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Abstract 

Because of the distributed networking and coexistent 

abundant computation and storage resources, cloud 

computing has become a preferred platform for big data 

analytics, especially for the geo-distributed data across 

the world. The precondition for data processing is to 

move the data to the cloud. Due to the large volume of 

data, high transmission cost across continents and even 

specific legal prohibition, it is not always feasible to 

move all data to one data center. Appropriate data centers 

should be selected while keeping fast data access and low 

cost. In this paper, four criteria of the problem are 

explored. A tight 3-approximation algorithm is proposed 

to address the former two criteria. It can be simplified 

when the underlying bipartite graph is complete. The 

latter two criteria are addressed by a heuristic. Comparing 

to the optimal method and other schemes, extensive 

simulations demonstrate that the proposed algorithms can 

find rather good solutions with less time, and hence are 

more appropriate for large scale applications. 

Keywords: Big data, Data centers selection, Distributed 

cloud computing, Cost minimization 

1 Introduction 

Cloud computing has become a preferred platform 

for big data (BD) analytics [1-3], especially when data 

are produced from geo-distributed locations, where the 

local data are accessed often by local users, and 

sometimes the data need to be aggregated for further 

analysis or data mining [4]. For example, for a multi-

national sales corporation consisting of a large number 

of branch companies across the world, branches in 

each country need to analyze the native customer 

related data in time for commercial purpose. All data 

should also be analyzed to report to headquarters or be 

joint-analyzed to facilitate the cross-border deals. 

Normally, a large scale cloud is networked in a 

distributed fashion and has multiple geo-s panned data 

centers (DCs, at least 16 DCs spanning 4 continents for 

Amazon [5] and 13 DCs across 4 continents for Google 

[6]). Each DC is equipped with computation integrated 

with storage resources in an elastic pay-as-you-go 

mode. This infrastructure can provide nearby service 

and is particularly appropriate for geo-distributed data 

processing. To process BD in cloud, the precondition is 

to move and save BD in eligible DCs [2]. Hard-driven 

mechanism is one option to move the large volume 

data. For example, Amazon Import/Export service 

recommends using portable storage devices to ship 

data [7]. Sometimes, it is even possible to move the 

whole machine [8]. But this usually applies to 

intermittent or one-time bulk data moving. It invokes 

great delay and cannot meet the increasing real-time 

analysis requirement [1]. Moreover, it contradicts 

automated administration and needs more labor, which 

is continually becoming more expensive. Data 

transmission over the Internet is costly and unrealistic 

due to the great delay. For example, it will take about 

13 days to transfer 1TB data via a 10MB internet 

connection [7]. Dedicated high speed connection is 

often suggested to move the real-time data (e.g., AWS 

direct connect of Amazon [9]). This method can 

facilitate faster transmission. But even relying on the 

high speed dedicated connection, moving BD across 

continents is still very difficult. For example, AWS 

direct connect does not provide across continents 

service. The international private leased circuit is very 

expensive. This hampers moving large scale data, 

which disperse around the world, to only one DC [10]. 

Furthermore, using one DC to store data incurs a 

higher data access delay for the more frequent local 

data analysis. Especially in some regions, data security 

laws require some data must be stored locally (e.g., 

some countries in EU). Taken together, users should 

respect some criteria to select locations for their data, 
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just as that recommended by Amazon: being nearer to 

users to reduce data access latency, addressing specific 

legal and regulatory requirements or reducing cost, etc. 

Figure 1 models the distribution of DCs and users 

(we use users to represent the branch companies or a 

group of data owners for simplicity). There are 10 DCs 

and 9 users across 4 continents. Different DCs are 

available for or preferred by different users. For 

example, users 4, 5 in Europe can only be assigned to 

DCs 5, 6 in the same continent. Users in Asia only 

prefer DCs in the Asian-Pacific region. 

 

Figure 1. Geo-distributed data centers and users. The 

line in the underlying bipartite graph indicates the 

availability of DCs or the preference of users. 

Nowadays, some MapReduce-like framework, such 

as GHadoop [11], G-MR [12], G-framework [13] and 

Cross-cloud MapReduce [14], can realize data analysis 

across clusters and DCs [10, 15]. Comparing with one 

DC scheme, multiple DCs mechanism can not only 

meet the aggregate analysis requirement, but also 

guarantee faster access and lower cost. 

This work explores the target DCs selection problem. 

The main contributions are as follows: 

1. We formalize the target DCs selection problem 

with four criteria: fair data placement (FDP), 

preferential data placement (PDP), transmission cost 

minimization data placement (TCMDP) and cost 

minimization data placement (CMDP). 

2. Considering the underlying incomplete bipartite 

graph, which can reflect the availability of DCs and the 

preference of users in practice, a tight 3-approximation 

algorithm is proposed for the first two criteria. The 

latter two are solved by a simple heuristic. If the graph 

is complete, the approximation algorithm can be 

simplified further. 

3. Extensive simulations demonstrate the effectiveness 

of the proposed algorithms. They can find rather good 

solutions with less time. 

The remainder of the paper is organized as follows. 

Section 2 reviews related work. Section 3 formulates 

the problem and Section 4 presents algorithms to 

address different criteria. Section 5 evaluates the 

algorithms and Section 6 concludes the work. 

