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Abstract 

Matrix embedding is a general approach that can be 

applied to most steganographic schemes to improve their 

embedding efficiency. In order to apply matrix 

embedding to voice-over-IP (VoIP) steganography better, 

this paper analyses the means to realizing fast matrix 

embedding. For small payloads, we discuss the feasibility 

of combining several Hamming codes into parity check 

matrix (PCM) construction and propose a novel PCM 

structure. On this basis, a corresponding optimization 

algorithm is proposed. It can adaptively generate specific 

PCMs to accommodate to the given cover and provide the 

best performance while guaranteeing the allowable 

computational complexity. For large payloads, another 

PCM structure is presented by combining the PCM of 

syndrome trellis codes (STCs) and several referential 

columns. The corresponding optimal construction 

algorithm is also given. Experimental results show that 

compared with existing methods, two novel matrix 

embedding methods achieve higher embedding efficiency 

and faster embedding speed. 

Keywords: Steganography, Matrix embedding, Parity 

check matrix, Embedding efficiency, 

Embedding speed 

1 Introduction 

Steganography is a covert communication 

technology. Up to now, steganographic covers have 

been extended from images to almost all kinds of 

multimedia. Voice over IP (VoIP) is the most popular 

real-time service in IP networks at present. The study 

on VoIP steganography is becoming extensive, and 

various approaches [1-5] have been developed. 

No matter what the steganographic cover is, for a 

given message and cover, the scheme that introduces 

fewer changes will be more secure in general. Based 

on this understanding, matrix embedding (ME, also 

known as syndrome coding) was proposed by Crandall 

[6]. ME can improve embedding efficiency. It requires 

the sender and the recipient to agree in advance on a 

parity check matrix (PCM). Using the PCM, the sender 

selects the coset leader of error correction codes as the 

modification vector, and the recipient extracts secret 

messages by calculating the syndrome of the stego data. 

ME was made popular by Westfeld who incorporated it 

into F5 algorithm. After that, Fridrich et al. 

systematically analyzed ME [7-8] and got its upper 

bound of embedding efficiency. They also proved that 

random linear code-based ME can approach this 

theoretical bound. Recently, ME has been extended to 

convolution codes, such as syndrome trellis codes 

(STCs) [9-10]. STCs can embed a given payload with 

minimal total distortion if the cost of changing each 

cover element is assigned. This task can be viewed as a 

generalization of initial ME or writing on wet paper. 

To date, existing VoIP steganography methods 

mainly hide information in the LSBs of speech streams 

[5]. Since direct LSB replacement degrades speech 

quality obviously, many methods [11-12] improve their 

security through using initial ME which can minimize 

the number of embedding changes. Convolution codes 

that minimize total distortion are rarely applied to VoIP 

steganography for the following reasons: On the one 

hand, different from image cover, the relations of cover 

elements in speech streams are much more complicated 

and not intuitive. This leads to extremely rare research 

achievements in VoIP distortion function. On the other 

hand, speech streams are generated and transmitted in 

real time, which gives a short time to perform 

embedding or extracting process. Whereas minimizing 

total distortion usually needs larger amount of 

computation and the process of calculating single-letter 

distortions costs a certain time. Beyond that, 

convolution codes are more suitable for long covers. 

But in VoIP scheme, encoder often divides a cover into 

small parts and performs embedding operation on each 

part to maintain the real-time requirement [1]. In this 

case, the embedding efficiency of convolution codes 

needs to be further improved. 

Our goal is to propose a novel fast method for ME, 

so that it can be better applied to VoIP steganography. 

To reduce computational complexity of ME, 

researchers have developed many improved methods 

through two ways [13]. The core idea of the first class 

is to construct special PCM. Typical examples include 
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Hamming code-based ME [14] and random linear 

code-based ME [15]. Though they are early methods, 

their embedding efficiencies are relatively high 

benefited from their excellent PCM structures. To 

further improve Hamming code-based ME, Mao 

proposed a fast method [16] in which the positions of 

PCM columns are changed to make all columns array 

in ascending (or descending) order in decimal form, 

then the coset leader can be found by using a lookup 

table algorithm. Aiming at the shortcoming of 

immobility of Hamming codes, Tian et al. presented an 

adjustable ME method [1] which can adaptively 

generate a guide matrix to accommodate to various 

cover lengths and achieve the optimal embedding 

performance. To increase embedding speed of random 

linear code-based ME, Wang et al. proposed a new 

method by translating several random columns to 

referential columns [17]. For the second class, its core 

idea is to find a sub-optimal solution as the 

modification vector instead of the coset leader. Hence, 

Gao et al. turned to finding a vector in the coset which 

has relatively small Hamming weight [18]. After that, 

similar methods such as [19-20] were proposed. 

Compared with the first kind, these approachs achieve 

faster embedding speed but at the cost of a fall of 

embedding efficiency. 

We make a further study on the optimization of 

PCM construction in this paper. Two special matrix 

forms for small payloads (payloads that are smaller 

than 0.5) and large payloads (payloads that are larger 

than 0.5) are presented, respectively. The paper is 

organized as follows: In Section 2, we review a few 

elementary concepts of ME and the related works that 

will be needed for the rest part. Section 3 and Section 4 

explain two novel ME methods. Experimental results 

and their analyses appear in Section 5. Finally, the 

paper is concluded in Section 6. 

2 Related Works 

2.1 Matrix Embedding 

Without loss of generality, the cover and the secret 

message are regarded as binary sequences in this paper. 

