
Materialized Views Selection in Distributed Networks 423

Materialized Views Selection in Distributed Networks

Zhenhua Huang1,2, Zhenqi Zhao2, Jiujun Cheng2*

1 School of Computer Science, South China Normal University, China
2 School of Electronics and Information, Tongji University, China

jukiehuang@163.com, zhenqizhao0714@gmail.com, chengjj@tongji.edu.cn

*Corresponding Author: Zhenhua Huang; E-mail: jukiehuang@163.com

DOI: 10.3966/160792642019032002011

Abstract

Materialized views selection has recently received

increasing attention in the database community. Although

several greedy and heuristic algorithms for materialized

views selection have already been proposed in centralized

environments, their quality can not be guaranteed well in

realistic distributed environments. Motivated by the

above, under the constraint of maintenance and

communication costs, this paper proposes two efficient

algorithms in SPA (Super-Peer Architecture) distributed

networks and uses the map/reduce distributed

computation model to quickly find the optimal

materialized views. For the first algorithm SMVSA, we

first heuristically constructs the initial set of materialized

views and then adjusts the set of materialized views based

on simulated annealing. While for the second algorithm

SMVMST, we reduce the materialized views selection to

the problem of producing the minimum Steiner tree and

obtain the approximate optimal set of materialized views.

The detailed theoretical analyses and extensive

experiments demonstrate that our proposed algorithms

are both efficient and effective.

Keywords: Materialized views, Map/reduce, Distributed

networks, Simulated annealing, Minimum

Steiner tree

1 Introduction

Materialized views selection has recently received

overwhelming attention in the database community [1].

Given a multi-dimensional dataset, the materialized

views selection problem is to find an optimal set of

materialized views under a maintenance cost constraint

(such as maintenance time or disk space) for the

purpose of minimizing the total query processing cost

for a given set of queries. It is easy to see that given a

k-dimensional dataset, it totally has 2k-1 materialized

views. And it becomes extremely difficult to obtain the

optimal set of materialized views as k increases [2].

Recently, various techniques have been proposed to

improve the efficiency and quality of materialized

views selection. Aouiche et al. [3] presented a

framework for materialized views selection that

exploits a data mining technique in order to determine

clusters of similar queries. Gou et al. [4] considered the

problem of materialized view selection under a disk-

space constraint and proposed an innovative

competitive A* algorithm [5]. The authors showed that

it is just the distinctive topological structure of the

dependent lattice that makes the A* search a very

competitive strategy for this problem. Kumar et al. [6]

designed an approach for selecting materialized views

using the genetic algorithm [7]. The proposed approach

computed the top-k views from a multidimensional

lattice by exploring and exploiting the search space

containing all possible views. Vishwanath et al. [8]

applied the advanced concepts of frequent rule mining

[9] of the data mining approach to select and maintain

materialized views, which can decrease the query

response time greatly. Jogekar et al. [10] presented a

framework for selecting best materialized views so as

to achieve the effective combination of good query

response time, low query processing cost and low view

maintenance cost in a specified storage space

constraint. The parameters in the proposed framework

included query frequency cost, query storage cost and

query processing cost. Yu et al. [11] proposed a novel

approach to the materialized view selection problem

based on an adaptive genetic algorithm. The authors

established a cost model that integrates the query,

maintenance and storage costs to evaluate the

performance of approaches and measure the fitness of

an individual in the genetic algorithm, and introduced

the adjustable factors for crossover probability and

mutation probability, allowing the genetic algorithm to

run quickly and avoid premature convergence. Kumar

and Arun [12] made an attempt to select optimal

materialized sets of views, which can significantly

reduce the query response time. The authors presented

a honey bee mating optimization [13] based view

selection algorithm (HBMOVSA) to select Top-K

views, from amongst all possible views, in a

multidimensional lattice. Yao et al. [14] presented an

improved and effective algorithm for materialized view

selection. This algorithm considered the effect on the

overall space and cost by adding candidate

424 Journal of Internet Technology Volume 20 (2019) No.2

materialized views and reducing the views, as well as

optimized the addition and deletion of candidate

materialized views by selecting a lower cost for

selecting views.

To the best of our knowledge, the existing

algorithms at least have two drawbacks: (i) these

algorithms are mostly proposed in centralized

environments, and can not efficiently extend for

realistic distributed applications. (ii) The accuracy of

existing algorithms can not be guaranteed well since

they may easily be trapped in a local optimum.

Especially when the allowed maintenance cost is

relatively small, the accuracy of these algorithms is

extremely low.

In order to eliminate the above two drawbacks, in

this paper, we focus on improving the efficiency and

accuracy of materialized views selection under the cost

constraint of maintenance and communication in SPA

(Super-Peer Architecture) distributed networks [15].

The constraint of disk space is not taken into

consideration in our paper since hard disks are

relatively cheap at present and the response time is

more important for users. Based on the map/reduce

distributed computation model, two efficient

algorithms are proposed to quickly find the optimal

materialized views for a given set of queries. The first

algorithm named SMVSA (Selecting Materialized

Views based on Simulated Annealing) implements the

process of materialized views selection via two phases:

(i) heuristically constructing the initial set of

materialized views based on the individual maximum

benefit [16]; and (ii) adjusting the set of materialized

views based on simulated annealing [17]. While the

second algorithm named SMVMST (Selecting

Materialized Views based on Minimum Steiner Tree)

is an approximate approach which reduces the

materialized views selection to the problem of

producing the minimum Steiner tree [18] and gets the

approximate optimal set of materialized views. Our

two algorithms all have the polynomial time

complexity. The detailed theoretical analyses and

extensive experiments show that our proposed

algorithms are both efficient and effective. In particular,

our SMVMST algorithm can efficiently balance the

time cost and accuracy, and has good extendibility.

