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Abstract 

Graph mining is one of the arms of Data Mining in 

which voluminous complex data are represented in the 

form of graphs and mining is done to infer useful 

knowledge from them. Frequent subgraph mining (FSM) 

is an active research field and is considered as the essence 

of graph mining. FSM is defined as finding all the 

subgraph patterns that occur frequently over the entire set 

of graphs. FSM is extensively used in graph clustering, 

classification and building indices in the databases. In 

literature, different FSM algorithms have been proposed 

such as AGM, FSG, SPIN, SUBDUE, gSpan, FFSM, 

CloseGraph, FSG, GREW. Most of these FSM 

techniques perform very well for small to medium size 

graph datasets, but the computational cost of FSM 

becomes very critical when the graph size is increased. In 

accession to this, the number of frequent subgraphs 

patterns grows exponentially with the increasing size of 

graph datasets. Consequently, in this research work, a 

novel FSM approach A RAnked Frequent pattern-growth 

Framework (A-RAFF) is proposed. This work is a 

preliminary work to study on how to make A-RAFF both 

computational effective and avoid the generation of the 

huge number of useless frequent subgraph patterns. A-

RAFF has achieved efficiency by embedding the ranking 

of discovering FSGs during the mining process. The 

experiments on the three different real benchmark graph 

datasets demonstrated that the mining results of A-RAFF 

are very promising as compared to the existing FSM 

techniques. 

Keywords: Graph mining, Frequent subgraphs, Apriori 

based FSGs, Pattern growth based FSGs 

1 Introduction 

The primary goal of data mining is to discover the 

statistically significant and hidden knowledge from the 

data [1-2]. The data used in data mining can be 

represented in various formats of structured data such 

as tables, graphs, etc. Modeling structured data as 

graphs generate an expressive and general purpose 

structure. Recently, traditional data mining techniques 

such as clustering, classification, frequent pattern 

mining and indexing have now been extended to the 

graph [4, 78]. Different examples of graph represented 

data are shown in Figure 1(a) to Figure 1(d). 

  

(a) Interaction network (b) Molecular graph 

 
 

(c) Behavior graph (d) Bibliography graph 

Figure 1. Different graphs represented Data 

Graph mining is a well-explored area of research in 

which voluminous complex data are represented in the 

form of graphs and mining is done to infer knowledge 

from them [79]. Graph mining is widely used for 

several applications, for example, 3D motifs discovery 

in protein structures [5-6], extracting significant 

subgraphs from protein-protein interaction networks 

[7-8], link spam detection in web data [9-10], mining 

attributed patterns over semantic data [11-12], drug 

discovery [14-15], discovering relationships in social 

networking web sites [15-16, 28], discovery of dense 

subgraph [18-20], among others. In graph mining 

algorithms, typically a labelled and immutable graph is 

used as an algorithm input and during mining process 

those patterns are mined satisfying some algorithm-
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specific property (such as frequency above some user 

provided threshold). Some popular graph mining sub-

domains are included: graph searching [21-22], 

Approximate graph pattern mining [23-25], Graph 

classification [26-27], Frequent subgraph mining [29], 

Web structure mining [30-31], Graph indexing [3, 32].  

Frequent Subgraph Mining (FSM) is the core 

research area of graph mining. FSM aims to discover 

all the subgraph patterns, whose occurrences within a 

graph dataset are above a user-defined threshold. These 

subgraph patterns are called Frequent Subgraph 

Patterns (FSPs, hereafter). Theoretically, FSM can be 

formulated as a search in a search space, modelled by a 

lattice, consisting of all possible subgraph patterns [14]. 

FSM plays an essential role in many graph mining 

applications such as chemical compound analysis [12, 

21], document image clustering [33], software bug [34], 

web content mining [35-38], social network mining 

[39-42], email mining [43-45] and anomaly detection 

[46-47]. Over the period, 1994 to present, large number 

of FSM algorithms are proposed. These FSM 

algorithms have been highlighted in Section 3, 

Literature review on FSM, in this article. 