Matrix H of dimension ( )n k n− ×  is the PCM of 

binary linear [n, k] codes C . Based on H, the sender 

can embed n k−  secret bits 
1 2

( , , , )T

n k
m m m

−

= �m  

into an n-length cover 
1 2

( , , , )T

n
c c c= �c . The key 

problem of ME is to find a modification vector with 

minimum Hamming weight. Hence, first calculate the 

difference between m and Hc. The result is denoted by 

u , i.e., = ⊕u m Hc . Then, get its coset with respect to 

H. 

 { }( ) (2 ) |n

GF= ∈ =C
H

u x Hx u  (1) 

( )C
H

u  contains 2k vectors. Among them, the one 

that has the smallest Hamming weight is called coset 

leader. 

 
( )

( ) arg ( )
L
e min ω

∈

=

C
H

x u

u x  (2) 

( )
L
e u  represents the optimal modification vector, so 

the stego s is obtained as follows. 

 ( )
L
e⊕s = c u  (3) 

The recipient extracts secret messages by computing 

 
( ( )) ( )

( )

L L
e e⊕ ⊕ ⋅

⊕ ⊕

Hs = H c u = Hc H u

= Hc m Hc = m
 (4) 

2.2 Wang et al.’s Fast Matrix Embedding 

The first ME with feasible complexity was proposed 

by Fridrich et al. [15]. Their PCM structure is 

 ( , )
n k−

=H I R  (5) 

In which 
n k−
I  is an ( ) ( )n k n k− × −  unit matrix, and 

R is an ( )n k k− ×  random matrix. The coset leader can 

be found with ( 2 )kO n  computations. 

Based on structrue (5), Wang et al. proposed a novel 

fast method by extending the PCM via some referential 

columns [17]. Its computational complexity is reduced 

to 1( 2 )
k

O n . The PCM they construct is 

 ( ), ,
n k−

=H I R D  (6) 

where R is a random matrix of dimension 
1

( )n k k− × , 

D is an 
2

( )n k k− ×  matrix and 
1 2
k k k+ = . The ith 

referential column in D is in the following form: 

 
( )

1 1 1 2
2

, , , , , , , 1
i i i k

T

i t t t t t
i k

− +

= ≤ ≤0 0 1 0 0� �d

 (7) 

i
t  is usually taken as 

 

2

2

2 2

2

                                  

( ) ( 1)         

i

n k
if i k

k
t

n k
n k k if i k

k

⎧⎢ ⎥−
<⎪⎢ ⎥

⎪⎣ ⎦
= ⎨

⎢ ⎥−⎪ − − − =⎢ ⎥⎪
⎣ ⎦⎩

 (8) 

The following matrix is a specific form of H  when 

1 2
( , , , ) (11, 5, 2, 3)n k k k = . 

 

1 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 1 1 0 0 1

0 0 0 0 0 1 0 1 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (9) 
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According to (6), each modification vector x  can be 

split into three parts 
0 1 2

( , , ),T T T T
=x x x x  and they 

satisfy the condition 
0 1 2
⊕ ⊕x Rx Dx = u . Divide 

both 
0

x  and 
1

⊕u Rx  into 
2
k  segments 

0, 1
( ( ) ).

i i i
t= ⊕ =x u Rx  Consequently, the coset 

leader of ( )C
H

u  can be found by minimizing the 

following quantity: 

2

1 1 1

1

( ) min{ (( ) ), ( ) 1)}
k

i i i

i

tω ω ω

=

+ ⊕ − ⊕ +∑x u Rx u Rx  (10) 

3 Optimal Matrix Construction for Small 

Payloads 

3.1 Structure of the Proposed PCM 

The referential columns in (6) can effectively 

improve embedding efficiency of ME when 
2
k  is small. 

But, as 
2
k  increases, the impact of the referential 

columns becomes smaller. When 
2

( ) 1n k k− ≥⎢ ⎥⎣ ⎦  (i.e., 

payload is smaller than 0.5), the referential columns 

will not work. 

By changing positions of the referential columns, the 

PCM in (6) can be transformed into the following form. 

 ( , , ) ( , )
n k−

= =H I R D A R  (11) 

where A is an 
2

( ) ( )n k n k k− × − +  matrix. For instance, 

A in (9) can be rewritten as 

 

1

2

3

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0 0

0 0

0 0

B

A B

B , 

1 2 3

1 0 1

0 1 1

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
B B B  (12) 

When 
2

( ) 2n k k− =⎢ ⎥⎣ ⎦ , we note that submatrix B is 

actually the PCM of [3, 1] Hamming codes (as shown 

in (12)). It inspires us to use Hamming codes to expand 

the application scope of Wang et al.’s method. The 

PCM we construct for small payloads is shown below. 

 ( , )=H A R , 

1

2

p

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 0

0 0

0 0

�

� � �

�

B

B
A

B

 (13) 

where 
1 2
, , ,

p
�B B B  are all PCMs of Hamming codes, 

and they could be different. 

3.2 PCM Optimization 

For a given message m and cover c, the dimension 

of H is definite. The restriction on computational 

complexity can determine the number of random 

columns. Therefore, to achieve optimal embedding 

efficiency, we only need to discuss how to construct A. 

Let p denote the number of submatrices in A. 
i
r , 

i
w  

denote the height and width of 
i

B  respectively. There 

is a certain function relation between r and w. 

 ( ) 2 1i
r

i i
w f r= = − , {1,2, , }i p∈ �  (14) 

On this basis, the structure of A could be expressed as 

1 2
{ , , , }

p
r r r= �r , and we can get Theorem 1, 2 below. 

Theorem 1. For a local matrix A containing p 

submatrices, when its height is fixed as n k− , the 

number of columns in A has a certain range: 

 ( 1)

1
(2 1) 2 2

n k
p n k pp

ii
p w p

−

− − −

=

− ≤ ≤ + −∑  (15) 

Proof. Matrix height is fixed, thus 
1

p

ii
r n k

=

= −∑ . 

