
Data Centers Selection for Moving Geo-distributed Big Data to Cloud 111

Data Centers Selection for Moving Geo-distributed

Big Data to Cloud

Jiangtao Zhang1, Qiang Yuan2,3, Shi Chen2,3, Hejiao Huang2,3, Xuan Wang2,4*

1 Shenzhen Jingyi Smart Technology Co., Ltd., China
2 School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China

3 Shenzhen Key Laboratory of Internet of Information Collaboration, China
4 Shenzhen Applied Technology Engineering Laboratory for Internet Multimedia Application, China

jiangtaozhang@aliyun.com, 976796147@qq.com, honesty_chenshi@163.com,

huanghejiao@hit.edu.cn, wangxuan@insun.hit.edu.cn

*Corresponding Author: Hejiao Huang; E-mail: huanghejiao@hit.edu.cn

DOI: 10.3966/160792642019012001010

Abstract

Because of the distributed networking and coexistent

abundant computation and storage resources, cloud

computing has become a preferred platform for big data

analytics, especially for the geo-distributed data across

the world. The precondition for data processing is to

move the data to the cloud. Due to the large volume of

data, high transmission cost across continents and even

specific legal prohibition, it is not always feasible to

move all data to one data center. Appropriate data centers

should be selected while keeping fast data access and low

cost. In this paper, four criteria of the problem are

explored. A tight 3-approximation algorithm is proposed

to address the former two criteria. It can be simplified

when the underlying bipartite graph is complete. The

latter two criteria are addressed by a heuristic. Comparing

to the optimal method and other schemes, extensive

simulations demonstrate that the proposed algorithms can

find rather good solutions with less time, and hence are

more appropriate for large scale applications.

Keywords: Big data, Data centers selection, Distributed

cloud computing, Cost minimization

1 Introduction

Cloud computing has become a preferred platform

for big data (BD) analytics [1-3], especially when data

are produced from geo-distributed locations, where the

local data are accessed often by local users, and

sometimes the data need to be aggregated for further

analysis or data mining [4]. For example, for a multi-

national sales corporation consisting of a large number

of branch companies across the world, branches in

each country need to analyze the native customer

related data in time for commercial purpose. All data

should also be analyzed to report to headquarters or be

joint-analyzed to facilitate the cross-border deals.

Normally, a large scale cloud is networked in a

distributed fashion and has multiple geo-s panned data

centers (DCs, at least 16 DCs spanning 4 continents for

Amazon [5] and 13 DCs across 4 continents for Google

[6]). Each DC is equipped with computation integrated

with storage resources in an elastic pay-as-you-go

mode. This infrastructure can provide nearby service

and is particularly appropriate for geo-distributed data

processing. To process BD in cloud, the precondition is

to move and save BD in eligible DCs [2]. Hard-driven

mechanism is one option to move the large volume

data. For example, Amazon Import/Export service

recommends using portable storage devices to ship

data [7]. Sometimes, it is even possible to move the

whole machine [8]. But this usually applies to

intermittent or one-time bulk data moving. It invokes

great delay and cannot meet the increasing real-time

analysis requirement [1]. Moreover, it contradicts

automated administration and needs more labor, which

is continually becoming more expensive. Data

transmission over the Internet is costly and unrealistic

due to the great delay. For example, it will take about

13 days to transfer 1TB data via a 10MB internet

connection [7]. Dedicated high speed connection is

often suggested to move the real-time data (e.g., AWS

direct connect of Amazon [9]). This method can

facilitate faster transmission. But even relying on the

high speed dedicated connection, moving BD across

continents is still very difficult. For example, AWS

direct connect does not provide across continents

service. The international private leased circuit is very

expensive. This hampers moving large scale data,

which disperse around the world, to only one DC [10].

Furthermore, using one DC to store data incurs a

higher data access delay for the more frequent local

data analysis. Especially in some regions, data security

laws require some data must be stored locally (e.g.,

some countries in EU). Taken together, users should

respect some criteria to select locations for their data,

112 Journal of Internet Technology Volume 20 (2019) No.1

just as that recommended by Amazon: being nearer to

users to reduce data access latency, addressing specific

legal and regulatory requirements or reducing cost, etc.

Figure 1 models the distribution of DCs and users

(we use users to represent the branch companies or a

group of data owners for simplicity). There are 10 DCs

and 9 users across 4 continents. Different DCs are

available for or preferred by different users. For

example, users 4, 5 in Europe can only be assigned to

DCs 5, 6 in the same continent. Users in Asia only

prefer DCs in the Asian-Pacific region.

Figure 1. Geo-distributed data centers and users. The

line in the underlying bipartite graph indicates the

availability of DCs or the preference of users.

Nowadays, some MapReduce-like framework, such

as GHadoop [11], G-MR [12], G-framework [13] and

Cross-cloud MapReduce [14], can realize data analysis

across clusters and DCs [10, 15]. Comparing with one

DC scheme, multiple DCs mechanism can not only

meet the aggregate analysis requirement, but also

guarantee faster access and lower cost.

This work explores the target DCs selection problem.

The main contributions are as follows:

1. We formalize the target DCs selection problem

with four criteria: fair data placement (FDP),

preferential data placement (PDP), transmission cost

minimization data placement (TCMDP) and cost

minimization data placement (CMDP).

2. Considering the underlying incomplete bipartite

graph, which can reflect the availability of DCs and the

preference of users in practice, a tight 3-approximation

algorithm is proposed for the first two criteria. The

latter two are solved by a simple heuristic. If the graph

is complete, the approximation algorithm can be

simplified further.

3. Extensive simulations demonstrate the effectiveness

of the proposed algorithms. They can find rather good

solutions with less time.

The remainder of the paper is organized as follows.

Section 2 reviews related work. Section 3 formulates

the problem and Section 4 presents algorithms to

address different criteria. Section 5 evaluates the

algorithms and Section 6 concludes the work.

