
Efficient Lookup Schemes Based on Splitting Name for NDN 195

Efficient Lookup Schemes Based on Splitting Name for NDN

Qingtao Wu, Jinrong Yan, Mingchuan Zhang, Junlong Zhu, Ruijuan Zheng*

College of Information Engineering, Henan University of Science and Technology, China

wqt8921@haust.edu.cn, yan_jr@163.com, zhang_mch@haust.edu.cn, jlzhu@bupt.edu.cn, rjwo@163.com

*Corresponding Author: Jinrong Yan; E-mail: yan_jr@163.com

DOI: 10.3966/160792642019012001018

Abstract

Named Data Networking (NDN) is a novel networking

architecture which retrieves the content by using its

variable-length names. Name-based forwarding is a

typical feature of NDN. Therefore, it has necessitated the

design of fast forwarding lookup algorithms. In this paper,

we propose an efficient name lookup scheme called SNBS

(Split the Name into Basis and Suffix). In this scheme, we

decompose Basis into many components. Each

component of Basis is stored in a Counting Bloom Filter

(CBF). In addition, we also introduce a correlation

verification method to ensure inherent correlation of all

components of Basis. Furthermore, Suffix is processed by

tree bitmap. By simulation, we show that our proposed

lookup scheme can improve the lookup rate. Moreover,

our scheme also reduces the bound of false positive

probability.

Keywords: NDN, Name lookup, Counting bloom filter,

Tree bitmap

1 Introduction

Named Data Networking (NDN) [1-2] is a future

Internet paradigm which uses the unique content name

to obtain content irrespective of IP addresses. It

presents many issues in the traditional network, such as

scalability, mobility and safety [3]. However, NDN

directly uses the content as basic object of network

processing, which brings with potential benefits [4].

Meanwhile, it has technical challenges. As interest

packets forward by lookup the Longest Prefix Match

(LPM) of content names, the efficient and scalable

lookup is an important problem in those challenges.

In NDN, implementing a name-based lookup

scheme faces significant challenges [5]. A lookup in

NDN is essential to scan dozens or hundreds of

characters till finding the LPM. Lookup time is directly

related to the length of name, which has challenged to

the line-speed name lookup. That is more complicated

than IP address matching. Moreover, FIB may become

huge than IP forwarding tables so that the algorithm of

name lookup may take intolerable time. Therefore,

traditional prefix matching algorithms will be less

efficient in content name lookup. Finally, the update of

name prefix table in NDN more frequent than routing

tables of traditional networks.

In facing these challenges, an efficient and scalable

data structure is essential to implement the FIB. An

effective data structure should have the charm of fast

lookup, scalable update time and robust forwarding

correctness. Some CBF-based schemes for names can

be adopted as an effective solution [5]. However,

existing methods based on the CBF incur false positive

problems which can cause forwarding error. A tree-

based scheme has the high flexibility, which is suit to

the suffix [6]. To handle these issues, we design a data

structure called SNBS. Based on the observation of

name prefixes, these have two general characteristics:

(1) the probability that a name contains a number of

components, which is very low. A name length is

relatively uniform; (2) a name prefix is also same in

the different names, hence the redundant information is

stored. Aiming at the characteristics above, we split the

name into two stages that are similar to [7]. SNBS

employs a CBF and a tree bitmap to achieve fast

lookup and enhance forwarding correctness. Moreover,

we introduce a correlation verification method to

ensure inherent correlation of all components of Basis.

The correlation verification reduces the bound of false

positive problem brought by CBF. In summary, we

make the following contributions:

(1) In this paper, we decompose Basis into many

components that are stored in corresponding CBF.

According to the characteristics of variable length, we

store Suffix by using tree bitmap.

(2) SNBS has high accuracy of lookup by using the

correlation verification method. The hash table can

store the verification value. In addition, we can obtain

forwarding interfaces and the position of suffix by

verification in the hash table.

(3) We show the operations of inserting, lookup, and

deleting items in proposed hybrid data structure.

(4) SNBS effectively reduces the bound of false

positive problem in the process of the lookup. It is able

to sustain relatively stable lookup performance with the

increase of the number of name.