According to the average value inequality, we can 

derive a relationship as follows: 

 

1 2

1 2

1 2

1 21
( ) ( ) ( )

(2 1) (2 1) (2 1)

2 2 2

2

(2 1)

p

p

p

p

i pi

rr r

rr r

p r r r

n k

p

w f r f r f r

p

p p

p

=

+ + +

−

= + + +

= − + − + + −

= + + + −

≥ −

= −

∑

�

�

�

�   

If and only if 
1

( )
p

r r n k p= = = −� , the equation 

holds. 

On the other hand, we have '( ) 2 ln2 1rf r = >  and 
2''( ) 2 (ln2) 0rf r = >  for 1r ≥ . That is to say, ( )f r  

goes up as r increases, and the growth range is larger 

and larger. Therefore, 

 

1 21

2 1

1 1

( 1)

( ) ( ) ( )

(1) ( ) ( ( 1))

(1) (1) ( ( 1) ( 1)) 

= (1) (1) ( ( 1))

2 2

p

i pi

p

p p

n k p

w f r f r f r

f f r f r r

f f f r r r

f f f n k p

p

=

−

− − −

= + + +

≤ + + + + − ≤

≤ + + + + − + + −

+ + + − − −

= + −

∑ �

� �

� �

�

  

Considering the above analysis, it can be concluded 

that the column number of A is related to the 

diversity of submatrices. The column number 

achieves the minimum when the sizes of submatrices 

are all the same, achieves the maximum as =r  
{1, ,1, ( 1)}n k p− − −� . 

Theorem 2. For a local matrix A, when its height is 

fixed as n k− , small number of submatrices (p is small) 

is conducive to the increasement of column number. 

Proof. 
1

{ , }
p

r r= �r  when A contains p submatrices. 

If there are ' 1p p= +  submatrices, 
1 '

' { ', , '}
p

r r= �r . 

Then we can get consequences follow from Theorem 1: 
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( 1)

1

'

1

max 2 2

1 2 2 2 1

1 2 2

max '

p n k p

ii

n k p n k p

n k p

p

ii

w p

p

p

w

− − −

=

− − − −

− −

=

= + −

= + + − + −

≥ + + −

=

∑

∑

  

( )

1
min (2 1)

p n k p

ii
w p

−

=

= −∑ . Take the derivative of 

function 
1

min
p

ii
w

=

∑  with respect to p: 

 

1

2

(min )
2 1 2 ln 2

2 (1 ln 2 ) 1

p n k n k

i p pi

n k

p

d w n k
p

dp p

n k

p

− −

=

−

−

= − − ⋅ ⋅

−

= − ⋅ −

∑

  

Since ( ) 1n k p− ≥ , *( )n k p N− ∈ , It’s easy to 

know that 2 (1 ln2 ) 1.

n k

p n k

p

−

−
− ⋅ <  So 

1
(min ) 0

p

ii
d w dp

=

<∑ , 

i.e., 

 
'

1 1
min min '

p p

i ii i
w w

= =

>∑ ∑   

Hamming codes could embed r bits of messages into 

2 1
r

−  bits of cover data with one change at most. The 

probability of modifying the cover is (2 1) 2r r

− . Thus 

the embedding efficiency is 2 (2 1)r r

r ⋅ − . On this 

basis, we have the following results. 

Theorem 3. For a local matrix A containing p 

submatrices, when its height is fixed as n k− , the 

embedding efficiency of A is related to the diversity of 

submatrices. The greater the diversity of submatrices is, 

the higher the embedding efficiency will be. The range 

of the embedding efficiency is 

 

( 1)

1 1 1

2 2 2
n k p n k p

n k n k
e

p
p p

− − − −

− −
≤ ≤

+
− −

 (16) 

Proof. A contains p submatrices. Hence, the average 

number of embedding changes is 

 
1 1

2 1 1
( )

2 2

i

i i

r
p p

r ri i
E pω

= =

−

= = −∑ ∑A
  

According to the average value inequality, we can 

learn that 

 

1 2

1 2

1
( ) 2 2 2

2

2

p

p

p rr r

ii

p r r r

n k

p

g r

p

p

−
− −

=

− − − −

−

−

= − − −

≤ −

= − ⋅

∑
�

�

  

where ( ) 2 r

g r
−

= − . Therefore ( ) 2n k p
E p pω

−

≤ −
A

. If 

and only if 
1

( )
p

r r n k p= = = −� , the equation holds. 

 

On the other hand, we have '( ) 2 ln2 0r

g r
−

= >  and 
2''( ) 2 (ln 2) 0r

g r
−

= − <  for 1r ≥ . That is to say, ( )g r  

goes up as r increases, but the growth range is smaller 

and smaller. Therefore, 

 

1 21

2 1

1 1

( ) ( ) ( ) ( )

(1) ( ) ( ( 1))

(1) (1) ( ( 1) ( 1))

= (1) (1) ( ( 1))

p

i pi

p

p p

g r g r g r g r

g g r g r r

g g g r r r

g g g n k p

=

−

= + + +

≥ + + + + − ≥

≥ + + + + − + −

+ + + − − −

∑ �

� �

� �

�   

Consequently,  

 
( 1) ( 1)

1 1 1 1
( ) ( )

2 2 2 2n k p n k p

p p
E pω

− − − − − −

− +
≥ − + = −

A
  

Divide n k−  (the message length) by ( )E ω
A

, we 

will get the expression in (16). 

Theorem 4. For a local matrix A, when its height is 

fixed as n k− , small number of submatrices (p is small) 

is conducive to the improvement of embedding 

efficiency. 