2 Related Work

2.1 Moving Big Data to Cloud

Few literatures explore moving big data to cloud

[16-17]. Focusing on dynamic big data, the authors of

[16, 18] prefer to select a most suited DC to store data

while optimizing monetary cost. Two online

algorithms are proposed to seek the target DC. Due to

the dynamic data, the best target DC changes

continually and data need to be moved accordingly. It

is assumed that only the recent part of data needs to be

migrated between DCs. Without this assumption, it is

obvious that the accumulated historical data transfer

cost will be catastrophic (Based on TDWI report [19],

one third of organizations have already broken 10TB

barrier in 2011.). Nevertheless, this method will cause

the user’s data to spread over a large number of DCs

after a rather long period and therefore very hard to

manage. Genomics data delivery and processing are

explored by a proposed decentralized architecture [17].

But all the data also need to be aggregated to one DC.

In both works, it is assumed implicitly that there exists

at least one DC available for all data across the world.

It is not true sometimes due to the legal prohibition or

other factors.

Social data and replica are explored to move to

multi-cloud considering users’ social relation and their

potential interaction [20]. The problem is formulated as

a multi-objective program and solved by a heuristic

based on graph cut. It also demonstrates the necessity

of storing distributed data in different locations. Other

papers discuss electricity cost and carbon emission [21]

or system throughout [22], but the transmission cost is

not considered.

2.2 Facility Location Problem and k-median

Problem

Multiple DCs selection for moving BD to cloud is

related to facility location problem (FLP) and k-median

problem. FLP aims to find facilities to serve clients

based on various criteria. DCs can be viewed as

facilities and local data users are just the clients. k-

median problem strives to find a set of points not more

than k . Each other point not be selected is assigned to

one selected point so as to minimize the sum of length

between the point pair.

In the variants of FLP, k-supplier problem is one of

the most related ones to our problem PDP, in that at

most k suppliers (correspond to DCs) need to be

selected from a given set so that the maximum distance

between each client and its closest supplier is

minimized [23]. Normally, the suppliers and clients

network is modeled as a complete graph [23] or a

complete bipartite graph [24]. While in our problem,

prohibited by laws, maybe some DCs cannot be

selected to serve some data. So the graph is not always

Data Centers Selection for Moving Geo-distributed Big Data to Cloud 113

a complete graph. For a generalized k-supplier variant

where each supplier is attached with a weight, it is

required the total suppliers weight should not be bigger

than k [24]. A 3-approximation algorithm is presented

and it is proved as tight (i.e., there is no smaller

approximation ratio). Normally, it cannot apply to our

problem where the data to be moved is attached with

users, not with DCs (suppliers). Usage weight is

studied in another variant: k-center problem [25]. k-

center problem differs in essence from k-suppler

problem in that the former requires all the points which

are not selected as centers must be close to one center,

while k-supplier problem does not require the suppliers

not selected to be close to any of the suppliers selected.

The corresponding schemes cannot be used to address

our problem too.

Our problem CMDP is a common generalization of

uncapacitated facility location (UFL) problem and k-

median problem. UFL is another variant of FLP where

there is no capacity limitation for the facility and each

facility is attached with a fixed open cost weight [26].

The objective tries to minimize the total fixed cost and

the total service cost. It can be explored in metric space

and non-metric space. The metric UFL is strongly NP-

hard and cannot be approximated with a ratio smaller

than 1.436 unless []
loglogn

NP DTIME O⊆ or P NP= [27].

Few works explore non-metric UFL [26, 28]. They

obtain an approximation factor with a constraint

violation. The authors of [26] present a filter and

rounding mechanism. A 1 ε+ approximation factor is

achieved with a violation factor of 1 1 (1)/ lnnε+ + , that

means the algorithm needs a facility subset of size not

less than (1 1 (1)).k / lnnε+ + The same approximation

factor is derived with a violation factor of /lnn n ε+ by

an oblivious rounding and greedy method [28].

Obviously this violation cannot be tolerant for our

CMDP because the number of DCs is relatively small.

Moreover, the fixed facility weight differs from CMDP

in that DC weight is variable and is proportional to

usage weight. Another difference is that UFL does not

limit the number of facilities.

k-median problem is explored in [29]. A 1-swap

algorithm is presented and it gives a 5-approximation

solution. It is refined to a p -swap algorithm which can

guarantee a 3 2 / p+ approximation factor. But here all

the cost are measured by the distance between clients

and facilities. k-median problem does not consider the

weights of facilities.

So our CMDP generalizes UFL and k-median

problems simultaneously. Noting that in all the above

works, the underlying graph is assumed to be complete.

CMDP extends the situation to incomplete graph based

on the practical requirement in moving big data to

cloud.

3 Problem Description and Formulation

Considering the underlying incomplete bipartite

graph (, ,)G U V E= whose edge (,)
ij
e E i U j V∈ ∈ ∈

satisfies the triangle inequality and a positive integer k

(| |, | |)k U k V≤ ≤ , we try to find a DC subset Dwhere

| |D k≤ from the available DC set V to store data of

all users in U with different criteria. For any i U∈

and j V∈ , there is an edge between them if data of

user i can be moved to DC j (at least it is not

prohibited by law or is not excluded by the user).

Assume any i is adjacent to at least one j , otherwise

there is no solution. Suppose | |E m= where

| | * | |m U V≤ . In this paper we also use ije to indicate

the length of edge ije if there is no confusion.

Usage weight. Each user is attached with a weight

iw

which denotes the activity level of data production of

current or foreseeable future days, or the importance of

the local user.
iw increases when the data volume or the

importance increases. Using activity level instead of

the data volume can tolerate the dynamic fluctuation of

data while giving an approximation of data volume.

Active level can be defined based on the daily volume

uploaded. Such as for a typical corporation with 200

GB upload every day [19], 10 GB can be used as the

threshold to judge the active level. If a branch

corporation produces data smaller than 10 GB, it is

attached with a weight 1. For a branch with data

between 20~30 GB, the weight is 3, and so on. For

user i with active level
iw , it needs to pay i ijw e to the

cloud if it wants to move data to DC j .

DC weight. Each DC differs in computation and

storage pricing (e.g., various Amazon VM instances

and S3 [30] pricing in different regions). To store and

process data economically, lower price is preferred.