2 Problem Description

Without loss of generality, we let the SPA

distributed network H include m storage nodes Ns
(1),…,

Ns
(m), and the query and computation node in H be Nq.

Assume that for a given k-dimensional dataset, 2k-1

materialized views MV={mv1,…,
2 1

}kmv
−

 are

distributedly stored on Ns
(1),…, Ns

(m), and the set of

queries {q1, …, qn} are submitted on Nq. Figure 1

shows the lattice of materialized views L4 for a 4-

dimensional dataset R(ABCD). And for a given set of

queries Q={q1, q2, q3}, Figure 2 shows an example of

using L4 to answer Q. In Figure 2, we can see that (i) q1

can be answered by ABCD, ABC, BCD and BC; (ii) q2

can be answered by ABCD, ABD, ACD, AD, A and D;

(iii) q3 can be answered by ABCD and BCD.

Figure 1. The lattice of materialized views

Figure 2. An example of using L4 to answer Q

It is not difficult to see that the set of 2k-1

materialized views MV={mv1,…,
2 1
kmv
−

} and the set of

queries Q= {q1, …, qn} form a directed weighted graph

G=(N, E, W): N=MV∪Q; E={<mv1→mv2>|mv1,

mv2∈MV and mv2 can be updated by mv1}∪

{<mv→q>|mv∈MV, q∈Q and q can be answered by

mv}; W includes the following parts:

⎯ four weights on a vertex λ∈N:

∋ scλ: the initial data scan cost;

∋ qfλ: the query frequency;

∋ ufλ: the update frequency;

∋ cfλ: the communication frequency.

It is easy to see that for each λ∈Q, scλ=ufλ=cfλ= 0.

⎯ two weights on an edge <mv1→mv2>∈E (mv1,

mv2 ∈MV):

∋ ucost(mv1, mv2): the updating cost of mv2 using mv1;

∋ ccost(mv1, mv2): the communication cost of mv1

from the storage node including mv1 to the storage

node including mv2.

⎯ two weights on an edge <mv1→q>∈E (mv1∈MV

and q∈Q):

Materialized Views Selection in Distributed Networks 425

∋ qcost(mv1, q): the query processing cost of q using

mv1;

∋ ccost(mv1, q): the communication cost of mv1 from

the storage node including mv1 to the query and

computation node including mv2.

Based on the directed weighted graph G, for a query

q and a selected materialized view mv, we define the

function ψ(mv, q) as the sum of the query processing

costs associated with edges on the shortest path from v

to mv plus the initial data scan cost of the vertex mv,

scmv. That is,

 (,) min{ cos (,)}
mv

mv q q t mv q scψ = + (1)

Note that if the view mv can not answer the query q,

then we use the raw dataset instead of mv. In a similar

fashion, we define two cost functions:

(i) For two materialized view mv1 and mv2, we

define the function φ(mv1, mv2) as the sum of the

maintenance costs associated with the edges on the

shortest path from mv1 to mv2. That is,

)},(cosmin{),(2121 mvmvtumvmv =φ (2)

(ii) For two nodes α, β in N, we define the function

ϖ(α, β) as the sum of the communication costs

associated with the edges on the shortest path from α

to β. That is,

)},(cosmin{),(βαβαϖ tc= (3)

Then we can define the problem of materialized

views selection under the cost constraint of

maintenance and communication.

Problem definition. Given an above-mentioned

directed weighted graph G=(N, E, W), the problem of

materialized views selection under the cost constraint

of maintenance and communication is to select a set of

views Δ⊆MV that minimizes Θ(Δ, G, Q), where

 Θ(Δ, G, Q)= ∑
∈

⋅

Qq

qqf ψ (Δ, q) (4)

under the constraint that Ω(Δ, G)≤userCost, where

Ω(Δ), the total maintenance and communication cost

can be defined as

 Ω(Δ, G)= ∑
∈

⋅

Δ

φ
mv

mv
uf (Δ, mv) ∑

∪∈

⋅+

Q

cf
Δα

α αΔϖ),((5)

Here, ψ(Δ, q) denotes the minimum cost of

answering a query q(∈Q) in the presence of the set of

materialized views Δ; φ(Δ, mv) is the minimum cost of

maintaining a materialized view mv in the presence of

the set of materialized views Δ; and ϖ(Δ, α) is the

minimum communication cost from Nmv to Nα where

Nmv is the distributed node including mv∈Δ and Nα is

the distributed node including α.

3 The Processing Framework of Our

Solution

For a k-dimensional dataset ℑ and a set of queries

Q= {q1, …, qn}, obtaining the optimal set of

materialized views MVopt⊆MV={mv1,…,
12 −

kmv } is

well-known NP- complete problem [19]. Hence in this

paper, we propose two efficient algorithms SMVSA

and SMVMST to quickly find the optimal materialized

views. The detailed implementation of SMVSA and

SMVMST can be seen in the next section. In this

section, we present the processing framework that

supports SMVSA and SMVMST based on the

map/reduce distributed computation model. Figure 3

shows the data and control flows for the processing

framework of our solution.

Figure 3. The data and control flow for the processing framework of our solution

426 Journal of Internet Technology Volume 20 (2019) No.2

The pseudo-code of processing framework can be

shown in Algorithm 1.