Theorem 4 is the conclusion follows from Theorem 

3. The proof process is the same as Theorem 2. 

According to Theorem 2 and Theorem 4, to improve 

embedding efficiency and embedding speed, 

minimizing the number of submatrices should be our 

primary goal in PCM construction. According to 

Theorem 1 and Theorem 3, we found that given the 

number of submatrices, enlarging the diversity of 

submatrices can reduce the number of random columns 

(i.e. reduce the computational complexity) and is 

conducive to the improvement of embedding efficiency. 

For instance, 5 bits need to be embedded into 20 bits of 

cover data. Let 
1

2r = , 
2

3r = , we can embed the 

message using a PCM combined by a [3, 1] code and a 

[7, 4] code. Let 
1

1r = , 
2

4r = , we can also embed the 

message by combining a first-order unit matrix and a 

[15, 11] code. But the former PCM has 10 random 

columns; the latter only has 4 random columns. 

Besides that, the embedding efficiency of the former 

PCM is 28 9 , lower than 80 23  of the latter. 

In conclusion, the optimization of local matrix A can 

be accomplished in two steps: Calculate the optimal 

number of submatrices in accordance with the message 

length. And then determine the size of each submatrix. 

In more specific terms, the first step is to find the 

minimum p meeting the relation 
( )(2 1)n k p

p
−

− ≤
 

( 1)
2 2
n k p

n p
− − −

≤ + − , namely to solve the following 

optimization problem: 
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 *

( 1)

minimize  

subject to  ( )

                 , {1, 2, , }

                 (2 1) ( )(2 1)

                 2 2

n k n k

p p

n k p

p

n k n k
l p l n k

p p

p N l p

l p l n

p n

⎡ ⎤ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦

− − −

⎧
⎪

⎡ ⎤ ⎢ ⎥− −⎪ + − = −⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎣ ⎦
⎪⎪

∈ ∈⎨
⎪
⎪ − + − − ≤⎪
⎪ + − ≥
⎪⎩

�  (17) 

Its searching process is 

Step 1: Initialize p = 1; 

Step 2: Determine l according to the equation 

 ( )
n k n k

l p l n k
p p

⎡ ⎤ ⎢ ⎥− −
+ − = −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦
, {1, 2, , }l p∈ � ;  

Step 3: If 
( ) ( )

(2 1) ( )(2 1)
n k p n k p

l p l n
− −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎣ ⎦

− + − − ≤ , 

go to next step. Otherwise 1p p= +  and return to Step 

2; 

Step 4: Output p. 

After that, optimal submatrices can be determined 

with the goal of maximizing the diversity of them. 

 

1 2

1

1

1

*

maximize 2 2 2

subject to  

                 

                 , {1, 2, , }

p
p rr r

ii

p

ii

p

ii

i

w p

r n k

w n

r N i p

=

=

=

⎧ = + + + −
⎪
⎪ = −⎪
⎨
⎪ ≤
⎪
⎪ ∈ ∈⎩

∑

∑

∑

�

�

 (18) 

The optimization process is 

Step 1: Initialize ( 1),
p
r n k p= − − −  

1 1
1

p
r r

−

= = =� , 

1j p= − , 2
e
p = ; 

Step 2: If 
1
(2 1)i

p r

i
n

=

− ≤∑ , go to Step 5. If not, go to 

next step; 

Step 3: 1.
p p
r r= −  If ( ( )) ,

j e e
r n k p p p< − − −⎡ ⎤⎢ ⎥  

update 1
j j
r r= +  and return to Step 2. If not, 1j j= −  

and go to next step; 

Step 4: If 
e

j p p> − , update 1
j j
r r= +  and return to 

Step 2. If not, 1
e e
p p= + , 1j p= − and reinitialize 

( 1)
p
r n k p= − − − , 

1 2 1
1

p
r r r

−

= = = =� , return to Step 

3; 

Step 5: 
2

1

(2 1) ( )i

p
r

i

k n k

=

= − − −∑ , 
1 2
k k k= − , Output 

1 2
, , ,

p
r r r� , 

1
k , 

2
k . 

3.3 Computational Complexity Analysis 

For the proposed PCM, each modification vector can 

be written as 
0 1

( ,T T T
= )x x x , and they satisfy the 

condition 
0 1
⊕ =Ax Rx u . Therefore, searching for the 

coset leader of ( )C
H

u  is a two-step process: First, get 

coset leaders of 
1

( )⊕C
A
u Rx  under different 

1
.x  

Second, choose a vector that minimizing the quantity 

1 1
( ( )) ( )

L
eω ω⊕ +u Rx x  as the final modification 

vector. 

In order to reduce time cost in the first step, we 

adopt the method proposed in [16], change the 

positions of the columns in A to make all columns 

array in ascending (or descending) order in decimal 

form as follows: 

 1

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

B  (19) 

By this mean, the syndromes 
1

( )
i

⊕u Rx  will indicate 

the coset leaders. Supposing that 
1 1

( ) (1,0,0)T
⊕ =u Rx , 

since (1,0,0)  is 4 in decimal form, opt

1,1( )T =x  

(0,0,0,1,0,0,0) . The computational complexity to find 

the coset leader of 
1

( )⊕C
A
u Rx  is ( )O p . 

Theorem 5. According to the embedding features of 

Hamming code-based ME, for a local matrix A 

containing p submatrices, no matter what 
1
x  is, the 

inequality below would always hold. 

