
D2D Based Caching Content Placement in Wireless Cache-Enabled Networks 333

D2D Based Caching Content Placement in Wireless

Cache-Enabled Networks

Junyue Qu, Dan Wu, Yanshan Long, Wendong Yang, Yueming Cai*

College of Communications Engineering, Army Engineering University of PLA, China

qujunyue_0610@sina.cn, wujing1958725@126.com, yslong_own@163.com, ywd1110@163.com, caiym@vip.sina.com

*Corresponding Author: Junyue Qu; E-mail: qujunyue_0610@sina.cn

DOI: 10.3966/160792642019032002002

Abstract

In order to provide a satisfying content download

service and reduce the pressure of the base station,

content caching based on the D2D communications is

drawing more and more attentions, which allows two

requesters in close proximity to share the contents of

common interest directly. However, since the storage

capacity and the communication ability of the mobile

nodes are limited, it is impossible for a mobile node to

cache all the files and share the files with any node.

Hence, one of the most important issues is the caching

content placement for the mobile nodes where the files

can be cached. In our work, to achieve the potential

advantages of the D2D-based content caching, we

consider to maximize the file download rate of the whole

network by proper caching content placement. It is

proved that the problem of the caching content placement

is NP hard. In view of its intractability, we prove that the

problem of the caching content placement can be

modeled as the maximization of a monotone submodular

function over one matroid and multiple knapsack

constraints. Accordingly, the greedy algorithm can be

utilized to obtain a suboptimal solution. It is proved that

the complexity of the proposed caching content

placement algorithm based on greedy algorithm is

polynomial, and it yields a constant-factor approximation

to the problem of the caching content placement. The

simulation results show that the nodes which can cache

files can perform more efficiently with our proposed

caching content placement algorithm based on greedy

algorithm.

Keywords: Device-to-device communication, Caching

content placement, Submodular function,

Knapsack constraint, Greedy algorithm

1 Introduction

With the wireless data traffic increasing dramatically,

the content request is predicted to be the main data

traffic in the future [1]. Content sharing based on D2D

communication emerging as a technology which can

take use of the advantage of D2D communications

more is being warmly discussed in various aspects [2-

6]. It allows two requesters in close proximity to share

the contents of common interest directly. In such a way,

requesters can enjoy higher data rate and less delay,

and the pressure of the BS can be reduced [7-9].

Specially, when a group of requesters are interested in

the same content, a mobile node called helper where

the files are cached can serve these requesters quickly

and the advantages to cache popular contents in helpers

are especially obvious. However, to achieve caching

content placement based on D2D communication,

many challenges need be solved [10]. As such, the

content caching has attracted so many attentions [11-

16]. However, many problems are introduced with the

proposal of the content caching. Firstly, it is impossible

for a cache node to cache all the contents due to the

limited storage capacity. The storage capacity will be

wasted if a file is cached for too many times while the

cache hit rate will be low if a file just is cached for one

time. Secondly, as the statement in [9], if every

requester can just access one helper, it is clear that each

helper should cache the most popular ones. However,

for the case that every requester can access multiple

helpers, the caching content placement of helpers

becomes nontrivial. Thirdly, for each helper, the

communication ability is limited. A helper can just

serve several requesters and even one requester.

Obviously, the two cases in [9] are existing at the same

time in a wireless cache-enabled network. When we

take some other considerations in account, the caching

content placement of helpers becomes more complex.

As a result, one of the most important issues is the

caching content placement.

Up to now, many works have been done to discuss

how to accurately place the caching content. In [11],

authors consider to design an interference-aware

collaborative caching mechanism to make caching

decision based on the content popularity. However, it

results in that the cooperative caching is achieved to

some probability. To enhance the cooperative caching,

maybe some constraints else should be considered. The

caching content placement is considered from the

perspective of the space to maximize the hit probability

334 Journal of Internet Technology Volume 20 (2019) No.2

in [12]. However, this work does not consider the

channel difference between different cache-enabled

users. In [13], authors minimize the energy

consumption for the whole network with a suitable

caching scheme with a constraint that requesters obtain

acceptable rate. However, due to the constraint,

requesters cannot obtain higher rate and enjoy better

service. In our opinion, for the whole network, it is

very important to improve the service of consumers. In

[14-15], the method of segment-based caching content

placement is utilized. It is helpful to reduce the

complexity to obtain the final caching content

placement scheme. However, comparing with the

method to consider each file one by one, maybe it is an

obstacle to reach the optimal caching content

placement with the consideration that the files within

the same segment have the same cached probability. In

[16], a caching content placement scheme for

distributed caching helpers is discussed to minimize

the expected total file download delay so that the effect

of the helpers can be much more improved. However,

it is possible that the quality of service (QoS) of some

requester is ignored when just the idle and best links of

each requester are considered. For example, for a

requester who has a better link and multiple worse

links, if the better link is ignored, it is possible that the

QoS of this requester cannot be met. Maybe it is a

good consideration to take all links of one requester in

account.

Motivated by the above analysis, we consider the

problem of caching content placement based on D2D

communications to maximize the whole file download

rate of the network for a given file popularity

distribution, storage capacity of helper and network

topology. The contributions of this paper are shown as

follows:

‧ The problem of caching content placement is

modeled as an integer programming problem to

maximize the whole file download rate of the

requesters. In particular, we design a constraint that

a file cannot be cached in different helpers which are

adjacent to one requester at the same time so as to

achieve the cooperative caching among helpers.

‧ The problem of caching content placement is proved

to be NP hard. In view of its intractability, we prove

that the resulting problem can be formulated as the

maximization of a monotone submodular set

function subject to a matroid constraint and multiple

knapsack constraints.