2 Related Work 

2.1 Moving Big Data to Cloud 

Few literatures explore moving big data to cloud 

[16-17]. Focusing on dynamic big data, the authors of 

[16, 18] prefer to select a most suited DC to store data 

while optimizing monetary cost. Two online 

algorithms are proposed to seek the target DC. Due to 

the dynamic data, the best target DC changes 

continually and data need to be moved accordingly. It 

is assumed that only the recent part of data needs to be 

migrated between DCs. Without this assumption, it is 

obvious that the accumulated historical data transfer 

cost will be catastrophic (Based on TDWI report [19], 

one third of organizations have already broken 10TB 

barrier in 2011.). Nevertheless, this method will cause 

the user’s data to spread over a large number of DCs 

after a rather long period and therefore very hard to 

manage. Genomics data delivery and processing are 

explored by a proposed decentralized architecture [17]. 

But all the data also need to be aggregated to one DC. 

In both works, it is assumed implicitly that there exists 

at least one DC available for all data across the world. 

It is not true sometimes due to the legal prohibition or 

other factors. 

Social data and replica are explored to move to 

multi-cloud considering users’ social relation and their 

potential interaction [20]. The problem is formulated as 

a multi-objective program and solved by a heuristic 

based on graph cut. It also demonstrates the necessity 

of storing distributed data in different locations. Other 

papers discuss electricity cost and carbon emission [21] 

or system throughout [22], but the transmission cost is 

not considered. 

2.2 Facility Location Problem and k-median 

Problem 

Multiple DCs selection for moving BD to cloud is 

related to facility location problem (FLP) and k-median 

problem. FLP aims to find facilities to serve clients 

based on various criteria. DCs can be viewed as 

facilities and local data users are just the clients. k-

median problem strives to find a set of points not more 

than k . Each other point not be selected is assigned to 

one selected point so as to minimize the sum of length 

between the point pair. 

In the variants of FLP, k-supplier problem is one of 

the most related ones to our problem PDP, in that at 

most k  suppliers (correspond to DCs) need to be 

selected from a given set so that the maximum distance 

between each client and its closest supplier is 

minimized [23]. Normally, the suppliers and clients 

network is modeled as a complete graph [23] or a 

complete bipartite graph [24]. While in our problem, 

prohibited by laws, maybe some DCs cannot be 

selected to serve some data. So the graph is not always 
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a complete graph. For a generalized k-supplier variant 

where each supplier is attached with a weight, it is 

required the total suppliers weight should not be bigger 

than k  [24]. A 3-approximation algorithm is presented 

and it is proved as tight (i.e., there is no smaller 

approximation ratio). Normally, it cannot apply to our 

problem where the data to be moved is attached with 

users, not with DCs (suppliers). Usage weight is 

studied in another variant: k-center problem [25]. k-

center problem differs in essence from k-suppler 

problem in that the former requires all the points which 

are not selected as centers must be close to one center, 

while k-supplier problem does not require the suppliers 

not selected to be close to any of the suppliers selected. 

The corresponding schemes cannot be used to address 

our problem too. 

Our problem CMDP is a common generalization of 

uncapacitated facility location (UFL) problem and k-

median problem. UFL is another variant of FLP where 

there is no capacity limitation for the facility and each 

facility is attached with a fixed open cost weight [26]. 

The objective tries to minimize the total fixed cost and 

the total service cost. It can be explored in metric space 

and non-metric space. The metric UFL is strongly NP-

hard and cannot be approximated with a ratio smaller 

than 1.436 unless [ ]
loglogn

NP DTIME O⊆  or P NP= [27]. 

Few works explore non-metric UFL [26, 28]. They 

obtain an approximation factor with a constraint 

violation. The authors of [26] present a filter and 

rounding mechanism. A 1 ε+ approximation factor is 

achieved with a violation factor of 1 1 ( 1)/ lnnε+ + , that 

means the algorithm needs a facility subset of size not 

less than (1 1 ( 1)).k / lnnε+ +  The same approximation 

factor is derived with a violation factor of /lnn n ε+ by 

an oblivious rounding and greedy method [28]. 

Obviously this violation cannot be tolerant for our 

CMDP because the number of DCs is relatively small. 

Moreover, the fixed facility weight differs from CMDP 

in that DC weight is variable and is proportional to 

usage weight. Another difference is that UFL does not 

limit the number of facilities. 

k-median problem is explored in [29]. A 1-swap 

algorithm is presented and it gives a 5-approximation 

solution. It is refined to a p -swap algorithm which can 

guarantee a 3 2 / p+ approximation factor. But here all 

the cost are measured by the distance between clients 

and facilities. k-median problem does not consider the 

weights of facilities. 

So our CMDP generalizes UFL and k-median 

problems simultaneously. Noting that in all the above 

works, the underlying graph is assumed to be complete. 

CMDP extends the situation to incomplete graph based 

on the practical requirement in moving big data to 

cloud. 