 
1 1

( ( )) ( )
L
e pω ω⊕ + ≤u Rx x  (20) 

Therefore, the optimal modification vector satisfies 

the condition 
1

( ) pω ≤x . This fact leaves us a clue to 

find the coset leader with reduced computational 

complexity in the second step. We only need to process 

and store vectors in 
1

( )⊕C
A
u Rx  when 

1
( ) pω ≤x , 

and select one having the smallest Hamming weight 

among them. The number of combinations we need to 

deal with is 
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Hence, the computational complexity of the novel 

fast ME method is 
1
,

( )k pO pµ . 

4 Optimal Matrix Construction for Large 

Payloads 

4.1 Structure of the Proposed PCM 

STCs [9] proposed by Filler et al. is the most 

famous convolution codes. Its computational 

complexity is linear with n and exponential with h (the 

height of the submatrix). Embed messages into 102-

length covers and 103-length covers using STCs, 

respectively. Figure 1 shows the average embedding 

efficiency of 103 experiments with different h. Figure 1 

indicates that the embedding efficiency of STCs tends 

to increase along with h, but the improvement is small 
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when h is large. More importantly, we found that, 

different with small payloads, the embedding 

efficiency shows little change with various h when 

payloads are large. It is stable since h is small. This 

phenomenon is more obvious when 2
10n = . 
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(b) 3
10n =  

Figure 1. Variation of embedding efficiency with 

increasing submatrix height  

It suggests that, for large payloads, STCs with small 

submatrices could be used to construct local matrix A 

to improve embedding efficiency and reduce 

computational complexity. In fact, when payload is 

larger than 0.5, the PCM of STCs is a mix of 

submatrices of width 2 and 1. But the submatrices of 

width 1 could not improve embedding efficiency at all. 

On the contrary, Wang et al.’s method has good 

performance when payload is large. Based on this 

analysis, we combine STCs with the PCM proposed by 

Wang et al. [17] to further improve its performance. An 

example of the final PCM we construct for large 

payloads (payloads that are larger than 0.5) is 

 ( ),  =H A R  (22) 
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A consists of two parts: 
1

A  has the same form as 

STCs, and 
2

A  is in the form of PCM with referential 

columns. As the payload is larger than 0.5, we set 2 as 

the width of submatrices in 
1

A . Each part in (23) is 

shown below. 
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4.2 PCM Optimization 

For a given m and c, the size of H is definite. And 

the restriction on computational complexity can 

determine the size of R. In this case, we only need to 

discuss how to optimize 
1

A  and 
2

A . 

1
r , 

1
w  denote the height and width of 

1
,A  

respectively. Similarly, 
2
r , 

2
w  mean the height and 

width of 
2

A . Then we have 

 
1 2

1 2 1

r r h n k

w w n k

+ − = −⎧
⎨

+ = −⎩
 (26) 

As the width of submatrices in 
1

A  is 2, the size of 

1
A  can be expressed as 

1 1
2( 1)r r h× − + . And the size of 

2
A  is 

1 1 1
( 1) ( 2 2 2)n k r h n k r h− − + − × − − + −  according 

to (26). Divide local modification vector 
0

x  into two 

segments, 
0 0,1 0,2

( ,T T T
= )x x x  (

0,i i
w=x ). Thus, optimal 

A can be determined by finding the 
1
r  meeting the 

following conditions. 
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The expectations of 
0,1

( )ω x  can be estimated 

through experiments using STCs, the PCM dimension 

of which is 
1 1

( 1) 2( 1)r h r h− + × − + . The red line in 

Figure 2 indicates 
0,1

( ( ))E ω x  when 3h = . 
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Figure 2. Variation of Hamming weight of the 

modification vector with different 
1
r  

2 2 1 1
1w r k k r h− = − − + −  denotes the number of 

submatrices in 
2

A . According to (8), their heights are 
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Furthermore, we can get the average number of 

embedding changes using 
2

A . 
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For 60n = , 36n k− = , 
1

3k = , the average change 

number using 
2

A  is shown by the blue line in Figure 2. 

Taking 
0,1

( ( ))E ω x  and 
0,2

( ( ))E ω x  into consideration, 

the optimal size of 
1

A  and 
2

A  can be determined as 

20 36×  and 18 21×  on this occasion. 

4.3 Computational Complexity Analysis 

Searching for the coset leader of ( )C
H

u  with 

respect to the proposed PCM for large payloads also 

needs two steps. The computational complexity of 

finding the coset leader corresponding to 
2

A  is linear 

with 
2

w . Therefore, the computational cost of the first 

step is close to that of STCs, i.e., 
1

( 2 )hO w . More 

precisely, considering that extra computation is needed 

at the juncture of two kinds of submatrices, the whole 

computational complexity of our method is 
1

1 1

1 2 ,
(2 (2 2 (2 1) ))

k h h h

h t
O w w ν

− −
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5 Experimental Results 

If an ME method has low computational complexity, 

larger PCM can be utilized and it may lead to higher 

embedding efficiency. Therefore, some papers only 

ensure that ME methods have the same computational 

complexity and embedding rate, ignoring PCM sizes, 

when compare embedding efficiency. But, in practice, 

cover data may be divided into small parts and the 

embedding process is performed on each part [9]. In 

this case, comparing ME methods should under the 

condition that PCMs have the same size. So we take 

PCM sizes into consideration in the following 

experiments. 

5.1 Experiments of ME for Small Payloads 

Experiment-1: Take the case of 60n =  for example. 

Following the searching process described in Section 

3.2, we got the optimal PCMs for small payloads in 

Table 1. For each payload, 5000 messages and 5000 

covers are generated. All of them are random binary 

sequences. Embed these messages and record 

embedding efficiencies. Calculate the mean value of 

5000 experimental results as the final result. 

