintenance and storage costs to evaluate the 

performance of approaches and measure the fitness of 

an individual in the genetic algorithm, and introduced 

the adjustable factors for crossover probability and 

mutation probability, allowing the genetic algorithm to 

run quickly and avoid premature convergence. Kumar 

and Arun [12] made an attempt to select optimal 

materialized sets of views, which can significantly 

reduce the query response time. The authors presented 

a honey bee mating optimization [13] based view 

selection algorithm (HBMOVSA) to select Top-K 

views, from amongst all possible views, in a 

multidimensional lattice. Yao et al. [14] presented an 

improved and effective algorithm for materialized view 

selection. This algorithm considered the effect on the 

overall space and cost by adding candidate 
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materialized views and reducing the views, as well as 

optimized the addition and deletion of candidate 

materialized views by selecting a lower cost for 

selecting views. 

To the best of our knowledge, the existing 

algorithms at least have two drawbacks: (i) these 

algorithms are mostly proposed in centralized 

environments, and can not efficiently extend for 

realistic distributed applications. (ii) The accuracy of 

existing algorithms can not be guaranteed well since 

they may easily be trapped in a local optimum. 

Especially when the allowed maintenance cost is 

relatively small, the accuracy of these algorithms is 

extremely low. 

In order to eliminate the above two drawbacks, in 

this paper, we focus on improving the efficiency and 

accuracy of materialized views selection under the cost 

constraint of maintenance and communication in SPA 

(Super-Peer Architecture) distributed networks [15]. 

The constraint of disk space is not taken into 

consideration in our paper since hard disks are 

relatively cheap at present and the response time is 

more important for users. Based on the map/reduce 

distributed computation model, two efficient 

algorithms are proposed to quickly find the optimal 

materialized views for a given set of queries. The first 

algorithm named SMVSA (Selecting Materialized 

Views based on Simulated Annealing) implements the 

process of materialized views selection via two phases: 

(i) heuristically constructing the initial set of 

materialized views based on the individual maximum 

benefit [16]; and (ii) adjusting the set of materialized 

views based on simulated annealing [17]. While the 

second algorithm named SMVMST (Selecting 

Materialized Views based on Minimum Steiner Tree) 

is an approximate approach which reduces the 

materialized views selection to the problem of 

producing the minimum Steiner tree [18] and gets the 

approximate optimal set of materialized views. Our 

two algorithms all have the polynomial time 

complexity. The detailed theoretical analyses and 

extensive experiments show that our proposed 

algorithms are both efficient and effective. In particular, 

our SMVMST algorithm can efficiently balance the 

time cost and accuracy, and has good extendibility. 

2 Problem Description 

Without loss of generality, we let the SPA 

distributed network H include m storage nodes Ns
(1),…, 

Ns
(m), and the query and computation node in H be Nq. 

Assume that for a given k-dimensional dataset, 2k-1 

materialized views MV={mv1,…, 
2 1

}kmv
−

 are 

distributedly stored on Ns
(1),…, Ns

(m), and the set of 

queries {q1, …, qn} are submitted on Nq. Figure 1 

shows the lattice of materialized views L4 for a 4-

dimensional dataset R(ABCD). And for a given set of 

queries Q={q1, q2, q3}, Figure 2 shows an example of 

using L4 to answer Q. In Figure 2, we can see that (i) q1 

can be answered by ABCD, ABC, BCD and BC; (ii) q2 

can be answered by ABCD, ABD, ACD, AD, A and D; 

(iii) q3 can be answered by ABCD and BCD. 

 

Figure 1. The lattice of materialized views 

 

Figure 2. An example of using L4 to answer Q 

It is not difficult to see that the set of 2k-1 

materialized views MV={mv1,…, 
2 1
kmv
−

} and the set of 

queries Q= {q1, …, qn} form a directed weighted graph 

G=(N, E, W): N=MV∪Q; E={<mv1→mv2>|mv1, 

mv2∈MV and mv2 can be updated by mv1}∪ 

{<mv→q>|mv∈MV, q∈Q and q can be answered by 

mv}; W includes the following parts: 

⎯ four weights on a vertex λ∈N: 

∋ scλ: the initial data scan cost; 

∋  qfλ: the query frequency; 

∋  ufλ: the update frequency; 

∋  cfλ: the communication frequency. 

It is easy to see that for each λ∈Q, scλ=ufλ=cfλ= 0. 

⎯ two weights on an edge <mv1→mv2>∈E (mv1, 

mv2 ∈MV): 

∋  ucost(mv1, mv2): the updating cost of mv2 using mv1; 

∋  ccost(mv1, mv2): the communication cost of mv1 

from the storage node including mv1 to the storage 

node including mv2. 

