
A-RAFF: A Ranked Frequent Pattern-growth Subgraph Pattern Discovery Approach 257

A-RAFF: A Ranked Frequent Pattern-growth Subgraph Pattern

Discovery Approach

Saif Ur Rehman1, Sohail Asghar2*

1 Department of computer science, Abasyn University, Islamabad, Pakistan
2 Department of computer science, COMSATS Institute of Information Technology, Islamabad, Pakistan

Saifi.ur.rehman@gmail.com, sohail.asg@gmail.com

*Corresponding Author: Saif ur Rehman; E-mail: Saifi.ur.rehman@gmail.com

DOI: 10.3966/160792642019012001024

Abstract

Graph mining is one of the arms of Data Mining in

which voluminous complex data are represented in the

form of graphs and mining is done to infer useful

knowledge from them. Frequent subgraph mining (FSM)

is an active research field and is considered as the essence

of graph mining. FSM is defined as finding all the

subgraph patterns that occur frequently over the entire set

of graphs. FSM is extensively used in graph clustering,

classification and building indices in the databases. In

literature, different FSM algorithms have been proposed

such as AGM, FSG, SPIN, SUBDUE, gSpan, FFSM,

CloseGraph, FSG, GREW. Most of these FSM

techniques perform very well for small to medium size

graph datasets, but the computational cost of FSM

becomes very critical when the graph size is increased. In

accession to this, the number of frequent subgraphs

patterns grows exponentially with the increasing size of

graph datasets. Consequently, in this research work, a

novel FSM approach A RAnked Frequent pattern-growth

Framework (A-RAFF) is proposed. This work is a

preliminary work to study on how to make A-RAFF both

computational effective and avoid the generation of the

huge number of useless frequent subgraph patterns. A-

RAFF has achieved efficiency by embedding the ranking

of discovering FSGs during the mining process. The

experiments on the three different real benchmark graph

datasets demonstrated that the mining results of A-RAFF

are very promising as compared to the existing FSM

techniques.

Keywords: Graph mining, Frequent subgraphs, Apriori

based FSGs, Pattern growth based FSGs

1 Introduction

The primary goal of data mining is to discover the

statistically significant and hidden knowledge from the

data [1-2]. The data used in data mining can be

represented in various formats of structured data such

as tables, graphs, etc. Modeling structured data as

graphs generate an expressive and general purpose

structure. Recently, traditional data mining techniques

such as clustering, classification, frequent pattern

mining and indexing have now been extended to the

graph [4, 78]. Different examples of graph represented

data are shown in Figure 1(a) to Figure 1(d).

(a) Interaction network (b) Molecular graph

(c) Behavior graph (d) Bibliography graph

Figure 1. Different graphs represented Data

Graph mining is a well-explored area of research in

which voluminous complex data are represented in the

form of graphs and mining is done to infer knowledge

from them [79]. Graph mining is widely used for

several applications, for example, 3D motifs discovery

in protein structures [5-6], extracting significant

subgraphs from protein-protein interaction networks

[7-8], link spam detection in web data [9-10], mining

attributed patterns over semantic data [11-12], drug

discovery [14-15], discovering relationships in social

networking web sites [15-16, 28], discovery of dense

subgraph [18-20], among others. In graph mining

algorithms, typically a labelled and immutable graph is

used as an algorithm input and during mining process

those patterns are mined satisfying some algorithm-

258 Journal of Internet Technology Volume 20 (2019) No.1

specific property (such as frequency above some user

provided threshold). Some popular graph mining sub-

domains are included: graph searching [21-22],

Approximate graph pattern mining [23-25], Graph

classification [26-27], Frequent subgraph mining [29],

Web structure mining [30-31], Graph indexing [3, 32].

Frequent Subgraph Mining (FSM) is the core

research area of graph mining. FSM aims to discover

all the subgraph patterns, whose occurrences within a

graph dataset are above a user-defined threshold. These

subgraph patterns are called Frequent Subgraph

Patterns (FSPs, hereafter). Theoretically, FSM can be

formulated as a search in a search space, modelled by a

lattice, consisting of all possible subgraph patterns [14].

FSM plays an essential role in many graph mining

applications such as chemical compound analysis [12,

21], document image clustering [33], software bug [34],

web content mining [35-38], social network mining

[39-42], email mining [43-45] and anomaly detection

[46-47]. Over the period, 1994 to present, large number

of FSM algorithms are proposed. These FSM

algorithms have been highlighted in Section 3,

Literature review on FSM, in this article.

In this paper, we aim to propose an effective and

efficient novel FSM approach called A RAnked

Frequent pattern-growth Framework (A-RAFF). In the

proposed A-RAFF, labelled undirected graph datasets

are used. A-RAFF is based on pattern-growth. This is

due to the fact that pattern-growth discovers the entire

set of frequent subgraphs patterns without involving

costly operation of candidate generation [28]. A-RAFF

involves a novel ranking mechanism to rank the

discovered FSGs and thus results in most interesting

and significant subgraph patterns. A detailed

discussion on A-RAFF is provided in Section 4 of this

paper. The A-RAFF preliminary experimental results

obtained from different benchmark graph datasets are

promising and demonstrated that the A-RAFF

approach can mine all FSPs in a more efficient manner

as compared to the existing FSM approaches such as

gSpan, Close-Graph, SPIN, FFSM, FSP, Gaston. The

contribution of this paper may thus be summarized as:

(i) summarization of different well-known FSM

techniques based on different identified common

characteristics; (ii) a novel frequent subgraph pattern

discovery architectural framework, called A-RAFF

with embedded ranking mechanism of frequent

subgraph; (iii) an efficient and effective frequent

subgraph discovery algorithm; (iv) experimental

evaluation of the proposed A-RAFF; (v) performance

evaluation of the proposed A-RAFF with the state-of-

the art FSM approaches on different graph datasets.

The rest of this paper is organized as follows. Some

background knowledge about graph theoretic is

described in Section 2. Section 3 discusses about the

related work. Problem formulation and the proposed

A-RAFF technique are discussed in Sections 4. Section

5 and Section 6 discuss about the Experimental settings

and Performance evaluations respectively. This paper

is closed with Conclusion and future work in Section 7,

followed by the Acknowledgement and References.