In this paper, we aim to propose an effective and 

efficient novel FSM approach called A RAnked 

Frequent pattern-growth Framework (A-RAFF). In the 

proposed A-RAFF, labelled undirected graph datasets 

are used. A-RAFF is based on pattern-growth. This is 

due to the fact that pattern-growth discovers the entire 

set of frequent subgraphs patterns without involving 

costly operation of candidate generation [28]. A-RAFF 

involves a novel ranking mechanism to rank the 

discovered FSGs and thus results in most interesting 

and significant subgraph patterns. A detailed 

discussion on A-RAFF is provided in Section 4 of this 

paper. The A-RAFF preliminary experimental results 

obtained from different benchmark graph datasets are 

promising and demonstrated that the A-RAFF 

approach can mine all FSPs in a more efficient manner 

as compared to the existing FSM approaches such as 

gSpan, Close-Graph, SPIN, FFSM, FSP, Gaston. The 

contribution of this paper may thus be summarized as: 

(i) summarization of different well-known FSM 

techniques based on different identified common 

characteristics; (ii) a novel frequent subgraph pattern 

discovery architectural framework, called A-RAFF 

with embedded ranking mechanism of frequent 

subgraph; (iii) an efficient and effective frequent 

subgraph discovery algorithm; (iv) experimental 

evaluation of the proposed A-RAFF; (v) performance 

evaluation of the proposed A-RAFF with the state-of-

the art FSM approaches on different graph datasets. 

The rest of this paper is organized as follows. Some 

background knowledge about graph theoretic is 

described in Section 2. Section 3 discusses about the 

related work. Problem formulation and the proposed 

A-RAFF technique are discussed in Sections 4. Section 

5 and Section 6 discuss about the Experimental settings 

and Performance evaluations respectively. This paper 

is closed with Conclusion and future work in Section 7, 

followed by the Acknowledgement and References. 

2 Graph Preliminaries 

Most of the concepts in graph mining are directly 

taken from graph theory. For better understanding, 

there are some mathematical terms that need to be 

discussed before proceeding on to the research work 

done in this study. Here defined terminologies are 

frequently used in this work. Different graph notations 

used throughout the paper are given in Table 1. 

Table 1. Different notations used in this paper 

Notation Description 

GD Graph Database 

E(G) An edge of a graph G 

G A graph in graph database 

DFS Depth First Search 

BFS Breadth first search 

V(G) Vertex of a graph G 

GI Graph isomorphism 

FSGs Frequent Subgraphs 

FSM Frequent Subgraph Mining 

FSPs Frequent Subgraph Patterns 

 

Definition 1: A graph { , }G V E=  consists of a set of 

objects 
1 2

{ , , , }
n

V v v v= …  called vertices or nodes and 

another set of objects 
1 2

{ , , , }
n

E e e e= …  called edges. 

The order of a graph is denoted by |V | and size by | E |. 

Definition 2: A graph 
2 2 2

{ , }G V E= is a subgraph of 

another graph 
1 1 1

{ , }G V E=  iff 
2 1

V V⊆  and 
2 1

E V⊆  

1 2 2 1 2
( , )V V E V V∧ ∈ → ∈  and 

2 2
v V∈ . The G1 is called a 

supergraph of G2. 

Definition 3: Let 
1 1 1 1 1

( , , , )G V E α β=  and 
2

G =  

2 2 2 2
( , , , )V E α β  be two graphs. G2 is an induced 

subgraph of G1,if 2 1
V V⊆ , α1 (v) = α2 (v) for all v ∈ V2, 

E2= E1 ∩ (V2 × V2), and β1 (e) = β2 (e) for all e ∈E2. 

Given a graph 
1 1 1 1 1

( , , , )G V E α β= , if any subset 

V2∈V1of its vertices uniquely defines a subgraph, this 

subgraph is called the subgraph induced by V2. 

Definition 4: Two graphs 
1 1 1

( , )G V E=  and 
2 2 2

( , )G V E=  

are isomorphic if they are topologically identical to 

each other, that is, there is a mapping from G1to G2 

such that each edge in E1 is mapped to a single edge in 

E2 and vice versa. In the case of labelled graphs, this 

mapping must also preserve the labels on the vertices 

and edges. 