3 Problem Description and Formulation 

Considering the underlying incomplete bipartite 

graph ( , , )G U V E= whose edge ( , )
ij
e E i U j V∈ ∈ ∈  

satisfies the triangle inequality and a positive integer k  

( | |, | |)k U k V≤ ≤ , we try to find a DC subset Dwhere 

| |D k≤  from the available DC set V  to store data of 

all users in U  with different criteria. For any i U∈  

and j V∈ , there is an edge between them if data of 

user i  can be moved to DC j  (at least it is not 

prohibited by law or is not excluded by the user). 

Assume any i  is adjacent to at least one j , otherwise 

there is no solution. Suppose | |E m=  where 

| | * | |m U V≤ . In this paper we also use ije  to indicate 

the length of edge ije  if there is no confusion. 

Usage weight. Each user is attached with a weight
 

iw  

which denotes the activity level of data production of 

current or foreseeable future days, or the importance of 

the local user.
iw increases when the data volume or the 

importance increases. Using activity level instead of 

the data volume can tolerate the dynamic fluctuation of 

data while giving an approximation of data volume. 

Active level can be defined based on the daily volume 

uploaded. Such as for a typical corporation with 200 

GB upload every day [19], 10 GB can be used as the 

threshold to judge the active level. If a branch 

corporation produces data smaller than 10 GB, it is 

attached with a weight 1. For a branch with data 

between 20~30 GB, the weight is 3, and so on. For 

user i  with active level 
iw , it needs to pay i ijw e  to the 

cloud if it wants to move data to DC j . 

DC weight. Each DC differs in computation and 

storage pricing (e.g., various Amazon VM instances 

and S3 [30] pricing in different regions). To store and 

process data economically, lower price is preferred. 

Given DC j , suppose that the price of a VM instance 

to process data is ja  every hour and the instance can 

analyze jb GB data each hour in average, then the 

price to process 10 GB is '

j jj
p =10/ *b a . If the storage 

price for 10GB is 
"

j
p , then the total cost of DC side is

 

' ' '

j j j
p p p= +  for user with activity level 1. For user 

i with active level
iw , it needs to pay extra i j

pw
 

if it 

wants to store and process data in DC j . The overall 

cost of user with
iw  is ( )i ijj

pw e+ . Considering the 

order-of-magnitude difference for 
iw  (e.g., thousands 

of kilometers) and 
j

p (e.g., about several dollars one 

hour for Amazon) in practical environment, a 

normalized variant is used: 
' ' '

'( )ij i ijj
pc w e= + , 

where
' ' '

/ ( )max h Vj j h
p p p

∈
= , '

,/ ( )maxij ij l U h V lhe e e∈ ∈
= . 

Note that the normalized edge lengths '

ije  still satisfy 
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the triangle inequality. 

The main notations used in the formulation are 

summarized in Table 1. 

Table 1. notations 

Notation Description 

( , , )G U V E=  
Bipartite Graph G  with user vertex set U , 

DC vertex set V  and edge set E   

ije  
Edge between vertex  i  and j  or the length 

of edge ije  

| |U  Number of vertices in vertices set U   

| |E  Number of edges in edge set E   

k  A positive integer k ,( | | | |)k  U k  V≤ ≤   

D  
A subset of DC vertices set V where 

| |D  k≤   

m  Number of edges in edge set E   

iw  
Usage weight, denote the activity level of 

data production 

ja  
The price of a VM instance in DC j  to 

process data every hour 

jb  
The data volume (GB) can be analyzed by 

the VM instance in DC j   
'

j
p  The price to process 10 GB in DC j  

"

j
p  The storage price for 10GB in DC j   

j
p  The total cost of DC side for user with 

activity level 1 

ijc  The normalized overall cost of user with 
iw

 
Problem description and formulation. Due to the 
high scalability of cloud, we assume that there is no 
computation and storage capacity limitation for DCs. 
The data of one user are only stored in one DC for data 
integrity. The target data centers selection problem can 
be summarized as: select at most k target DCs and 
assign each user to one target DC to place data, so as to 
meet the following criteria. 

1. Fair data placement (FDP). The maximum 
distance between each user and its assigned DC is 
minimized so that each local user can access data with 
minimal latency: ,| | , ( )maxminD V D k i U j D ije⊆ ≤ ∈ ∈ . 

2. Preferential data placement (PDP). The maximum 
usage weighted distance between each user and its 
assigned DC is minimized so that local users with more 
data can access data with minimal latency:  

,| | , ( )maxminD V D k i U j D ije⊆ ≤ ∈ ∈ . We use ( ),
i ij

w i j  w e=  to 

denote the weighted distance if necessary. 
3. Transmission cost minimization data placement 

(TCMDP). The transmission cost, defined as the 
sum of the usage 3 weighted distance between each 
user and its assigned DC, is minimized: 

,| | ,( )minD V D k i U j D ij
ewi⊆ ≤ ∈ ∈∑ . 

4. Cost minimization data placement (CMDP). The 
overall cost, defined as the sum of the cost of each user 

is minimized: ,| | ,( )minD V D k iji U j Dc⊆ ≤ ∈ ∈∑ . 

Note that criterion (1) is a special case of criterion (2) 

when 1
i

w = , and criterion (3) is a special case of 

criterion (4) when 0
j

p  = , we mainly talk about (2) 

and (4). The corresponding results can apply directly to 
(1) and (3), respectively. 