⎯ two weights on an edge <mv1→q>∈E (mv1∈MV 

and q∈Q): 
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∋  qcost(mv1, q): the query processing cost of q using 

mv1; 

∋  ccost(mv1, q): the communication cost of mv1 from 

the storage node including mv1 to the query and 

computation node including mv2. 

Based on the directed weighted graph G, for a query 

q and a selected materialized view mv, we define the 

function ψ(mv, q) as the sum of the query processing 

costs associated with edges on the shortest path from v 

to mv plus the initial data scan cost of the vertex mv, 

scmv. That is, 

 ( , ) min{ cos ( , )}
mv

mv q q t mv q scψ = +  (1) 

Note that if the view mv can not answer the query q, 

then we use the raw dataset instead of mv. In a similar 

fashion, we define two cost functions: 

(i) For two materialized view mv1 and mv2, we 

define the function φ(mv1, mv2) as the sum of the 

maintenance costs associated with the edges on the 

shortest path from mv1 to mv2. That is, 

 )},(cosmin{),( 2121 mvmvtumvmv =φ  (2) 

(ii) For two nodes α, β in N, we define the function 

ϖ(α, β) as the sum of the communication costs 

associated with the edges on the shortest path from α 

to β. That is, 

 )},(cosmin{),( βαβαϖ tc=  (3) 

Then we can define the problem of materialized 

views selection under the cost constraint of 

maintenance and communication.  

Problem definition. Given an above-mentioned 

directed weighted graph G=(N, E, W), the problem of 

materialized views selection under the cost constraint 

of maintenance and communication is to select a set of 

views Δ⊆MV that minimizes Θ(Δ, G, Q), where 

 Θ(Δ, G, Q)= ∑
∈

⋅

Qq

qqf ψ (Δ, q) (4) 

under the constraint that Ω(Δ, G)≤userCost, where 

Ω(Δ), the total maintenance and communication cost 

can be defined as 

 Ω(Δ, G)= ∑
∈

⋅

Δ

φ
mv

mv
uf (Δ, mv) ∑

∪∈

⋅+

Q

cf
Δα

α αΔϖ ),(  (5) 

Here, ψ(Δ, q) denotes the minimum cost of 

answering a query q(∈Q) in the presence of the set of 

materialized views Δ; φ(Δ, mv) is the minimum cost of 

maintaining a materialized view mv in the presence of 

the set of materialized views Δ; and ϖ(Δ, α) is the 

minimum communication cost from Nmv to Nα where 

Nmv is the distributed node including mv∈Δ and Nα is 

the distributed node including α. 

3 The Processing Framework of Our 

Solution 

For a k-dimensional dataset ℑ and a set of queries 

Q= {q1, …, qn}, obtaining the optimal set of 

materialized views MVopt⊆MV={mv1,…, 
12 −

kmv } is 

well-known NP- complete problem [19]. Hence in this 

paper, we propose two efficient algorithms SMVSA 

and SMVMST to quickly find the optimal materialized 

views. The detailed implementation of SMVSA and 

SMVMST can be seen in the next section. In this 

section, we present the processing framework that 

supports SMVSA and SMVMST based on the 

map/reduce distributed computation model. Figure 3 

shows the data and control flows for the processing 

framework of our solution.  

 

Figure 3. The data and control flow for the processing framework of our solution 
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The pseudo-code of processing framework can be 

shown in Algorithm 1. 

 

 

Algorithm 1. The processing framework 

Input: the materialized views set MV={mv1,…, 

12 −

kmv }, the set of queries Q={q1, …, qn}, 

and the costconstraint of maintenance and 

communication userCost; 

Output: the optimal set of materialized views MVopt. 

Begin 

1.   mvKY←∅; 

2.   qKY←∅;  

3.   For each materialized view mvi∈MV (1≤i≤2k-1) 

do 

4.      mvKY←mvKY∪{<‘mv’+i, mvi>}; 

5.   For each query qi∈Q (1≤i≤n) do  

6.      qKY←qKY∪{<‘q’+i, qi>}; 

7.   Partition mvKY into w parts mvKY(1),…, mvKY(w);  

   /* w is an user parameter */ 

8.   Partition qKY into w parts qKY(1),…, qKY(w); 

9.   For i=1 to w do 

10.      mvqKY(i)←mvKY(i)∪qKY(i); 

11.      {<mvx, qz>|<‘mv’+x, mvx>∈mvKY(i) and <‘q’+z,  

      qz>∈qKY(i)}←map(mvqKY(i));    