‧ A caching content placement algorithm based on

greedy algorithm is designed to find a suboptimal

solution according to the characteristic of our model.

We analyze that the complexity of the proposed

algorithm is polynomial, and we prove that it yields

a constant-factor approximation to the original

problem.

The rest of the manuscript is organized as follows.

In Section 2, we describe the system model and the

problem of caching content placement. We express the

problem as a monotone submodular function over one

matroid and multiple knapsack constraints in Section 3.

Followed, the problem of caching content placement is

proved to be NP hard. In Section 4, the caching content

placement algorithm based on greedy algorithm is

proposed. Some simulations are done in Section 5 to

verify the performance of the proposed caching content

placement algorithm based on greedy algorithm.

Finally, in Section 6, conclusions are drawn.

2 System Model and Problem Formulation

As shown in Figure 1, we consider a network, which

consists of a population of K requesters, denoted by

{ }1 2
, , ,

K
u u u= �U . These requesters are modeled as

some content requesters. Besides, there are N helpers

where some files can be cached, denoted as

{ }1 2
, , ,

N
h h h= �H . These helpers work as content

providers. Moreover, we assume a set of files which

may be cached in the helpers, denoted as

{ }1 2
, , ,

F
f f f= �F . The files are sorted according to the

rank of popularity. The file with the highest rank is the

most popular file
1
f . The requesters can request to

download the desired files from the helpers instead of

the BS. Note that, although storage capacity of the

mobile requesters is continuously increasing by a large

margin, it is a fact that the storage capacity is very

limited comparing to the total number of files. As a

result, the helpers cannot cache and provide the

contents freely. In addition, a requester can download

the desired files from a helper just when the requester

is located in the limited communication range of the

very helper. Specifically, for requester
k

u , the set of

the helpers who have the channel to the requester

which are good enough to establish D2D links is

denoted as ()k
H u , () { }k i ki th

H u h r R= ≥ , where
ki
r is

the capacity of the link between the requester
k

u and

the helper
i
h which utilize the model in [17], and

th
R is

the constraint of minimal channel capacity for each

requester. It is obvious that a proper caching content

placement scheme is very important due to the limited

storage capacity and the limited communication range

of the helpers.

D2D Based Caching Content Placement in Wireless Cache-Enabled Networks 335

requester helper potential D2D link

range in which a D2D link can be structured between the helper and the requester

Figure 1. The system model

Due to the limited storage capacity and the limited

communication ability of helpers, it is impossible to

meet all the request of requesters. In order to improve

the efficiency of the helpers, we want to do our best to

increase the cache hit rate. The cache hit rate of
i
h , can

be defined as

1

F

i ji jj
CHR x P

=

=∑ (1)

where { }0,1
ji

x ∈ is an indicator whether file
j
f is

cached in the helper
i
h . 1

ji
x = means that file

j
f is

cached by helper
i
h and 0

ji
x = means that file

j
f is

not cached by helper
i
h . Besides,

j
P is the requesting

probability for file
j
f .

Considering that most requesters are just interested

in a few of contents, we assume
j

P obeys the Zipf

distribution [16, 20-22]. It can be shown as

()
()

1

1

1

s

j sF

j

j

j

P

=

=

∑

 (2)

where s is the demand dominance factor. Obviously, a

too large s will result in a case where just a very small

number of contents will be requested. As a result, it is a

waste of storage space to discuss the other contents.

That is, it is unnecessary to discuss the problem of the

caching content placement when s is too large.

In our work, the most important is to provide the

best service. We consider that the file download rate is

an important and intuitional norm reflecting the QoS of

every requester. However, the requests from a

requester cannot be known in advance. As a result, we

denote the file download rate of the requester
k

u as

k
FDR which is the function of

j
P . Specifically,

k
FDR

is shown as follows.

(): 1

i k

F

k ki ji ji h H u j
FDR r x P

∈ =

=∑ ∑ (3)

In addition, some practical constraints must be

met.For example, the storage capacity of helpers is

limited. We assume that the storage capacity of each

helper is M . That is, the following inequality must be

met.

1

F

jij
x M

=

≤∑ (4)

Also, to make full use of the storage capacity of

helpers, for arbitrary 1, ,k K= � and 1, ,j F= � , we set

a constraint that different helpers which belongs to

()k
H u cannot cache the same file

j
f at the same time.

With such a constraint, cooperative caching among

helpers can be achieved to meet the comprehensive

requests for files of requesters. As shown in Figure 2,

two cases are shown to compare with each other. In

two cases, requester 1 can obtain the desired files from

three helpers. In case a, we consider the proposed

constraint above. The three helpers cache different files.

Requester 1 can obtain any one of the six files. In case

b, we consider that all the three helpers cache file 1 and

file 2. Obviously, requester 1 can just obtain file 1 and

file 2. Comparing the two cases, the requester can

obtain more files in case a. To sum up, the proposed

constraint above is very valuable. Such a constraint can

be shown as

():

1
i k

jii h H u
x

∈

≤∑ (5)

5 61 2 3 4

case a

1 2 1 2 1 2

case b

File 1 2 File 3 4 File 5 6helperrequester

Figure 2. The compare between different caching

content placement schemes

This constraint can achieve the goal of cooperative

caching so that the number of files a requester can

reach is the largest when we ignore the difference size

of two files. It is valuable to note that due to this

constraint, when a content helper leaves, especially a

content helper where the files which are very popular

are cached leaves, the caching content placement will

be seriously affected. The details are shown in the

Figure 3.