Let 
ij
x  is a boolean variable which indicates whether 

user i  is assigned to DC j . It equals 1 if i is assigned 

to j and 0 otherwise.
j

y is also a boolean variable which 

indicates whether DC j is used. It equals 1 if j is used 

and 0 otherwise.  
For PDP problem, we want to minimize the 

maximum weighted distance z , where 

 ,i ij ij z i U j Vw e x ≤ ∀ ∈ ∈  (1) 

PDP can be formulated as the following mixed 0-1 
integer linear program: 

min z  

s.t.  (1) 

  1ijj V x∈
=∑        i U∀ ∈  (2) 

  ijj
y x≥        ,i U j V∀ ∈ ∈  (3) 

  j V j
ky

∈
≤∑   (4) 

  {0,1}, {0,1}ij j
yx ∈ ∈    ,i U j V∀ ∈ ∈  (5) 

  0ijx =        for some ,i U j V∈ ∈  (6) 

Constraint (2) ensures that each user must be assigned 
to at least 1 DC and constraint (3) ensures this DC 
must be used, i.e., at least one VM is assigned to the 
DC. The number of DCs used cannot exceed k (4). 

Furthermore, not all DCs are available for each user (6), 
i.e., the underlying bipartite graph is incomplete. 

CMDP can be formalized as the following 0-1 
integer linear program:  

 
,

min ( )i ij i iji U j V j
pw e w x∈ ∈

+∑   

s.t. (2), (3), (4), (5), (6). 

In the objective function, 
ij
e  and 

j
p  are all the 

normalized ones. The former part 
, i ij iji U j V w e x∈ ∈

∑  is the 

transmission cost, the latter part 
, i iji U j V j

pw x∈ ∈
∑  is the 

data processing and storage cost in DC. 
As stated in Section 2, PDP is an extension of k-

supplier problem, and CMDP is a common extension 
of UFL and kmedian problem. Because k-supplier 
problem, UFL and kmedian problem are all NP-hard 
[26, 31], PDP and CMDP are both NP-hard. An 
approximation algorithm is presented for PDP and a 
heuristic is proposed for CMDP. 
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4 Algorithm 

Some notions are introduced to facilitate the 
algorithm presentation. 
Bottleneck graph. Note that for PDP problem, the 
optimal solution must reach at one usage weighted 
edge, so we should check the weighted edge from the 
smallest to the biggest until all constraints are satisfied. 
The construction of bottleneck graph is just based on 
this idea. m usage weighted edges are sorted in a non-
decreasing order and denote them as (1, ) (2, )w j w j≤  

. . . ( , )w m h≤  where , ,j g h V∈ and may be the same. 

Bottleneck graphs 1 2, ,...,
mG G G are edge subgraphs 

of G and ( ) 1,2,...,r m=  where ( , , ),
rr

U VG E=  

{ | ( , )}.r ij i ij w r ge w eE = ≤  Namely, 
r

G consists of all 

vertices ofG and edges which is not bigger than the r-

th shortest weighted edge ( ),w r g . 

Threshold graph. The threshold graph 
r

T  is 

constructed on user set U  for each
rG as follows. For 

each two points ,u v U∈ , an edge ( ),u  v  is in 
r

T if and 

only if there exists a DC j V∈  with both ( ),u j  

and ( ),v j  in 
r

G . For example, Figure 2 illustrates the 

threshold graph 
m

T for 
m

T (the biggest bottleneck graph) 

which is just the bipartite graph in Figure 1. There is 
no edge (5,6) because there is no common adjacent DC 

to users 5, 6 in 
m

G . 

 

Figure 2. The threshold graph 
m

T  

Maximal clique. Given an undirected graph H , a 
clique of H is a complete subgraph. If a clique is not 
contained in any other clique, it is a maximal clique 

and is denoted as ( )C H . It is easy to find ( )C H in a 

polynomial time. A simple method used in this paper is 

to add any point of H to ( )C H first, then add its 

neighbor points, together with which all points 

in ( )C H can constitute a complete subgraph. All 

neighbors of the points in ( )C H are checked one by 

one until no point can be added. A maximal clique can 
be found. Now, delete the points in this clique and 
repeat this process in the residue points until H  
becomes null. A series of maximal cliques can be 
found and they have no intersection. 

Note that if users can be served by a common DC 
then the corresponding threshold graph is a clique. For 

example, in Figure 1, users 6~9 can be served by 
common DCs then the corresponding threshold 

subgraph in 
m

T  is the clique consisting of 6~9 in 

Figure 2. Finding the maximal cliques in the threshold 
graph means grouping the users based on the 
availability of DCs so that all users in the group can be 
represented by a certain member. 

4.1 Preferential Data Placement (PDP) 

4.1.1 For the Scenario of Incomplete Graph 

Let ( )N i  denote the neighbors of i , i.e., points 

which are adjacent to i . The algorithm is detailed in 

Alg. 1. 
 