The rest of this paper is organized as follows. In

Section 2, we present the related work. In Section 3,

196 Journal of Internet Technology Volume 20 (2019) No.1

we present a fast longest prefix name lookup structure.

In Section 4, we analyze the bound of false positive

problem. In Section 5, we evaluate the proposed

lookup structure. In Section 6, we conclude the paper.

2 Related Work

In recent years, there have been an increasingly

large number of literatures on NDN [1-2]. However, in

those studies, only a few are dedicated to name lookup

in content

routers. In existed works, the software-based or

hardware-based solutions are proposed to improve

name lookup performance. In software, we survey

related work in two aspects: (1) study on Bloom Filter

to reduce the false positive, (2) study on tree data

structure to reduce the depth of tree.

Bloom Filter is a space-efficient solution for fast

LPM. Dharmapurikar et al. [8] first proposed a LPM

algorithm that employs Bloom Filter to efficiently

reduce the scope of lookup. A software engine based

on hash tables was designed to achieve a fast

forwarding lookup in [9]. Xiao et al. [10] proposed an

approach stored multiple attributes of an item in

parallel Bloom Filter. The same ideas are also used in

our design. A parallel Bloom Filter is used in URL [11].

Nevertheless, the method based on Bloom Filter will

cause relatively large false positive problem, which

may forward the packet to the wrong interface.

Tree data structure is another effective way to

achieve the LPM. A fast lookup framework was

proposed and implemented for LPM, which uses

extensible hybrid data structures [12]. Quan et al. [13]

used the tree bitmap to degrade the depth of tree, which

is useful to the variable length. However, the lookup

scheme based on the tree will cause a high lookup cost

because of the length of name.

Many hardware-based research works have been

done since it has an advantage of hardware’s

parallelism. Lookup mechanisms that based on TCAM,

which are presented in NDN [14]. However, it is more

expensive form the cost point of view. In [15], a name

component encoding method was proposed that

implemented a GPU-accelerated lookup engine. The

above research can greatly improve the process of

lookup. However, they have compromised with the

high cost and power consumption.

In this paper, we use the hybrid structure to reduce

the bound of false positive. In addition, it can also

improve the lookup speed of name. A name prefix is

split into two stages, namely Basis and Suffix. In the

first stage, the components among Basis are parallel

lookup. Moreover, a correlation verification method is

used to verify the correlation between components,

which can reduce the upper bound of false positive

problem. The length of Basis is decided by the split

position P. In the second stage, we use tree bitmap to

reduce the depth of tree. With this hybrid data structure

and an optimized lookup algorithm, we can achieve

efficient lookup performance as increasing the number

of name prefixes.

3 Proposed Solution for Name Lookup

3.1 Split Model

Definition 1 (Split Model): Given the FIB and split

position P, the FIB is split into two stages at the

position P, namely, FIB1 and FIB2 (1 2P
FIB FIB FIB→ +).

Each input name is split into two parts at position P,

namely, Basis and Suffix ().pname Basis Suffix→ +

Name lookup is to seek for the forwarding interfaces of

which the corresponding name prefix in FIB is

determined by:

1

1 2

1 2

()
()

()

LPM S Suffix
prefix LPM S S

t LPM S Suffix

=∅⎧
= = ⎨

≠ ∅⎩
∪

∪
,

where

1

Basis S∈ ,
2

Suffix S∈ ,
1 1

{ | }S t t FIB t Basis= ∈ ≤and ,

2 1 2 1 2

{ | }
P

S t t FIB t t t t =Basis t Suffix= ∈ → + ≤, ,and , .

It is important to note that
i
t x≤ shows the number

of component of
i
t is no more than x .

3.2 SNBS Structure

After the name split, it can effectively reduce the

number of Basis for the polymerization of name. In

this paper, we present an efficient name lookup scheme

that combines CBF with tree bitmap. In the SNBS, the

original FIB is split into FIB1

and FIB2 on the basis of

Split Model at the position P. Each input name also is

split at position P to product two shorter ones, namely,

Basis and Suffix. They are looked up in FIB1

and FIB2

respectively. At last, their lookup result should be

combined. In other words, the Basis of each name

forms the FIB1 and the Suffix of each name forms the

FIB2. To implement Split Model, there are three cases

to be considered: (1) how to look up Basis in FIB1; (2)

how to look up Suffix in FIB2; (3) How to combine

these lookup results.