Definition 5: Given two graphs 
1 1 1

( , )G V E=  and 

2 2 2
( , )G V E= , the problem of (sub) graph isomorphism 

(GI) is to find an isomorphism between G2 and a 

subgraph of G1, that is, to determine whether or not G2 

is included in G1. 
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Definition 6: Support threshold is an interestingness 

measure (normally a numeric value) supplied by the 

user. In the mining process, this measure is used to 

check whether a given object (graph, cluster, itemset 

etc.) passes the support threshold value or not. Usually, 

during the mining process, those objects are kept in the 

result set which meet this support threshold where as 

others are ignored or removed in future steps of the 

mining process. In graph mining, the support threshold 

is given by, 

 
1

( ) / | |Support G G N=  (1) 

In the above Eq. (1) 
n

G  represents the graph 

database transactions which contain a specific graph G 

and N denotes total number of graphs in the given 

graph database [48]. 

Definition 7: A frequent subgraph (FSG) is a graph 

whose support is no less than a minimum user 

specified support threshold (σ). Given a labelled graph 

dataset 
1 2

{ , , , }
n

GD G G G= … , support or frequency of 

a subgraph g is the percentage (or number) of graphs in 

GD where g is a subgraph [49-50]. In Figure 2, an 

example of the FSG is given. The graphs in Figure 2 (a) 

and Figure2(b) represents two chemical compounds 

Theobromine and Caffeine respectively. If the support 

threshold is assumed to be 2, i.e.σ > =2, then the 

subgraph structure given in Figure 2(c) gives one of the 

possible FSGs which is found in both graphs of the 

chemical compounds (as its support value σ = 2). 

 

(a)- Theobromine (b)- caffeine 

 

(c)-Frequent subgraph 

Figure 2. Two chemical graphs and their frequent 

subgraph 

3 Literature Review on FSM 

Development of frequent subgraph algorithms is 

particularly challenging and computationally, as graph 

and subgraph isomorphism play very significant role 

throughout the computation. 

It is widely accepted in the literature that FSM 

techniques are classified into two categories: (1) 

Apriori-based approaches; and (2) pattern growth-

based approaches [48, 54-57]. These two categories are 

similar in spirit to counterparts found in association 

rule mining, namely the Apriori algorithm and pattern-

growth algorithm [4] respectively. Both of these 

approaches aim to identify the frequently occurring 

subgraph patterns from a given collection of small 

graph sets or within one large graph. These two 

approaches are different from each other in the way 

they mine the FSPs. 

In the last few decades, numerous FSM algorithms 

developed in both approaches such as FSG [53], FS3 

[63], AGM [51], gSpan [52], CloseGraph [58], 

Subdigger [64], SPIN [59], Gaston [50], Mofa [33], 

Margin [61] and LC-. mine [65], FSP [77]. In this work, 

different FSM techniques are summarized in Table 3 

and Table 4 at the end of this paper based on the 

different identified common parameters found in these 

approaches. These include (1) nature of the graph 

inputs; (2) FSM techniques output nature; (3) search 

strategy adopted by the each FSM technique; (4) graph 

type addressed; (5) graph representation; (6) 

isomorphic test used; and (7) candidate generation 

methodology. Interested readers are further referred to 

the latest FSM survey articles [13, 48, 54-57]. 

Although, different FSM algorithms have been used 

effectively to discover FSGs in domains involving 

subgraphs which are relatively small in volume. 

However, when such FSM algorithms are applied to 

more substantial domains, including image mining, 

text mining and social network mining, the 

computational complexity becomes critically very high 

due to the combinatorial explosion, encountered with 

respect to the number of possible FSPs [48, 80]. 

Therefore, many existing approaches to FSM cannot 

cope with large graph datasets [49-52]. Moreover, 

mostly FSM techniques mine a prohibitively large 

number of FSGs during the mining process. This is due 

to the fact that support threshold (σ) is kept low as the 

FSM algorithms attempt not to miss any significant 

FSPs [48]. Therefore, affecting the performance of the 

FSM algorithm, as the analysis of a large number of 

frequent subgraph patterns is both difficult as well as 

resource intensive [20, 42, 57, 64]. Therefore, there is a 

dire need to devise such an algorithm which can handle 

datasets of massive size and reduce the number of 

FSPs with no compromise on missing of any 

significant FSPs. To address these issues, in this paper 

a new FSM technique is proposed, called A-RAFF. A-

RAFF can mine FSGs more efficiently as compared to 

other FSM techniques. This is discussed in the next 

section in details. 
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Table 3. Apriori approach FSM Techniques Comparison 