Algorithm 1. The processing framework

Input: the materialized views set MV={mv1,…,

12 −

kmv }, the set of queries Q={q1, …, qn},

and the costconstraint of maintenance and

communication userCost;

Output: the optimal set of materialized views MVopt.

Begin

1. mvKY←∅;

2. qKY←∅;

3. For each materialized view mvi∈MV (1≤i≤2k-1)

do

4. mvKY←mvKY∪{<‘mv’+i, mvi>};

5. For each query qi∈Q (1≤i≤n) do

6. qKY←qKY∪{<‘q’+i, qi>};

7. Partition mvKY into w parts mvKY(1),…, mvKY(w);

 /* w is an user parameter */

8. Partition qKY into w parts qKY(1),…, qKY(w);

9. For i=1 to w do

10. mvqKY(i)←mvKY(i)∪qKY(i);

11. {<mvx, qz>|<‘mv’+x, mvx>∈mvKY(i) and <‘q’+z,

 qz>∈qKY(i)}←map(mvqKY(i));

 /* qz can be answered by mvx */

12. Let the partition function f equal (i mod r);

 /* r is the number of computers used to

 execute the reduce function */

13. MVopt←∅;

14. For j=1 to h do /* parallel processing */

15. {<mv’x, Q’>|<‘mv’+x, mvx>∈mvKY(i) and

 Q’={qz| <‘q’+z, qz>∈qKY(i)}}←reduce({<mv,

 q>});

 /* each query in Q’ can be answered by mv’x*/

16. MVopt←MVopt∪{<mvx’, Q’>| Q’≠∅};

17. Return MVopt.

End

In Algorithm 1 (The processing framework), under

the map/reduce distributed computation model, we first

create two key-value sets mvKY and qKY which are

related with materialized views and queries

respectively. In mvKY, each pair of key-value consists

of a materialized view and its identifier. While in qKY,

each pair of key-value consists of a query and its

identifier (Lines 3-6). Then according to the number w

of mappers in distributed networks, the algorithm

partitions mvKY and qKY into w parts respectively:

mvKY(1),…, mvKY(w), and qKY(1),…, qKY(w) (Lines 7-8).

For each mvKY(i) and qKY(i) (1≤i≤w), the algorithm

calls the map function to realize the efficient

optimization of materialized views selection (Lines 10-

11). Note that the main task of map function is to

implement the algorithms SMVSA or SMVMST to

obtain the optimal materialized views from mvKY(i) for

qKY(i) (see Section 4). Moreover, based on the partition

function f, reducers receives the corresponding

intermediary key-value set from mappers, and call the

reduce function to merges the queries and produces the

set Q’ for the same materialized view mv’ (Line 15).

Finally, the algorithm removes those materialized

views which are not used to answer any query, and

returns the remaining ones to users (Lines 16-17).

The map and reduce functions can be shown in

Algorithm 2 and Algorithm 3.

Algorithm 2. the map function

Input: the key-value set mvKY={<the identifier of

materialized view, the materialized view>},

the key-value set qKY={<the identifier of

query, the query>};

Output: the key-value set intKY.

Begin

1. intKY←∅;

2. Cost(mp)←userCost/w;

 /* userCost is the cost constraint, w is the number

 of mappers */

3. R←the root materialized view which can answer

 all queries in qKY;

4. If Ω(R)>Cost(mp) then Return NULL;

 /* Ω(R) is the time cost of maintenance and

 communication of R and can be seen in

 Formula (5) */

5. Else

6. MV(mp)←{mv|<the identifier of mv,

 mv>∈mvKY};

7. Q(mp)←{q|<the identifier of q, q>∈qKY};

8. Construct the directed weighted graph

 G=(N, E, W) based on MV(mp) and Q(mp);

 /* see Section 2 for details */

9. intKY←SMVSA(G) or intKY←SMVMST(G);

10. Return intKY.

End

In the above algorithm (Algorithm 1), the map

function takes the key-value set mvKY∪qKY as the

input parameter and first obtains the root materialized

view R (Line 3). And then the map function estimates

whether or not the time cost Ω(R) of maintenance and

communication of R is greater than userCost/w. If

Ω(R)>userCost/w, then we can easily determine that

the maintenance and communication cost of any set of

materialized views will be greater than the value of

userCost/w, and therefore the map function can not

implement the optimization of materialized views

selection and returns the value of NULL (Line 4). Else,

the map function constructs the directed weighted

graph G, and uses the algorithms SMVSA or

SMVMST to realize the efficient optimization of

materialized views selection (Lines 8-9).

Materialized Views Selection in Distributed Networks 427

Algorithm 3. the reduce function

Input: the key-value set intKY={<the materialized

view, the query>};

Output: the key-value set optKY.

Begin

1. MV(re)←{mv|<mv, q>∈intKY };

2. optKY←∅;

3. For each mv’∈MV(re) do

4. Q(mv’)←{q|<mv’, q>∈intKY };

5. optKY←optKY∪{<mv’, Q(mv’)>}

6. Return optKY.

End

In Algorithm 3, the reduce function takes the key-

value set intKY as the input parameter and first gets the

set of materialized views MV(re) including all

materialized views from intKY (Line 1). Then the

reduce function merges the queries and generates Q(mv’)

for the same materialized view mv’ (Lines 3-5).

4 Quick Selection of The Optimal

Materialized Views

In this section, based on the processing framework

presented in Section 3, we give two efficient

algorithms SMVSA and SMVMST to select the

optimal materialized views for the given set of queries.