According to the definition of the Split Model, the

lookup results of Basis exist in FIB1. A CBF built on

FIB1 can be adopted to perform lookup of Basis. In

addition, a tree bitmap built on FIB2 is useful for the

flexible lookup characteristics. Basis and Suffix are

connected by the hash table. In addition to the above

function, the hash table also shows forwarding

interfaces and reduces the bound of false positive

probability.

The hybrid NDN lookup structure is depicted in

Figure 1. The storage of Basis is different from [8] in

which the different lengths of name prefix are stored in

Efficient Lookup Schemes Based on Splitting Name for NDN 197

compon

ment1

compon

ment2
Basis

compon

mentP

CBF CBF CBF

Cw

Verfication
C1

C2

...

Ci

S1
1,2
...

Sn

Stored in hash

Sn

S1

S1 S2 S3 ... Sn

k1,1(x1)

k1,2(x1)

k1,3(x1)

k1,z(x1)

k2,1(x2)

k2,2(x2)

k2,3(x2)

k2,r(x2)

kP,1(xP)

kP,2(xP)

kP,3(xP)

kP,s(xP)

Face/Suffix

…

Suffix

Figure 1. Hybrid name lookup structure

the different Bloom Filter. SNBS splits Basis into many

components. Then each component is stored in a CBF.

The CBF uses the segment-based form [10]. SNBS can

perform the parallel lookup among components of

Basis. Suffix uses tree bitmap for storage. If a name

needs to be inserted or deleted, the corresponding Basis

will be added or deleted from the CBF. In other words,

the indexed positions of counters in CBF are

incremented or decremented by 1. Similarly, the

corresponding tree bitmap will be updated, which is

specific detailed in [13, 16].

3.3 The Correlation Verification Mechanism

In the Basis, the parallel lookup of CBF is very

effective. However, Basis is split into many

components. To judge the relevance between

components of Basis, we introduce the correlation

verification mechanism in the Basis. The presence of a

name prefix can be verified when it presents in both

CBF and the hash table. The correlation verification is

based on the weighted way. A method of generating

the verification value ci can distinguish verification

values from different components in which the

sequential hash functions are assigned different

weights. In Basis, assuming that the number of parallel

Bloom Filters is P. The size of the i-th CBF is mi. The

set of hash functions in the i-th CBF is

,1 ,2 ,
{ , , , }

i i i i l
K k k k= � , therefore, the i-th CBF contains

| |
i

K independent hash functions. Thus the range of a

hash function is [1, / | |]
i i

m K in a CBF. It is important

to note that | |
i i

m K≥ . The range of a hash function is

depicted in Figure 2. A proportion of Basis in the total

name is u. xi is the i-th component of name x. The j-th

hash value of xi is computed by the j-th hash function

in the CBF, which represents ki,j(xi). The hash function

is a random variable following the Uniform

Distribution.

Figure 2. The range of a hash function for segment-

based form

Verification value of the i-th component of Basis of

x is

| |

,

1

2 ()
i

K

uj

i i j i

j

c k x
−

=

=∑ (1)

where

| | | |

1 1 1
1 1

2 1 | | (2 1)2 2i i

i

i u K u Ku u

i

m
c

K

⎡ ⎤⎛ ⎞ ⎛ ⎞
∈ − −⎢ ⎥⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠⎣ ⎦
，

The verification value of x is given by

1

w

w i

i

C c

=

=∑ (2)

198 Journal of Internet Technology Volume 20 (2019) No.1

where

| | | |
1 1

1 1 1
1 , 1

2 1 | | (2 1)2 2i i

w w

i

w u K u Ku u

i i i

m
C

K
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
∈ − −⎢ ⎥⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑

In equation (2), w denotes the number of

components of Basis for name x and w P≤ . Because

of the different size of the CBF, we have not

amalgamate with the scope with
i
c . Verification value

will be inserted into the hash table. By the verification

value, it can find the corresponding Suffix or the

forwarding interfaces.