      /* qz can be answered by mvx */ 

12.   Let the partition function f equal (i mod r);   

   /* r is the number of computers used to  

  execute the reduce function */ 

13.   MVopt←∅; 

14.   For j=1 to h do  /* parallel processing */ 

15.      {<mv’x, Q’>|<‘mv’+x, mvx>∈mvKY(i) and   

      Q’={qz| <‘q’+z, qz>∈qKY(i)}}←reduce({<mv, 

      q>});  

     /* each query in Q’ can be answered by mv’x*/ 

16.      MVopt←MVopt∪{<mvx’, Q’>| Q’≠∅}; 

17.   Return MVopt. 

End 

 

In Algorithm 1 (The processing framework), under 

the map/reduce distributed computation model, we first 

create two key-value sets mvKY and qKY which are 

related with materialized views and queries 

respectively. In mvKY, each pair of key-value consists 

of a materialized view and its identifier. While in qKY, 

each pair of key-value consists of a query and its 

identifier (Lines 3-6). Then according to the number w 

of mappers in distributed networks, the algorithm 

partitions mvKY and qKY into w parts respectively: 

mvKY(1),…, mvKY(w), and qKY(1),…, qKY(w) (Lines 7-8). 

For each mvKY(i) and qKY(i) (1≤i≤w), the algorithm 

calls the map function to realize the efficient 

optimization of materialized views selection (Lines 10-

11). Note that the main task of map function is to 

implement the algorithms SMVSA or SMVMST to 

obtain the optimal materialized views from mvKY(i) for 

qKY(i) (see Section 4). Moreover, based on the partition 

function f, reducers receives the corresponding 

intermediary key-value set from mappers, and call the 

reduce function to merges the queries and produces the 

set Q’ for the same materialized view mv’ (Line 15). 

Finally, the algorithm removes those materialized 

views which are not used to answer any query, and 

returns the remaining ones to users (Lines 16-17). 

The map and reduce functions can be shown in 

Algorithm 2 and Algorithm 3.  
 

 

Algorithm 2. the map function 

Input: the key-value set mvKY={<the identifier of 

materialized view, the materialized view>}, 

the key-value set qKY={<the identifier of 

query, the query>}; 

Output: the key-value set intKY. 

Begin  

1.   intKY←∅; 

2.   Cost(mp)←userCost/w;   

   /* userCost is the cost constraint, w is the number

   of mappers */ 

3.   R←the root materialized view which can answer 

   all queries in qKY; 

4.   If Ω(R)>Cost(mp) then Return NULL;   

   /* Ω(R) is the time cost of maintenance and 

   communication of R and can be seen in  

   Formula (5) */       

5.   Else 

6.      MV(mp)←{mv|<the identifier of mv,  

      mv>∈mvKY}; 

7.      Q(mp)←{q|<the identifier of q, q>∈qKY}; 

8.      Construct the directed weighted graph  

      G=(N, E, W) based on MV(mp) and Q(mp);    

       /* see Section 2 for details */ 

9.      intKY←SMVSA(G) or intKY←SMVMST(G);

10.   Return intKY. 

End 

 

In the above algorithm (Algorithm 1), the map 

function takes the key-value set mvKY∪qKY as the 

input parameter and first obtains the root materialized 

view R (Line 3). And then the map function estimates 

whether or not the time cost Ω(R) of maintenance and 

communication of R is greater than userCost/w. If 

Ω(R)>userCost/w, then we can easily determine that 

the maintenance and communication cost of any set of 

materialized views will be greater than the value of 

userCost/w, and therefore the map function can not 

implement the optimization of materialized views 

selection and returns the value of NULL (Line 4). Else, 

the map function constructs the directed weighted 

graph G, and uses the algorithms SMVSA or 

SMVMST to realize the efficient optimization of 

materialized views selection (Lines 8-9). 

 

 



Materialized Views Selection in Distributed Networks 427 

 

Algorithm 3. the reduce function 

Input: the key-value set intKY={<the materialized 

view, the query>}; 

Output: the key-value set optKY. 

Begin 

1.   MV(re)←{mv|<mv, q>∈intKY }; 

2.   optKY←∅; 

3.   For each mv’∈MV(re) do 

4.      Q(mv’)←{q|<mv’, q>∈intKY }; 

5.      optKY←optKY∪{<mv’, Q(mv’)>} 

6.   Return optKY. 

End 

 

In Algorithm 3, the reduce function takes the key-

value set intKY as the input parameter and first gets the 

set of materialized views MV(re) including all 

materialized views from intKY (Line 1). Then the 

reduce function merges the queries and generates Q(mv’) 

for the same materialized view mv’ (Lines 3-5). 