2 Graph Preliminaries

Most of the concepts in graph mining are directly

taken from graph theory. For better understanding,

there are some mathematical terms that need to be

discussed before proceeding on to the research work

done in this study. Here defined terminologies are

frequently used in this work. Different graph notations

used throughout the paper are given in Table 1.

Table 1. Different notations used in this paper

Notation Description

GD Graph Database

E(G) An edge of a graph G

G A graph in graph database

DFS Depth First Search

BFS Breadth first search

V(G) Vertex of a graph G

GI Graph isomorphism

FSGs Frequent Subgraphs

FSM Frequent Subgraph Mining

FSPs Frequent Subgraph Patterns

Definition 1: A graph { , }G V E= consists of a set of

objects
1 2

{ , , , }
n

V v v v= … called vertices or nodes and

another set of objects
1 2

{ , , , }
n

E e e e= … called edges.

The order of a graph is denoted by |V | and size by | E |.

Definition 2: A graph
2 2 2

{ , }G V E= is a subgraph of

another graph
1 1 1

{ , }G V E= iff
2 1

V V⊆ and
2 1

E V⊆

1 2 2 1 2
(,)V V E V V∧ ∈ → ∈ and

2 2
v V∈ . The G1 is called a

supergraph of G2.

Definition 3: Let
1 1 1 1 1

(, , ,)G V E α β= and
2

G =

2 2 2 2
(, , ,)V E α β be two graphs. G2 is an induced

subgraph of G1,if 2 1
V V⊆ , α1 (v) = α2 (v) for all v ∈ V2,

E2= E1 ∩ (V2 × V2), and β1 (e) = β2 (e) for all e ∈E2.

Given a graph
1 1 1 1 1

(, , ,)G V E α β= , if any subset

V2∈V1of its vertices uniquely defines a subgraph, this

subgraph is called the subgraph induced by V2.

Definition 4: Two graphs
1 1 1

(,)G V E= and
2 2 2

(,)G V E=

are isomorphic if they are topologically identical to

each other, that is, there is a mapping from G1to G2

such that each edge in E1 is mapped to a single edge in

E2 and vice versa. In the case of labelled graphs, this

mapping must also preserve the labels on the vertices

and edges.

Definition 5: Given two graphs
1 1 1

(,)G V E= and

2 2 2
(,)G V E= , the problem of (sub) graph isomorphism

(GI) is to find an isomorphism between G2 and a

subgraph of G1, that is, to determine whether or not G2

is included in G1.

A-RAFF: A Ranked Frequent Pattern-growth Subgraph Pattern Discovery Approach 259

Definition 6: Support threshold is an interestingness

measure (normally a numeric value) supplied by the

user. In the mining process, this measure is used to

check whether a given object (graph, cluster, itemset

etc.) passes the support threshold value or not. Usually,

during the mining process, those objects are kept in the

result set which meet this support threshold where as

others are ignored or removed in future steps of the

mining process. In graph mining, the support threshold

is given by,

1

() / | |Support G G N= (1)

In the above Eq. (1)
n

G represents the graph

database transactions which contain a specific graph G

and N denotes total number of graphs in the given

graph database [48].

Definition 7: A frequent subgraph (FSG) is a graph

whose support is no less than a minimum user

specified support threshold (σ). Given a labelled graph

dataset
1 2

{ , , , }
n

GD G G G= … , support or frequency of

a subgraph g is the percentage (or number) of graphs in

GD where g is a subgraph [49-50]. In Figure 2, an

example of the FSG is given. The graphs in Figure 2 (a)

and Figure2(b) represents two chemical compounds

Theobromine and Caffeine respectively. If the support

threshold is assumed to be 2, i.e.σ > =2, then the

subgraph structure given in Figure 2(c) gives one of the

possible FSGs which is found in both graphs of the

chemical compounds (as its support value σ = 2).

(a)- Theobromine (b)- caffeine

(c)-Frequent subgraph

Figure 2. Two chemical graphs and their frequent

subgraph

3 Literature Review on FSM

Development of frequent subgraph algorithms is

particularly challenging and computationally, as graph

and subgraph isomorphism play very significant role

throughout the computation.

It is widely accepted in the literature that FSM

techniques are classified into two categories: (1)

Apriori-based approaches; and (2) pattern growth-

based approaches [48, 54-57]. These two categories are

similar in spirit to counterparts found in association

rule mining, namely the Apriori algorithm and pattern-

growth algorithm [4] respectively. Both of these

approaches aim to identify the frequently occurring

subgraph patterns from a given collection of small

graph sets or within one large graph. These two

approaches are different from each other in the way

they mine the FSPs.

In the last few decades, numerous FSM algorithms

developed in both approaches such as FSG [53], FS3

[63], AGM [51], gSpan [52], CloseGraph [58],

Subdigger [64], SPIN [59], Gaston [50], Mofa [33],

Margin [61] and LC-. mine [65], FSP [77]. In this work,

different FSM techniques are summarized in Table 3

and Table 4 at the end of this paper based on the

different identified common parameters found in these

approaches. These include (1) nature of the graph

inputs; (2) FSM techniques output nature; (3) search

strategy adopted by the each FSM technique; (4) graph

type addressed; (5) graph representation; (6)

isomorphic test used; and (7) candidate generation

methodology. Interested readers are further referred to

the latest FSM survey articles [13, 48, 54-57].

Although, different FSM algorithms have been used

effectively to discover FSGs in domains involving

subgraphs which are relatively small in volume.

However, when such FSM algorithms are applied to

more substantial domains, including image mining,

text mining and social network mining, the

computational complexity becomes critically very high

due to the combinatorial explosion, encountered with

respect to the number of possible FSPs [48, 80].