3.4 Name Lookup

Table 1 presents the looking items in the SNBS

structure. There have two cases: (1) the length of name

prefix is less than or equal to position P, only the Basis

needs to be looked up, which is processed by the CBF;

(2) the length of name prefix is greater than P, the

lookup will be process in the two stages. A given name

is divided into two parts by the function of

GetIsolation, namely, xB and xS. For Basis, verification

value of name Cw is initialized to zero. We first

compute |Ki| hash functions for the i-th component of

xB in parallel. We use array Bv[i] that records effective

validation values for a component. If the j-th counter

has a value of zero, the length of longest prefix of the

name is less than i as shown in lines 3-8. In this

process, variable y records the minimum subscript of

CBF that the counter has a value of zero. If not, the

verification value Cw is computed. The elements of

stack are stored in order from the small to the large. It

obtains the forwarding faces by the stack as shown in

lines 18-27. If a counter hasn’t a value of zero until the

value of y is greater than or equal to P, it looks up the

corresponding Suffix by the verification value of Basis

in the hash table, then it will return the forwarding

interfaces as shown in lines 22-24. The verification

value Cw is produced by iteration as shown in lines 3-

10. In the algorithm 1, the component of Basis is

checked twice from the CBF and hash table. It can

effectively reduce the false positive.

Table 1. The algorithm for looking items

Procedure QueryItem(Input: Item x)

1. (xB, xS)←GetIsolation(x) 15. put the Cw into the stack

2. for each component i of xB do 16. Cw=Cw+ Bv[i]

3. initialize Cw=0, y=P+1 17. end for

4. for(j=1,j≤ |Ki|, j++) do 18. if(stack is empty)

5. l=ki,j(xi)

19. Return the default face

6. if(CBF[l]=0 and y＞i)

20. else

7. y=i 21. if(y≤P)

8. break; 22. take the top element of the stack Cw

9. end if 23. a hash check for the forwarding the face by the Cw

10. Cw=Cw+l/2uj 24. Return the forwarding face

11. end for

25. else

12. Bv[i]=Cw
26. look up the suffix that corresponding the Basis

13. Cw= Bv[1]

27. Return the forwarding face

14. for(i=1;i＜y;i++) 28. end procedure

Figure 3 shows the lookup process of SNBS. Name

is divides into two parts for the lookup. In Basis, a

component is associated with a CBF which can be

parallel lookup with other CBF. Hash table stores the

verification value to verify the correlation, look up the

forwarding interfaces and ensure the position of Suffix.

Hence it achieves the lookup for the hybrid structure.

3.5 Update Scheme

SNBS provides a relatively stable update process.

The update operation in SNBS includes the insertion

and deletion operation. The update process is triggered

when a new entry needs to be inserted or an expired

one needs to be deleted in the FIB. In this paper, the

number of Basis will reduce for splitting, which makes

the possibil i ty of the update in CBF will be

dramatically reduced. In the algorithm, the size of each

CBF can be different, and the number of hash function

Figure 3. Match process

Efficient Lookup Schemes Based on Splitting Name for NDN 199

of a CBF also can be different from other CBF. Hence,

we can modify the size of CBF according to the

number of name prefix.

3.5.1 Inserting Items

The algorithm for inserting entries in SNBS is given

in Table 2. When an item is inserted into the SNBS,

there are following cases: (1) if the length of the

longest prefix t is less than the split position P, it needs

to update CBF first. The counters of CBF are

incremented by 1, which can be done by computing

hash value of a component. Then it generates the

verification value based on weighted method, and

finally inserts the verification value into the hash table,

as shown in lines 3-7. Under this circumstance, if the xS

exists, the algorithm will continue to update tree

bitmap. We will allocate the new root node, then we

carry out an insertion in tree bitmap by setting the

associated bits to one [13, 16], as shown in lines 8-10;

(2) if the length of longest prefix t is more than the

split position P, it just needs to update the tree bitmap

and does not need to do anything to CBF. In other

words, the Basis has already existed, as shown in lines

12-13.