336 Journal of Internet Technology Volume 20 (2019) No.2

R

3 4 3 4

21

21

5 6

(a) The caching content placement in Scenario 1

R

3 4 3 4

21

21 21

5 6

3 4

(b) The caching content placement in Scenario 2

requester helper potential D2D link

range in which a D2D link can be structured between the helper and the requester

File 1 2 File 3 4 File 5 6 cached content updating

(c) The legend

Figure 3. The impact of helper’s departure on the

caching content placement

In Scenario 1, helper 1 caches file 1 and file 2 to

serve requester 1 and requester 2. Helper 2 caches file

3 and file 4 to serve requester 1. Helper 3 caches file 3

and file 4 to serve requester 2. Helper 5 caches file 5

and file 6 to serve requester 2. Helper 4 caches file 1

and file 2 to serve requester 3 and requester 4. In the

following, we discuss the impact of one helper’s

departure from two aspects.

In one hand, when helper 1 leaves the network,

Scenario 1 is transformed into Scenario 2. Then, helper

2 caches file 1 and file 2 instead of file 3 and file 4 to

serve requester 1. Helper 3 caches file 1 and file 2

instead of file 3 and file 4 to serve requester 2.

Simultaneously, helper 5 caches file 3 and file 4

instead of file 5 and file 6 to serve requester 2. In

addition, Helper 4 still caches file 1 and file 2.

Obviously, we can draw two conclusions. Firstly, the

departure of one content helper can affect the previous

caching content placement. Secondly, the impact of

one helper’s departure is local. The departure of one

content helper affects the helpers who serve the same

requesters. In addition, the helpers who serve the same

requesters with the affected helpers are also affected. It

will be a chain reaction. Simultaneously, the helper

who cannot achieve communication with the helper

who will leave by multi-hop D2D communications will

not be affected, such as helper 4.

In the other hand, when Helper 5 leaves the network,

no helper will change the caching content placement.

As such, another conclusion can be drawn. It is that

only the departure of the helper who caches the more

popular content will affect the caching content

placement of the other involving helpers.

With the analysis above, we define a F N× matrix

X that { }0,1
ji

x ∈ . The problem of the caching content

placement can be formulated as follows:

()

1 1 1

1

:

m

,

a

,

1 ,

x

. .

i k

K N F

ki ji jk i j

F

ji ij

ji k ji h H u

r x P

x M h

x u

s

f

t

= = =

=

∈

≤ ∀ ∈

≤ ∀ ∈ ∀ ∈

∑ ∑ ∑

∑

∑

H

U F

 (6)

In the above model, we try to solve the problem of

caching content placement from the perspective of the

whole network, and, the sum of the file download rate

is set as the objective function. It is a monotone

submodular function which is proved in the following

section. Two kinds of constraints should be considered

in our model. The first one is the constraint of limited

storage capacity. We will prove that it is a matroid

constraint in the following section. What’s more, the

second kind of constraints are set to take full use of the

storage capacity of helpers which are multiple

knapsack constraints.

3 The Monotone Submodular Set Function

Over One Matroid and Multiple

Knapsack Constraints

In this section, we analyze our proposed problem of

the caching content placement in detail. Firstly, we

define a ground set ε as

{ }
1 1

0,1 , 1, 1, , , 1 ,
F N

ji ji

j i

X x x j F i Nε

= =

⎧ ⎫⎪ ⎪
= ∈ = = =⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ � � (7)

For simplify, we present the ground set ε as
1 1 1

1 2 1 2
{ , , , , , , , , }N N N

F F
ε ε ε ε ε ε ε= � � � . i

j
ε denotes that

1
ji

x = and
1 1

1

F N

ji

j i

x

= =

=∑∑ , namely, the file
j
f is cached

D2D Based Caching Content Placement in Wireless Cache-Enabled Networks 337

in the helper
i
h . ε can be divided into N disjoint

subsets,
1 2
, , ,

N
ε ε ε� , where

1 2
{ , , , }i i i

i F
ε ε ε ε= � is the set

of the indicators whether the files are cached in the

helper
i
h .

Secondly, some important definitions for the

matroid and the submodular function are shown in the

following according to the presentation in [19] and

[16].

Definition 1. A matroid M is a tuple (),=M S G ,

where S is a finite ground set and 2⊆
S

G is a

collection of independent sets, such that

(1) G is nonempty, in particular,∅∈G .

(2) G is downward closed; i.e., if ∈Y G and ⊆X Y ,

then ∈X G .

(3) If , ∈X Y G , and <X Y , then \y∃ ∈Y X such

that { }y ∈∪X G .

Definition 2. Let S be a finite ground set. A set

function : 2f R→
S is submodular function if for all

sets , ∈A B S ,

 () () () ()f f f f+ ≥ +∪ ∩A B A B A B (8)

Definition 3. Let () () ()f i f i f= −∪
A

A A denote the

marginal value of an element i∈S with respect to a

subset ⊂A S . Then f is submodular function if for

all ⊂ ⊂A B S and for all \i∈S B we have

 () ()f i f i≥
A B

 (9)

Followed, several theorems must be proved.

Theorem 1. The constraint
1

F

jij
x M

=

≤∑ can be written

as a partition matroid on the ground set ε .

Proof: In the constraint
1

F

jij
x M

=

≤∑ , a cache

placement is expressed by the matrix X . The set

ε⊆X is the cache placement set and i

j
ε ∈X if and

only if 1
ji

x = . It is obvious that the nonzero elements

of the i th column of X correspond to the elements in

i
ε∩X . As a result, the constraints on the cache

capacity of the helpers
1

F

jij
x M

=

≤∑ can be shown as

⊆X G , where

 { }: , 1, ,
i

M i Nε ε= ⊆ ≤ ∀ =∩ �G X X (10)

G is all feasible solutions which meet the constraint

on the storage capacity of the helpers
1

F

jij
x M

=

≤∑ .