Therefore, many existing approaches to FSM cannot

cope with large graph datasets [49-52]. Moreover,

mostly FSM techniques mine a prohibitively large

number of FSGs during the mining process. This is due

to the fact that support threshold (σ) is kept low as the

FSM algorithms attempt not to miss any significant

FSPs [48]. Therefore, affecting the performance of the

FSM algorithm, as the analysis of a large number of

frequent subgraph patterns is both difficult as well as

resource intensive [20, 42, 57, 64]. Therefore, there is a

dire need to devise such an algorithm which can handle

datasets of massive size and reduce the number of

FSPs with no compromise on missing of any

significant FSPs. To address these issues, in this paper

a new FSM technique is proposed, called A-RAFF. A-

RAFF can mine FSGs more efficiently as compared to

other FSM techniques. This is discussed in the next

section in details.

260 Journal of Internet Technology Volume 20 (2019) No.1

Table 3. Apriori approach FSM Techniques Comparison

Isomorphic Test Graph Type Input Nature Authors &

Techniques
Search Strategy

SubgraphGeneration Graph Representation Output Nature

Exact General Graphs Set of graphs
SPIN [59]

Greedy

Search Join Adjacency Matrix Maximal Frequent subgraphs

Exact Undirected Set of graphs
FSG [53] BFS

Level-wise join Adjacency List Frequent Connected Subgraphs

Exact Not limited Set of graphs
AGM [51] BFS

Level-wise join Canonical Adjacency Matrix Incomplete

Adjustable Labelled, Undirected Single Large Graph

HSIGRAM [76] BFS
Level-wise join

Canonical Adjacency

Matrix
Frequent Subgraphs

Exact Labelled, Undirected Set of graphs
FFSM [60] DFS

Join extension Adjacency Matrix Frequent Subgraphs

Exact Dynamic graphs Uncertain set of Graphs

Dynamic GREW [62] DFS
Level-wise join Adjacency Matrix

Dynamic patterns in Frequent

Subgraphs

Table 4. Pattern growth based approach FSM Techniques Comparison

Isomorphic Test Graph Type Input Nature
Authors & Techniques Search Strategy

Subgraph Generation Graph Representation Output Nature

Exact Labelled, Undirected Set of graphs
gSpan [52] DFS

Rightmost Extension Adjacency Matrix Complete

Exact Static Set of graphs
CloseGraph [58] DFS

Rightmost Extension Adjacency Matrix Incomplete

Approximate Labelled Single Large Graph
SUBDUE [29] Greedy

Level-wise Search Adjacency Matrix Complete

Exact Labelled, Undirected Set of graphs
GASTON [50] DFS

Extension Hash Table Complete

Exact Labelled, Undirected Set of graphs
MOFA [33] DFS

Rightmost Extension Adjacency Matrix Complete

Exact Dynamic Set of graphs
TSP [49] DFS

Extension Adjacency Matrix Incomplete

4 A Proposed Frequent Subgraph Mining

Approach: A-RAFF

In this section, the proposed FSM approach called

A-RAnked Frequent pattern-growth Framework (A-

RAFF) for FSGs discovery is described, highlighting

the major characteristics of the A-RAFF.

In the proposed FSM approach, labelled undirected

graph datasets are used. The goal of A-RAFF

framework is to discover a small collection of ranked

frequent subgraphs patterns from a database of labelled

input graphs. A-RAFF used the basic characteristics of

the pattern-growth scheme to discover the FSPs, which

is solely works on the divide and conquer strategy. A-

RAFF is based on pattern-growth as pattern-growth

discover the entire set of frequent subgraphs patterns

without involving costly operation of candidate

generation during the mining process. An abstract level

architectural framework for A-RAFF is shown in

Figure 3 and the complete algorithms involved in A-

RAFF are given in Figures 4, Figure 5 and Figure 6.

Figure 3. Architectural framework of the proposed A-

RAFF

A-RAFF: A Ranked Frequent Pattern-growth Subgraph Pattern Discovery Approach 261

Proposed Algorithm 1. A-RAFF (, ,RFσ)

Input: = a graphs dataset of the labelled undirected graphs

σ =minimum threshold

Output: RF , a set of ranked frequent subgraphs

1. count all the features and put in the feature set “F”

2. for each feature f in the F-set do

3. Identify most informative graph features

4. repeat until all features are checked

5. partition the graph using KaHIP Tool based on an F-set [71]

6. F φ← F denotes the frequent subgraph patterns set

7. F ← discovered 1-frequent subgraphs patterns

8. for each graph _ ,
i i

g partition G∈ do

9. FSPs (, _ , ,
i

g partition Fσ)

10. end

11. FSP-Rank(F)

12. return RF

Figure 4. Proposed Algorithm for A-RAFF

Proposed Algorithm 2. FSPs (_ , ,
i

g partition RFσ)

Output: Fmined frequent subgraph patterns

1. if _ _ ,g i partition F∈ then

2. return

3. else

4. _

i
F F g partition← ∪

5. end

6. extend _

i
g partition by adding all edges “e” ∈ such that

7. _ _

i i
extended g g partition e← ∪

8. for each _

i
extended g from Line. (7) do

9. if support (_

i
extended g) ≥ σ | | then

10. FSPs(, _ , ,
i

extended g Fσ)

11. else

12. return

13. end

14. return F

Figure 5. Proposed Algorithm for FSPs discovery

Proposed Algorithm 3. FSP-Rank (FSPs, RF)

Input: FSPs = frequent subgraph patterns

Output: RF, set of ranked frequent subgraph patterns

1. compute λ using (3)

2. for each FSP in FSPs do

3. score
0

()
n

i

i

D

=

←∑ (in−degree+out−degree)

4. compute ()
k

f R using (2)

5. RF RF FSP← ∪

6. next

7. return RF

Figure 6. Proposed Algorithm for FSP-Rank measure

The A-RAFF has two layers: graph pre-processing

layer and graph patterns mining layer. In A-RAFF,

different labelled undirected graphs are stored in graph

databases. There are two functions of the graph pre-

processing layer: first function is to extract the relevant

graph dataset features, therefore ignoring/removing

those features which are less interesting as compared to

other features. The second function of the pre-

processing layer is graph partitioning. Different graph

partitioning algorithms exist in the literature [66-70,

72-73]. In A-RAFF, the graphs are partitioned using

well-know graph partitioning tool KaHIP [71].