4 Quick Selection of The Optimal 

Materialized Views 

In this section, based on the processing framework 

presented in Section 3, we give two efficient 

algorithms SMVSA and SMVMST to select the 

optimal materialized views for the given set of queries. 

4.1 The SMVSA Algorithm 

The SMVSA algorithm implements the process of 

materialized views selection through two phases: (i) 

heuristically constructing the initial set of materialized 

views based on the individual maximum benefit, and 

(ii) adjusting the set of materialized views based on 

simulated annealing.  

Algorithm 4 shows the pseudo-code of SMVSA. 

 

 

Algorithm 4. SMVSA  

Input: the directed weighted graph G=(N, E, W); 

Output: the key-value set intKY. 

Begin 

1.   Q←the set of queries from G;    

2.   MV←the set of materialized views from G; 

3.   ℘←the root materialized view in G;    

4.   intKY←∅;    

5.   useMV←{R}; 

6.   For each q∈Q do  intKY←intKY ∪{<R, q>};   

   /* the first phase: Lines 7-13*/ 

7.   For each q∈Q do   

8.      List(q)←the list of materialized views which can 

                  answer q; 

9.      Sort List(q) according toψ(mv, q) in an  

      ascending order;   

      /* ψ(mv, q) can be seen in Formula (1) */ 

10.      Visit List(q) and obtain the first materialized  

      view  mv(q) from List(q) satisfying: 

     Ω(useMV∪{ mv(q)}, G)≤Cost(mp); 

11.     useMV←useMV∪{ mv(q)};    

12.      intKY←intKY∪{<mv(q), q>}-{<℘, q>}; 

13.   If ¬∃q∈Q, <R, q>∈intKY then useMV← 

   useMV-{R}; 

   /* the second phase: Lines 14-36 */ 

14.   Let Tstart, Tmin be the initial temperature and the 

   minimum temperature respectively; 

15.   While Tstart>Tmin do 

16.      For i=1 to ρ do   

      /*ρ  is the number of inner loop iterations */ 

17.         intKY’←intKY;    

18.         G’←G;    

20.         useMV’←useMV;   

21.         Randomly choose s=⎡| intKY |/l⎤ pairs from  

         intKY and form the set S={<mvx, qx>|1≤x≤s}; 

         /* l1 is an user parameter */ 

22.         For x=1 to ⎣s/2⎦ do 

23.            If qx can be answered by mvs-x and qs-x can  

            be answered by mvx then 

24.                intKY’←intKY’∪{<mvx, qs-x>, <mvs-x, qx>}- 

               {<mvx, qx>, <mvs-x, qs-x>}; 

25.         Randomly choose r=⎡| intKY’|/l2⎤ pairs from 

         intKY’ and form the set R={<mvz, qz>|1≤z≤r}; 

         /* l2 is an user parameter */ 

26.         For z=1 to r do 

27.            mv’←the materialized view in MV-useMV  

            which has the minimum cost ψ(mv’, qz); 

28.            intKY’ ←intKY’∪{<mv’, qz>}-{<mvz, qz>};  

29.            useMV’←useMV’∪{mv’}; 

30.           If ¬∃q∈Q, < mvz, q>∈intKY then useMV’← 

           useMV’-{mvz}; 

31.         Update G’ based on the redirection between  

               materialized views and queries; 

32.         If Ω(useMV’, G’)≤Cost(mp) then 

33.            η←Θ(useMV’, G’, Q)-Θ(useMV, G, Q);  

            /*Θ(useMV, G, Q) can be seen in Formula 

           (4)*/ 

34.            If η<0 then intKY←intKY’;     

            useMV←useMV’;            

           G←G’; 
35.            Else if e startT

η−

>random (0, 1) then intKY←   

            intKY’; useMV←useMV’;  G←G’;   

36.      Tstart←Tstart×ϑ;  

      /* ϑ∈(0, 1) is an user parameter */ 

37.   Return intKY; 

End 

 

In Algorithm 4, SMVSA initially allots the root 

materialized view R to all queries in Q and constructs 

the key-value set intKY={<℘, q>| q∈Q } (Line 6). The 

first phase of optimization involves Lines 7-13. In this 

phase, for each query q, SMVSA obtains the 

materialized view mv(q) which can substitute R to 

answer q and satisfies that the query processing costs 
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from mv(q) to q is minimum and the cost constraint of 

maintenance and communication is satisfied. Note that 

if none of queries is answered by R, then we can safely 

remove it from the used set useMV of materialized 

views. The second phase of optimization involves 

Lines 14-36. The core of this phase is generating the 

new key-value set intKY’ based on the old one intKY. 