Table 2. The algorithm for inserting entries

Procedure Insert_Item(Input: Item x)

1. (xB, xS)←GetIsolation(x)

2. t←Lookup(xB)

3. if(t＜P and t !=the number of component in xB)

4. l=ki,j(xi)

5. []CBF l + +

6. Cw=Cw+l/2uj

7. insert Cw into the hash table

8. if(xS is not empty)

9. locate the new allocated root node S

10. update the bitmap by setting the associated bits

to one

11. else

12. locate the leaf node contains an insertion

13. update the bitmap by setting the associated bits to one

14. end procedure

3.5.2 Deleting Items

The algorithm for deleting entries in SNBS is given

in Table 3. When an item is deleted from the SNBS,

there are following cases: (1) if the length of the

longest prefix t is less than the split position P, the

counters of CBF are decreased by 1, which can be done

by computing hash value of component. The

verification value will be deleted from the hash table,

as shown in lines 3-7. In addition to, if the

corresponding tree bitmap of verification value exists,

we carry out a deletion in tree bitmap by setting the

associated bits to zero in lines 8-9; (2) if the length of

the longest prefix t is more than the split position P, we

carry out a deletion in tree bitmap by setting the

associated bits to zero [17]. Due to the aggregation of

names, the operation of CBF needs to consider the

condition for the common Basis of different Suffix.

Accordingly, if the tree bitmap is empty after we delete

the xS from the tree, we carry out the deletion for CBF,

as shown in lines 13-18.

Table 3. The algorithm for deleting entries

Procedure delete_Item (Input: Item x)

1. (xB, xS)←GetIsolation(x)

2. t←Lookup(xB)

3. if(t＜P)

4. l=ki,j(xi)

5. []CBF l − −

6. Cw=Cw+l/2uj

7. delete Cw from the hash table

8. if(xS is not empty)

9. update the bitmap by setting the associated bits to zero

10. else

11. update the bitmap by setting the associated bits to zero

12. if(the tree bitmap is empty)

13.

l=ki,j(xi)

14. []CBF l − −

15. Cw=Cw+l/2uj

16. delete Cw from the hash table

17. end procedure

4 False Positive Analysis

In [8], the false positive of CBF gets the minimum

of
| |

(1/ 2) i
K

 when | | (/) ln 2
i i i

K m n= .
i
n stands for the

number of name in the i-th CBF. Assume the false

positive probability of the i-th CBF of SNBS is fi.

Obviously, fi gets the minimum of
| |

(1/ 2) i
K

 when

| | (/) ln 2
i i i

K m n= . The number of name prefix is n.

i
c

F is the conflict probability of verification value of

the name prefix which contains i components. Because

of the introduction of a correlation validation

mechanism, the false positive probability of SNBS for

each name matching
i

CBF
f is:

1 2

{1,2,3, , }
i i

CBF i c
f f f f F i P= ⋅ ⋅ ∀ ∈� � (3)

The expectation of ci in a CBF is

||

1 / | |1 1
() 1

2 2 1 2 i

i i

i u u K

m K
E c

+⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (4)

The variance of ci is

22

| |

/ | | 11 1
() 1

12 2 12 i

i i

i K uu

m K
V c

−⎛ ⎞⎛ ⎞
= −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (5)

Verification value Ci is the sum of i independent

random variable. According to central limit theorem in

[16], the verification value Ci in the Basis obeys the

200 Journal of Internet Technology Volume 20 (2019) No.1

normal distribution:

 ~ ,
i

C α β()N (6)

where

||

1

1 / | |1 1
1

2 2 1 2 j

i
j j

u u K
j

m K
α

=

+⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

− ⎝ ⎠⎝ ⎠
∑

22

| |
1

/ | | 11 1
1

12 2 12 j

i
j j

K uu
j

m K
β

=

−⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

−⎝ ⎠ ⎝ ⎠
∑

Comparing with [10], the upper bound of
i
c

F in this

paper is:

1

() () ()
2 2

()

2 2

2 () 1
2

n

i i i i i

i

i i

n n
F C C p E C C E C

C E Cn n
p

n

δ δ δ

δ

=

⎛ ⎞
= ≤ − ≤ ≤ +⎜ ⎟

⎝ ⎠

−⎛ ⎞
= − ≤ ≤⎜ ⎟

⎝ ⎠

= Φ −

∑

 (7)

22

| |
1

() 2
2

2

/ | | 11 1
2 1

12 2 12 j

i

i
j j

K uu
j

n
F C

n

m K

=

⎛ ⎞
≤ Φ −1⎜ ⎟

δ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟

= Φ −1⎜ ⎟
⎜ ⎟−⎛ ⎞⎛ ⎞

−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

where Φ represents cumulative distribution function

of the standard normal distribution. δ denotes the

standard deviation, namely β2
δ = .