Comparison of embedding efficiency between 

Hamming codes [14], Tian et al.’s method [1], Wang et 

al.’s method [17] and the proposed method is shown in 

Figure 3. 
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Table 1. Optimal PCM schemes with different message lengths ( 60n = ) 

n k−  e  r  p  
1
k  n k−  e  r  p  

1
k  

1 2.0000 {1} 1 59 16 4.2172 {1,3,4,4,4} 5 7 

2 2.6667 {2} 1 57 17 4.0964 {2,3,4,4,4} 5 5 

3 3.4286 {3} 1 53 18 3.9387 {3,3,4,4,4} 5 1 

4 4.2667 {4} 1 35 19 3.7531 {1,3,3,4,4,4} 6 0 

5 5.1613 {5} 1 29 20 3.8226 {3,3,3,3,4,4} 6 2 

6 4.6875 {1,5} 2 28 21 3.7433 {2,2,3,3,3,4,4} 7 8 

7 4.4700 {2,5} 2 26 22 3.7581 {3,3,3,3,3,3,4} 7 3 

8 4.5508 {3,5} 2 22 23 3.6095 {1,3,3,3,3,3,3,4} 8 2 

9 4.7974 {4,5} 2 14 24 3.4595 {2,3,3,3,3,3,3,4} 8 0 

10 4.6153 {1,4,5} 3 13 25 3.5889 {1,3,3,3,3,3,3,3,3} 9 3 

11 4.4571 {2,4,5} 3 11 26 3.3471 {2,3,3,3,3,3,3,3,3} 9 1 

12 4.4412 {3,4,5} 3 7 27 3.2727 {1,2,3,3,3,3,3,3,3,3} 10 0 

13 4.3189 {1,3,4,5} 4 6 28 3.1638 {1,2,2,2,3,3,3,3,3,3,3} 11 1 

14 4.1691 {2,3,4,5} 4 4 29 3.0933 {1,1,2,2,2,3,3,3,3,3,3,3} 12 0 

15 4.1026 {3,3,4,5} 4 0 30 3.0769 {2,2,2,2,2,2,3,3,3,3,3,3} 12 0 

 

 

Figure 3. Comparison of embedding efficiency when 
60n =  

From Figure 3, we can learn that: (1) the proposed 

ME method can support different embedding capacities, 

while Hamming codes can only embed at most 5 bits 

of secret messages; (2) In Tian et al.’s method, PCM is 

made up of several submatrices and columns which are 

obtained by executing the bit-wise XOR operation 

between two columns in different submatrices. When 

the number of extra columns is large, this method may 

have a good effect. Therefore, rare points in Figure 3 

are better than our method, such as 10n k− = ; (3) 

However, Tian et al.’s method takes no account of the 

combination of the extra columns and potentially can’t 

make full use of all the cover data. Along with the 

increase of embedding rate, the number of submatrices 

has a tendency to increase, and the extra columns 

become fewer. This is bad for Tian et al.’s method, but 

more combinations of extra columns could be dealt 

with in our method. As a result, the proposed method 

performs better in this phase; (4) On the whole, the 

proposed method has the highest embedding efficiency 

among these four methods. 

The computational complexities of Hamming codes 

and Tian et al.’s method are both ( )O n , and Wang et 

al.’s method in this experiment is 6( 2 )O n . For 60n = , 

actual computational costs of our method are shown in 

Table 2. It can be concluded that the proposed method 

has equal or lower computational complexity to that of 

the previous three methods. 

Table 2. Variation of computational complexity with different message lengths ( 60n = ) 
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Experiment-2: In order to further test the 

performance of the proposed ME method, we apply it 

to StegVoIP [2]. StegVoIP selected 18 LSBs to hide 

secret messages from each G.723.1 (6.3kbits/s) speech 

frame. Hence, there are altogether 72 bits in 4 

neighbouring frames. We randomly choose 40 or 60 

bits from them and take these bits as a unit to perform 

embedding process. The speech files we used in this 

experiment are selected from An4 database [21]. They 

have different lengths. Half of the speech files are 
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recorded by female speakers and half of them are 

recorded by male speakers. The secret messages are 

still binary sequences generated randomly. 

Perceptual evaluation of speech quality (PESQ) is 

proposed by ITU. It’s a widely used objective speech 

quality assessment method. PESQ ranges from -0.5 

(the worst) to 4.5 (the best). It can measure the 

difference between the stego speech and the original 

speech, so we use it to verify the validity of ME 

methods. Calculate the mean PESQ of 1000 original 

female speech files and 1000 original male speech files 

separately. And compare them with PESQ of stego 

speeches with different encoding methods. The results 

are shown in Table 3. From Table 3, we can learn that: 

PESQ of stego speeches using the proposed method are 

very close to the original speeches and larger than 

stego speeches corresponding to other methods, 

indicating that our method can effectively ensure the 

speech quality. 

Table 3. Comparison of PESQ 

 Female ( 40n = ) Male ( 40n = ) Female ( 60n = ) Male ( 60n = ) 

Embedding rate 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

Original speech 3.769 3.769 3.769 3.776 3.776 3.776 3.769 3.769 3.769 3.776 3.776 3.776 

Tian et al. 3.738 3.567 3.426 3.745 3.574 3.432 3.687 3.531 3.346 3.694 3.538 3.352 

Wang et al. 3.684 3.534 3.399 3.691 3.540 3.404 3.617 3.425 3.267 3.623 3.432 3.275 

Proposed method 3.738 3.575 3.426 3.745 3.581 3.433 3.715 3.532 3.346 3.722 3.540 3.352 

 

Figure 4 records the processing time of the speech 

encoder for 100 frame groups (containing 4 

neighbouring frames) when the embedding rate is 0.3. 