Under the constraint of maintenance and 

communication cost, SMVSA generates intKY’ 

through two ways: the inner exchange of useMV (Lines 

21-24) and the outer exchange between useMV and 

MV-useMV (Lines 25-30). Whether to replace intKY 

with intKY’ or not is determined by the metropolis rule 

(Lines 33-35). 

It is not difficult to see that the SMVSA algorithm 

has the polynomial time complexity, which is shown in 

Theorem 1. 

Theorem 1. Assume there exists a set of materialized 

views MV={mv1,…, mvδ} and a set of queries 

Q={q1,…, qμ}, then the time cost of the SMVSA 

algorithm equals: 

 ( log )O μ δ δ γ ρ μ⋅ ⋅ + ⋅ ⋅ ,  

where γ and ρ are the numbers of outer and inner loop 

iterations (Lines 15 and 16), respectively. 

Proof. The time cost of the SMVSA algorithm mainly 

includes two parts: (i) the time cost of the first phase, 

i.e., Lines 7-13, and (ii) the time cost of the second 

phase, i.e., Lines 14-36. For the first phase, in order to 

heuristically construct the initial set of materialized 

views, SMVSA needs )log( δδμ ⋅⋅O time cost. For the 

second phase, in order to adjust the set of materialized 

views, SMVSA further needs ))2/(( μμμργ ++⋅⋅O = 

)( μργ ⋅⋅O time cost. Hence, the time cost of the 

SMVSA algorithm is )log( μργδδμ ⋅⋅+⋅⋅O . 

Therefore, Theorem 1 holds. 

4.2 The SMVMST Algorithm 

Although the above algorithm SMVSA can 

efficiently implement the materialized views selection, 

it can not commendably guarantee the optimization 

accuracy of materialized views selection, which can be 

seen in Section 5 (Experimental Evaluation). Hence, in 

this subsection, we propose the SMVMST algorithm 

which can commendably guarantee the optimization 

accuracy. And from Section 5 (Experimental 

Evaluation), we can find that the SMVMST algorithm 

efficiently balance the time cost and accuracy, and has 

good extendibility. 

Algorithm 5 shows the pseudo-code of SMVMST. 

 

 

 

 

 

 

Algorithm 5. SMVMST  

Input: the directed weighted graph G=(N, E, W); 

Output: the key-value set intKY. 

Begin 

1.   G’←(N’, E’, W’) which satisfies: 

   (1) N’=N=MV∪Q; 

   (2) E’=E; 

   (3) W’(node∈N)=
⎩
⎨
⎧

∈
∈⋅
Qnodeif

MVnodeifscqf nodenode

0
;   

   (4) W’(<α→β>∈E)= 

         
⎩
⎨
⎧

∈∈⋅
∈

QandMViftqqf

MVif

βαβα

βα

α ),(cos

,0
;  

        /* the meanings of qfnode, scnode and qcost(α, β) 

            can be seen in Secction 2 */ 

2.   Produce the minimum steiner tree msTree on G’  

   using the IWD algorithm; 

   /* the IWD (Intelligent Water Drops) algorithm 

       was proposed in [18] */ 

3.   intKY←∅;   

4.   useMV←∅; 

5.   For each q in msTree do   

6.      intKY←intKY∪{<mv, q>|q is answered by mv 

      in msTree}; 

7.      useMV←useMV∪{mv}; 

8.   If Ω(useMV, G)≤Cost(mp) then Return intKY; 

9.   Else 

10.      While Ω(useMV, G)≤Cost(mp) do 

11.         mv(max)←the materialized view which has the 

         maximum cost in useMV; 

12.         Q’←{q|q is answered by mv(max) in msTree};

13.         For each q∈Q’ do 

14.            If ∃mv∈useMV, mv can answer q then  

            intKY←  intKY∪{<mv, q>}-{<mv(max), q>}; 

15.            Else 

16.               mv’←the materialized view which has the 

               minimum cost in MV-useMV and can  

               answer q; 

17.               intKY←intKY∪{<mv’, q>}-{<mv(max), q>}; 

18.               useMV←useMV∪{mv’}; 

19.         useMV←useMV-{mv(max)}; 

20.   Return intKY; 

End 

 

Since the directed weighted graph G is unsuited for 

the  minimum Steiner tree algorithms, in Algorithm 5, 

in order to correctly obtain the minimum Steiner tree 

msTree, SMVMST first constructs a new directed 

weighted graph G’ based on G (Line 1). In G’, the sets 

of vertexes and edges are the same as the ones in G, 

and their difference is the weight of graph. G’ has the 

weight values about the initial data scan cost and the 

query processing costs, ignoring the weight values 

about the maintenance and communication cost. Then 

based on G’, SMVMST utilizes the IWD (Intelligent 

Water Drops) algorithm to efficiently produce the 

minimum Steiner tree msTree (Line 2). If the 
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maintenance and communication cost of materialized 

views obtained from msTree exceeds Cost(mp), 

SMVMST adjusts the set useMV of materialized views 

and the key-value set intKY. The basic idea of 

adjustment is to exchange the materialized views to 

obatain the smaller maintenance and communication 

cost (Lines 11-19). Once the maintenance and 

communication cost is not greater than the constraint 

Cost(mp) through adjustment, SMVMST stops and 

returns the final intKY. 