For the longest prefix matching of SNBS, the bound

of false positive probability fSNBS is given by

1

1 (1)
P

SNBS CBF j

j

f f
=

≤ − −∏ (8)

Furthermore, we have

1 2

1

1 2

1

| | | | | |
1

()

1

2

j

jj

P

SNBS CBF j

j

P

j c

j

P

cK K K
j

f f

f f f F

F

=

=

+ + +

=

≤

= ⋅ ⋅

=

∑

∑

∑
�

�

In addition, the false positive probability S
f in the

[8] is given by

| |

1

1

2
j

P

S K
j

f
=

≤∑
 (9)

Comparing with [8], we can see that the bound of

false positive probability of SNBS are lower by

expressions (8) and (9) when the storage space and the

number of set elements are simultaneous.

5 Performance Evaluation

In this section, we evaluate the performances of

SNBS in terms of memory consumption, lookup time

consumption and update performances. In addition, we

choose Bloom-Hash (BH) [8], Hash Table (HT) [9] for

comparison. The BH, HT and SNBS schemes are

implemented in C++ language. The performances are

measured in the PC with an Intel Core 2 Duo CPU of

2.8 GHz and DDR2 SDRAM of 4 GB. In the

experiments, the number of name is 1M~10M, the

number of CBF are 5. The number of hash functions is

6. According to [13], we let P be equal to 5, which is

the optimal value. We utilize the domain name

information from the Blacklist [18] and collect a larger

number of URLs to build the experimental names

dataset. For each name, we randomly associated with

one forwarding face. The component number of names

uniformly ranges from 2 to 7.

(1) Memory consumption

The memory consumption of the three methods on

different prefix table sizes is illustrated in Figure 4. It

observes that the memory consumption increases with

the scale of name prefix. The BH is lower than other

methods. The HT has the intermediate behaviors.

Compared with other approaches, the memory

consumption is defects of SNBS. However, SNBS only

takes more 18.79% than BH on average with the scale

of prefix. And it takes more 5.87% than HT on average

with the scale of prefix. Note that the correlation

verification mechanisms that uses hash table to

maintain real verification values of Basis instead of its

hashed results in a CBF. However, it doesn’t require

much memory cost since selecting the suitable position

P can optimize the memory cost.

2 4 6 8 10
0

100

200

300

400

500

600

700

800

Number of Name(M)

M
e
m

o
ry

 C
o
s
t(
M

B
)

BloomHash

HashTable

SNBS(M=5)

Figure 4. Memory cost

(2) Lookup time consumption

In the evaluation, we input 100K names at each time

to get the total lookup time. Then we can get the

average lookup time of name prefix by the total lookup

Efficient Lookup Schemes Based on Splitting Name for NDN 201

time. Figure 5 presents the comparison in terms of

lookup time consumption. BH has more high time than

HT and SNBS. The reason is that the BH and HT have

conduct time consumption and need to cope with a

number of conflicts. The component of Basis in SNBS

can be parallel processing and it is split into shorter

than whole name. In addition, the verification value

based on weight can reduce the conflicts in some

degree. The average lookup time of BH is

1.19us~1.27us, which can process the name

787k~840k per second. The HT’s average lookup time

is 1.04us~1.23us, which can process the items

813k~961k per second. Compared to the above two

methods, SNBS’s average lookup time is

0.87us~1.07us, which can process the 935k~1149k per

second. Although the memory consumption is

relatively large, the speed is remarkably improved.

2 4 6 8 10
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Name(M)

L
o
o
k
u
p
 T

im
e
 C

o
n
s
u
m

p
ti
o
n
(u

s
)

BloomHash

SNBS(M=5)

HashTable

Figure 5. Lookup time consumption

(3) Update performance

The update process contains the insertion and

deletion. The inserted time is calculated by inserting

100K new names to the BH, HT and SNBS for a

different name scales. Figure 6 and Figure 7 show the

update process. The average time of insertion for BH is

4.35 us~6.48 us, it can insert the name prefix

154k~230k per second. The average time of insertion

for HT is 2.82us~6.03us, it can insert the name prefix

166k~355k per second. The average time of insertion

for SNBS is 3.65us~4.94us, it can insert the name

prefix 203k~274k per second. It can observe that SNBS

can achieve a stable performance than other means.