As is shown, the proposed curve is more close to the 

curve without information hiding. The average 

encoding time delays caused by information hiding 

with different message lengths can be seen in Table 4 

and Table 5, from which we see that our method has 

the lowest latency. All the experiments were performed 

on a PC with 3.4 GHz Intel Core i7 CPU and 8GB 

RAM, and the methods were implemented in C and 

compiled under Microsoft Visual Studio 2008. 

  

(a) 40n =  (b) 60n =  

Figure 4. Comparison of processing time between different methods  

Table 4. Encoding time delay with different message lengths ( 40n = ) 

n k−  1 2 3 4 5 6 7 8 9 10 

Tian et al. (ms) 0.001 0.002 0.004 0.008 0.015 0.027 0.017 0.019 0.024 0.031 

Wang et al. (ms) 1.115 1.116 1.115 1.115 1.116 1.117 1.116 1.116 1.117 1.116 

Proposed method (ms) 0.001 0.001 0.001 0.001 0.001 0.016 0.013 0.005 0.005 0.093 

n k−  11 12 13 14 15 16 17 18 19 20 

Tian et al. (ms) 0.020 0.021 0.025 0.032 0.027 0.032 0.034 0.026 0.022 0.019 

Wang et al.(ms) 1.116 1.117 1.116 1.116 1.116 1.115 1.116 1.116 1.117 1.117 

Proposed method (ms) 0.019 0.014 0.004 0.036 0.009 0.005 0.022 0.013 0.029 0.007 
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Table 5. Encoding time delay with different message lengths ( 60n = ) 

n k−  1 2 3 4 5 6 7 8 9 10 

Tian et al. (ms) 0.001 0.002 0.004 0.008 0.015 0.041 0.046 0.035 0.032 0.034 

Wang et al. (ms) 3.454 3.456 3.455 3.456 3.456 3.456 3.456 3.456 3.456 3.456 

Proposed method (ms) 0.001 0.001 0.001 0.001 0.001 0.048 0.041 0.032 0.027 0.214 

n k−  11 12 13 14 15 16 17 18 19 20 

Tian et al. (ms) 0.048 0.052 0.059 0.067 0.056 0.064 0.053 0.055 0.058 0.043 

Wang et al. (ms) 3.455 3.456 3.456 3.456 3.458 3.456 3.455 3.455 3.456 3.456 

Proposed method (ms) 0.129 0.052 0.137 0.052 0.004 0.405 0.128 0.009 0.005 0.021 

n k−  21 22 23 24 25 26 27 28 29 30 

Tian et al. (ms) 0.055 0.052 0.049 0.043 0.062 0.057 0.043 0.045 0.031 0.028 

Wang et al. (ms) 3.456 3.456 3.456 3.456 3.457 3.456 3.456 3.456 3.456 3.456 

Proposed method (ms) 0.049 0.050 0.029 0.007 0.061 0.016 0.009 0.020 0.011 0.011 

 

5.2 Experiments of ME for Large Payloads 

Experiment-3: Embed messages into random cover 

data using Fridrich et al.’s method [15] and the 

proposed method for large payloads. The 

computational complexity of Fridrich et al.’s method is 

( 2 )kO n . When embedding rate is not large enough, the 

ME time will be too long. So we set 60n =  and the 

minimum embedding rate is set to be 0.75. To ensure 

that the proposed method can realize fast embedding, 

the computational complexity of our method is limited 

to be lower than 10(2 )O . Notice that, for a given cover 

length and computational complexity, there are many 

parameter combinations of h and k1 resulting in 

different PCM. We select the parameters which can 

yield the least distortion among them. For each payload, 

we embed 5000 blocks of random messages, and 

calculate the average embedding efficiency. 

Experimental results are shown in Figure 5 and Table 6, 

from which we can draw a conclusion that two ME 

methods achieve almost equal embedding efficiency, 

while the embedding speed of our method outperforms 

Fridrich et al.’s method. 

 

Figure 5. Comparison of embedding efficiency when 
60n =  

Table 6. Comparison of embedding speed between 

Fridrich et al.’s method and the proposed method 

( 60n = ) 

Embedding rate 0.75 0.80 0.85 0.90 0.95

Fridrich’s method

(Kbits/s) 
0.05 0.53 6.06 64.13 804.52 

Proposed method 

(Kbits/s) 
2.83 2.88 6.06 64.13 804.52 

 

Fridrich et al.’s method is an exhaustive method. It 

has the capability of searching global optimal solution 

within the defined space. Different from this, the coset 

leader we found using STCs or Wang et al.’s method is 

a local optimal solution. The larger the number of 

random columns in PCM is, the more combinations 

will be considered in searching for the coset leader, 

and thus a higher embedding efficiency we will get. 

Therefore, local matrix R  tends to be maximized 

within the range of allowable computational 

complexity. The computational complexity shoud be 

lower than 10(2 )O  in this experiment, so the number of 

random columns is 10 at most. When the embedding 

rate is larger than 0.85, the random columns needed by 

PCM is less than 10. As a result, the PCMs we 

constructed using the proposed method are the same as 

Fridrich et al.’s method at this moment. 

Experiment-4: Just like Experiment-2, we apply ME 

to StegVoIP and make a comparison between the 

proposed method and existing fast ME methods in [10] 

and [17]. The computational complexity of Fridrich et 

al.’s method is too high to be applied to VoIP 

steganography. So we didn’t use it in this experiment. 

For 60n = , 6(2 )C O≤ , we select the best parameters 

(shown in Table 7) of the proposed method and get 

their embedding efficiencies (shown in Figure 6(a)). 