Comparing G and the example of the definition of the

matroid in [16], we can see that the constraints on the

cache capacity of the helpers
1

F

jij
x M

=

≤∑ can form a

partition matroid with l N= and
i
k M= , for 1, ,i N= � .

The partition matroid is shown as (),ε=M G .

Theorem 2. The objective function in Eq. (6) is a

monotone submodular set function.

Proof: To simplify, we present the objective

function as ()
1 1 1

K N F

ki ji jk i j
f r x P

= = =

=∑ ∑ ∑X . In the

following, we prove Theorem 2 by two steps.

Firstly, it is obvious that the objective function in Eq.

(6) is a monotone function. The proof is shown as

follows.

We set ε⊂A and a ε′= ⊂∪A A where { }a is { }ijε
′

′

which represents 1
j i

x
′ ′

= , and { }ijε
′

′

 does not belong to

the set A . Obviously, ′⊆A A Then, we can get ()f A

and ()f ′A as follows, respectively.

 ()
1 1 1

K N F

ki ji jk i j
f r x P

= = =

=∑ ∑ ∑A (11)

() { }()

1 1 1 1

K N F K

ki ji j ki j i jk i j k

f f

P

a

r x P r x
′ ′ ′ ′

= = = =

′ =

= +∑ ∑ ∑ ∑

∪A A

 (12)

Due to 0
ki
r

′

≥ , 0
j

P
′

> and 0
j i

x
′ ′

≥ , we can conclude

that () ()f f′ ≥A A . As such, the objective function

()
1 1 1

K N F

ki ji jk i j
f r x P

= = =

=∑ ∑ ∑X in Eq. (6) is a monotone

function.

Secondly, we prove that it is also a submodular

function. That is, for any set ε⊂ ⊂V W and \e ε∈ W ,

when () ()f e f e≥
V W

 is met, f is submodular.

To show the proof clear, we denote ()f X as

follows.

()

1 1 1

1

K N F

ki ji jk i j

K

ki ji jk
X

f r x P

r x P

= = =

=

=

=

∑ ∑ ∑

∑ ∑

X

 (13)

And then, we can show ()f e
V

 and ()f e
W

 as follows.

() () ()

1 1

1

K K

ki ji j ki ji jk k
e

K

ki j i jk

f e f e f

r x P r x P

r x P

= =

′ ′ ′ ′
=

= −

= −

=

∑ ∑ ∑ ∑

∑

∪

∪
V

V V

V V

 (14)

() () ()

1 1

1

K K

ki ji j ki ji jk k
e

K

ki j i jk

f e f e f

r x P r x P

r x P

= =

′ ′ ′ ′
=

= −

= −

=

∑ ∑ ∑ ∑

∑

∪

∪
W

W W

W W

 (15)

Namely,

 () ()f e f e=
V W

 (16)

As a result, it is proved that the objective function in

Eq. (6) is a monotone submodular set function.

Further, it is obvious that there are KF knapsack

constraints
():

1
i k

jii h H u
x

∈

≤∑ . As a result, the model is

the maximization of a monotone submodular set

338 Journal of Internet Technology Volume 20 (2019) No.2

function over one matroid and multiple knapsack

constraints.

Theorem 3. The problem of the caching content

placement in Eq. (6) is NP hard.

Proof: We consider an instance of Eq. (6) where the

number of files is 1F = . Thus, we have Nε = and
j

P

degenerates to P . Also, the original problem

degenerates to

()

1 1

:

max

. . 1, 1
i k

K N

ki i

k i

ii h H u

r x P

s t x k K

= =

∈

≤ ∀ ≤ ≤

∑∑

∑
 (17)

where
ki
r is the capacity of the link between requester

k
u and helper

i
h .

i
x is an indicator whether the file is

cached in the helper
i
h .

To prove that the original problem is NP-hard, we

show that the problem specialized to the instance is

NP-hard firstly. We prove that Eq. (17) is NP-hard via

contradiction. Suppose that an efficient algorithm (with

a complexity polynomial in)N exists that can

optimally solve Eq. (17) for any input N and K .

However, since H is different for different requesters

for any input N and K , all possible cases should be

computed to obtain the final solution. This would then

contradict the assumption of the complexity

polynomial in N . Namely, Eq. (17) is NP hard and

further Eq. (6) is NP hard.

Obviously, it is impossible to obtain the optimal

solution of Eq. (6). Luckily, we prove that the problem

is the maximization of a monotone submodular

function over one matroid and multiple knapsack

constraints. About such kind of problem, there exists a

very good characteristic [16]. It is that a suboptimal

solution which yields a constant-factor approximation

to the original problem can be obtained with

polynomial complexity by utilizing the greedy

algorithm. The constant-factor and the complexity will

be given in the following Section.

4 The Caching Content Placement

Algorithm Based on Greedy Algorithm

In the above section, we have proved that the

problem of the caching content placement is the

maximization of a monotone submodular function over

one matroid and multiple knapsack constraints.

According to the presentation in [18], the caching

content placement algorithm based on greedy

algorithm can be designed to obtain a suboptimal

solution.

In this section, we define { 1
: ,

F

jij
X x Mε

=

= ⊆ ≤∑I

() }
:

1, , ; 1, 1, , , 1, ,
i k

jii h H u
i N x k K j F

∈

∀ = ≤ ∀ = ∀ =∑� � � as

the domain of definition firstly. Then, we show the

caching content placement algorithm based on greedy

algorithm which is called CCPAGA for simplify as

Algorithm 1. The work of computation in step 3 can be

completed by all helpers. And a central node can be set

to collect all results of helpers and determine the final

strategy in each iteration by comparing all results.