SMVMST has the polynomial time complexity, 

which is shown in Theorem 2. 

Theorem 2. Assume there exists a set of materialized 

views MV={mv1,…, mvδ} and a set of queries Q= 

{q1,…, qμ}, then the time cost of the SMVMST 

algorithm equals: 

 ≈⋅⋅++⋅++++⋅
−

=
∑ ))log()()(( )1/(log

1 log
liCO ee

i

i μδμδμδμδ
δ

δ
 

 ))log()()(( 58.1log

1 log
liCO

i

i
⋅⋅++⋅++++⋅∑

=

μδμδμδμδ
δ

δ
,  

where l is the number of loop iterations (Line 10) and e 

is the base of natural logarithm. 

Proof. The time cost of SMVMST mainly includes 

three parts:  

(i) )(
log

1 log
μδ

δ

δ
⋅+⋅∑

=i

i
iCO : the time cost is need to 

construct the new directed weighted graph G’(N’, E’, 

W’) based on G(N, E, W). 

(ii) ))log()()(( )1/( μδμδμδμδ +⋅++++⋅
−ee

O : the 

time cost is need to produce the minimum Steiner tree 

msTree on G’ based on the IWD algorithm.  

(iii) )( lO ⋅⋅μδ : the time cost is need to adjust the set 

useMV of materialized views and the key-value set 

intKY.  

Therefore, Theorem 2 holds. 

Below, Theorem 3 theoretically proves that the 

lower bound of SMVMST equals (e-1)/e≈0.63. That is, 

the query processing cost produced by SMVMST is at 

most e/(e-1)≈ 1.58 of that produced by the exact 

optimal algorithm that traverses exponential 

combinations of materialized views.  

Theorem 3. Assume there exists a set of materialized 

views MV={mv1,…, mvδ} and a set of queries 

Q={q1,…, qμ} which form a directed weighted graph G. 

And we further assume the exact optimal algorithm 

selects w materialized views MV(opt)={ opt
mv

1
,…, opt

wmv }, 

and SMVMST selects r materialized views MV(our)= 

{ our
mv

1
, …, our

r
mv }. Then we can have: 

 Θ(MV(our), G, Q)/Θ(MV(opt), G, Q)≤e/(e-1)≈1.58. (6) 

Proof. Without loss of generality, we assume the order 

that the exact optimal algorithm selects w materialized 

views is opt
mv

1
,…, opt

wmv , and for each materialized 

view opt
imv (1≤i≤w), it needs the query processing cost 

optci. Meanwhile, we assume the order that our 

SMVMST algorithm selects r materialized views is 
our

mv
1

, …, our

r
mv , and for each materialized view 

our

i
mv (1≤i≤r), it needs the query processing cost ourci. 

Then we can have: Θ(MV(our), G, Q)= ∑
=

w

i ioptc
1

 and 

Θ(MV(opt), G, Q)= .

1∑
=

r

i iourc  

For each pair of materialized views 
opt
imv ∈MV(opt) 

and our

x
mv ∈MV(our), we let costix be the common part of 

our

x
mv ’s cost and opt

imv ’s cost contributing to the query 

processing. Then the following four inequalities can be 

satisfied:  

(1) ∑
=

≥
w

i xix ourcc
1

;  

(2) ∀i∈[1, w], optci≥ourc1;  

(3) ∀i∈[1, w], optci-costi1≥ourc2;  

(4) ∀i∈[1, w], optci-costi1-costi2-…-costix≥ourcx.  

Then according to the above four inequalities we can 

get the following r inequalities. 

(1) Θ(MV(opt), G, Q)≥w⋅ourc1; 

(2) Θ(MV(opt), G, Q)≥w⋅ourc2+ourc1; 

… 

r)  Θ(MV(opt), G, Q)≥w⋅ourcr+ourcr-1+… +ourc2+ourc1. 