Given DC j , suppose that the price of a VM instance

to process data is ja every hour and the instance can

analyze jb GB data each hour in average, then the

price to process 10 GB is '

j jj
p =10/ *b a . If the storage

price for 10GB is
"

j
p , then the total cost of DC side is

' ' '

j j j
p p p= + for user with activity level 1. For user

i with active level
iw , it needs to pay extra i j

pw

if it

wants to store and process data in DC j . The overall

cost of user with
iw is ()i ijj

pw e+ . Considering the

order-of-magnitude difference for
iw (e.g., thousands

of kilometers) and
j

p (e.g., about several dollars one

hour for Amazon) in practical environment, a

normalized variant is used:
' ' '

'()ij i ijj
pc w e= + ,

where
' ' '

/ ()max h Vj j h
p p p

∈
= , '

,/ ()maxij ij l U h V lhe e e∈ ∈
= .

Note that the normalized edge lengths '

ije still satisfy

114 Journal of Internet Technology Volume 20 (2019) No.1

the triangle inequality.

The main notations used in the formulation are

summarized in Table 1.

Table 1. notations

Notation Description

(, ,)G U V E=
Bipartite Graph G with user vertex set U ,

DC vertex set V and edge set E

ije
Edge between vertex i and j or the length

of edge ije

| |U Number of vertices in vertices set U

| |E Number of edges in edge set E

k A positive integer k ,(| | | |)k U k V≤ ≤

D
A subset of DC vertices set V where

| |D k≤

m Number of edges in edge set E

iw
Usage weight, denote the activity level of

data production

ja
The price of a VM instance in DC j to

process data every hour

jb
The data volume (GB) can be analyzed by

the VM instance in DC j
'

j
p The price to process 10 GB in DC j

"

j
p The storage price for 10GB in DC j

j
p The total cost of DC side for user with

activity level 1

ijc The normalized overall cost of user with
iw

Problem description and formulation. Due to the
high scalability of cloud, we assume that there is no
computation and storage capacity limitation for DCs.
The data of one user are only stored in one DC for data
integrity. The target data centers selection problem can
be summarized as: select at most k target DCs and
assign each user to one target DC to place data, so as to
meet the following criteria.

1. Fair data placement (FDP). The maximum
distance between each user and its assigned DC is
minimized so that each local user can access data with
minimal latency: ,| | , ()maxminD V D k i U j D ije⊆ ≤ ∈ ∈ .

2. Preferential data placement (PDP). The maximum
usage weighted distance between each user and its
assigned DC is minimized so that local users with more
data can access data with minimal latency:

,| | , ()maxminD V D k i U j D ije⊆ ≤ ∈ ∈ . We use (),
i ij

w i j w e= to

denote the weighted distance if necessary.
3. Transmission cost minimization data placement

(TCMDP). The transmission cost, defined as the
sum of the usage 3 weighted distance between each
user and its assigned DC, is minimized:

,| | ,()minD V D k i U j D ij
ewi⊆ ≤ ∈ ∈∑ .

4. Cost minimization data placement (CMDP). The
overall cost, defined as the sum of the cost of each user

is minimized: ,| | ,()minD V D k iji U j Dc⊆ ≤ ∈ ∈∑ .

Note that criterion (1) is a special case of criterion (2)

when 1
i

w = , and criterion (3) is a special case of

criterion (4) when 0
j

p = , we mainly talk about (2)

and (4). The corresponding results can apply directly to
(1) and (3), respectively.

Let
ij
x is a boolean variable which indicates whether

user i is assigned to DC j . It equals 1 if i is assigned

to j and 0 otherwise.
j

y is also a boolean variable which

indicates whether DC j is used. It equals 1 if j is used

and 0 otherwise.
For PDP problem, we want to minimize the

maximum weighted distance z , where

 ,i ij ij z i U j Vw e x ≤ ∀ ∈ ∈ (1)

PDP can be formulated as the following mixed 0-1
integer linear program:

min z

s.t. (1)

 1ijj V x∈
=∑ i U∀ ∈ (2)

 ijj
y x≥ ,i U j V∀ ∈ ∈ (3)

 j V j
ky

∈
≤∑ (4)

 {0,1}, {0,1}ij j
yx ∈ ∈ ,i U j V∀ ∈ ∈ (5)

 0ijx = for some ,i U j V∈ ∈ (6)

Constraint (2) ensures that each user must be assigned
to at least 1 DC and constraint (3) ensures this DC
must be used, i.e., at least one VM is assigned to the
DC. The number of DCs used cannot exceed k (4).

Furthermore, not all DCs are available for each user (6),
i.e., the underlying bipartite graph is incomplete.

CMDP can be formalized as the following 0-1
integer linear program:

,

min ()i ij i iji U j V j
pw e w x∈ ∈

+∑

s.t. (2), (3), (4), (5), (6).

In the objective function,
ij
e and

j
p are all the

normalized ones. The former part
, i ij iji U j V w e x∈ ∈

∑ is the

transmission cost, the latter part
, i iji U j V j

pw x∈ ∈
∑ is the

data processing and storage cost in DC.
As stated in Section 2, PDP is an extension of k-

supplier problem, and CMDP is a common extension
of UFL and kmedian problem. Because k-supplier
problem, UFL and kmedian problem are all NP-hard
[26, 31], PDP and CMDP are both NP-hard. An
approximation algorithm is presented for PDP and a
heuristic is proposed for CMDP.

Data Centers Selection for Moving Geo-distributed Big Data to Cloud 115

4 Algorithm

Some notions are introduced to facilitate the
algorithm presentation.
Bottleneck graph. Note that for PDP problem, the
optimal solution must reach at one usage weighted
edge, so we should check the weighted edge from the
smallest to the biggest until all constraints are satisfied.
The construction of bottleneck graph is just based on
this idea. m usage weighted edges are sorted in a non-
decreasing order and denote them as (1,) (2,)w j w j≤

. . . (,)w m h≤ where , ,j g h V∈ and may be the same.

Bottleneck graphs 1 2, ,...,
mG G G are edge subgraphs

of G and () 1,2,...,r m= where (, ,),
rr

U VG E=

{ | (,)}.r ij i ij w r ge w eE = ≤ Namely,
r

G consists of all

vertices ofG and edges which is not bigger than the r-

th shortest weighted edge (),w r g .

Threshold graph. The threshold graph
r

T is

constructed on user set U for each
rG as follows. For

each two points ,u v U∈ , an edge (),u v is in
r

T if and

only if there exists a DC j V∈ with both (),u j

and (),v j in
r

G . For example, Figure 2 illustrates the

threshold graph
m

T for
m

T (the biggest bottleneck graph)

which is just the bipartite graph in Figure 1. There is
no edge (5,6) because there is no common adjacent DC

to users 5, 6 in
m

G .