 

Algorithm 1. Biggest Weight First (BWF) 

Input: ,( ),G U V E= : usage weighted incomplete  

bipartite graph 
k : positive integer 

Output: D : set of data centers selected 
1: D←∅   

2: Sort usage weighted edges in a non-decreasing 
 order: ( ) ( )1, 2, . . . ( ),w j w g w m h≤ ≤ ≤   

3: Construct threshold graph 
r

T  for each ( )G r . Find 

the maximal clique set for each 
r

T . Suppose there 

are H  cliques. Denote the clique set for 
r

T

is { ( ) }  
r r h

C C T=  where    1,2, . . . , , 1, . . . ,r m h H= =  

4: Let { || | }
r

t min r C k= ≤   

5: for 1, . . . ,h H=  do 

6: Let l is the point with { ( ,) |
l j t h

w max w j C T j= ∈ is 

not assigned} . Let the common neighbor DCs of

 ( )
t

C T h
 

is 
( )

( ( ) )
t

u C T h
N N u V

∈
← ⊆∩  

7:  } { |
j N lj lj t

e min e e G
∈

← ∈   

8: Let v  is the point in N with  

lv
e e=   

9: D D v← ∪   

10: end for 

 
Algorithm 1 tries to place the largest volume data to 

the nearest DC. It checks the bottleneck graph in terms 
of usage weighted edge from small to big one by one 
and constructs the corresponding threshold graph. Then 
the clique set for each threshold graph is found (Line 
2~Line 3). Each clique represents a user group which 
can be served by at least one common DC and the 
weighted edges between users and the common DCs 
are bounded by the maximal weighted edge of the 
bottleneck graph. The minimum index of all clique sets 
which cardinalities are not bigger than k is selected so 

that the biggest usage weighted edge is as small as 
possible (Line 4). Of course binary search can be used 
to speed the search. 

For each user in the threshold clique set 
t

C , we find 



116 Journal of Internet Technology Volume 20 (2019) No.1 

 

the target DC as following. In each clique, beginning 
from the user with the biggest weight (Line 6), we uses 
it as a representative and assign it to the nearest 

neighbor DC in 
t

G  (Line 7~Line 9). All other users in 

the same clique are also assigned to this DC implicitly. 

This process is repeated until all users in 
t

C  are 

assigned (the for loop). Thus the algorithm establishes 
a mapping between users and DCs. The mapping 
partitions the bipartite graph into multiple clusters and 
the center of each cluster is a DC. 

The following theorem demonstrates that Alg. 1 
finds a tight 3-approximation solution for PDP problem 
where the underlying bipartite graph is incomplete. 

Theorem 4.1. Algorithm 1 gives a 3-approximation 

solution for PDP problem where the underlying 

bipartite graph is incomplete and the solution is tight. 

Proof. The optimal value OPT must be reached at 

one edge. Let *

t is the optimal edge index of the 

bottleneck graph 
*t

G . Because *

t also satisfies *| |
t

C k≤ , 

algorithm 1 finds the minimum t  (Line 4), so *

 t t≤ . 

We get ( ) *(, ) ,w t j w t  l OPT≤ =  based on Line 2 in 

Alg. 1. 

Note  D  k≤  and ( ),w t  j  OPT≤ , we only need to 

prove for any u U∈ , there is a DC v V∈ which can 

cover u  with ( )3 ,w t  j . 

As shown in Figure 3, for any u U∈ , since 
t

C  is the 

maximal clique set of 
t

G  and 
t

C  covers V , so u  must 

be in a clique in 
t

C , such as ( )
t i

C T . If u  is a maximal 

clique itself or ( )w u  is the maximum weight in ( )
t i

C T , 

u  is covered by it nearest DC in 
t

G  within ( ),w t  j . 

We get it. 

 

Figure 3. Diagram of theorem 4.1 

Otherwise, there must exists l  in ( )
t i

C T  where 

( ) ( )w l   w u≥  so that 
ul
e  in 

t
T . This means there 

exists a DC h V∈  so that edges 
uh
e  and 

lh
e  in 

t
G . So 

( ) ( ), ,w u  h   w t j≤  and ( ), ,) ( w l h  w t j≤ . Based on the 

algorithm and the definition of bottleneck graph, we 

also have ( ) ( ), ,w l  v   w t j≤ . 

 ( ) ( ),
uv

w u  v   w u e=   

 ( )( )
uh lh lv

 w u e  e  e≤ + +   

 ( ) ( ) ( )
uh lh lv

w u e  w l e  w l e≤ + +   

 ( ) ( ) ( ), , ,w u  h   w l  h   w l  v= + +   

 ( )3 , .w t  j≤   

The first inequality is due to triangular inequality. 
Suppose it is not tight, then there exists an algorithm 

which can find a smaller approximation ratio. It is also 
apply to the case when all usage weights are 1, which 
is just a special case of k-supplier problem where all 
supplier weights are 1. This contradicts the theorem 
that 3 is tight for k-supplier problem [23]. 
Time complexity. Sorting m  edges needs 

( ).O mLogm  Suppose there are n  users and d  DCs. In 

Line 3, constructing all 
r

G  needs ( )2O m . Constructing 

all 
r

T  needs ( )2O mlogn  and constructing all 
r

C  needs 

at most ( )2O mn . It is dominated by ( )2O mn  and so 

Line 3 needs ( )2O mn  time. Note that the for loop 

needs ( )( )O n n m+  which is still dominated by the 

time of Line 3. The time complexity of algorithm 1 

is ( )2O mn . 