In the KaHIP tool, Sander and Schulz implemented

a multilevel graph partitioning scheme called KaFFPa

(Karlsruhe Fast Flow Partitioning). KaFFPa algorithm

exploits a novel local improvement algorithm which is

based on max-flow and min-cut computations.

Furthermore, KaFFPa used more localized FM

searches in addition to involving of a sophisticated

global search strategies transferred from multi-grid

linear solvers problem [72].

The graph pattern mining layer is the core layer of

A-RAFF framework. This layer is responsible to

discover the ranked FSPs. At the beginning of A-RAFF,

a list of frequent subgraphs is derived such that the

subgraphs are organized in descending order of the

frequency computed value. Furthermore, using this

frequency descending list, the graph collection is

compressed into required frequent pattern tree (FP-

tree). This FP-tree structure also maintains the

subgraphs association minutiae. The creation of this

FP-tree structure is the fundamental requirement of the

pattern-growth approaches to FSM. Moreover, in this

layer, a ranking of the discovered FSPs is incorporated.

For FSPs ranking, FSP-Rank measure is proposed.

The ranking of the FSPs is performed to avoid the

repetitive generation of the FSPs, therefore, reducing

the resultant frequent subgraph patterns. In A-RAFF,

FSP-Rank measure is proposed to calculate the Rank

of the discovered FSPs. FSP-Rank is computed using

the following equation:

1

| |
() (1)* ()

n

i

k i

i i

D
f R W

n
λ λ

=

= − +∑ (2)

In Eq. (2), is a normalized factor which is

computed using equation (3). The value of λ can be

between [0, 1]. W shows the sum of the weight

associated with the vertices in the ith frequent subgraph.

denotes the degree of the ith frequent subgraphs and

denotes the total number of vertices in the ith frequent

subgraph.

 1

1

()

()

()

n

i

i

n

i

i

FSG

T V

λ
=

=

=

∑

∑

 (3)

In Eq. (3),
i

FSG corresponds to the number of

discovered frequent subgraph and ()
i

T V represents the

total number of the vertices found in all of the n

frequent subgraphs discovered.

In any of the FSM technique graph isomorphism (GI)

detection is fundamental. A significant number of

262 Journal of Internet Technology Volume 20 (2019) No.1

efficient schemes have been proposed with the

objective to reduce the computational overhead allied

with GI problem. To perform GI checks, canonical

labeling has been successfully used. In canonical

labeling, each graph is assigned to a unique code (i.e. a

sequence of bits, a string, or a sequence of numbers).

This code is invariant on the ordering of the vertices

and edges in the graph [74-75]. After assigning a

unique code to each graph using canonical labels, GI is

performed by comparing whether they have identical

canonical labels. In the proposed FSM approach, A-

RAFF, graph isomorphism is performed using the

canonical labeling strategy adopted by [62].

Complexity Analysis: The proposed algorithm, A-

RAFF, is based on the pattern-growth category. This is

due to the fact that the FSM algorithms based on the

pattern-growth approaches are more efficient in

computational complexity than the algorithms using an

Apriori approach [13]. Graph isomorphism is an

unavoidable issue faced by all subgraph mining

algorithm, and is a NP-hard problem which cannot be

solved in polynomial time.

Both canonical labelling and determining graph

isomorphism are not known to be either in P or in NP-

complete [74]. In the proposed scheme, the canonical

labelling strategy is used from [62], as it fully makes

use of edge and vertex-labels for fast processing and

various vertex invariants to reduce the complexity of

determining the canonical label of a graph.

In addition to the canonical labelling and graph

isomorphism, the computational complexity of the

proposed A-RAFF algorithm mainly depends on

computation involved in the discovery of FSPs and

ranking of the frequent subgraphs. Thus, computational

complexity for the loop used for the extraction of the

graph features is ()O n , where n is total of graph

features. The same is also defined for FSP-Rank. In the

FSPs algorithm, there is recursion involved inside the

loop. Therefore, it can easily be observed that it will

compute all the frequent subgraph patterns in
2

(2)N
O

time.

5 Experiment Settings

This section presents details about the

experimentsettings.

5.1 Experimentation Environment

A set of different experiments is performed to

evaluate the performance of A-RAFF. All of these

experiments are performed on a 32-bit machine

running the Linux operating system with 6 GB

memory and 3.0 GHz Intel processor. A-RAFF is

implemented using Java. For the purpose of A-RAFF

evaluation, FFSM, FSP, CloseGraph are re-

implemented in Java. The executable of gSpan and

Gaston are obtained from their respective authors.

5.2 Dataset Introduction

Three different graph datasets are used in the

experiment. These datasets are included Chemical

Compound, AIDS antiviral screen compound and DTP

human tumor cell line screen (CANSO3SD).

Table 2. Dataset Statistics

Dataset Dataset Description

DTP human tumor

cell line screen

(CANSO3SD)

This dataset consists of 42,247

molecules. Each molecule corresponds

to a graph, atoms are represented using

nodes and the bonds between them are

represented by edges.

Chemical

Compound

340 chemical compounds, 24 different

atoms, 66 atom types, and 4 types of

bonds.

On average 27 vertices per graph and

28 edges per graph. The largest one

contains 214 edges and 214 vertices.

AIDS antiviral

screen compound

The dataset contains 43,095 chemical

compounds

The compounds are classified into

three classes.

41179 belong to CI (Confirmed

Inactive), 1081 belong to CM

(Confirmed Moderately active) and

422 belong to CA (Confirmed Active)

For the preliminary analysis, these three graph

datasets are used becausemost of the FSM techniques

performed the performance comparison using these

benchmark graph datasets. The statistics of each of the

graph datasets are given in Table 2.The graph datasets

considered are divided into two subsets. 80% of each

graph dataset is used for training and 20% of the each

graph dataset is reserved for testing of the A-RAFF.

5.3 Evaluation Parameters

Support Threshold (σ) is the most important

parameter in any of the FSM schemes. The value of

Support Threshold (σ) is set to 20, 30, 40 and 50. The

performance of the A-RAFF with its counterparts FSM

approaches is evaluated using this different range of

values of σ. A detailed discussion on the performance

evaluation is given in the forthcoming section of this

paper.