4.1 The SMVSA Algorithm

The SMVSA algorithm implements the process of

materialized views selection through two phases: (i)

heuristically constructing the initial set of materialized

views based on the individual maximum benefit, and

(ii) adjusting the set of materialized views based on

simulated annealing.

Algorithm 4 shows the pseudo-code of SMVSA.

Algorithm 4. SMVSA

Input: the directed weighted graph G=(N, E, W);

Output: the key-value set intKY.

Begin

1. Q←the set of queries from G;

2. MV←the set of materialized views from G;

3. ℘←the root materialized view in G;

4. intKY←∅;

5. useMV←{R};

6. For each q∈Q do intKY←intKY ∪{<R, q>};

 /* the first phase: Lines 7-13*/

7. For each q∈Q do

8. List(q)←the list of materialized views which can

 answer q;

9. Sort List(q) according toψ(mv, q) in an

 ascending order;

 /* ψ(mv, q) can be seen in Formula (1) */

10. Visit List(q) and obtain the first materialized

 view mv(q) from List(q) satisfying:

 Ω(useMV∪{ mv(q)}, G)≤Cost(mp);

11. useMV←useMV∪{ mv(q)};

12. intKY←intKY∪{<mv(q), q>}-{<℘, q>};

13. If ¬∃q∈Q, <R, q>∈intKY then useMV←

 useMV-{R};

 /* the second phase: Lines 14-36 */

14. Let Tstart, Tmin be the initial temperature and the

 minimum temperature respectively;

15. While Tstart>Tmin do

16. For i=1 to ρ do

 /*ρ is the number of inner loop iterations */

17. intKY’←intKY;

18. G’←G;

20. useMV’←useMV;

21. Randomly choose s=⎡| intKY |/l⎤ pairs from

 intKY and form the set S={<mvx, qx>|1≤x≤s};

 /* l1 is an user parameter */

22. For x=1 to ⎣s/2⎦ do

23. If qx can be answered by mvs-x and qs-x can

 be answered by mvx then

24. intKY’←intKY’∪{<mvx, qs-x>, <mvs-x, qx>}-

 {<mvx, qx>, <mvs-x, qs-x>};

25. Randomly choose r=⎡| intKY’|/l2⎤ pairs from

 intKY’ and form the set R={<mvz, qz>|1≤z≤r};

 /* l2 is an user parameter */

26. For z=1 to r do

27. mv’←the materialized view in MV-useMV

 which has the minimum cost ψ(mv’, qz);

28. intKY’ ←intKY’∪{<mv’, qz>}-{<mvz, qz>};

29. useMV’←useMV’∪{mv’};

30. If ¬∃q∈Q, < mvz, q>∈intKY then useMV’←

 useMV’-{mvz};

31. Update G’ based on the redirection between

 materialized views and queries;

32. If Ω(useMV’, G’)≤Cost(mp) then

33. η←Θ(useMV’, G’, Q)-Θ(useMV, G, Q);

 /*Θ(useMV, G, Q) can be seen in Formula

 (4)*/

34. If η<0 then intKY←intKY’;

 useMV←useMV’;

 G←G’;
35. Else if e startT

η−

>random (0, 1) then intKY←

 intKY’; useMV←useMV’; G←G’;

36. Tstart←Tstart×ϑ;

 /* ϑ∈(0, 1) is an user parameter */

37. Return intKY;

End

In Algorithm 4, SMVSA initially allots the root

materialized view R to all queries in Q and constructs

the key-value set intKY={<℘, q>| q∈Q } (Line 6). The

first phase of optimization involves Lines 7-13. In this

phase, for each query q, SMVSA obtains the

materialized view mv(q) which can substitute R to

answer q and satisfies that the query processing costs

428 Journal of Internet Technology Volume 20 (2019) No.2

from mv(q) to q is minimum and the cost constraint of

maintenance and communication is satisfied. Note that

if none of queries is answered by R, then we can safely

remove it from the used set useMV of materialized

views. The second phase of optimization involves

Lines 14-36. The core of this phase is generating the

new key-value set intKY’ based on the old one intKY.

Under the constraint of maintenance and

communication cost, SMVSA generates intKY’

through two ways: the inner exchange of useMV (Lines

21-24) and the outer exchange between useMV and

MV-useMV (Lines 25-30). Whether to replace intKY

with intKY’ or not is determined by the metropolis rule

(Lines 33-35).

It is not difficult to see that the SMVSA algorithm

has the polynomial time complexity, which is shown in

Theorem 1.

Theorem 1. Assume there exists a set of materialized

views MV={mv1,…, mvδ} and a set of queries

Q={q1,…, qμ}, then the time cost of the SMVSA

algorithm equals:

 (log)O μ δ δ γ ρ μ⋅ ⋅ + ⋅ ⋅ ,

where γ and ρ are the numbers of outer and inner loop

iterations (Lines 15 and 16), respectively.

Proof. The time cost of the SMVSA algorithm mainly

includes two parts: (i) the time cost of the first phase,

i.e., Lines 7-13, and (ii) the time cost of the second

phase, i.e., Lines 14-36. For the first phase, in order to

heuristically construct the initial set of materialized

views, SMVSA needs)log(δδμ ⋅⋅O time cost. For the

second phase, in order to adjust the set of materialized

views, SMVSA further needs))2/((μμμργ ++⋅⋅O =

)(μργ ⋅⋅O time cost. Hence, the time cost of the

SMVSA algorithm is)log(μργδδμ ⋅⋅+⋅⋅O .

Therefore, Theorem 1 holds.