Isomorphic Test Graph Type Input Nature Authors & 

Techniques 
Search Strategy

SubgraphGeneration Graph Representation Output Nature 

Exact General Graphs Set of graphs 
SPIN [59] 

Greedy 

Search Join Adjacency Matrix Maximal Frequent subgraphs 

Exact Undirected Set of graphs 
FSG [53] BFS 

Level-wise join Adjacency List Frequent Connected Subgraphs 

Exact Not limited Set of graphs 
AGM [51] BFS 

Level-wise join Canonical Adjacency Matrix Incomplete 

Adjustable Labelled, Undirected Single Large Graph 

HSIGRAM [76] BFS 
Level-wise join 

Canonical Adjacency 

Matrix 
Frequent Subgraphs 

Exact Labelled, Undirected Set of graphs 
FFSM [60] DFS 

Join extension Adjacency Matrix Frequent Subgraphs 

Exact Dynamic graphs Uncertain set of Graphs 

Dynamic GREW [62] DFS 
Level-wise join Adjacency Matrix 

Dynamic patterns in Frequent 

Subgraphs 

Table 4. Pattern growth based approach FSM Techniques Comparison 

Isomorphic Test Graph Type Input Nature 
Authors & Techniques Search Strategy 

Subgraph Generation Graph Representation Output Nature 

Exact Labelled, Undirected Set of graphs 
gSpan [52] DFS 

Rightmost Extension Adjacency Matrix Complete 

Exact Static Set of graphs 
CloseGraph [58] DFS 

Rightmost Extension Adjacency Matrix Incomplete 

Approximate Labelled Single Large Graph 
SUBDUE [29] Greedy 

Level-wise Search Adjacency Matrix Complete 

Exact Labelled, Undirected Set of graphs 
GASTON [50] DFS 

Extension Hash Table Complete 

Exact Labelled, Undirected Set of graphs 
MOFA [33] DFS 

Rightmost Extension Adjacency Matrix Complete 

Exact Dynamic Set of graphs 
TSP [49] DFS 

Extension Adjacency Matrix Incomplete 

 

4 A Proposed Frequent Subgraph Mining 

Approach: A-RAFF 

In this section, the proposed FSM approach called 

A-RAnked Frequent pattern-growth Framework (A-

RAFF) for FSGs discovery is described, highlighting 

the major characteristics of the A-RAFF. 

In the proposed FSM approach, labelled undirected 

graph datasets are used. The goal of A-RAFF 

framework is to discover a small collection of ranked 

frequent subgraphs patterns from a database of labelled 

input graphs. A-RAFF used the basic characteristics of 

the pattern-growth scheme to discover the FSPs, which 

is solely works on the divide and conquer strategy. A-

RAFF is based on pattern-growth as pattern-growth 

discover the entire set of frequent subgraphs patterns 

without involving costly operation of candidate 

generation during the mining process. An abstract level 

architectural framework for A-RAFF is shown in 

Figure 3 and the complete algorithms involved in A-

RAFF are given in Figures 4, Figure 5 and Figure 6. 

 

Figure 3. Architectural framework of the proposed A-

RAFF 
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Proposed Algorithm 1. A-RAFF ( , ,RFσ ) 

Input: =  a graphs dataset of the labelled undirected graphs 

σ =minimum threshold 

Output: RF , a set of ranked frequent subgraphs 

1.     count all the features and put in the feature set “F” 

2.     for each feature f in the F-set do 

3.     Identify most informative graph features 

4.     repeat until all features are checked 

5.     partition the graph using  KaHIP Tool based on an F-set [71] 

6. F φ← F  denotes the frequent subgraph patterns set 

7. F ← discovered 1-frequent subgraphs patterns 

8.     for each graph _ ,
i i

g partition G∈  do 

9.  FSPs ( , _ , ,
i

g partition Fσ ) 

10.  end 

11.  FSP-Rank(F) 

12.  return RF 

Figure 4. Proposed Algorithm for A-RAFF 

Proposed Algorithm  2. FSPs ( _ , ,
i

g partition RFσ ) 