Algorithm 1. The Caching Content Placement

Algorithm Based on Greedy Algorithm

(CCPAGA)

1. Initialization: Let = ∅S .

2. Repeat:

3. Determine

()

()

1 :

\ ;

; 1

ˆ argmax

F

ji jij i h H ui k

e e

x M x

e f X
ε

= ∈

∈ ∈

≤ ≤

=

∑ ∑

∪S S I

, and set

ê← ∪S S .

4. Until \ε = ∅S or \ε ∉S I .

5. Output S .

In the following, we discuss the complexity of the

proposed caching content placement algorithm based

on greedy algorithm and the performance of the final

solution on theory.

Theorem 4. The complexity of the proposed caching

content placement algorithm based on greedy

algorithm is ()2 2
O F N FN+ .

Proof: According to the presentation of the caching

content placement algorithm based on greedy

algorithm, it is obvious that the final solution can be

obtained in at most FN iterations. And in each

iteration, we need to select the best solution from at

most FN solutions by comparing the corresponding

rates. It is obvious that the complexity of the proposed

caching content placement algorithm based on greedy

algorithm is ()2 2
O F N FN+ .

Theorem 5. The proposed caching content placement

algorithm based on greedy algorithm yields a constant-

factor
1

2+KF
 approximation to the problem in this

paper.

Proof: In the constraint
():

1
i k

jii h H u
x

∈

≤∑ , a cache

placement of the helpers which are adjacent to the

requester
k

u is expressed by the matrix
k

X . The set

k
ε⊆X is the cache placement set of the helpers which

are adjacent to the requester
k

u and i

j kε ∈X if and only

if 1
ji

x = . We set 1{ , , , }j i N

j j j
ε ε ε ε= � . It is obvious that

the nonzero elements of the j th line of
k

X correspond

to the elements in j

k ε∩X . As a result, the constraints

():

1
i k

jii h H u
x

∈

≤∑ can be shown as
k k
⊆X G , where

 { }: 1, 1, ,
j

k k k j Fε ε= ⊆ ≤ ∀ =∩ �G X X (18)

It is obvious that the knapsack constraint

():

1
i k

jii h H u
x

∈

≤∑ is a matroid constraint indeed. As a

D2D Based Caching Content Placement in Wireless Cache-Enabled Networks 339

result, the proposed caching content placement

algorithm based on greedy algorithm yields a constant-

factor
1

2+KF
 approximation to the problem in this

paper [18].

5 Simulation and Discussion

To verify the performance of our proposed caching

content placement algorithm based on greedy

algorithm, some simulations are done. Some

parameters involved in the proposed algorithm are set

in Table 1. All simulations are done based on the

parameters in Table 1 without special explanation.

Besides, in order to validate the performance of the

proposed caching content placement based on greed

algorithm, another caching content placement scheme

is designed. This caching content placement scheme is

designed to let all helpers cache the most popular files

and the storage space of every helper is run out. Such

an algorithm was mentioned in [9] to be an optimal

caching content placement scheme when every

wireless device has only access to an exactly one

helper. For simplify, we call it First First algorithm.

The detail is shown in Algorithm 2. In addition, we

also consider the Random Caching in which each

content is cached by any helper with the equal

probability M F .

Table 1. System parameters

The number of requesters 10K =

The number of helpers 15N =

The number of files 25F =

The cache capacity constraint 5M =

The total transmit power of each node 0.3p W=

The cell radius 100R m=

The noise power 2
80dBmσ = −

The requesters’ location
Uniformly

distributed in []0,R

The helpers’ location
Uniformly

distributed in []0,R

The path loss exponent 3α =

The demand dominance factor of the

Zipf distribution
0.56s =

Algorithm 2. The First First Algorithm

1. Initialization: Let = ∅S .

2. Repeat:

3. For any e ε∈ ,

if j M≤ ,

set 1
ji

x = and e← ∪S S .

4. Until MN=S . (S denotes the number of

matrices in S .)

5. Output S .

In Figure 4, Figure 5 and Figure 6, we compare the

proposed caching content placement algorithm based

on greedy algorithm with the First First algorithm and

Random Caching on the cache hit rate, the number of

the available files for each requester and the file

download rate. It is shown that with CCPAGA, the

requesters can enjoy the higher cache hit rate, more

files and larger file download rate. In such a case that

the total number of the files F is much larger than the

cache capacity M , it is obvious to obtain a higher

cache hit rate with the constraint
():

1
i k

jii h H u
x

∈

≤∑ in our

model. To summarize according to the Figure 4, Figure

5 and Figure 6, the model in this work is valuable and

CCPAGA can do well.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The requester

T
h

e
 c

a
c
h

e
 h

it
 r

a
te

CCPACA

First First Algorithm

Random Caching

Figure 4. The cache hit rate of each requester for

different algorithms when 25F = and 5M =

1 2 3 4 5 6 7 8 9 10
0

5

10

15

The requester

T
h

e
 n

u
m

b
e
r

o
f
 a

v
a
il

a
b

le
 f

il
e
s

CCPACA

First First Algorithm

Random Caching

Figure 5. The number of the available files for each

requester for different algorithms when 25F = and

5M =

340 Journal of Internet Technology Volume 20 (2019) No.2

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

The requester

T
h

e
fi

le
 d

o
w

n
lo

ad
 r

at
e

(b
p

s/
H

z)

CCPACA

First First Algorithm

Random Caching

Figure 6. The file download rate of each requester for

different algorithms when 25F = and 5M =

In Figure 7 and Figure 8, we consider a special case

that the cache capacity is large enough to meet all the

files. In other words, just several files are interesting

for the requesters. Specifically, in the two simulations,

we set 20F M= = to present the special case. In

Figure 7, we can see that the file download rates of the

requester 1, the requester 2 and the requester 6 with

CCPAGA are lower than these with the First First

algorithm and Random Caching. However, we also can

see that just four helpers are used to provide the service

of file download with CCPAGA in Figure 8. Obviously,

the phenomenon that just four helpers are used to cache

the files appears because of the constraint

():