We can easily get that Θ(MV(opt), G, Q) is not less 

than any one of w⋅ourc1, w⋅ourc2+ourc1,…, w⋅ourcr+ 

ourcr-1 +…+ourc2+ourc1, and when these r values are 

equal, Θ(MV(opt), G, Q) will achieve the least value. 

Hence we can have: 

 Θ(MV(opt), G, Q)≥ 
r

r

ourc

w

w

w ⋅⎟
⎠

⎞
⎜
⎝

⎛

−
⋅

−1

1
.  

On the other hand, when these r values are equal, 

∀x∈[1, r-1], w⋅ourcx+1-(w-1)⋅ourcx=0. That is ourci= 

w/(w-1)⋅ourcx+1. Then we can have: 

 Θ(MV(our), G, Q)=∑
−
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Hence we can have: 

 Θ(MV
(our), G, Q)/Θ(MV

(opt), G, Q)  
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Thereby when w and r approach +∞, 
r

w

w

⎟
⎠

⎞
⎜
⎝

⎛ −
−

1
1

1

 

will approach 
1−e

e

≈1.58 and we can see that Theorem 

3 holds. 
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5 Experimental Evaluation 

In this section, we experimentally evaluate the 

optimization accuracy and the time cost of our 

algorithms SMVSA and SMVMST. 

5.1 Experimental Setting 

In our experiments, the running environment is a 

three-layer SPA distributed network, which consists of 

40 PCs. Each PC has a quad-core i5-3450 CPU, 4G 

memory, 500G hard drive, and CentOS Linux 6.4 

operating system.  

The computation node contains a cluster consisting 

of 8 PCs, in which a PC is selected as the control 

computer (Master). These 8 PCs constitutes a Hadoop 

platform whose version number is 1.0.3. The 

remaining two layers include 32 distributed storage 

nodes, and each node has one PC.  

In our experiments, we produce 100 queries on the 

computation node, and 214=16384 materialized views 

on the storage nodes. Thereby, each storage node has 

512 materialized views on average. 

There are 4 algorithms compared with our 

algorithms SMVSA and SMVMST: (i) OPTIMAL, the 

algorithm traverses exponential combinations of 

materialized views to obtain the exact optimal solution; 

(ii) ARM [8], the algorithm selects materialized views 

based on the advanced concepts of frequent mining; (iii) 

AGA [11], the algorithm selects materialized views 

based on the adaptive genetic algorithm; (iv) 

HBMOVSA [12], the algorithm selects materialized 

views based on the honey bee mating optimization. In 

the experiments, we extend the above four compared 

algorithms and integrate them into the map/reduce 

distributed computation model.  

Each class of experiments is divided into three 

groups: 

(1) The number nq of queries on the computation 

node is fixed to 100; the number nmv of materialized 

views on each storage node is fixed to 512; the cost 

constraint ccont of maintenance and communication 

varies in the range [0.4Cmin, 0.8Cmin], where Cmin is the 

maintenance cost which allows all nmv materialized 

views can be selected. 

(2) The number nq of queries on the computation 

node is fixed to 100; the cost constraint ccont of 

maintenance and communication is fixed to 0.6Cmin; 

the number nmv of materialized views on each storage 

node varies in the range [16, 256]. 

(3) The number nmv of materialized views on each 

storage node is fixed to 512; the cost constraint ccont 

of maintenance and communication is fixed to 0.6Cmin; 

the number nq of queries on the computation node 

varies in the range [50, 90]. 

5.2 Optimization Accuracy Evaluation for 

The Algorithms 

In this subsection, we experimentally evaluate the 

optimization accuracy of the above six algorithms. 

Figure 4 shows the results of experiments for these 

algorithms. 

 

(a) the first group of experiments 

 

(b) the second group of experiments 

 

(c) the third group of experiments 

Figure 4. Optimization accuracy evaluation for six 

algorithms 
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In Figure 4, we take OPTIMAL as the baseline 

because the set of materialized views selected by 

OPTIMAL is exactly optimal. That is, the query 

processing cost of OPTIMAL is least among 6 

compared algorithms. And we let the optimization 

accuracy of OPTIMAL is 100%.  

From Figure 4, we can observe that the optimization 

accuracy of SMVMST approaches the one of 

OPTIMAL, and the optimization accuracies of 

SMVSA, ARM, AGA and HBMOVSA are smaller 

than the one of SMVMST. This is mainly because the 

algorithms SMVSA, ARM, AGA and HBMOVSA 

easily fall into the problem of local optimum, and can 

not select the better set of materialized views. 