Figure 2. The threshold graph
m

T

Maximal clique. Given an undirected graph H , a
clique of H is a complete subgraph. If a clique is not
contained in any other clique, it is a maximal clique

and is denoted as ()C H . It is easy to find ()C H in a

polynomial time. A simple method used in this paper is

to add any point of H to ()C H first, then add its

neighbor points, together with which all points

in ()C H can constitute a complete subgraph. All

neighbors of the points in ()C H are checked one by

one until no point can be added. A maximal clique can
be found. Now, delete the points in this clique and
repeat this process in the residue points until H
becomes null. A series of maximal cliques can be
found and they have no intersection.

Note that if users can be served by a common DC
then the corresponding threshold graph is a clique. For

example, in Figure 1, users 6~9 can be served by
common DCs then the corresponding threshold

subgraph in
m

T is the clique consisting of 6~9 in

Figure 2. Finding the maximal cliques in the threshold
graph means grouping the users based on the
availability of DCs so that all users in the group can be
represented by a certain member.

4.1 Preferential Data Placement (PDP)

4.1.1 For the Scenario of Incomplete Graph

Let ()N i denote the neighbors of i , i.e., points

which are adjacent to i . The algorithm is detailed in

Alg. 1.

Algorithm 1. Biggest Weight First (BWF)

Input: ,(),G U V E= : usage weighted incomplete

bipartite graph
k : positive integer

Output: D : set of data centers selected
1: D←∅

2: Sort usage weighted edges in a non-decreasing
 order: () ()1, 2, . . . (),w j w g w m h≤ ≤ ≤

3: Construct threshold graph
r

T for each ()G r . Find

the maximal clique set for each
r

T . Suppose there

are H cliques. Denote the clique set for
r

T

is { () }
r r h

C C T= where 1,2, . . . , , 1, . . . ,r m h H= =

4: Let { || | }
r

t min r C k= ≤

5: for 1, . . . ,h H= do

6: Let l is the point with { (,) |
l j t h

w max w j C T j= ∈ is

not assigned} . Let the common neighbor DCs of

 ()
t

C T h

is
()

(())
t

u C T h
N N u V

∈
← ⊆∩

7: } { |
j N lj lj t

e min e e G
∈

← ∈

8: Let v is the point in N with

lv
e e=

9: D D v← ∪

10: end for

Algorithm 1 tries to place the largest volume data to

the nearest DC. It checks the bottleneck graph in terms
of usage weighted edge from small to big one by one
and constructs the corresponding threshold graph. Then
the clique set for each threshold graph is found (Line
2~Line 3). Each clique represents a user group which
can be served by at least one common DC and the
weighted edges between users and the common DCs
are bounded by the maximal weighted edge of the
bottleneck graph. The minimum index of all clique sets
which cardinalities are not bigger than k is selected so

that the biggest usage weighted edge is as small as
possible (Line 4). Of course binary search can be used
to speed the search.

For each user in the threshold clique set
t

C , we find

116 Journal of Internet Technology Volume 20 (2019) No.1

the target DC as following. In each clique, beginning
from the user with the biggest weight (Line 6), we uses
it as a representative and assign it to the nearest

neighbor DC in
t

G (Line 7~Line 9). All other users in

the same clique are also assigned to this DC implicitly.

This process is repeated until all users in
t

C are

assigned (the for loop). Thus the algorithm establishes
a mapping between users and DCs. The mapping
partitions the bipartite graph into multiple clusters and
the center of each cluster is a DC.

The following theorem demonstrates that Alg. 1
finds a tight 3-approximation solution for PDP problem
where the underlying bipartite graph is incomplete.

Theorem 4.1. Algorithm 1 gives a 3-approximation

solution for PDP problem where the underlying

bipartite graph is incomplete and the solution is tight.

Proof. The optimal value OPT must be reached at

one edge. Let *

t is the optimal edge index of the

bottleneck graph
*t

G . Because *

t also satisfies *| |
t

C k≤ ,

algorithm 1 finds the minimum t (Line 4), so *

 t t≤ .

We get () *(,) ,w t j w t l OPT≤ = based on Line 2 in

Alg. 1.

Note D k≤ and (),w t j OPT≤ , we only need to

prove for any u U∈ , there is a DC v V∈ which can

cover u with ()3 ,w t j .

As shown in Figure 3, for any u U∈ , since
t

C is the

maximal clique set of
t

G and
t

C covers V , so u must

be in a clique in
t

C , such as ()
t i

C T . If u is a maximal

clique itself or ()w u is the maximum weight in ()
t i

C T ,

u is covered by it nearest DC in
t

G within (),w t j .

We get it.

Figure 3. Diagram of theorem 4.1

Otherwise, there must exists l in ()
t i

C T where

() ()w l w u≥ so that
ul
e in

t
T . This means there

exists a DC h V∈ so that edges
uh
e and

lh
e in

t
G . So

() (), ,w u h w t j≤ and (), ,) (w l h w t j≤ . Based on the

algorithm and the definition of bottleneck graph, we

also have () (), ,w l v w t j≤ .

 () (),
uv

w u v w u e=

 ()()
uh lh lv

 w u e e e≤ + +

 () () ()
uh lh lv

w u e w l e w l e≤ + +

 () () (), , ,w u h w l h w l v= + +

 ()3 , .w t j≤

The first inequality is due to triangular inequality.
Suppose it is not tight, then there exists an algorithm

which can find a smaller approximation ratio. It is also
apply to the case when all usage weights are 1, which
is just a special case of k-supplier problem where all
supplier weights are 1. This contradicts the theorem
that 3 is tight for k-supplier problem [23].
Time complexity. Sorting m edges needs

().O mLogm Suppose there are n users and d DCs. In

Line 3, constructing all
r

G needs ()2O m . Constructing

all
r

T needs ()2O mlogn and constructing all
r

C needs

at most ()2O mn . It is dominated by ()2O mn and so

Line 3 needs ()2O mn time. Note that the for loop

needs ()()O n n m+ which is still dominated by the

time of Line 3. The time complexity of algorithm 1

is ()2O mn .