1
i k

jii h H u
x

∈

≤∑ . As a result, to analyze the reason for

the phenomenon in Figure 7, we do a simulation to

obtain the Figure 9.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

The requester

T
h

e
fi

le
 d

o
w

n
lo

ad
 r

at
e

(b
p

s/
H

z)

CCPAGA

First-First Algorithm

Random Caching

Figure 7. The file download rate of each requester for

different algorithms when 20F M= =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

18

20

The helper

T
h

e
n

u
m

b
er

 o
f

fi
le

s
ca

ch
ed

 i
n

 t
h

e
h

el
p

er

CCPAGA

First-First Algorithm

Random Caching

Figure 8. The file cached in each helper for different

algorithms when 20F M= =

-100 -80 -60 -40 -20 0 20 40 60 80
-100

-80

-60

-40

-20

0

20

40

60

80

100

x(m)

y
(m

)

The helper

The requester

h1

u2

h2

h3

u1

Figure 9. The locations of requesters and helpers

In Figure 9, the locations of all nodes are presented.

Something should be noted. For example, h3 serves u1

and u2 at the same time. In addition, u1 is also served

by h1 and u2 is also served by h2. The other nodes are

ignored. According to CCPAGA and the second

constraint of our model, the file will be cached in h3

only when ()1, 3 2, 3 1, 1 2, 2
max ,

u h u h u h u h
r r r r+ > . And the result

will not be changed even if
1, 1 1, 3u h u h

r r> and
2, 2 2, 3u h u h

r r>

since it will create more benefits with fewer helpers to

cache the files in h3. To sum up, there is no wrong

with the final caching content placement obtained

through CCPAGA. Although the file download rates of

the requester 1, the requester 2 and the requester 6 with

CCPAGA are lower than these with the First First

algorithm, when we consider the result from another

perspective, it is noticed that the efficient of the helper

with CCPAGA is a valuable topic to discuss.

To discuss the efficiency of the helper with

CCPAGA, we define the sum file download rate one

helper can provide as the efficiency of the helper.

D2D Based Caching Content Placement in Wireless Cache-Enabled Networks 341

 1

K

k

k

helper

FDR

E
N

=

=

∑
 (19)

where helperN denotes the number of helpers in which

the files are cached.

In Figure 10, we discuss the efficiency of the helper

with the Monte Carlo method in different cases in

which the numbers of the requesters are 4, 7, 10, 13, 16.

The simulation result shows that with the number of

the requesters increasing, the efficiency of the helpers

is higher and higher. In addition, it is obvious that the

efficiency of the helper with CCPAGA is higher than

that with the First First algorithm and Random Caching

in all cases. The helpers will play better roles with

CCPAGA comparing to the fixed caching content

placement scheme of the First First algorithm and

Random Caching.

4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

The number of the requesters

T
h

e
fi

le
 d

o
w

n
lo

ad
 r

at
e

(b
p

s/
H

z)

CCPAGA

First-First Algorithm

Random Caching

Figure 10. The file download rate one helper can

provide vs. the number of requesters for different

algorithms when 20F M= = with the Monte Carlo

method

The case F M≈ is possible in fact. For example, in

a limited space, some requesters with the same

interests just are interested in several files. But luckily,

the special case above is very few in fact. More cases

in the fact we will face are F M� . In the following,

we will consider different cases in which the number of

requesters, the number of helpers and the demand

dominance factor are different.

Firstly, we will discuss the affection of the demand

dominance factor on the performance of CCPAGA, the

First First algorithm and Random Caching in Figure 11.

The performance of Random Caching is worst and is

not affected by the demand dominance factor. The

performance of CCPAGA is better than that of the First

First algorithm when the demand dominance factor is

small. In addition, the efficiency of the helper is higher

with the increasing of the demand dominance factor

under the two algorithms. But the advantage of

CCPAGA on the efficiency of the helper is decreasing

with the increasing of the demand dominance factor.

Such a phenomenon is reasonable. No matter which

algorithm is selected, the files which are the most

popular will be cached. With the increasing of the

demand dominance factor, the probability requesting

for such files will be higher. There is no doubt that the

efficiency of the helper is higher with the increasing of

the demand dominance factor under the two algorithms.

But similarly, with the increasing of the demand

dominance factor, fewer and fewer files accounts for

more and more requests. As a result, it is more and

more meaningless to cache the files with smaller

requesting probability. Specially, it will worsen

CCPAGA more since more files with lower requesting

probability will be cached with CCPAGA. However, in

my opinion, as the above exposition on Zipf

distribution shows, it is unnecessary to discuss the

problem of the caching content placement with a too

large demand dominance factor. Except our work,

many other works also select a small value for the

demand dominance factor, such as, 1 in [14], 0.56 in

[16], 0.8 in [20], 0.5 and 2 in [21], and 0.6 in [22].