4.1.2 For the Scenario of Complete Graph 

When the underlying bipartite graph is complete, we 
can simplify the grouping method. It is unnecessary to 
find the maximal clique in Line 3 in Alg 1. It is 
sufficient to find the maximal independent set for each 

r
T  because all DCs are available for each user now. 

Maximal independent set. Given an undirected graph 
H , an independent set of H  is a subset of vertices of 
H  and in which no two different vertices share an 
edge in  H . If an independent set is not contained in 

any other independent set, it is a maximal independent 

set and is denoted as ( )I H . It is easy to find ( )I H  in a 

polynomial time. The simple method used here is to 

add any point of H  to ( )I H , then delete this point and 

all points adjacent to this point from H . Repeat this 
process until H  becomes null. 

In Alg. 1, if the maximal clique is replaced by the 
maximal independent set and the other parts remain 
unchanged. We get a simplified algorithm for the 
scenario of complete graph. This algorithm is denoted 
as the biggest weight first algorithm based on maximal 
independent set (BWFInd). Similar to the proof of 
theorem 4.1, it is easy to get the following theorem. 

Theorem 4.2. Algorithm BWFInd gives a 3-

approximati-on solution for PDP problem where the 

underlying bipartite graph is complete and the solution 

is tight. 

Note that it is faster to find the maximal independent 
set than to find the maximal clique, BWFInd is faster 
than BWF. But it is easy to check that BWFInd cannot 
apply to the scenario of incomplete bipartite graph. 
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4.2 Cost Minimization Data Placement 

(CMDP) 

For problem CMDP, Algorithm 2 is proposed. It 
tries to assign each user to the nearest DC, i.e., the cost 
between the user and the DC is the smallest. If the 
number of DC is bigger than k , then certain DC is 

discarded and the corresponding users are reassigned. 
The process is repeated until the constraint is satisfied. 

 
 

Algorithm 2. CMDP Nearest Preferred Algorithm  
(NPACMDP) 

Input: ,( ),G U V E=  : weighted incomplete bipartite  

graph 
k  : positive integer 

Output: D : set of data centers selected 
1:  Assign each user to the nearest DC (the distance 

between user and DC is defined as
i ij i j

we w p+ ). 

Record the DC set as D  
2: while | |D k>  do 

3: Find one DC, for which the maximum weighted 
distance between it and the users assigned to it is 
the minimum when comparing with that of other 
DCs in .D . Delete this DC from  D . The users 

which has been assigned to the deleted DC are 
reassigned to the nearest remaining DC in  D . 

4: end while 

 

5 Simulation Results 

5.1 Simulation Setting 

Amazon, Google and NSFNET T3 [32-33] own 
representative DC networks. All of them have a dozen 
of DCs and the DCs of the former two span different 
continents. Since the location information of the DCs 
of business corporation is often confidential, no real 
precise information is released so far. We select 14 
cities from four continents. Most of them are consistent 
with that of Amazon and some of them are the same as 
that of NSFNET T3. We also randomly select 17 cities 
from five continents for users. 

It is detailed in Table 21. Each DC and each user are 
numbered for simple presentation. DCs 1~10 
correspond to DCs in Figure 1. Users 1~9 correspond 
to users in the same figure. Other extra DCs and users 
will be added in the later scalability evaluation. The 
distance between user and DC is estimated by the 
latitude and longitude of the city where they locate in. 
It is Euclidean distance and thus satisfies the triangular 
inequality. We suppose the availability of DCs for 
users is consistent with that implied in Figure 1. 
Namely, users in America can only be assigned to DCs 
in America and Europe. While users in Oceania and 
Africa can be assigned to any DCs in all four 
continents. 

Table 2. Distributed DCs and users 

 America Europe Asia Oceania Africa 

No. 1 3 3 4 11   5 6 12 13  7 8 9 14  10  

DCs SP SFO Toronto Atlanta NY   Frankfurt Paris London Dublin  SG Tokyo HK Beijing  Sydney  

c 0.067 0.067 0.077 0.067 0.067   0.079 0.0796 0.073 0.073  0.098 0.096 0.096 0.098  0.093  

c-M 0.077 0.077 0.067 0.077    0.073 0.073    0.096 0.098 0.093   0.096  

s 0.03 0.033 0.033 0.03 0.03   0.0324 0.0324 0.03 0.03  0.03 0.033 0.033 0.03  0.033  

s-M 0.03 0.03 0.03 0.033    0.03 0.03     0.033 0.033 0.03  0.033  

No. 1 2 3 10 11 12 13 4 5 14 15 16 6 7 8 18 19 9 17 

users CHI WDC LAX Houston Boston PHIL RDJ Rome Milan Munich Madrid Moscow BKK Osaka Xian ULA ND Oakland Cairo

w 20 15 28 10 18 29 2 21 8 18 13 25 7 11 24 40 40 16 1 

w-M 15 20 10     13 25    24 11 7   1  

 
The weights of users follow (1 40)U −  and are listed 

in the line beginning withw . One level represents that 

daily 1~10 GB data need to be uploaded to DC after 
preprocessing. We borrow the computation price 
($/Hour) (abbreviated as c ) and storage price ($/G) 