4.1.2 For the Scenario of Complete Graph

When the underlying bipartite graph is complete, we
can simplify the grouping method. It is unnecessary to
find the maximal clique in Line 3 in Alg 1. It is
sufficient to find the maximal independent set for each

r
T because all DCs are available for each user now.

Maximal independent set. Given an undirected graph
H , an independent set of H is a subset of vertices of
H and in which no two different vertices share an
edge in H . If an independent set is not contained in

any other independent set, it is a maximal independent

set and is denoted as ()I H . It is easy to find ()I H in a

polynomial time. The simple method used here is to

add any point of H to ()I H , then delete this point and

all points adjacent to this point from H . Repeat this
process until H becomes null.

In Alg. 1, if the maximal clique is replaced by the
maximal independent set and the other parts remain
unchanged. We get a simplified algorithm for the
scenario of complete graph. This algorithm is denoted
as the biggest weight first algorithm based on maximal
independent set (BWFInd). Similar to the proof of
theorem 4.1, it is easy to get the following theorem.

Theorem 4.2. Algorithm BWFInd gives a 3-

approximati-on solution for PDP problem where the

underlying bipartite graph is complete and the solution

is tight.

Note that it is faster to find the maximal independent
set than to find the maximal clique, BWFInd is faster
than BWF. But it is easy to check that BWFInd cannot
apply to the scenario of incomplete bipartite graph.

Data Centers Selection for Moving Geo-distributed Big Data to Cloud 117

4.2 Cost Minimization Data Placement

(CMDP)

For problem CMDP, Algorithm 2 is proposed. It
tries to assign each user to the nearest DC, i.e., the cost
between the user and the DC is the smallest. If the
number of DC is bigger than k , then certain DC is

discarded and the corresponding users are reassigned.
The process is repeated until the constraint is satisfied.

Algorithm 2. CMDP Nearest Preferred Algorithm
(NPACMDP)

Input: ,(),G U V E= : weighted incomplete bipartite

graph
k : positive integer

Output: D : set of data centers selected
1: Assign each user to the nearest DC (the distance

between user and DC is defined as
i ij i j

we w p+).

Record the DC set as D
2: while | |D k> do

3: Find one DC, for which the maximum weighted
distance between it and the users assigned to it is
the minimum when comparing with that of other
DCs in .D . Delete this DC from D . The users

which has been assigned to the deleted DC are
reassigned to the nearest remaining DC in D .

4: end while

5 Simulation Results

5.1 Simulation Setting

Amazon, Google and NSFNET T3 [32-33] own
representative DC networks. All of them have a dozen
of DCs and the DCs of the former two span different
continents. Since the location information of the DCs
of business corporation is often confidential, no real
precise information is released so far. We select 14
cities from four continents. Most of them are consistent
with that of Amazon and some of them are the same as
that of NSFNET T3. We also randomly select 17 cities
from five continents for users.

It is detailed in Table 21. Each DC and each user are
numbered for simple presentation. DCs 1~10
correspond to DCs in Figure 1. Users 1~9 correspond
to users in the same figure. Other extra DCs and users
will be added in the later scalability evaluation. The
distance between user and DC is estimated by the
latitude and longitude of the city where they locate in.
It is Euclidean distance and thus satisfies the triangular
inequality. We suppose the availability of DCs for
users is consistent with that implied in Figure 1.
Namely, users in America can only be assigned to DCs
in America and Europe. While users in Oceania and
Africa can be assigned to any DCs in all four
continents.

Table 2. Distributed DCs and users

 America Europe Asia Oceania Africa

No. 1 3 3 4 11 5 6 12 13 7 8 9 14 10

DCs SP SFO Toronto Atlanta NY Frankfurt Paris London Dublin SG Tokyo HK Beijing Sydney

c 0.067 0.067 0.077 0.067 0.067 0.079 0.0796 0.073 0.073 0.098 0.096 0.096 0.098 0.093

c-M 0.077 0.077 0.067 0.077 0.073 0.073 0.096 0.098 0.093 0.096

s 0.03 0.033 0.033 0.03 0.03 0.0324 0.0324 0.03 0.03 0.03 0.033 0.033 0.03 0.033

s-M 0.03 0.03 0.03 0.033 0.03 0.03 0.033 0.033 0.03 0.033

No. 1 2 3 10 11 12 13 4 5 14 15 16 6 7 8 18 19 9 17

users CHI WDC LAX Houston Boston PHIL RDJ Rome Milan Munich Madrid Moscow BKK Osaka Xian ULA ND Oakland Cairo

w 20 15 28 10 18 29 2 21 8 18 13 25 7 11 24 40 40 16 1

w-M 15 20 10 13 25 24 11 7 1

The weights of users follow (1 40)U − and are listed

in the line beginning withw . One level represents that

daily 1~10 GB data need to be uploaded to DC after
preprocessing. We borrow the computation price
($/Hour) (abbreviated as c) and storage price ($/G)

(abbreviated as s) from Amazon m3.medium virtual

machine instance with Linux operation system and S3
standard storage in various regions, respectively.
Suppose the instance can process one active level data
every hour. Each DC is randomly attached with a
computation and a storage price borrowed. The details
can be found in Table 2. All prices have been
multiplied by 100 to match the table space. To reveal
the effect of DC weight and usage weight on the
solution, we also modify the values of lines beginning

with w , c and s to the values of lines beginning

with w M− , c M− and s M− , respectively. Herein

only the modified weights to be used, i.e., DCs 1~10
and users1~9, are listed. On the whole, the weights
after modification are smaller than the original ones.
We set all the bandwidth cost for 10 GB are 0.01$ for
comparison. Note that the objective is to minimize the
product of distance and user weight, this will drive the
data to be transmitted to a relative close DC and thus
minimize both the cost and the delay.

For the DCs and users in Figure 1, obviously at least
2 DCs are necessary if all users can be served. So
unless explicitly noted in the simulation, we use a
slightly bigger 3k = .

In the simulation, we focus on the general situation

118 Journal of Internet Technology Volume 20 (2019) No.1

where the underlying bipartite graph is incomplete.
The simulation environment is set up in a C language
platform. The platform is running on a PC (Lenovo
Think Centre M4350t-N020, Intel(R) Core(TM) i5-
3470 CPU @ 3.20GHz, 8G RAM).