0 0.5 1 1.5
1

2

3

4

5

6

7

8

9

The demand dominance factor

T
h

e
fi

le
 d

o
w

n
lo

ad
 r

at
e

(b
p

s/
H

z)

CCPAGA

First-First Algorithm

Random Caching

Figure 11. The file download rate one helper can

provide vs. the demand dominance factor s for

different algorithms when 25F = and 5M = with the

Monte Carlo method

Secondly, we discuss the affection of the number of

the helpers and the number of the requesters on the

performance of the three algorithms. In Figure 12,

some conclusions can be made. Firstly, with the

number of the requesters increasing, the efficiency of

the helpers will be enhanced. It is not hard to explain

that with the number of the requesters increasing, a

helper can provide service for more requesters and play

a larger role. Secondly, more helpers will not enhance

the efficiency of the helpers. For CCPAGA, more

helpers mean larger storage space of the whole

network. Followed, more files can be cached and

provided for the requesters. However, it will enhance

the sum file download rate less due to the lower

requesting probability and result in the deterioration of

the efficiency of the helpers. Similarly, for the First

First algorithm and Random Caching, more helpers

342 Journal of Internet Technology Volume 20 (2019) No.2

mean more helpers in bad locations will play no role.

As a result, the efficiency of the helpers will be lower

with the increasing of the number of the helpers.

Thirdly, the performance of CCPAGA is better than

that of the First First algorithm and Random Caching

in all cases.

4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8

9

10

The number of the requesters

T
h

e
fi

le
 d

o
w

n
lo

ad
 r

at
e

(b
p

s/
H

z)

CCPAGA with 6 helper

CCPAGA with 10 helper

CCPAGA with 14 helper

First-First Algorithm with 6 helper

First-First Algorithm with 10 helper

First-First Algorithm with 14 helper

Random Caching with 6 helper

Random Caching with 10 helper

Random Caching with 14 helper

Figure 12. The file download rate one helper can

provide vs the number of the requesters for different

number of helpers and different algorithms when

25F = and 5M = with the Monte Carlo method

Further, we enlarge the simulation scale to well

verify the validity of the proposed algorithm. In detail,

we compare the caching content placement in three

different scenarios in Figure 13.

In Figure 13, we consider three different scenarios

where 30N = , 40N = , 50N = . We can see that the

performance of our proposed CCPACA is better than

that of First First Algorithm and Random Caching in

all three algorithms. In other words, the simulation

scale will affect the result of caching content placement,

but the conclusion that the performance of our

proposed CCPACA is better than that of First First

Algorithm and Random Caching will not be affected.

6 Conclusion

In this paper, we want to provide a better content

download service for requesters and reduce the

pressure of the base station. To achieve such a goal, we

pay attention on the content caching based on D2D

communications and the introduced issue of the

caching content placement due to the proposal of

content caching. In particular, we mean to maximize

the sum file download rate by design a proper caching

content placement. The problem is expressed as a

monotone submodular function over one matroid and

multiple knapsack constraints. Besides, the problem of

the caching content placement is proved to be NP hard.

A caching content placement algorithm based on

greedy algorithm is proposed to obtain a suboptimal

solution. It is proved that the complexity of the

proposed caching content placement algorithm based

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

The requester

T
h
e

fi
le

 d
o

w
n
lo

ad
 r

at
e

(b
p

s/
H

z)

CCPACA

First First Algorithm

Random Caching

(a) 200K = , 30N = , 25F = , 5M =

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

The requester

T
h

e
fi

le
 d

o
w

n
lo

ad
 r

at
e

(b
p

s/
H

z)

CCPACA

First First Algorithm

Random Caching

(b) 200K = , 40N = , 25F = , 5M =

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

The requester

T
h
e

fi
le

 d
o

w
n

lo
ad

 r
at

e
(b

p
s/

H
z)

CCPACA

First First Algorithm

Random Caching

(c) 200K = , 50N = , 25F = , 5M =

Figure 13. Caching content placement in three

different scenarios

on greedy algorithm is polynomial and it yields a

constant-factor
1

2+KF
 approximation to the problem in

this paper. The simulation results show that the

efficiency of the helper is higher through our proposed

caching content placement algorithm based on greedy

algorithm.

D2D Based Caching Content Placement in Wireless Cache-Enabled Networks 343

Acknowledgments

This work is supported by the National Natural

Science Foundation of China No. 61671474 and the

Jiangsu Provincial Natural Science Foundation for

Excellent Young Scholars No. BK20170089.

References

[1] C. Fang, F. R. Yu, T. Huang, J. Liu, Y. Liu, A Survey of

Energy-Efficient Caching in Information-Centric Networking,

IEEE Communications Magazine, Vol. 52, No. 11, pp. 122-

129, November, 2014.

[2] D. Wu, L. Zhou, Y. Cai, Social-Aware Rate Based Content

Sharing Mode Selection for D2D Content Sharing Scenarios,

IEEE Transactions on Multimedia, Vol. 19, No. 11, pp. 2571-

2582, November, 2017.

[3] L. Zhou, D. Wu, J. Chen, Z. Dong, Greening the Smart Cities:

Energy-Efficient Massive Content Delivery via D2D

Communications, IEEE Transactions on Industrial Informatics,

Vol. 14, No. 4, pp. 1626-1634, April, 2018.

[4] D. Wu, J. Wang, R. Q. Hu, Y. Cai, Energy-Efficient Resource

Sharing for Mobile Device-To-Device Multimedia

Communications, IEEE Transactions on Vehicular

Technology, Vol. 63, No. 5, pp. 2093-2103, June, 2014.

[5] L. Zhou, D. Wu, Z. Dong, X. Li, When Collaboration Hugs

Intelligence: Content Delivery over Ultra-Dense Networks,

IEEE Communications Magazine, Vol. 55, No. 12, pp. 91-95,

December, 2017.

[6] D. Wu, Y. Cai, R. Q. Hu, Y. Qian, Dynamic Distributed

Resource Sharing for Mobile D2D Communications, IEEE

Transactions on Wireless Communications, Vol. 14, No. 10,

pp. 5417-5429, October, 2015.