(abbreviated as s ) from Amazon m3.medium virtual 

machine instance with Linux operation system and S3 
standard storage in various regions, respectively. 
Suppose the instance can process one active level data 
every hour. Each DC is randomly attached with a 
computation and a storage price borrowed. The details 
can be found in Table 2. All prices have been 
multiplied by 100 to match the table space. To reveal 
the effect of DC weight and usage weight on the 
solution, we also modify the values of lines beginning 

with w , c and s to the values of lines beginning 

with w M− , c M−  and s M− , respectively. Herein 

only the modified weights to be used, i.e., DCs 1~10 
and users1~9, are listed. On the whole, the weights 
after modification are smaller than the original ones. 
We set all the bandwidth cost for 10 GB are 0.01$ for 
comparison. Note that the objective is to minimize the 
product of distance and user weight, this will drive the 
data to be transmitted to a relative close DC and thus 
minimize both the cost and the delay. 

For the DCs and users in Figure 1, obviously at least 
2 DCs are necessary if all users can be served. So 
unless explicitly noted in the simulation, we use a 
slightly bigger 3k  = . 

In the simulation, we focus on the general situation 
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where the underlying bipartite graph is incomplete. 
The simulation environment is set up in a C language 
platform. The platform is running on a PC (Lenovo 
Think Centre M4350t-N020, Intel(R) Core(TM) i5-
3470 CPU @ 3.20GHz, 8G RAM). 

5.2 Simulation Results for PDP 

To evaluate the performance of the proposed 
algorithm BWF, additional three schemes are 
compared. (1) Random scheme (Random): each user is 
randomly assigned to an available DC while keeping 
the number of DCs is not bigger than k . (2) Optimal 

scheme (Opt.): since PDP is linear programming, we 
use lpsolve in Sourceforge [34] to solve the 
corresponding linear programming in Section 3 to get 
the optimal values. lpsolve is written in C language and 
has been wisdely used. (3) NPA-PDP: replace the 

overall cost 
i ij i j

we w p+  in NPA-CMDP (Alg. 2) with 

the weighted distance
i ij

we . 

5.2.1 Scalability Evaluation 

To investigate the DC scale efficiency of BWF, we 
suppose users 1~ 9  can be served by different number 

of candidate DCs 1~10. Every time one DC is added to 
DCs in the sequence of number from 11 to 14. The 
delay of each algorithm is depicted in Figure 5. 

The delay (the maximum usage weighted distance) 
of Random is the biggest and the delays of NPA-PDP 
and BWF are bigger than that of Opt.. At beginning, 
both NPA-PDP and BWF select DCs 2, 6, 9. When the 
number of DCs increases to 13, the solutions of both 
NPA-PDP and BWF are the same. This is because that 
all the later added 3 DCs are not better than the former 
selected DCs, and therefore all of them are not selected. 
When DC 14 (Beijing) is added, the delay increases for 
both NPA-PDP and BWF. This attributes to that user 8  

 

Figure 5. Maximum delay when the number of DC 
increases 

(Xian) has the biggest usage weight and it is selected 
as the representative of users in Asia-Pacific region by 
the algorithms.  User 8 is the nearest to DC 14, so DC 
9 is given up and DC 14 is selected. Now users which 
are originally assigned to DC 9 are reassigned to DC 
14. This leads to the delay increasing to the weighted 
distance between Beijing and Oakland. 

The delay of Opt. is the smallest and it always 
remains the same with the increasing of DCs. 
Although the delay of BWF is slightly bigger than that 
of Opt., in average 5%, we find Opt. can only optimize 
the optimal objective value and cannot optimize other 
clusters’ delay. For example, both NPA-PDP and BWF 
select DCs 2, 6, 9. Opt. selects 2, 5, 7. For the three 
algorithms, users 1, 2, 3 are all served by DC2. But Opt. 
selects DCs 5 and 7 to serve other users, while NPA-
PDP and BWF select DCs 6 and 9 to serve other users. 
Assignments and delay of each user are compared in 
Table 3. Obviously the overall delay incurred by Opt. 
is 335296, which is bigger than those of other two 
algorithms, i.e., 227851. This is due to that Opt. cannot 
take into consideration of all clusters. 

 

Table 3. Opt. cannot optimize the delay of each cluster 

Algorithms DC User 4 User 5 DC User 6 User 7 User 8 User 9 Sum 

Opt. DC 5 25189 23172 DC 7 9496 54108 88790 134541 335296 

NPA-PDP, BWF DC 6 6679 5137 DC 9 17893 18542 38263 141337 227851 
 

Execution time shown in Figure 6 indicates that Opt. 
(Note that the execution of NPA-PDP almost overlaps 
that of Random.) needs more time than other 
algorithms. With the increasing of DCs, the time 
consumption of Opt. increases sharply, almost at an 
exponential rate, while BWF increases gently. 

We also increase the number of users from 9 to 19 
when there are 10 DCs. Every time two users are added 
in the sequence of user number. The delay is depicted 
in the Figure 7. 