5.2 Simulation Results for PDP

To evaluate the performance of the proposed
algorithm BWF, additional three schemes are
compared. (1) Random scheme (Random): each user is
randomly assigned to an available DC while keeping
the number of DCs is not bigger than k . (2) Optimal

scheme (Opt.): since PDP is linear programming, we
use lpsolve in Sourceforge [34] to solve the
corresponding linear programming in Section 3 to get
the optimal values. lpsolve is written in C language and
has been wisdely used. (3) NPA-PDP: replace the

overall cost
i ij i j

we w p+ in NPA-CMDP (Alg. 2) with

the weighted distance
i ij

we .

5.2.1 Scalability Evaluation

To investigate the DC scale efficiency of BWF, we
suppose users 1~ 9 can be served by different number

of candidate DCs 1~10. Every time one DC is added to
DCs in the sequence of number from 11 to 14. The
delay of each algorithm is depicted in Figure 5.

The delay (the maximum usage weighted distance)
of Random is the biggest and the delays of NPA-PDP
and BWF are bigger than that of Opt.. At beginning,
both NPA-PDP and BWF select DCs 2, 6, 9. When the
number of DCs increases to 13, the solutions of both
NPA-PDP and BWF are the same. This is because that
all the later added 3 DCs are not better than the former
selected DCs, and therefore all of them are not selected.
When DC 14 (Beijing) is added, the delay increases for
both NPA-PDP and BWF. This attributes to that user 8

Figure 5. Maximum delay when the number of DC
increases

(Xian) has the biggest usage weight and it is selected
as the representative of users in Asia-Pacific region by
the algorithms. User 8 is the nearest to DC 14, so DC
9 is given up and DC 14 is selected. Now users which
are originally assigned to DC 9 are reassigned to DC
14. This leads to the delay increasing to the weighted
distance between Beijing and Oakland.

The delay of Opt. is the smallest and it always
remains the same with the increasing of DCs.
Although the delay of BWF is slightly bigger than that
of Opt., in average 5%, we find Opt. can only optimize
the optimal objective value and cannot optimize other
clusters’ delay. For example, both NPA-PDP and BWF
select DCs 2, 6, 9. Opt. selects 2, 5, 7. For the three
algorithms, users 1, 2, 3 are all served by DC2. But Opt.
selects DCs 5 and 7 to serve other users, while NPA-
PDP and BWF select DCs 6 and 9 to serve other users.
Assignments and delay of each user are compared in
Table 3. Obviously the overall delay incurred by Opt.
is 335296, which is bigger than those of other two
algorithms, i.e., 227851. This is due to that Opt. cannot
take into consideration of all clusters.

Table 3. Opt. cannot optimize the delay of each cluster

Algorithms DC User 4 User 5 DC User 6 User 7 User 8 User 9 Sum

Opt. DC 5 25189 23172 DC 7 9496 54108 88790 134541 335296

NPA-PDP, BWF DC 6 6679 5137 DC 9 17893 18542 38263 141337 227851

Execution time shown in Figure 6 indicates that Opt.
(Note that the execution of NPA-PDP almost overlaps
that of Random.) needs more time than other
algorithms. With the increasing of DCs, the time
consumption of Opt. increases sharply, almost at an
exponential rate, while BWF increases gently.

We also increase the number of users from 9 to 19
when there are 10 DCs. Every time two users are added
in the sequence of user number. The delay is depicted
in the Figure 7.

Figure 6. Execution time when the number of DC
increases

Data Centers Selection for Moving Geo-distributed Big Data to Cloud 119

Figure 7. Maximum delay when the number of users
increases

The delay changes after user 18 and 19 are added
because their smallest weighted distances are bigger
than the current delay. This also reveals that it is
unnecessary to use more DCs when users are added.
Only when farther users are added then it maybe leads
to bigger delay. Though Opt. finds the optimum. It is
again observed that the overall delay incurred by Opt.
is bigger than that of BWF. Limited to the randomness
of the selection of user locations, it cannon depict a
monotone increasing delay curve. The simulation still
demonstrates a tendency that, when the number of
users increases the delay will not decrease.

It is noteworthy that when Users 12, 13 are added,
the delay of NPA-PDP increases. This is because that
NPA-PDP only deletes a certain DC simply without
considering the grouping of users. It reflects the
instability of NPA-PDP.

When the number of users increases, the execution
time of the algorithms demonstrates a similar tendency
to that of Figure 6. In a large scale application where
there are more DCs and users, Opt. will incur more
time. Comparatively, BWF is more suitable for scale
application.

5.2.2 Effect of Parameters

We varies k from 2 to 7 to verify its effect on delay

in Figure 8. It is demonstrated that Random incurs the
biggest delay. Both NPA-PDP and BWF can find the
optimum in the scenario of 3k = where the objective

values are a little bigger than the optimum value (about
5%). But compared with other algorithms which return
7 DCs, when 7k = , BWF returns 6 DCs to serve all

users without more delay. This reveals that BWF can
find the smallest number of DCs to satisfy the request
of users.

Figure 8. Maximum delay when k increases

It shows a common tendency that, when the number
of DCs increases the delay decreases in general. It is
because that more candidate DCs permit users to be
assigned to nearer DCs. Hence the biggest weighted
distance becomes smaller.

When k increases, the execution time of the

algorithms is illustrated in Figure 9. This reveals again
that BWF is more suitable for scale applications.

Figure 9. Execution time when k increases

To evaluate whether the algorithms can take into
account the weights of the users, we replace the
weights of users in the second last line with the
weights in the last line in Table 2. The results are listed
in Table 4. NPA-PDP, BWF and Opt. all find the
optimal solution (the last line). Since in general, the
modified weights become smaller, the maximum
weighted distance becomes smaller now. The bold DC
number indicates the change of DC. After usage weight
changing, all algorithms except Random change DC 2
to DC 3. This is because that usage weight of user 2
(WDC) becomes bigger and it is closer to DC 3 (Toronto)
than to DC 2 (SFO). Random changes DC 8 to DC 9
because that usage weight of user 6 (BKK) becomes
bigger and it is closer to DC 9 (HK) than to DC 8
(Tokyo).