2 4 6 8 10
0

3

6

9

Number of Name(M)

In
s
e
rt
io
n
(u
s
)

BloomHash

SNBS(M=5)

HashTable

Figure 6. The update of insertion

2 4 6 8 10
0

0.4

0.8

1.2

1.6

2

2.4

2.8

Number of Name(M)

D
e
le
ti
o
n
(u
s
)

BloomHash

SNBS(M=5)

HashTable

Figure 7. The update of deletion

The deleted time is calculated by deleting 100K

names from the BH, HT and SNBS for a different name

scales. From the Figure 7, the average time of deletion

for BH is 2.24us~2.35us, it can delete the name prefix

425k~446k per second. The average time of deletion

for HT is 1.11us~1.34us, it can delete the name prefix

746k~900k per second. The average time of deletion

for SNBN is 1.31us~1.75us, it can delete the name

prefix 571k~763k per second. The update of SNBS is

better than the BH in general. The reason is that the

split of prefix shortens wholes items which reduces the

frequency of updates CBF and makes the processing

more efficient. The correlation verification mechanism

is introduced which may increase update time than HT.

However, we can know correlation verification

mechanisms that reduce the bound of false positive

probability of SNBS from the section 4.

In summary, these experiments show that SNBS

achieves relatively high processing speeds. Although

there is variation, say generally, the processing speed is

relatively steady.

6 Conclusion

This paper proposes a lookup scheme called SNBS to

improve the lookup performance of FIB for packet

forwarding in NDN. The FIB is split into FIB1 and

FIB2. FIB1 is represented by the CBF and FIB2 is

represented by the tree bitmap. Each input name is split

at position P, namely Basis and Suffix. Basis is

decomposed into many components to reduce false

positive probability. In addition, we utilize the

correlation verification mechanism to ensure inherent

correlation of all components of Basis. Computing the

hash of Basis can carry out in parallel to reduce the

lookup time. By the analysis, we can find the SNBS

achieves a lower bound of false positive. Evaluation

results indicate that SNBS achieves a relatively high

lookup speed.

Acknowledgments

This work is partially supported by the National

202 Journal of Internet Technology Volume 20 (2019) No.1

Natural Science Foundation of China (NSFC) under

Grants No. U1404611, No. U1604155, and No.

61370221, in part by the Program for Science &

Technology Innovation Talents in the University of

Henan Province under Grants no. 16HASTIT035, and

in part by Henan Science and Technology Innovation

Project under Grant No. 164200510007 and No.

174100510010, and in part by Henan Province

University-industry Project under Grant No.

172107000005.

References

[1] L. X. Zhang, A. Afanasyev, J. Burke, B. C. Zhang, Named

Data Networking, ACM Sigcomm Computer Communication

Review, Vol. 44, No. 3, pp. 66-73, July, 2014.

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B.

Ohlman, A Survey of Information-centric Networking, IEEE

Communications Magazine, Vol. 50, No. 7, pp. 26-36, July,

2012.

[3] R. J. Zheng, M. C. Zhang, Q. T. Wu, W. Y. Wei, C. L. Yang,

A3srC: Autonomic Assessment Approach to IOT Security

Risk Based on Multidimensional Normal Cloud, Journal of

Internet Technology, Vol. 16, No. 7, pp. 1271-1282, January,

2012.

[4] S. Gao, H. K. Zhang, A. Sun, Y. M. Huang, Supporting

Scalable Source Mobility Management for Named Data

Networking, Journal of Internet Technology, Vol. 17, No. 4,

pp. 619-632, January, 2016.

[5] H. C. Dai, J. Y. Lu, Y. Wang, T. Pan, B. Lin, BFAST: High-

Speed and Memory-Efficient Approach for NDN Forwarding

Engine, IEEE/ACM Transactions on Networking, Vol. 25, No.

6, pp. 1235-1248, April, 2017.