4.2 The SMVMST Algorithm

Although the above algorithm SMVSA can

efficiently implement the materialized views selection,

it can not commendably guarantee the optimization

accuracy of materialized views selection, which can be

seen in Section 5 (Experimental Evaluation). Hence, in

this subsection, we propose the SMVMST algorithm

which can commendably guarantee the optimization

accuracy. And from Section 5 (Experimental

Evaluation), we can find that the SMVMST algorithm

efficiently balance the time cost and accuracy, and has

good extendibility.

Algorithm 5 shows the pseudo-code of SMVMST.

Algorithm 5. SMVMST

Input: the directed weighted graph G=(N, E, W);

Output: the key-value set intKY.

Begin

1. G’←(N’, E’, W’) which satisfies:

 (1) N’=N=MV∪Q;

 (2) E’=E;

 (3) W’(node∈N)=
⎩
⎨
⎧

∈
∈⋅
Qnodeif

MVnodeifscqf nodenode

0
;

 (4) W’(<α→β>∈E)=

⎩
⎨
⎧

∈∈⋅
∈

QandMViftqqf

MVif

βαβα

βα

α),(cos

,0
;

 /* the meanings of qfnode, scnode and qcost(α, β)

 can be seen in Secction 2 */

2. Produce the minimum steiner tree msTree on G’

 using the IWD algorithm;

 /* the IWD (Intelligent Water Drops) algorithm

 was proposed in [18] */

3. intKY←∅;

4. useMV←∅;

5. For each q in msTree do

6. intKY←intKY∪{<mv, q>|q is answered by mv

 in msTree};

7. useMV←useMV∪{mv};

8. If Ω(useMV, G)≤Cost(mp) then Return intKY;

9. Else

10. While Ω(useMV, G)≤Cost(mp) do

11. mv(max)←the materialized view which has the

 maximum cost in useMV;

12. Q’←{q|q is answered by mv(max) in msTree};

13. For each q∈Q’ do

14. If ∃mv∈useMV, mv can answer q then

 intKY← intKY∪{<mv, q>}-{<mv(max), q>};

15. Else

16. mv’←the materialized view which has the

 minimum cost in MV-useMV and can

 answer q;

17. intKY←intKY∪{<mv’, q>}-{<mv(max), q>};

18. useMV←useMV∪{mv’};

19. useMV←useMV-{mv(max)};

20. Return intKY;

End

Since the directed weighted graph G is unsuited for

the minimum Steiner tree algorithms, in Algorithm 5,

in order to correctly obtain the minimum Steiner tree

msTree, SMVMST first constructs a new directed

weighted graph G’ based on G (Line 1). In G’, the sets

of vertexes and edges are the same as the ones in G,

and their difference is the weight of graph. G’ has the

weight values about the initial data scan cost and the

query processing costs, ignoring the weight values

about the maintenance and communication cost. Then

based on G’, SMVMST utilizes the IWD (Intelligent

Water Drops) algorithm to efficiently produce the

minimum Steiner tree msTree (Line 2). If the

Materialized Views Selection in Distributed Networks 429

maintenance and communication cost of materialized

views obtained from msTree exceeds Cost(mp),

SMVMST adjusts the set useMV of materialized views

and the key-value set intKY. The basic idea of

adjustment is to exchange the materialized views to

obatain the smaller maintenance and communication

cost (Lines 11-19). Once the maintenance and

communication cost is not greater than the constraint

Cost(mp) through adjustment, SMVMST stops and

returns the final intKY.

SMVMST has the polynomial time complexity,

which is shown in Theorem 2.

Theorem 2. Assume there exists a set of materialized

views MV={mv1,…, mvδ} and a set of queries Q=

{q1,…, qμ}, then the time cost of the SMVMST

algorithm equals:

 ≈⋅⋅++⋅++++⋅
−

=
∑))log()()(()1/(log

1 log
liCO ee

i

i μδμδμδμδ
δ

δ

))log()()((58.1log

1 log
liCO

i

i
⋅⋅++⋅++++⋅∑

=

μδμδμδμδ
δ

δ
,

where l is the number of loop iterations (Line 10) and e

is the base of natural logarithm.

Proof. The time cost of SMVMST mainly includes

three parts:

(i))(
log

1 log
μδ

δ

δ
⋅+⋅∑

=i

i
iCO : the time cost is need to

construct the new directed weighted graph G’(N’, E’,

W’) based on G(N, E, W).

(ii)))log()()(()1/(μδμδμδμδ +⋅++++⋅
−ee

O : the

time cost is need to produce the minimum Steiner tree

msTree on G’ based on the IWD algorithm.

(iii))(lO ⋅⋅μδ : the time cost is need to adjust the set

useMV of materialized views and the key-value set

intKY.

Therefore, Theorem 2 holds.

Below, Theorem 3 theoretically proves that the

lower bound of SMVMST equals (e-1)/e≈0.63. That is,

the query processing cost produced by SMVMST is at

most e/(e-1)≈ 1.58 of that produced by the exact

optimal algorithm that traverses exponential

combinations of materialized views.

Theorem 3. Assume there exists a set of materialized

views MV={mv1,…, mvδ} and a set of queries

Q={q1,…, qμ} which form a directed weighted graph G.

And we further assume the exact optimal algorithm

selects w materialized views MV(opt)={ opt
mv

1
,…, opt

wmv },

and SMVMST selects r materialized views MV(our)=

{ our
mv

1
, …, our

r
mv }. Then we can have:

 Θ(MV(our), G, Q)/Θ(MV(opt), G, Q)≤e/(e-1)≈1.58. (6)

Proof. Without loss of generality, we assume the order

that the exact optimal algorithm selects w materialized

views is opt
mv

1
,…, opt

wmv , and for each materialized

view opt
imv (1≤i≤w), it needs the query processing cost

optci. Meanwhile, we assume the order that our

SMVMST algorithm selects r materialized views is
our

mv
1

, …, our

r
mv , and for each materialized view

our

i
mv (1≤i≤r), it needs the query processing cost ourci.