Table 4. Solutions change when usage weights change

 Random NPA-PDP BWF Opt.

w , delay 222559 same as BWF 141337 134540

DC(users) Omitted same as BWF 2(1,2,3), 6(4,5), 9(6,7,8,9) 2(1,2,3), 6(4,5), 8(6,7,8,9)

w M− , delay 110834 same as BWF 54108 same as BWF

DC(users) Omitted same as BWF 3(1,2,3), 6(4,5), 9(6,7,8,9) 9(6,7,8,9)

120 Journal of Internet Technology Volume 20 (2019) No.1

5.3 Simulation Results for CMDP

To evaluate the performance of the proposed
algorithm NPA-CMDP, other three schemes are used
for comparison, i.e., (1) Random. (2) Opt.: lpsolve. (3)
Clique set based cost minimization (CSCM): it finds
clique sets for all threshold graphs first. Then it finds
the minimum cost from all the cliques sets which
cardinalities are not bigger than k . For each clique, the

scheme to find the DC is similar to that of BWF,
except that the sum of the cost is compared and the DC
with minimum sum is selected as the target DC for this
clique. Here we think latency and cost be of the same
importance, therefore both α and β are set as 1.

5.3.1 Scalability Evaluation

The number of DCs is also increased from 10 to 14
as in Section 5.2. Figure 10 depicts the performance.

Figure 10. Overall cost when the number of DCs
increases

The figure reveals the tendency that the overall cost
decreases with the increasing of the number of DCs.
Random incurs the biggest cost. Opt. finds the smallest
cost. NPA-CMDP and CSCM find medium cost. In
general, NPA-CMDP finds smaller cost than CSCM.

When users are increased from 9 to 19 as in Section
5.2, the cost is shown in Figure 11. With users
increasing, the overall cost also increases for all
algorithms. Opt. finds the smallest cost. NPA-CMDP is
better than CSCM. Random is the worst.

Figure 11. Overall cost when the number of users
increases

5.3.2 Effect of Parameters

Figure 12 shows the results when k increases from 2

to 7.

Figure 12. Performance when k increases for CMDP

Although the general tendency is that when the
number of target DCs increases, the overall cost is
decreasing, after 4k ≥ , the cost remains unchanged.

In reality, both NPA-CMDP and CSCM find the
optimal solution.

We first replace usage weight w with w M− , and

then replace s , c with s M− , c M− , respectively, to

reveal the effect of usage weight and DC weight. The
overall cost is detailed in Table 5. We can find that
with the weights decreasing, the overall cost also
decreases.

Table 5. Solutions change when usage and DC weights
change

 Random NPA-CMDP CSCM Opt.
, ,w c s 102.0633 95.2356 87.4067 84.03

w M− 68.1096 60.1802 57.8713 57.62

,c M s M− − 103.3146 81.8068 79.1335 79.13

6 Conclusion

Considering the feasibility of moving geo-
distributed big data to cloud, multiple target DCs
selection problem is explored in this paper to seek fast
access and low cost. The problem generalizes the
traditional k-supplier problem, UFL and k-median
problem. When the underlying graph is incomplete, a
tight 3- approximation algorithm is proposed to
accommodate fast access. It can be simplified when the
graph is complete. Low cost is achieved by a simple
heuristic.

Acknowledgments

This work is financially supported by National
Natural Science Foundation of China under Grant No.
11371004 and No. 61672195, National Science and
Technology Major Project under Grant No.

Data Centers Selection for Moving Geo-distributed Big Data to Cloud 121

2016YFB0800804 and No. 2017YFB0803002, and
Shenzhen Science and Technology Plan under Grant
No. JCYJ20160318094336513, No. JCYJ201603180
94101317 and No. KQCX20150326141251370.

References

[1] D. Agrawal, S. Das, A. El Abbadi, Big Data and Cloud

Computing: Current State and Future Opportunities, 14th

International Conference on Extending Database Technology,

Uppsala, Sweden, 2011, pp. 530-533.

[2] C.-H. Chi, C. Ding, Q. Liu, Guest Editorial: Knowledge

Management and Big Data Analytics, Journal of Internet

Technology, Vol. 15, No. 6, pp. 937-938, November, 2014.

[3] J. Zhang, H. Huang, X. Wang, Resource Provision

Algorithms in Cloud Computing, Journal of Network &

Computer Applications, Vol. 64, No. C, pp. 23-42, April,

2016.

[4] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, H.

Bhogan, Volley: Automated Data Placement for Geo-

distributed Cloud Services, 7th USENIX Symposium on

Networked Systems Design and Implementation, San Jose,

CA, 2010, pp. 17-32.

[5] Amazon, Amazons3 Global Infrastructure, http://aws.

amazon.com/about-aws/global-infrastructure/?nc1=h_ls.

[6] Google, Google Data Centers Locations, http://www.

google.com/about/datacenters/inside/locations/index.html.

[7] Amazon, AWS Import/Export, http://aws.amazon.com/

importexport/.

[8] P. Yang, Moving an Elephant: Large Scale Hadoop Data

Migration at Facebook, https://www.facebook.com/

notes/paul-yang/moving-an-elephant-large-scale-hadoop-data-

migration-at-facebook/10150246275318920.

[9] Amazon, AWS Direct Connect, http://aws.amazon.com/

directconnect/?nc2=hls.

[10] C. Jayalath, P. Eugster, Efficient Geo-distributed Data

Processing with Rout, Proceedings of the 2013 IEEE 33rd

International Conference on Distributed Computing Systems,

Philadelphia, PA, 2013, pp. 470-480.

[11] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, D.

Chen, G-hadoop: Mapreduce Across Distributed Data Centers

for Data-intensive Computing, Future Generation Computer

Systems, Vol. 29, No. 3, pp. 739-750, March, 2013.

[12] C. Jayalath, J. Stephen, P. Eugster, From the Cloud to the

Atmosphere: Running Mapreduce Across Data Centers, IEEE

Transactions on Computers, Vol. 63, No. 1, pp. 74-87,

January, 2014.

[13] J. Zhang, L. Zhang, H. Huang, Z. L. Jiang, X. Wang, Key

Based Data Analytics Across Data Centers Considering Bi-

level Resource Provision in Cloud Computing, Future

Generation Computer Systems, Vol. 62, No. C, pp. 40-50,

September, 2016.