Output: Fmined frequent subgraph patterns 

1. if _ _ ,g i partition F∈  then 

2.         return 

3. else 

4. _

i
F F g partition← ∪  

5. end 

6. extend _

i
g partition  by adding all edges  “e” ∈   such that  

7. _ _

i i
extended g g partition e← ∪  

8. for each _

i
extended g  from Line. (7) do 

9. if support ( _

i
extended g ) ≥ σ | | then 

10.               FSPs( , _ , ,
i

extended g Fσ ) 

11. else 

12.                return  

13. end 

14. return F 

Figure 5. Proposed Algorithm for FSPs discovery 

Proposed Algorithm  3. FSP-Rank (FSPs, RF) 

Input: FSPs = frequent subgraph patterns 

Output: RF, set of ranked frequent subgraph patterns 

1. compute λ using (3) 

2. for each FSP in FSPs do 

3. score
0

( )
n

i

i

D

=

←∑ (in−degree+out−degree) 

4. compute ( )
k

f R using (2) 

5. RF RF FSP← ∪  

6. next 

7. return RF 

Figure 6. Proposed Algorithm for FSP-Rank measure 

The A-RAFF has two layers: graph pre-processing 

layer and graph patterns mining layer. In A-RAFF, 

different labelled undirected graphs are stored in graph 

databases. There are two functions of the graph pre-

processing layer: first function is to extract the relevant 

graph dataset features, therefore ignoring/removing 

those features which are less interesting as compared to 

other features. The second function of the pre-

processing layer is graph partitioning. Different graph 

partitioning algorithms exist in the literature [66-70, 

72-73]. In A-RAFF, the graphs are partitioned using 

well-know graph partitioning tool KaHIP [71]. 

In the KaHIP tool, Sander and Schulz implemented 

a multilevel graph partitioning scheme called KaFFPa 

(Karlsruhe Fast Flow Partitioning). KaFFPa algorithm 

exploits a novel local improvement algorithm which is 

based on max-flow and min-cut computations. 

Furthermore, KaFFPa used more localized FM 

searches in addition to involving of a sophisticated 

global search strategies transferred from multi-grid 

linear solvers problem [72]. 

The graph pattern mining layer is the core layer of 

A-RAFF framework. This layer is responsible to 

discover the ranked FSPs. At the beginning of A-RAFF, 

a list of frequent subgraphs is derived such that the 

subgraphs are organized in descending order of the 

frequency computed value. Furthermore, using this 

frequency descending list, the graph collection is 

compressed into required frequent pattern tree (FP-

tree). This FP-tree structure also maintains the 

subgraphs association minutiae. The creation of this 

FP-tree structure is the fundamental requirement of the 

pattern-growth approaches to FSM. Moreover, in this 

layer, a ranking of the discovered FSPs is incorporated. 

For FSPs ranking, FSP-Rank measure is proposed. 

The ranking of the FSPs is performed to avoid the 

repetitive generation of the FSPs, therefore, reducing 

the resultant frequent subgraph patterns. In A-RAFF, 

FSP-Rank measure is proposed to calculate the Rank 

of the discovered FSPs. FSP-Rank is computed using 

the following equation: 

 
1

| |
( ) (1 )* ( )

n

i

k i

i i

D
f R W

n
λ λ

=

= − +∑  (2) 

In Eq. (2),  is a normalized factor which is 

computed using equation (3). The value of λ  can be 

between [0, 1]. W  shows the sum of the weight 

associated with the vertices in the ith frequent subgraph. 

denotes the degree of the ith frequent subgraphs and  

denotes the total number of vertices in the ith frequent 

subgraph. 

 1

1

( )

( )

( )

n

i

i

n

i

i

FSG

T V

λ
=

=

=

∑

∑

 (3) 

In Eq. (3), 
i

FSG corresponds to the number of 

discovered frequent subgraph and ( )
i

T V represents the 

total number of the vertices found in all of the n 

frequent subgraphs discovered. 