Then we can have: Θ(MV(our), G, Q)= ∑
=

w

i ioptc
1

 and

Θ(MV(opt), G, Q)= .

1∑
=

r

i iourc

For each pair of materialized views
opt
imv ∈MV(opt)

and our

x
mv ∈MV(our), we let costix be the common part of

our

x
mv ’s cost and opt

imv ’s cost contributing to the query

processing. Then the following four inequalities can be

satisfied:

(1) ∑
=

≥
w

i xix ourcc
1

;

(2) ∀i∈[1, w], optci≥ourc1;

(3) ∀i∈[1, w], optci-costi1≥ourc2;

(4) ∀i∈[1, w], optci-costi1-costi2-…-costix≥ourcx.

Then according to the above four inequalities we can

get the following r inequalities.

(1) Θ(MV(opt), G, Q)≥w⋅ourc1;

(2) Θ(MV(opt), G, Q)≥w⋅ourc2+ourc1;

…

r) Θ(MV(opt), G, Q)≥w⋅ourcr+ourcr-1+… +ourc2+ourc1.

We can easily get that Θ(MV(opt), G, Q) is not less

than any one of w⋅ourc1, w⋅ourc2+ourc1,…, w⋅ourcr+

ourcr-1 +…+ourc2+ourc1, and when these r values are

equal, Θ(MV(opt), G, Q) will achieve the least value.

Hence we can have:

 Θ(MV(opt), G, Q)≥
r

r

ourc

w

w

w ⋅⎟
⎠

⎞
⎜
⎝

⎛

−
⋅

−1

1
.

On the other hand, when these r values are equal,

∀x∈[1, r-1], w⋅ourcx+1-(w-1)⋅ourcx=0. That is ourci=

w/(w-1)⋅ourcx+1. Then we can have:

 Θ(MV(our), G, Q)=∑
−

=

⋅⎟
⎠

⎞
⎜
⎝

⎛

−

1

0
1

r

x
r

x

ourc

w

w

Hence we can have:

 Θ(MV
(our), G, Q)/Θ(MV

(opt), G, Q)

 ∑
−∂

=

+∂−

⎟
⎠

⎞
⎜
⎝

⎛

−∂

∂
⋅≤ 1

0

1

1

12

2

1
y

y

k

 ≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −
++

−
+⋅

−1

1
...

1
1

r

w

w

w

w

w

 ≤
r

w

w

⎟
⎠

⎞
⎜
⎝

⎛ −
−

1
1

1
.

Thereby when w and r approach +∞,
r

w

w

⎟
⎠

⎞
⎜
⎝

⎛ −
−

1
1

1

will approach
1−e

e

≈1.58 and we can see that Theorem

3 holds.

430 Journal of Internet Technology Volume 20 (2019) No.2

5 Experimental Evaluation

In this section, we experimentally evaluate the

optimization accuracy and the time cost of our

algorithms SMVSA and SMVMST.

5.1 Experimental Setting

In our experiments, the running environment is a

three-layer SPA distributed network, which consists of

40 PCs. Each PC has a quad-core i5-3450 CPU, 4G

memory, 500G hard drive, and CentOS Linux 6.4

operating system.

The computation node contains a cluster consisting

of 8 PCs, in which a PC is selected as the control

computer (Master). These 8 PCs constitutes a Hadoop

platform whose version number is 1.0.3. The

remaining two layers include 32 distributed storage

nodes, and each node has one PC.

In our experiments, we produce 100 queries on the

computation node, and 214=16384 materialized views

on the storage nodes. Thereby, each storage node has

512 materialized views on average.

There are 4 algorithms compared with our

algorithms SMVSA and SMVMST: (i) OPTIMAL, the

algorithm traverses exponential combinations of

materialized views to obtain the exact optimal solution;

(ii) ARM [8], the algorithm selects materialized views

based on the advanced concepts of frequent mining; (iii)

AGA [11], the algorithm selects materialized views

based on the adaptive genetic algorithm; (iv)

HBMOVSA [12], the algorithm selects materialized

views based on the honey bee mating optimization. In

the experiments, we extend the above four compared

algorithms and integrate them into the map/reduce

distributed computation model.

Each class of experiments is divided into three

groups:

(1) The number nq of queries on the computation

node is fixed to 100; the number nmv of materialized

views on each storage node is fixed to 512; the cost

constraint ccont of maintenance and communication

varies in the range [0.4Cmin, 0.8Cmin], where Cmin is the

maintenance cost which allows all nmv materialized

views can be selected.

(2) The number nq of queries on the computation

node is fixed to 100; the cost constraint ccont of

maintenance and communication is fixed to 0.6Cmin;

the number nmv of materialized views on each storage

node varies in the range [16, 256].

(3) The number nmv of materialized views on each

storage node is fixed to 512; the cost constraint ccont

of maintenance and communication is fixed to 0.6Cmin;

the number nq of queries on the computation node

varies in the range [50, 90].

5.2 Optimization Accuracy Evaluation for

The Algorithms

In this subsection, we experimentally evaluate the

optimization accuracy of the above six algorithms.

Figure 4 shows the results of experiments for these

algorithms.