[14] P. Li, S. Guo, S. Yu, W. Zhuang, Cross-cloud Mapreduce for

Big Data, IEEE Transactions on Cloud Computing, Vol. PP,

No. 99, pp. 1-1, August, 2015.

[15] J. Zhao, L. Wang, J. Tao, J. Chen, W. Sun, R. Ranjan, J.

Kołodziej, A. Streit, D. Georgakopoulos, A Security

Framework in G-hadoop for Big Data Computing Across

Distributed Cloud Data Centres, Journal of Computer and

System Sciences, Vol. 80, No. 5, pp. 994-1007, August, 2014.

[16] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, F. C. M. Lau,

Moving Big Data to The Cloud: An Online Cost-minimizing

Approach, IEEE Journal on Selected Areas in Communications,

Vol. 31, No. 12, pp. 2710-2721, December, 2013.

[17] M. Femminella, G. Reali, D. Valocchi, E. Nunzi, The ARES

Project: Network Architecture for Delivering and Processing

Genomics Data, 2014 IEEE 3rd Symposium on Network

Cloud Computing and Applications (NCCA 2014), Rome,

Italy, 2014, pp. 23-30.

[18] L. Zhang, C. Wu, Z. Li, C. Guo, Moving Big Data to the

Cloud, 2013 IEEE International Conference on Computer

Communications, Turin, Italy, 2013, pp. 405-409

[19] P. Russom, Big Data Analytics, The Data Warehousing

Institute, 2011.

[20] L. Jiao, J. Lit, W. Du, X. Fu, Multi-objective Data Placement

for Multi-cloud Socially Aware Services, 2014 IEEE

International Conference on Computer Communications,

Toronto, Canada, 2014, pp. 28-36.

[21] Z. Zhou, F. Liu, R. Zou, J. Liu, H. Xu, H. Jin, Carbon-aware

Online Control of Geo-distributed Cloud Services, IEEE

Transactions on Parallel & Distributed Systems, Vol. 27, No.

9, pp. 2506-2519, September, 2016.

[22] Q. Xia, Z. Xu, W. Liang, A. Zomaya, Collaboration- and

Fairness-aware Big Data Management in Distributed Clouds,

IEEE Transactions on Parallel & Distributed Systems, Vol.

27, No. 7, pp. 1941-1953, July, 2016.

[23] D. S. Hochbaum, D. B. Shmoys, A Unified Approach to

Approximation Algorithms for Bottleneck Problems, Journal

of the ACM, Vol. 33, No. 3, pp. 533-550, July, 1986.

[24] S. Khuller, R. Pless, Y. J. Sussmann, Fault Tolerant K-center

Problems, Theoretical Computer Science, Vol. 242, No. 1, pp.

237-245, July, 2000.

[25] J. Plesnik, A Heuristic for the P-center Problems in Graphs,

Discrete Applied Mathematics, Vol. 17, No. 3. pp. 263-268,

June, 1987.

[26] J.-H. Lin, J. S. Vitter, E-approximations with Minimum

Packing Constraint Violation, 24th ACM Symposium on

Theory of Computing, Columbia, Canada, 1992, pp. 771-782.

[27] S. Guha, S. Khuller, Greedy Strikes Back: Improved Facility

Location Algorithms, Journal of Algorithms-Cognition

Informatics and Logic, Vol. 31, No. 1, pp. 228-248, April,

1999.

[28] N. E. Young, Greedy Approximation Algorithms for K-

medians by Randomized Rounding, Dartmouth College, 1999.

[29] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala,

V. Pandit, Local Search Heuristics for K-median and Facility

Location Problems, Siam Journal on Computing, Vol. 33, No.

3, pp. 544-562, 2004.

[30] Amazon, Amazons3, http://aws.amazon.com/s3/?nc2 =hls.

[31] K. Aardal, P. L. Bodic, Approximation Algorithms for the

Transportation Problem with Market Choice and Related

Models, Operations Research Letters, Vol. 42, No. 8, pp.

122 Journal of Internet Technology Volume 20 (2019) No.1

549-552, December, 2014.

[32] NSFNET, NSFNET T3 Network, https://en.wikipedia.

org/wiki/National Science Foundation Network.

[33] B. Chinoy, H. W. Braun, The National Science Foundation

Network, SDSC Report GA-A21029, September, 1992.

[34] Sourceforge, lpsolve, http://sourceforge.net/projects/lpsolve/?

source=directory.

Biographies

Jiangtao Zhang received the M.S.
degree in applied mathematics from
Xidian University, China, in 1999.
Then as a senior engineer in Huawei,
he engaged in research and
development of mobile
communication networks and cloud

computing. He was also in charge of communication
network planning and optimization techniques research.
In 2016, he received the Ph.D. degree in Computer
Science from Harbin Institute of Technology,
Shenzhen. He is currently the R&D director of
Shenzhen Jingyi Smart Technology Co., Ltd. His
research interests lie in the fields of mathematical
programming, cloud computing, distributed computing
and big data, especially architecture, protocols and
algorithms.

Qiang Yuan received the B.Sc (2014)
degree in Harbin Institute Of
Technology at WeiHai. He is currently
working toward the M.Eng degree at
the Department of Computer Science,
Harbin Institute Of Technology
Shenzhen Graduate School, China.

His current research interests is cloud computing.

Shi Chen has been pursuing the M.S.
degree of computer science and
technology in Harbin Institute of
Science and Technology, Shenzhen
graduate school since 2014. His
research interests lies in the fields of
cloud computing, green scheduling in

cloud data center and spammer detecting in e-
commerce.

Hejiao Huang graduated from the
City University of Hong Kong and
received the Ph.D. degree in computer
science in 2004. She is currently a
professor in Harbin Institute of
Technology Shenzhen Graduate
School, China, and previously was an

invited professor at INRIA, France. Her research
interests include cloud computing, trustworthy
computing, formal methods for system design and
wireless networks.

Xuan Wang received M.S. and Ph.D.
degrees in Computer Sciences from
the Harbin Institute of Technology,
Harbin, China, in 1994 and 1997,
respectively. He is a Professor and
Dean of the school of Computer

Science and Technology in Harbin Institute of
Technology, Shenzhen Graduate School, ShenZhen,
China. His research interests include Artificial
Intelligence, Computer Network Security,
Computational Linguistics, and Computer Vision.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