6 Performance Evaluations

A series of different experimentation is performed

on the real benchmark graph datasets. The following

experiments are conducted to demonstrate the

performance of A-RAFF as compared to the other

well-know FSM approaches. Another factor considered

during the performance comparison is the computation

time. A detailed analysis is highlighted in this section.

Experiment 1. DTP human tumor cell line screen

(CANSO3SD): First experiment is performed using

A-RAFF: A Ranked Frequent Pattern-growth Subgraph Pattern Discovery Approach 263

DTP human tumor cell line screen (CANSO3SD)

graph dataset. The computation time required to

discover and rank the FSPs are taken on different

threshold value ranging from 20 to 50 is given in

Figure 7.

Figure 7. Performance comparison of various FSM

with A-RAFF on DTP human tumor cell line screen

(CANSO3SD)

These results depict that in most cases, the proposed

FSM approach A-RAFF discovered and ranked all the

frequent subgraphs in less time as compare to the

computational time of other FSM techniques

considered for comparison.

Experiment 2. Chemical Compound: In the second

experiment for A-RAFF comparisons, the Chemical

Compound dataset was used. The experimental results

of the discovery of FSPs using A-RAFF and other

competing FSM techniques are shown in Figure 8.

Figure 8. Performance comparison of various FSM

with A-RAFF on Chemical Compound

In the experiment, it is observed that as the (σ) value

is increased, the time required to discover the FSGs is

also decreased. In chemical compound dataset the

performance of A-RAFF is very promising and A-

RAFF beat the other FSM techniques.

Experiment 3. AIDS antiviral screen compound: In

the last experiment, AIDS antiviral screen compound

graph dataset was used. In this dataset, A-RAFF

performance on different threshold values is given in

Figure 9. The proposed A-RAFF performed well in this

experiment as well, except at 50support threshold

values, performance of proposed A-RAFF was same as

that of FFSM & FSP and CloseGrpah has performed

well as compare to A-RAFF. In other cases, A-RAFF

has beaten the other FSM techniques.

Figure 9. Performance comparison of various FSM

with A-RAFF on AIDS antiviral screen compound

By looking at the different experimental results

given in Figure 7, Figure 8 and Figure 9, the proposed

FSM scheme A-RAFF was much better than the other

well-known FSM techniques for the extraction of

frequent subgraph patterns. Moreover, in some

exceptional cases CloseGraph perform well this is due

to the fact that CloseGraph only focus on those graphs

which are closed, but the proposed A-RAFF has

discovered all the possible FSGs. The results of Gaston

tool were better on the AIDS antiviral screen

compound graph dataset. Although, A-RAFF beat the

Gaston on two out of three graph datasets, we are

investigating that why A-RAFF cannot outperform

Gaston tool.

7 Conclusions and Future Work

In this paper, the problem of rank frequent subgraph

pattern discovery is investigated. An algorithm and a

framework are presented called A-RAFF. A-RAFF

falls in the pattern-growth category of FSPs. A-RAFF

framework is decomposed into two distinctive layers.

First layer, graph pre-processing layer, is responsible to

select the most useful features for the graph and then

the graphs are partitioned. In the proposed A-RAFF,

KaHIP tool is used to partition the graph dataset.

Graph pattern mining layer is the core layer of the A-

RAFF. The outcome of the second layer is the ranked

FSPs. In A-RAFF framework a novel ranking method

is proposed. The efficiency of the A-RAFF is also

confirmed by different benchmark real graph datasets,

which are used in most of the FSM approaches.

Furthermore, the performance of the A-RAFF is also

examined, with gSpan, FFSM, CloseGraph, Gaston,

SPIN and FSP, through extensive experiments. There

is ample room for the future work in the proposed

framework, A-RAFF. In future A-RAFF can be

extended to big graph datasets such as obtained from

social networking sites. Dynamic graphs can also be

incorporated in the A-ARFF. One of the possible future

scope of the present study can be to consider the

264 Journal of Internet Technology Volume 20 (2019) No.1

different other graph features such as betweenness

centrality, closeness centrality, average path length etc.,

while performing the ranking of the FSGs.

Acknowledgments

The authors would like to thank University of

Kansas for sharing FFSM source code Mr. Xifeng Yan

and Professor Jiawei Han in University of Illinois at

Urbana Champaign for making available the gSpan

executable. We, the authors of this article, really

appreciate the valuable suggestions and feedbacks of

all the anonymous reviewers of the article. Their

valuable suggestions helped us to improve our work to

give it the current shape.

References

[1] M. S. Chen, J. Han, P. S. Yu, Data Mining: An Overview

from Database Perspective, IEEE Transaction on Knowledge

and Data Engineering, Vol. 8, No. 6, pp. 866-883, December,

1996.

[2] J. Han, P. Jian, K. Micheline, Data Mining: Concepts and

Techniques. Elsevier, 2011.

[3] X. Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent

Structure-based Approach, Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data,

ACM, Paris, France, 2004, pp. 35-346.

[4] C. Aggarwal, H. Wang, Managing and Mining Graph Data,

Springer, 2010.

[5] W. Dhifli, E. M. Nguifo, Motif Discovery in Protein 3D-

Structures Using Graph Mining Techniques, in: M. Elloumi,

A. Y. Zomaya (Eds.), Pattern Recognition in Computational

Molecular Biology: Techniques and Approaches, Wiley, 2015,

pp. 17-26.

[6] W. Dhifli, A. B. Diallo, PGR: A Graph Repository of Protein

3D-Structures, arXiv preprint arXiv: 1604.00045, January,

2016.

[7] P. Bertolazzi, M. Bock, C. Guerra, On the Functional and

Structural Characterization of Hubs in Protein-protein

Interaction Networks, Biotechnology Advances, Vol. 31, No.

2, pp. 274-286, April, 2016.

[8] J. Ji, A. Zhang, C. Liu, X. Quan, Z. Liu, Survey: Functional

Module Detection from Protein-protein Interaction Networks,

IEEE Transactions on Knowledge and Data Engineering, Vol.

26, No. 2, pp. 261-27, February, 2014.