[6] W. Quan, C. Q. Xu, J. F. Guan, H. K. Zhang, L. A. Grieco,

Scalable Name Lookup with Adaptive Prefix Bloom Filter for

Named Data Networking, IEEE Communications Letters, Vol.

18, No. 1, pp. 102-105, January, 2014.

[7] Y. B. Li, D. F. Zhang, K. Huang, D. C. He, W. P. Long, A

Memory-efficient Parallel Routing Lookup Model with Fast

Updates, Computer Communications, Vol. 38, pp. 60-71,

February, 2014.

[8] S. Dharmapurikar, P. Krishnamurthy, D. E. Taylor, Longest

Prefix Matching Using Bloom Filters, IEEE/ACM

Transactions on Networking, Vol. 14, No. 2, pp. 397-409,

April, 2006.

[9] W. So, A. Narayanan, D. Oran, Y. G. Wang, Toward Fast

NDN Software Forwarding Lookup Engine Based on Hash

Tables, ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, Austin, TX, 2012,

pp. 85-86.

[10] B. Xiao, Y. Hua, Using Parallel Bloom Filters for Multi-

attribute Representation on Network Services, IEEE

Transactions on Parallel and Distributed Systems, Vol. 21,

No. 1, pp. 20-32, January, 2010.

[11] Z. Zhou, W. L. Fu, T. Song, Q. Y. Liu, Fast URL Lookup

Using Parallel Bloom Filter, Journal of Electronics, Vol. 43,

No. 9, pp. 1833-1840, September, 2015.

[12] F. Li, F. Y. Chen, J. M. Wu, H. Y. Xie, Fast Longest Prefix

Name Lookup for Content-centric Network Forwarding,

ACM/IEEE Symposium on Architectures for Networking and

Communications Systems, Austin, TX, 2012, pp. 73-74.

[13] W. Quan, C. Q. Xu, A. Vasilakos, J. F. Guan, H. K. Zhang, L.

A. Grieco, TB2F: Tree-bitmap and Bloom-filter for a Scalable

and Efficient Name Lookup in Content-Centric Networking,

IFIP Networking Conference, Trondheim, NOR, 2014, pp. 1-

9.

[14] L. X. Zhang, D. Estrin, V. Jacobson, B. C. Zhang, Named

Data Networking (NDN) Project, NDN-0001, October, 2010.

[15] Y. Wang, H. C. Dai, T. Zhang, W. Meng, J. D. Fan, B. Liu,

GPU-accelerated Name Lookup with Component Encoding,

Computer Networks, Vol. 57, No. 16, pp. 3165-3177,

November, 2013.

[16] W. Eatherton, G. Varghese, Z. Dittia, Tree Bitmap:

Hardware/software IP Lookups with Incremental Updates,

ACM Sigcomm Computer Communication Review, Vol. 34,

No. 2, pp. 97-122, April, 2004.

[17] A. R. Barron, Entropy and the Central Limit Theorem, The

Annals of Probability, Vol. 14, No. 1, pp. 336-342, January,

1986.

[18] http://urlblacklist.com/ klist.com/.

Biographies

Qingtao Wu studied in East China

University of Science and Technology,

majored in computer application. He

works as a Professor in Henan

University of Science and Technology.

His research interests include

computer security, future Internet security.

Jinrong Yan is a Master degree

candidate at the Henan University of

Science and Technology. She received

her B.S. degree from Henan

University of Science and Technology.

Her research interests include name

lookup and network caching.

Mingchuan Zhang studied in Beijing

University of Posts and

Telecommunications, majored in

Communication and information

system. He works as an Associate

Professor in Henan University of

Science and Technology. His research

interests include bio-inspired networks, future Internet.

Efficient Lookup Schemes Based on Splitting Name for NDN 203

Junlong Zhu is currently pursuing the

Ph.D degree in the computer science

and technology from the Beijing

University of Posts and

Telecommunications. His research

interests include large-scale

optimization, distributed multi-agent

optimization.

Ruijuan Zheng studied in Harbin

Engineering University Technology,

majored in computer application. She

works as an Associate Professor in

Henan University of Science and

Technology. Her research interests

include bio-inspired networks,

Internet of Things.

204 Journal of Internet Technology Volume 20 (2019) No.1

`

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