[7] R. Wang, X. Peng, J. Zhang, K. B. Letaief, Mobility-Aware

Caching for Content-Centric Wireless Networks: Modeling

and Methodology, IEEE Communications Magazine, Vol. 54,

No. 8, pp. 77-83, August, 2016.

[8] M. Sheng, C. Xu, J. Liu, J. Song, X. Ma, J. Li, Enhancement

for Content Delivery with Proximity Communications in

Caching Enabled Wireless Networks: Architecture and

Challenges, IEEE Communications Magazine, Vol. 54, No. 8,

pp. 70-76, August, 2016.

[9] N. Golrezaei, A. F. Molisch, A. G. Dimakis, G. Caire,

Femtocaching and Device-to-Device Collaboration: A New

Architecture for Wireless Video Distribution, IEEE

Communications Magazine, Vol. 51, No. 4, pp. 142-149,

April, 2013.

[10] C. Xu, P. Zhang, S. Jia, M. Wang, G. M. Muntean, Video

Streaming in Content-Centric Mobile Networks: Challenges

and Solutions, IEEE Wireless Communications, Vol. 24, No.

5, pp. 157-165, October, 2017.

[11] J. Jiang, S. Zhang, B. Li, B. Li, Maximized Cellular Traffic

Offloading via Device-to-Device Content Sharing, IEEE

Journal on Selected Areas in Communications, Vol. 34, No. 1,

pp. 82-91, January, 2016.

[12] D. Malak, M. Shalash, J. Andrews, Spatially Correlated

Content Caching for Device-to-Device Communications,

IEEE Transactions on Wireless Communications, Vol. 17, No.

1, pp. 56-70, January, 2018.

[13] M. Gregori, J. Gomez-vilardebo, J. Matamoros, D. Gunduz,

Wireless Content Caching for Small Cell and D2D Networks,

IEEE Journal on Selected Areas in Communications, Vol. 34,

No. 5, pp. 1222-1234, May, 2016.

[14] B. Chen, C. Yang, G. Wang, Cooperative Device-to-Device

Communications with Caching, IEEE 83th Vehicular

Technology Conference, Nanjing, China, 2016, pp. 1-5.

[15] X. Huang, G. Zhao, Z. Chen, Segment-Based Random

Caching in Device-to-Device (D2D) Caching Networks,

International Symposium on Wireless Communication

Systems, Brussels, Belgium, 2015, pp. 731-735.

[16] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch,

G. Caire, FemtoCaching: Wireless Content Delivery Through

Distributed Caching Helpers, IEEE Transactions on

Information Theory, Vol. 59, No. 12, pp. 8402-8413,

December, 2013.

[17] J. Qu, Y. Cai, J. Zheng, W. Yang, W. Yang, Y. Hu,

Interference Mitigation Based on Intelligent Location

Selection in a Canonical Communication Network, Frequenz,

Vol. 70, No. 1-2, pp. 57-61, January, 2016.

[18] N. Prasad, H. Zhang, H. Zhu, S. Rangarajan, Multi-User

MIMO Scheduling in the Fourth Generation Cellular Uplink,

IEEE Transactions on Wireless Communications, Vol. 12, No.

9, pp. 4272-4285, September, 2013.

[19] G. Nemhauser, L. Wolsey, Integer and Combinatorial

Optimization, Wiley, 1988.

[20] C. Yang, Y. Yao, Z. Chen, B. Xia, Analysis on Cache-

Enabled Wireless Heterogeneous Networks, IEEE

Transactions on Wireless Communications, Vol. 15, No. 1,

pp. 131-145, January, 2016.

[21] D. Malak, M. Al-Shalash, Device-to-Device Content

Distribution: Optimal Caching Strategies and Performance

Bounds, IEEE International Conference on Communication

Workshop, London, UK, 2015, pp. 664-669.

[22] L. Zhang, M. Xiao, G. Wu, S. Li, Efficient Scheduling and

Power Allocation for D2D-assisted Wireless Caching

Networks, IEEE Transactions on Communications, Vol. 64,

No. 6, pp. 2438-2452, June, 2016.

Biographies

Junyue Qu, received the B.S. degree

and M.S. degree both from the

College Communications Engineering,

PLAUST, Nanjing, China in 2012 and

2015, respectively. He is pursuing for

the Ph.D. degree in Army Engineering

University of PLA, Nanjing, China. His current

research interest is content sharing based on D2D

communications.

344 Journal of Internet Technology Volume 20 (2019) No.2

Dan Wu received the B.S., M.S., and

Ph.D. degrees from PLAUST,

Nanjing, China, in 2006, 2009, and

2012, respectively. She is currently a

Postdoctoral Researcher in Army

Engineering University of PLA. Her

research interests include resource

allocation and management, game theory, cooperative

communications, and wireless sensor networks.

Yanshan Long received the B.S. and

M.S. degrees from PLAUST, Nanjing,

China, in 2011 and 2014, respectively.

She is currently pursuing PhD. degree

in the Institute of Communications

Engineering, PLA University of

Science and Technology. Her research

interests include D2D communications, wireless

caching network and stochastic geometry theory.

Wendong Yang received the B.S.

degree and the Ph.D. degree both from

College of Communications

Engineering, PLAUST, Nanjing,

China in 2004 and 2009, respectively.

Since 2009, he has been with Army

Engineering University of PLA. His

current research interest includes MIMO systems,

OFDM systems, cooperative communications and

cognitive radio.

Yueming Cai received the B.S.

degree in physics from Xiamen

University, Xiamen, China, in 1982,

the M.S. degree in microelectronics

engineering and the Ph.D. degree in

communications and information

systems from Southeast University,

Nanjing, China, in 1988 and 1996, respectively. His

research interests include MIMO, OFDM, cooperative

communications, and WSN.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