[9] S. Kumar, X. Gao, I. Welch, M. Mansoori, A Machine

Learning Based Web Spam Filtering Approach, 2016 IEEE

30th International Conference on Advanced Information

Networking and Applications (AINA), Crans-Montana,

Switzerland, 2016, pp. 973-980.

[10] N. Spirin, J. Han, Survey on Web Spam Detection: Principles

and Algorithms, ACM SIGKDD Explorations Newsletter, Vol.

13, No. 2, pp. 50-64, May, 2012.

[11] A. Silva, W. Meira, M. J. Zaki, Mining Attribute-structure

Correlated Patterns in Large Attributed Graph, Proceedings

of the VLDB Endowment, Vol. 5, No. 5, pp. 466-477, January,

2012.

[12] A. Prado, M. Plantevit, C. Robard, J. F. Boulicaut, Mining

Graph Topological Patterns: Finding Covariations among

Vertex Descriptors, IEEE Transactions on Knowledge and

Data Engineering, Vol. 25, No. 9, pp. 2090-2104, September,

2013.

[13] S. Velampalli, V. M. Jonnalagedda, Frequent SubGraph

Mining Algorithms: Framework, Classification, Analysis,

Comparisons, Data Engineering and Intelligent Computing,

Springer, Singapore, 2018, pp. 327-336.

[14] I. Takigawa, H. Mamitsuka, Graph Mining: Procedure,

Application to Drug Discovery and Recent Advances, Drug

Discovery Today, Vol. 18, No. 1, pp. 50-57, January, 2013.

[15] P. Csermely, T. Korcsmáros, H. J. Kiss, G. London, R.

Nussinov, Structure and Dynamics of Molecular Networks: A

Novel Paradigm of Drug Discovery: A Comprehensive

Review, Pharmacology & Therapeutics, Vol. 138, No. 3, pp.

333-408, June, 2013.

[16] M. Sachan, D. Contractor, T. A. Faruquie, L. V.

Subramaniam, Using Content and Interactions for

Discovering Communities in social Networks, Proceedings of

the 21st International Conference on World Wide Web, Lyon,

France, 2012, pp. 331-340.

[17] I. Guy, Social Recommender Systems, in: Recommender

Systems Handbook, Springer US, 2015, pp. 511-543.

[18] A. Gionis, C. Sourakakis, Dense Subgraph Discovery: Kdd

2015 Tutorial, Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, Sydney, NSW, Australia, 2015, pp. 2313-2314.

[19] J. Chen, Y. Saad, Dense Subgraph Extraction with

Application to Community Detection, IEEE Transactions on

Knowledge and Data Engineering, Vol. 24, No. 7, pp. 1216-

1230, July, 2012.

[20] S. Koujaku, I. Takigawa, M. Kudo, H. Imai, Dense Core

Model for Cohesive Subgraph Discovery, Social Networks,

Vol. 44, pp. 143-152, January, 2016.

[21] X. Yan, F. Zhu, J. Han, P. S. Yu, Searching Substructures

with Superimposed Distance, Proceedings of the 22nd

International Conference on Data Engineering, Atlanta, GA,

2006, pp. 88-97.

[22] C. Chen, X. Yan, P. S. Yu, J. Han, D.Q. Zhang, X. Gu.

Towards Graph Containment Search and Indexing,

Proceedings of the 33rd International Conference on Very

Large Data Bases, Vienna, Austria, 2007, pp. 926-937.

[23] Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R.

Stockwell, T. Ideker, Conserved Pathways within Bacteria

and Yeast as Revealed by Global Protein Network alignment,

Proceedings of the National Academy of Science of the

United States of America, Vol. 100, No. 20, pp. 11394-11399,

September, 2003.

[24] R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P.

Uetz, T. Sittler, R. M. Karp, T. Ideker, Conserved Patterns of

Protein Interaction in Multiple Species, Proceedings of the

National Academy of Science of the United States of America

Vol. 102 No. 6, pp. 1974-1979, February, 2005.

A-RAFF: A Ranked Frequent Pattern-growth Subgraph Pattern Discovery Approach 265

[25] C. Chen, X. Yan, F. Zhu, J. Han, Gapprox: Mining Frequent

Approximate Patterns from a Massive Network, Proceedings

of the 7th IEEE International Conference on Data Mining,

Omaha, NE, 2007, pp. 445-450.

[26] T. Kudo, E. Maeda, Y. Matsumoto, An Application to

Boosting to Graph Classification, Proceedings of the 8th

Annual Conference on Neural Information Processing

Systems, Vancouver, British Columbia, Canada, 2004, pp.

729-736.

[27] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins,

A. Tropsha, Mining Protein Family Specific Residue Packing

Mining Protein Family Specific Residue Packing Patterns

from Protein Structure Graphs, 8th Annual International

Conference on Research in Computational Molecular Biology,

San Diego, CA, 2004, pp. 308-315.

[28] R. Irfan, G. Bickler, S. U. Khan, J. Kolodziej, H. Li, D. Chen,

L. Wang, K. Hayat, S. A. Madani, B. Nazir, I. A. Khan,

Survey on Social Networking Services, IET Networks, Vol. 2,

No. 4, pp. 224-234, December, 2013.

[29] B. Holder, D. Cook, S. Djoko, Substructure Discovery in the

SUBDUE System, AAAIWS’94 Proceedings of the 3rd

International Conference on Knowledge Discovery and Data

Mining, Seattle, WA, 1994, pp. 169-180.

[30] S. Brin, L. Page, The Anatomy of a Large Scale Hyper-

textual Web Search Engine, Computer Networks and ISDN

System, Vol. 30, No. 8, pp. 107-17, September, 1998.

[31] J. M. Kleinberg, Authoritative Sources in a Hyperlinked

Environment, Journal of the ACM (JACM), Vol. 46, No. 5, pp.

668-677, September 1998.

[32] D. Shasha, J. Wang, R. Giugno, Algorithms and Applications

of Tree and Graph Searching, Proceedings of the 21st ACM

SIGMOD-SIGACT-SIGART Symposium on Principles on

Database Systems, Madison, WI, 2002, pp. 39-52.