In any of the FSM technique graph isomorphism (GI) 

detection is fundamental. A significant number of 
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efficient schemes have been proposed with the 

objective to reduce the computational overhead allied 

with GI problem. To perform GI checks, canonical 

labeling has been successfully used. In canonical 

labeling, each graph is assigned to a unique code (i.e. a 

sequence of bits, a string, or a sequence of numbers). 

This code is invariant on the ordering of the vertices 

and edges in the graph [74-75]. After assigning a 

unique code to each graph using canonical labels, GI is 

performed by comparing whether they have identical 

canonical labels. In the proposed FSM approach, A-

RAFF, graph isomorphism is performed using the 

canonical labeling strategy adopted by [62]. 

Complexity Analysis: The proposed algorithm, A-

RAFF, is based on the pattern-growth category. This is 

due to the fact that the FSM algorithms based on the 

pattern-growth approaches are more efficient in 

computational complexity than the algorithms using an 

Apriori approach [13]. Graph isomorphism is an 

unavoidable issue faced by all subgraph mining 

algorithm, and is a NP-hard problem which cannot be 

solved in polynomial time. 

Both canonical labelling and determining graph 

isomorphism are not known to be either in P or in NP-

complete [74]. In the proposed scheme, the canonical 

labelling strategy is used from [62], as it fully makes 

use of edge and vertex-labels for fast processing and 

various vertex invariants to reduce the complexity of 

determining the canonical label of a graph. 

In addition to the canonical labelling and graph 

isomorphism, the computational complexity of the 

proposed A-RAFF algorithm mainly depends on 

computation involved in the discovery of FSPs and 

ranking of the frequent subgraphs. Thus, computational 

complexity for the loop used for the extraction of the 

graph features is ( )O n , where n is total of graph 

features. The same is also defined for FSP-Rank. In the 

FSPs algorithm, there is recursion involved inside the 

loop. Therefore, it can easily be observed that it will 

compute all the frequent subgraph patterns in 
2

(2 )N
O  

time. 

5 Experiment Settings 

This section presents details about the 

experimentsettings. 

5.1 Experimentation Environment 

A set of different experiments is performed to 

evaluate the performance of A-RAFF. All of these 

experiments are performed on a 32-bit machine 

running the Linux operating system with 6 GB 

memory and 3.0 GHz Intel processor. A-RAFF is 

implemented using Java. For the purpose of A-RAFF 

evaluation, FFSM, FSP, CloseGraph are re-

implemented in Java. The executable of gSpan and 

Gaston are obtained from their respective authors. 

5.2 Dataset Introduction 

Three different graph datasets are used in the 

experiment. These datasets are included Chemical 

Compound, AIDS antiviral screen compound and DTP 

human tumor cell line screen (CANSO3SD). 

Table 2. Dataset Statistics 

Dataset Dataset Description 

DTP human tumor 

cell line screen 

(CANSO3SD) 

This dataset consists of 42,247 

molecules. Each molecule corresponds 

to a graph, atoms are represented using 

nodes and the bonds between them are 

represented by edges. 

Chemical 

Compound  

340 chemical compounds, 24 different 

atoms, 66 atom types, and 4 types of 

bonds.  

On average 27 vertices per graph and 

28 edges per graph. The largest one 

contains 214 edges and 214 vertices.  

AIDS antiviral 

screen compound 

The dataset contains 43,095 chemical 

compounds 

The compounds are classified into 

three classes.  

41179 belong to CI (Confirmed 

Inactive), 1081 belong to CM 

(Confirmed Moderately active) and 

422 belong to CA (Confirmed Active) 

 

For the preliminary analysis, these three graph 

datasets are used becausemost of the FSM techniques 

performed the performance comparison using these 

benchmark graph datasets. The statistics of each of the 

graph datasets are given in Table 2.The graph datasets 

considered are divided into two subsets. 80% of each 

graph dataset is used for training and 20% of the each 

graph dataset is reserved for testing of the A-RAFF. 

5.3 Evaluation Parameters 

Support Threshold (σ) is the most important 

parameter in any of the FSM schemes. The value of 

Support Threshold (σ) is set to 20, 30, 40 and 50. The 

performance of the A-RAFF with its counterparts FSM 

approaches is evaluated using this different range of 

values of σ. A detailed discussion on the performance 

evaluation is given in the forthcoming section of this 

paper. 