Furthermore, we can see that SMVSA outperforms 

ARM, AGA and HBMOVSA in most cases. For 

instance: (i) In Figure 4(a), when the cost constraint of 

maintenance and communication equals 0.8Cmin, the 

optimization accuracies of SMVMST and SMVSA are 

equal to 95.2% and 71.5% respectively, while the 

optimization accuracies of ARM, AGA and 

HBMOVSA are equal to 53.9%, 50.8% and 56.5% 

respectively. (ii) In Figure 4(b), when the number of 

materialized views on each storage node is equal to 16, 

the optimization accuracies of SMVMST and SMVSA 

are 98.2% and 69.4% respectively, while the 

optimization accuracies of ARM, AGA and 

HBMOVSA are equal to 54.8%, 59.5% and 50.6% 

respectively. (iii) In Figure 4(c), as the number of 

queries on the computation node equals 90, the 

optimization accuracies of SMVMST and SMVSA are 

equal to 85.4% and 46.8% respectively, while the 

optimization accuracies of ARM, AGA and 

HBMOVSA are 40.5%, 43.6% and 41.7% respectively. 

5.3 Runtime Evaluation for The Algorithms 

In this subsection, we experimentally evaluate the 

runtime of six compared algorithms. Figure 5 shows 

the results of experiments for these algorithms. 

Although in Figure 4, the optimization accuracy of 

OPTIMAL is slightly higher than the one of SMVMST. 

While in Figure 5, we can observe that the runtime of 

OPTIMAL is huge in each experimental setting. The 

main reason is: (1) in order to obtain the exact optimal 

set of materialized views, OPTIMAL must traverse all 

possible combinations of materialized views, and needs 

the exponential time cost to finish the whole process of 

selection; (2) while SMVMST does not need to 

traverse all possible combinations of materialized 

views, and only has polynomial time cost to return the 

approximate optimal set of materialized views. 

Moreover, from Figure 5, we can also observe that the 

runtime of SMVMST is slight longer than the ones of 

other four algorithms SMVSA, ARM, AGA and 

HBMOVSA. For instance: (i) In Figure 5(a), as the 

cost constraint of maintenance and communication 

equals 0.4Cmin, the runtime of OPTIMAL is 41082.6 

seconds, while the runtimes of SMVMST, SMVSA,  

 

(a) The first group of experiments 

 

(b) The second group of experiments 

 

(c) The third group of experiments 

Figure 5. Runtime evaluation for six algorithms 
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ARM, AGA and HBMOVSA are 117.3 seconds, 39.2 

seconds, 32.6 seconds, 28.4 seconds and 33.5 seconds 

respectively. (ii) In Figure 5(b), as the number of 

materialized views on each storage node equals 256, 

the runtime of OPTIMAL is 31638.4 seconds, while 

the runtimes of SMVMST, SMVSA, ARM, AGA and 

HBMOVSA are 68.4 seconds, 24.2 seconds, 16.1 

seconds, 17.5 seconds and 20.5 seconds respectively. 

(iii) In Figure 5(c), when the number of queries on the 

computation node equals 90, the runtime of OPTIMAL 

is 36817.6 seconds, while the runtimes of SMVMST, 

SMVSA, ARM, AGA and HBMOVSA are 98.4 

seconds, 39.6 seconds, 31.6 seconds, 26.5 seconds and 

30.1 seconds respectively. 

Hence, from the experimental result in Figures 4 and 

Figure 5, we can draw the conclusions:  

(1) OPTIMAL has the best optimization accuracy, 

but it needs huge runtime.  

(2) SMVSA, ARM, AGA and HBMOVSA can 

quickly select the set of materialized views, but they 

cannot commendably guarantee the optimization 

accuracy.  

(3) SMVMST can efficiently balance the 

optimization accuracy and runtime, and has good 

extendibility. 

6 Conclusion and Future Work 

Materialized views selection has recently received 

increasing attention in the database community. The 

research and implementation of materialized views 

selection in SPA distributed networks under the cost 

constraint of maintenance and communication is of 

great meaning. Aiming at the problem that the existing 

algorithms of materialized views selection cannot 

efficiently guarantee the optimization accuracy, we 

propose two efficient algorithms in SPA distributed 

networks based on the map/reduce distributed 

computation model to quickly select the optimal 

materialized views. The first algorithm SMVSA first 

heuristically constructs the initial set of materialized 

views and then adjusts the set of materialized views 

based on simulated annealing. While the second 

algorithm SMVMST reduces the materialized views 

selection to the problem of producing the minimum 

Steiner tree, and obtains the approximate optimal set of 

materialized views. The detailed theoretical analyses 

and extensive experiments demonstrate that our 

proposed algorithms are both efficient and effective. 

Future work will focus on designing more exact cost 

evaluation model, improving the optimization accuracy 

of our two algorithms, and on more experimentation. 
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