[33] C. Borgelt, M. R. Berthold, Mining Molecular Fragments:

Finding Relevant Substructures of Molecules, IEEE

International Conference on Data Mining ICDM 2003,

Maebashi, Japan, 2002, pp. 51-58.

[34] F. Eichinger, K. Böhm, M. Huber, Mining Edge Weighted

Call Graphs to Localise Software Bugs, Joint European

Conference on Machine Learning and Knowledge Discovery

in Databases, Antwerp, Belgium, 2008, pp. 333-348.

[35] A. Schenker, H. Bunke, M. Last, A. A. Kandel, A Graph

Based Framework for Web Document Mining, in: S. Marinai,

A. R. Dengel (Eds.), Document Analysis Systems VI, Springer

Berlin Heidelberg, 2004, pp. 401-412.

[36] R. Baeza, P. Boldi, Web Structure Mining, in: J. D.

Velásquez, L. C. Jain (Eds.), Advanced Techniques in Web

Intelligence-I, Springer Berlin Heidelberg, 2010, pp. 113-142.

[37] B. Panda, S. N. Tripathy, N. Sethi, O. P. Samantray, A

Comparative Study on Serial and Parallel Web Content

Mining, International Journal of Advanced Networking and

Applications, Vol. 7 No. 5, pp. 2882, March, 2016.

[38] S. Algur, P. Bhat, Web Video Object Mining: Expectation

Maximization and Density Based Clustering of Web Video

Metadata Objects, International Journal of Information

Engineering and Electronic Business, Vol. 8 No. 1, p. 69,

January, 2016.

[39] S. Chakradeo, R. Abraham, B. Rani, B. Manjula, Data Mining:

Building Social Network, Indian Journal of Science and

Technology, Vol. 8 No. S2, pp. 212-216, January, 2015.

[40] F. Jiang, K. Kawagoe, C. Leung, Big Social Network Mining

for Following Patterns, Proceedings of the Eighth

International Conference on Computer Science & Software

Engineering, ACM, Yokohama, Japan, 2015, pp. 28-37.

[41] J. Tang, Y. Chang, C. Aggarwal, H. Liu, A Survey of Signed

Network Mining in Social Media, arXiv preprint arXiv:

1511.07569, 2015.

[42] H. H. Shuai, C. Y. SheN, D. N. Yang, Y. F. Lan, W. C. Lee, P.

s. Yu, M. S. Chen, Mining Online Social Data for Detecting

Social Network Mental Disorders, Proceedings of the 25th

International Conference on World Wide Web, Montréal,

Québec, Canada, 2016, pp. 275-285.

[43] M. Aery, S. Chakravarthy, InfoSift: Adapting Graph Mining

Techniques for Text Classification, FLAIRS Conference,

Clearwater Beach, FL, 2005, pp. 277-282.

[44] G. Tang, J. Pei, W. S. Luk, Email Mining: Tasks, Common

Techniques, and Tools, Knowledge and Information Systems,

Vo. 41, No.1, pp. 1-31, October, 2014.

[45] L. Alsmadi, I. Alhami, Clustering and Classification of email

Contents, Journal of King Saud University-Computer and

Information Sciences, Vol. 27, No. 1, pp. 46-57, January,

2015.

[46] C. Noble, D. Cook, Graph-based Anomaly Detection,

Proceedings of the 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

Washington, DC, 2003, pp. 631-636.

[47] W. Eberle, L. Holder, Discovering Structural Anomalies in

Graph-based Data, Proceeding of the 7th IEEE International

Conference on Data Mining Workshops, Washington, DC,

2007, pp. 393-398.

[48] S. U. Rehman, S. Asghar, Y. Zhuang, S. Fong, Performance

Evaluation of Frequent Subgraph Discovery Techniques, In

Mathematical Problems in Engineering, Vol. 2014, No. 2, pp.

1-6, August, 2014.

[49] M. Lahiri, T. Y. Berger-Wolf, Structure Prediction in

Temporal Networks Using Frequent Subgraphs, IEEE

Symposium on Computational Intelligence and Data Mining,

Honolulu, HI, 2007, pp. 35-42.

[50] S. Nijssen, J. N. Kok, A Quick Start in Frequent Structure

Mining Can Make a Difference, Proceedings of the 10th

ACM SIGKDD international conference on Knowledge

Discovery and Data Mining, Seattle, WA, 2004, pp. 647-652.

[51] Inokuchi, T. Washio, H. Motoda, An Apriori-based

Algorithm for Mining Frequent Substructures from Graph

Data, Proceeding of 2000 Practice of Knowledge Discovery

in Databases Conference (PKDD), London, UK, 2004, pp.

13-23.

[52] X. Yan, J. Han, gSpan: Graph-Based Substructure Pattern

Mining, Proceeding of IEEE International Conference on

Data Mining, Maebashi, Japan, 2002, pp. 721-723.

[53] M. Kuramochi, G. Karypis, Frequent Subgraph Discovery,

Proceeding of the Conference on Data Mining, Piscataway,

266 Journal of Internet Technology Volume 20 (2019) No.1

San Jose, CA, 2001, pp. 313-320.

[54] K. Lakshmi, T. Meyyappan, A Comparative Study of

Frequent Subgraph Mining Algorithms, International Journal

of Information Technology Convergence and Services

(IJITCS), Vol. 2, No. 2, pp. 23-39, April, 2012.

[55] T. Ramraj, R. Prabhakar, Frequent Subgraph Mining

Algorithms–A Survey, Procedia Computer Science, Vol. 47,

pp. 197-204, January, 2015.

[56] V. Krishna, N. R. Suri, G. Athithan, A Comparative Survey

of Algorithms for Frequent Subgraph Discovery, Current

Science (Bangalore), Vol. 100, No. 2, pp. 190-198, January,

2011.

[57] C. Jiang, F. Coenen, M. Zito, A Survey of Frequent Subgraph

Mining Algorithms, The Knowledge Engineering Review, Vol.

28, No. 1, pp. 75-105, March, 2013.