6 Performance Evaluations 

A series of different experimentation is performed 

on the real benchmark graph datasets. The following 

experiments are conducted to demonstrate the 

performance of A-RAFF as compared to the other 

well-know FSM approaches. Another factor considered 

during the performance comparison is the computation 

time. A detailed analysis is highlighted in this section. 

Experiment 1. DTP human tumor cell line screen 

(CANSO3SD): First experiment is performed using 
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DTP human tumor cell line screen (CANSO3SD) 

graph dataset. The computation time required to 

discover and rank the FSPs are taken on different 

threshold value ranging from 20 to 50 is given in 

Figure 7. 

 

Figure 7. Performance comparison of various FSM 

with A-RAFF on DTP human tumor cell line screen 

(CANSO3SD) 

These results depict that in most cases, the proposed 

FSM approach A-RAFF discovered and ranked all the 

frequent subgraphs in less time as compare to the 

computational time of other FSM techniques 

considered for comparison.  

Experiment 2. Chemical Compound: In the second 

experiment for A-RAFF comparisons, the Chemical 

Compound dataset was used. The experimental results 

of the discovery of FSPs using A-RAFF and other 

competing FSM techniques are shown in Figure 8.  

 

Figure 8. Performance comparison of various FSM 

with A-RAFF on Chemical Compound 

In the experiment, it is observed that as the (σ) value 

is increased, the time required to discover the FSGs is 

also decreased. In chemical compound dataset the 

performance of A-RAFF is very promising and A-

RAFF beat the other FSM techniques. 

Experiment 3. AIDS antiviral screen compound: In 

the last experiment, AIDS antiviral screen compound 

graph dataset was used. In this dataset, A-RAFF 

performance on different threshold values is given in 

Figure 9. The proposed A-RAFF performed well in this 

experiment as well, except at 50support threshold 

values, performance of proposed A-RAFF was same as 

that of FFSM & FSP and CloseGrpah has performed 

well as compare to A-RAFF. In other cases, A-RAFF 

has beaten the other FSM techniques. 

 

Figure 9. Performance comparison of various FSM 

with A-RAFF on AIDS antiviral screen compound 

By looking at the different experimental results 

given in Figure 7, Figure 8 and Figure 9, the proposed 

FSM scheme A-RAFF was much better than the other 

well-known FSM techniques for the extraction of 

frequent subgraph patterns. Moreover, in some 

exceptional cases CloseGraph perform well this is due 

to the fact that CloseGraph only focus on those graphs 

which are closed, but the proposed A-RAFF has 

discovered all the possible FSGs. The results of Gaston 

tool were better on the AIDS antiviral screen 

compound graph dataset. Although, A-RAFF beat the 

Gaston on two out of three graph datasets, we are 

investigating that why A-RAFF cannot outperform 

Gaston tool. 

7 Conclusions and Future Work 

In this paper, the problem of rank frequent subgraph 

pattern discovery is investigated. An algorithm and a 

framework are presented called A-RAFF. A-RAFF 

falls in the pattern-growth category of FSPs. A-RAFF 

framework is decomposed into two distinctive layers. 

First layer, graph pre-processing layer, is responsible to 

select the most useful features for the graph and then 

the graphs are partitioned. In the proposed A-RAFF, 

KaHIP tool is used to partition the graph dataset. 

Graph pattern mining layer is the core layer of the A-

RAFF. The outcome of the second layer is the ranked 

FSPs. In A-RAFF framework a novel ranking method 

is proposed. The efficiency of the A-RAFF is also 

confirmed by different benchmark real graph datasets, 

which are used in most of the FSM approaches. 

Furthermore, the performance of the A-RAFF is also 

examined, with gSpan, FFSM, CloseGraph, Gaston, 

SPIN and FSP, through extensive experiments. There 

is ample room for the future work in the proposed 

framework, A-RAFF. In future A-RAFF can be 

extended to big graph datasets such as obtained from 

social networking sites. Dynamic graphs can also be 

incorporated in the A-ARFF. One of the possible future 

scope of the present study can be to consider the 
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different other graph features such as betweenness 

centrality, closeness centrality, average path length etc., 

while performing the ranking of the FSGs. 
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