(a) the first group of experiments

(b) the second group of experiments

(c) the third group of experiments

Figure 4. Optimization accuracy evaluation for six

algorithms

Materialized Views Selection in Distributed Networks 431

In Figure 4, we take OPTIMAL as the baseline

because the set of materialized views selected by

OPTIMAL is exactly optimal. That is, the query

processing cost of OPTIMAL is least among 6

compared algorithms. And we let the optimization

accuracy of OPTIMAL is 100%.

From Figure 4, we can observe that the optimization

accuracy of SMVMST approaches the one of

OPTIMAL, and the optimization accuracies of

SMVSA, ARM, AGA and HBMOVSA are smaller

than the one of SMVMST. This is mainly because the

algorithms SMVSA, ARM, AGA and HBMOVSA

easily fall into the problem of local optimum, and can

not select the better set of materialized views.

Furthermore, we can see that SMVSA outperforms

ARM, AGA and HBMOVSA in most cases. For

instance: (i) In Figure 4(a), when the cost constraint of

maintenance and communication equals 0.8Cmin, the

optimization accuracies of SMVMST and SMVSA are

equal to 95.2% and 71.5% respectively, while the

optimization accuracies of ARM, AGA and

HBMOVSA are equal to 53.9%, 50.8% and 56.5%

respectively. (ii) In Figure 4(b), when the number of

materialized views on each storage node is equal to 16,

the optimization accuracies of SMVMST and SMVSA

are 98.2% and 69.4% respectively, while the

optimization accuracies of ARM, AGA and

HBMOVSA are equal to 54.8%, 59.5% and 50.6%

respectively. (iii) In Figure 4(c), as the number of

queries on the computation node equals 90, the

optimization accuracies of SMVMST and SMVSA are

equal to 85.4% and 46.8% respectively, while the

optimization accuracies of ARM, AGA and

HBMOVSA are 40.5%, 43.6% and 41.7% respectively.

5.3 Runtime Evaluation for The Algorithms

In this subsection, we experimentally evaluate the

runtime of six compared algorithms. Figure 5 shows

the results of experiments for these algorithms.

Although in Figure 4, the optimization accuracy of

OPTIMAL is slightly higher than the one of SMVMST.

While in Figure 5, we can observe that the runtime of

OPTIMAL is huge in each experimental setting. The

main reason is: (1) in order to obtain the exact optimal

set of materialized views, OPTIMAL must traverse all

possible combinations of materialized views, and needs

the exponential time cost to finish the whole process of

selection; (2) while SMVMST does not need to

traverse all possible combinations of materialized

views, and only has polynomial time cost to return the

approximate optimal set of materialized views.

Moreover, from Figure 5, we can also observe that the

runtime of SMVMST is slight longer than the ones of

other four algorithms SMVSA, ARM, AGA and

HBMOVSA. For instance: (i) In Figure 5(a), as the

cost constraint of maintenance and communication

equals 0.4Cmin, the runtime of OPTIMAL is 41082.6

seconds, while the runtimes of SMVMST, SMVSA,

(a) The first group of experiments

(b) The second group of experiments

(c) The third group of experiments

Figure 5. Runtime evaluation for six algorithms

432 Journal of Internet Technology Volume 20 (2019) No.2

ARM, AGA and HBMOVSA are 117.3 seconds, 39.2

seconds, 32.6 seconds, 28.4 seconds and 33.5 seconds

respectively. (ii) In Figure 5(b), as the number of

materialized views on each storage node equals 256,

the runtime of OPTIMAL is 31638.4 seconds, while

the runtimes of SMVMST, SMVSA, ARM, AGA and

HBMOVSA are 68.4 seconds, 24.2 seconds, 16.1

seconds, 17.5 seconds and 20.5 seconds respectively.

(iii) In Figure 5(c), when the number of queries on the

computation node equals 90, the runtime of OPTIMAL

is 36817.6 seconds, while the runtimes of SMVMST,

SMVSA, ARM, AGA and HBMOVSA are 98.4

seconds, 39.6 seconds, 31.6 seconds, 26.5 seconds and

30.1 seconds respectively.

Hence, from the experimental result in Figures 4 and

Figure 5, we can draw the conclusions:

(1) OPTIMAL has the best optimization accuracy,

but it needs huge runtime.

(2) SMVSA, ARM, AGA and HBMOVSA can

quickly select the set of materialized views, but they

cannot commendably guarantee the optimization

accuracy.

(3) SMVMST can efficiently balance the

optimization accuracy and runtime, and has good

extendibility.

6 Conclusion and Future Work

Materialized views selection has recently received

increasing attention in the database community. The

research and implementation of materialized views

selection in SPA distributed networks under the cost

constraint of maintenance and communication is of

great meaning. Aiming at the problem that the existing

algorithms of materialized views selection cannot

efficiently guarantee the optimization accuracy, we

propose two efficient algorithms in SPA distributed

networks based on the map/reduce distributed

computation model to quickly select the optimal

materialized views. The first algorithm SMVSA first

heuristically constructs the initial set of materialized

views and then adjusts the set of materialized views

based on simulated annealing. While the second

algorithm SMVMST reduces the materialized views

selection to the problem of producing the minimum

Steiner tree, and obtains the approximate optimal set of

materialized views. The detailed theoretical analyses

and extensive experiments demonstrate that our

proposed algorithms are both efficient and effective.

Future work will focus on designing more exact cost

evaluation model, improving the optimization accuracy

of our two algorithms, and on more experimentation.

Acknowledgments

This work is supported by the Shanghai Rising-Star

Program (No. 15QA1403900), the National Natural

Science Foundation of China (No. 61772366), the

Natural Science Foundation of Shanghai (No.