According to the conclusions of Experiment-3, the 

proposed ME method are the same as Fridrich et al.’s 

method when 54n k− ≥ . Therefore, it is not discussed 

in this experiment. Similarly, Table 8 and Figure 6(b) 

only show the results when 100,n =  8(2 ),C O≤  

92.n k− ≤  Table 7 and Table 8 illustrate that the novel 
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method turns into Wang et al.’s method when payload 

is close to 1. Figure 7 records the processing time of 

speech encoder with different ME methods in several 

cases. And Table 9, Table 10 show the precise 

encoding time delay caused by information hiding. 

According to these results, we can see that a promising 

embedding efficiency is obtained by the proposed 

method while maintaining low computational 

complexity. 

 
 

(a) 60n =   (b) 100n =  

Figure 6. Comparison of embedding efficiency between different methods  

 

(a) 60n = , 40n k− =  (b) 100n = , 66n k− =  

Figure 7. Comparison of processing time between different methods  

Table 7. Optimal values of PCM parameters with different message lengths ( 60n = ) 

n k−  e  1
r  

2
r  h  1

k  n k−  e  1
r  

2
r  h  1

k  

31 3.7086 24 9 3 2 43 3.0146 8 37 3 2 

32 3.6296 23 11 3 2 44 3.0418 0 44 0 6 

33 3.5522 22 13 3 2 45 3.9763 0 45 0 6 

34 3.4681 21 15 3 2 46 2.9407 0 46 0 6 

35 3.4007 20 17 3 2 47 2.9385 0 47 0 6 

36 3.3457 18 20 3 2 48 2.9136 0 48 0 6 

37 3.3048 17 22 3 2 49 2.8602 0 49 0 6 

38 3.2225 15 25 3 2 50 2.8257 0 50 0 6 

39 3.1811 14 27 3 2 51 2.7749 0 51 0 6 

40 3.1338 12 30 3 2 52 2.7129 0 52 0 6 

41 3.0990 10 33 3 2 53 2.6447 0 53 0 6 

42 3.0688 9 35 3 2 54 2.5793 0 54 0 6 
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Table 8. Optimal values of PCM parameters with different message lengths ( 100n = ) 

n k−  e  1
r  

2
r  h  1

k  n k−  e  1
r  

2
r  h  1

k  

52 3.8530 41 13 3 4 72 3.1743 14 60 3 5 

54 3.7443 39 17 3 4 74 3.1201 12 64 3 5 

56 3.6842 36 22 3 4 76 3.0844 6 72 3 5 

58 3.5905 33 27 3 4 78 3.0457 3 77 3 6 

60 3.5404 30 32 3 4 80 2.9762 3 79 3 6 

62 3.4675 28 36 3 4 82 2.9213 0 82 0 8 

64 3.4122 25 41 3 4 84 2.8615 0 84 0 8 

66 3.3509 23 45 3 4 86 2.8108 0 86 0 8 

68 3.2863 21 49 3 4 88 2.7397 0 88 0 8 

70 3.2237 18 54 3 4 90 2.6676 0 90 0 8 

Table 9. Encoding time delay with different message lengths ( 60n = ) 

n k−  31 32 33 34 35 36 37 38 

STCs (ms) 0.481 0.494 0.517 0.535 0.549 0.568 0.574 0.597 

Wang et al.’s method (ms) 0.501 0.512 0.525 0.546 0.556 0.574 0.575 0.606 

Proposed method (ms) 0.563 0.551 0.542 0.533 0.531 0.520 0.511 0.507 

n k−  39 40 41 42 43 44 45 46 

STCs (ms) 0.601 0.625 0.637 0.652 0.670 0.687 0.695 0.715 

Wang et al.’s method (ms) 0.610 0.626 0.634 0.640 0.664 0.688 0.693 0.706 

Proposed method (ms) 0.498 0.475 0.451 0.429 0.403 0.682 0.697 0.706 

n k−  47 48 49 50 51 52 53 54 

STCs (ms) 0.720 0.745 0.763 0.787 0.792 0.814 0.827 0.830 

Wang et al.’s method (ms) 0.711 0.722 0.744 0.758 0.772 0.780 0.803 0.821 

Proposed method (ms) 0.711 0.723 0.744 0.758 0.771 0.780 0.803 0.821 

Table 10. Encoding time delay with different message lengths ( 100n = ) 

n k−  52 54 56 58 60 62 64 66 68 70 

STCs (ms) 5.402 5.614 5.826 6.023 6.218 6.440 6.648 6.845 7.055 7.257

Wang et al.’s method (ms) 5.555 5.721 5.912 6.100 6.313 6.504 6.675 6.862 7.096 7.303

Proposed method (ms) 6.181 6.113 6.059 6.006 5.927 5.821 5.748 5.689 5.608 5.530

n k−  72 74 76 78 80 82 84 86 88 90 

STCs (ms) 7.450 7.676 7.875 8.082 8.284 8.485 8.704 8.921 9.134 9.316

Wang et al.’s method (ms) 7.485 7.662 7.857 8.030 8.225 8.402 8.613 8.796 9.023 9.247

Proposed method (ms) 7.463 7.136 4.670 5.799 5.941 8.401 8.613 8.796 9.023 9.247

 

6 Conclusion 

In this paper, a further study on the PCM 

construction was proposed. We analyzed the 

approaches to realizing fast ME. On this basis, two 

specific matrix structures for small payloads (payloads 

that are smaller than 0.5) and large payloads (payloads 

that are larger than 0.5) were presented. Experimental 

results showed that our fast ME methods can realize 

better embedding efficiency and faster embedding 

speed than state-of-the-art works. It’s worth 

mentioning that though we fixed the cover length to 

make comparison in our experiments, the two novel 

methods both can be applied to covers of arbitrary 

length. 
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