[58] X. Yan, J. Han, Closegraph: Mining Closed Frequent Graph

Patterns, Proceeding of the 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

Washington, DC, 2003, pp. 286-295.

[59] J. Huan, W. Wang, J. Prins, J. Yang, SPIN: Mining Maximal

Frequent Subgraphs from Graph Databases, Proceedings of

the 10th ACM SIGKDD international conference on

Knowledge discovery and data mining, Seattle, WA, 2004, pp.

581-586.

[60] J. Huan, W. Wang, J. Prins, Efficient Mining of Frequent

Subgraphs in the Presence of Isomorphism, the 3rd

International. Conference on Data Mining, Piscataway,

Melbourne, FL, 2003, pp.549-552.

[61] L. T. Thomas, S. R.Valluri, K. Karlapalem Margin: Maximal

Frequent Subgraph Mining, ACM Transactions on

Knowledge Discovery from Data (TKDD), Vol. 4, No. 3, pp.

10, October, 2010.

[62] M. Kuramochi, G. Karypis, Grew- A Scalable Frequent

Subgraph Discovery Algorithm, Proceeding of the 4th IEEE

International Conference on Data Mining, Brighton, UK,

2004, pp. 439-442.

[63] T. Saha, M. A. Hasan, FS3: A Sampling Based Method for

Top-k Frequent Subgraph Mining, Statistical Analysis and

Data Mining, the ASA Data Science Journal, Vol. 8 No. 4, pp.

245-261, August, 2015.

[64] S. Shahrivari, S. Jalili, High-performance Parallel Frequent

Subgraph Discovery, The Journal of Supercomputing, Vol. 71,

No. 7, pp. 2412-2432, July, 2015.

[65] B. Douar, M. Liquiere, C. Latiri, Y. Slimani, LC-mine: A

Framework for Frequent Subgraph Mining with Local

Consistency Technique, Knowledge and Information Systems,

Vol. 44, No. 1, pp. 1-25, July, 2015.

[66] A. S. Muttipati, P. Padmaja, Analysis of Large Graph

Partitioning and Frequent Subgraph Mining on Graph Data,

International Journal of Advanced Research in Computer

Science, Vol. 6, No. 7, September, 2015.

[67] R. Preis, R. Diekmann, PARTY- A Software Library for

Graph Partitioning, Advances in Computational Mechanics

with Parallel and Distributed Processing, Civil-Comp Press,

Kippen, Scotland, 1997, pp. 63-71.

[68] H. Meyerhenke, B. Monien, T. Sauerwald, A New Diffusion-

Based Multilevel Algorithm for Computing Graph Partitions,

Journal of Parallel and Distributed Computing, Vol. 69, No.

9, pp. 750-761, September, 2009

[69] B. Hendrickson, R. W. Leland, A Multilevel Algorithm for

Partitioning Graphs, Proceeding of ACM/IEEE Conference on

Supercomputing, San Diego, CA, 1995, pp. 28-28.

[70] B. W. Kernighan, S. Lin, An Efficient Heuristic Procedure for

Partitioning Graphs, The Bell System Technical Journal, Vol.

49, pp. 291-307, February, 1970.

[71] P. Sanders, C. Schulz, Engineering Multilevel Graph

Partitioning Algorithms, Proceeding of European Symposium

on Algorithms, Bordeaux, France, 2011, pp. 469-480.

[72] P. Sanders, C. Schulz, Think Locally, Act Globally: Highly

Balanced Graph Partitioning, Experimental Algorithms

Lecture Notes in Computer Science, Vol. 7933, pp. 164-175,

2013.

[73] C. E. Bichot, P. Siarry, Graph Partitioning, John Wiley &

Sons, 2013.

[74] S. Fortin, The Graph Isomorphism Problem, Technical Report,

TR96-20, September, 1996.

[75] R. Read, D. Corneil, The Graph Isomorphism disease,

Journal of Graph Theory, Vol. 1, No. 4, pp. 339-363,

December, 1977.

[76] M. Kuramochi, G. Karypis, Finding Frequent Patterns in a

Large Sparse Graph, SDM, 2004, pp. 345-356.

[77] S. Han, W. Keong, N. Yu, FSP: Frequent Substructure Pattern

Mining, 2007 6th International Conference on Information,

Communications & Signal Processing, Singapore, 2007, pp.

12-15.

[78] A. Dhiman, S. K. Jain, Optimizing Frequent Subgraph

Mining for Single Large Graph, Procedia Computer Science,

Vol. 89, pp. 378-385, December, 2016.

[79] C. H. Tai, T.H. Lee, S.H. Chiang, J. Y. Tsai, D. N. Yang, Y.

H. Wu, Y. H. Chan, On Recommendation of Graph Mining

Algorithms for Different Data, 2016 International Conference

on Big Data and Smart Computing, Hong Kong, China, 2016,

pp. 357-360.

[80] C. Jiang, Frequent Subgraph Mining Algorithms on Weighted

Graphs, Ph.D. Thesis, University of Liverpool, Liverpool, UK,

2011.

Biographies

Saif Ur Rehman is currently an

assistant professor in UIIT, PMAS

Arid Agriculture University,

Rawalpindi, Pakistan. He received his

MCS degree with distinction from

Institute of Computing and

Information Technology, Gomal

University, DIKhan, Pakistan in 2005 and MS degree

from SZABIST, Islamabad, Pakistan. Currently, he is

working towards his PhD (CS) degree in Abasyn

University, Islamabad, Pakistan. His research interests

include data mining, graph mining, social graph

analysis and big data analytics.

A-RAFF: A Ranked Frequent Pattern-growth Subgraph Pattern Discovery Approach 267

Sohail Asghar is working as a

Professor of Computer Science at

COMSATS Institute of Information

Technology Islamabad. In 1994, he

graduated with honors in Computer

Science from the University of Wales,

United Kingdom. He received his PhD from Faculty of

Information Technology at Monash University,

Melbourne Australia in 2006. Dr. Sohail has taught and

researched in Data Mining and is a member of ACS,

and IEEE. http://ww3.comsats.edu.pk/faculty/Faculty

Details.aspx?Uid=4564

268 Journal of Internet Technology Volume 20 (2019) No.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