17ZR1445900), the Fok Ying-Tong Education

Foundation (142002) and the Fundamental Research

Funds for the Central Universities.

References

[1] A. Roukh, L. Bellatreche, A. Boukorca, S. Bouarar, Eco-

DMW: Eco-design Methodology for Data Warehouses,

DOLAP, Melbourne, Australia, 2015, pp. 1-10.

[2] Y. Zhang, S. Zhang, The Power Big Data Applications for

Intelligent Community in Smart Grid, Journal of Internet

Technology, Vol. 17, No. 7, pp. 1491-1500, July, 2016.

[3] K. Aouiche, P. E. Jouve, J. Darmont, Clustering-based

Materialized View Selection in Data Warehouses, ADBIS,

Thessaloniki, Greece, 2006, pp. 81-95.

[4] G. Gou, J. X. Yu, H. Lu, A* Search: An Efficient and

Flexible Approach to Materialized View Selection, IEEE

Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, Vol. 36, No. 3, pp. 411-425,

August, 2006.

[5] X. Ji, L. Liu, P. Zhao, D. P. Wang, A-Star Algorithm Based

on-Demand Routing Protocol for Hierarchical LEO/MEO

Satellite Network, Big Data, Santa Clara, CA, 2015, pp.

1545-1549.

[6] T. V. V. Kumar, S. Kumar, Materialized View Selection

Using Genetic Algorithm, Contemporary Computing, Vol.

306, pp. 225-237, August, 2012.

[7] M. Šetinc, M. Gradišar, L. Tomat, Optimization of a Highway

Project Planning Using a Modified Genetic Algorithm,

Optimization, Vol. 64, No. 3, pp. 687-707, March, 2015.

[8] P. R. Vishwanath, S. Reddy, An Association Rule Mining for

Materialized View Selection and View Maintenance,

International Journal of Computer Applications, Vol. 109,

No. 5, pp. 15-20, May, 2015.

[9] C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong, V. S.

Tseng, Weighted Frequent Itemset Mining over Uncertain

Databases, Applied Intelligence, Vol. 44, No. 1, pp. 232-250,

January, 2016.

[10] R. N. Jogekar, A. Mohd, Design and Implementation of

Algorithms for Materialized View Selection and Maintenance

in Data Warehousing Environment, International Journal of

Emerging Technology and Advanced Engineering, Vol. 3, No.

9, pp. 2250-2459, September, 2013.

[11] D. Yu, W. Dou, Z. Zhu, J. Wang, Materialized View

Selection Based on Adaptive Genetic Algorithm and Its

Implementation with Apache Hive, International Journal of

Computational Intelligence Systems, Vol. 8, No. 6, pp. 1091-

1102, June, 2015.

[12] T. V. V. Kumar, B. Arun, Materialized View Selection Using

HBMO, International Journal of System Assurance

Engineering and Management, Vol. 8, No. 1, pp. 379-392,

January, 2017.

[13] A. Zaretalab, M. Teimouri, S. T. A. Niaki, M. Sharifi, An

Efficient Memory-based Electromagnetism-like Mechanism

Materialized Views Selection in Distributed Networks 433

for the Redundancy Allocation Problem, Applied Soft

Computing, Vol. 38, No. C, pp. 423-436, September, 2015.

[14] D. Yao, A. Abulizi, R. Hou, An Improved Algorithm of

Materialized View Selection within the Confinement of Space,

BDCloud, Dalian, China, 2015, pp. 310-313.

[15] Z. Huang, S. J. E, J. Zhang, B. Zhang, Z. Ji, Pairwise

Learning to Recommend with Both Users’ and Items’

Contextual Information, IET Communications, Vol. 10, No.

16, pp. 2084-2090, March, 2016.

[16] Z. Huang, J. Wang, B. Zhang, Efficient Optimization for L-

extSKY Recommendations, Tehnicki vjesnik/Technical

Gazette, Vol. 22, No. 5, pp. 1099-1106, October, 2015.

[17] L. Kang, X. Zhu, A Simulated Annealing Algorithm for First

Train Transfer Problem in Urban Railway Networks, Applied

Mathematical Modelling, 419-435, January, 2016.

[18] J. Byrka, F. Grandoni, T. Rothvoss, L. Sanità, Steiner Tree

Approximation via Iterative Randomized Rounding, Journal

of the ACM, Vol. 60, No. 1, pp. 102-110, January, 2013.

[19] M. C. Hung, M. L. Huang, D. L. Yang, N. L. Hsueh, Efficient

Approaches for Materialized Views Selection in a Data

Warehouse, Information Sciences, Vol. 177, No. 6, pp. 1333-

1348, March, 2007.

Biographies

Zhenhua Huang received his Ph.D.

degree in computer science from

Fudan University China, in 2008. He

is currently a professor in the School

of Computer Science at South China

Normal University. His research

interests include big data analysis and

konwledge discovery. Since 2004, he has published

over 70 papers.

Zhenqi Zhao received the B.S.

degree in the College of Electronics

and Information Engineering at the

Tongji University, 2015. He is

currently working toward the master’s

degree with Computer Science. His

main research interests include database and machine

learning.

Jiujun Cheng received his Ph.D.

degree from Beijing University of

Posts and Telecommunications in

2006. He is presently a professor of

Tongji University, Shanghai, China.

He has over 40 publications including

conference and journal papers. His

research interests are in mobile computing and cloud

computing.

434 Journal of Internet Technology Volume 20 (2019) No.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