 

Figure 6. Execution time when the number of DC 
increases 
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Figure 7. Maximum delay when the number of users 
increases 

The delay changes after user 18 and 19 are added 
because their smallest weighted distances are bigger 
than the current delay. This also reveals that it is 
unnecessary to use more DCs when users are added. 
Only when farther users are added then it maybe leads 
to bigger delay. Though Opt. finds the optimum. It is 
again observed that the overall delay incurred by Opt. 
is bigger than that of BWF. Limited to the randomness 
of the selection of user locations, it cannon depict a 
monotone increasing delay curve. The simulation still 
demonstrates a tendency that, when the number of 
users increases the delay will not decrease. 

It is noteworthy that when Users 12, 13 are added, 
the delay of NPA-PDP increases. This is because that 
NPA-PDP only deletes a certain DC simply without 
considering the grouping of users. It reflects the 
instability of NPA-PDP. 

When the number of users increases, the execution 
time of the algorithms demonstrates a similar tendency 
to that of Figure 6. In a large scale application where 
there are more DCs and users, Opt. will incur more 
time. Comparatively, BWF is more suitable for scale 
application. 

5.2.2 Effect of Parameters 

We varies k  from 2 to 7 to verify its effect on delay 

in Figure 8. It is demonstrated that Random incurs the 
biggest delay. Both NPA-PDP and BWF can find the 
optimum in the scenario of 3k =  where the objective 

values are a little bigger than the optimum value (about 
5%). But compared with other algorithms which return 
7 DCs, when 7k   = , BWF returns 6 DCs to serve all 

users without more delay. This reveals that BWF can 
find the smallest number of DCs to satisfy the request 
of users. 

 

Figure 8. Maximum delay when k  increases 

It shows a common tendency that, when the number 
of DCs increases the delay decreases in general. It is 
because that more candidate DCs permit users to be 
assigned to nearer DCs. Hence the biggest weighted 
distance becomes smaller. 

When k  increases, the execution time of the 

algorithms is illustrated in Figure 9. This reveals again 
that BWF is more suitable for scale applications. 

 

Figure 9. Execution time when k increases 

To evaluate whether the algorithms can take into 
account the weights of the users, we replace the 
weights of users in the second last line with the 
weights in the last line in Table 2. The results are listed 
in Table 4. NPA-PDP, BWF and Opt. all find the 
optimal solution (the last line). Since in general, the 
modified weights become smaller, the maximum 
weighted distance becomes smaller now. The bold DC 
number indicates the change of DC. After usage weight 
changing, all algorithms except Random change DC 2 
to DC 3. This is because that usage weight of user 2 
(WDC) becomes bigger and it is closer to DC 3 (Toronto) 
than to DC 2 (SFO). Random changes DC 8 to DC 9 
because that usage weight of user 6 (BKK) becomes 
bigger and it is closer to DC 9 (HK) than to DC 8 
(Tokyo). 

Table 4. Solutions change when usage weights change 

 Random NPA-PDP BWF Opt. 

w , delay 222559 same as BWF 141337 134540 

DC(users) Omitted same as BWF 2(1,2,3), 6(4,5), 9(6,7,8,9) 2(1,2,3), 6(4,5), 8(6,7,8,9) 

w M− , delay 110834 same as BWF 54108 same as BWF 

DC(users) Omitted same as BWF 3(1,2,3), 6(4,5), 9(6,7,8,9) 9(6,7,8,9)  



120 Journal of Internet Technology Volume 20 (2019) No.1 

 

5.3 Simulation Results for CMDP 

To evaluate the performance of the proposed 
algorithm NPA-CMDP, other three schemes are used 
for comparison, i.e., (1) Random. (2) Opt.: lpsolve. (3) 
Clique set based cost minimization (CSCM): it finds 
clique sets for all threshold graphs first. Then it finds 
the minimum cost from all the cliques sets which 
cardinalities are not bigger than k . For each clique, the 

scheme to find the DC is similar to that of BWF, 
except that the sum of the cost is compared and the DC 
with minimum sum is selected as the target DC for this 
clique. Here we think latency and cost be of the same 
importance, therefore both α  and β  are set as 1. 

5.3.1 Scalability Evaluation 

The number of DCs is also increased from 10 to 14 
as in Section 5.2. Figure 10 depicts the performance. 

 

Figure 10. Overall cost when the number of DCs 
increases 

The figure reveals the tendency that the overall cost 
decreases with the increasing of the number of DCs. 
Random incurs the biggest cost. Opt. finds the smallest 
cost. NPA-CMDP and CSCM find medium cost. In 
general, NPA-CMDP finds smaller cost than CSCM. 

When users are increased from 9 to 19 as in Section 
5.2, the cost is shown in Figure 11. With users 
increasing, the overall cost also increases for all 
algorithms. Opt. finds the smallest cost. NPA-CMDP is 
better than CSCM. Random is the worst. 

 

Figure 11. Overall cost when the number of users 
increases 

5.3.2 Effect of Parameters 

Figure 12 shows the results when k increases from 2 

to 7. 

 

Figure 12. Performance when k increases for CMDP 

Although the general tendency is that when the 
number of target DCs increases, the overall cost is 
decreasing, after 4k  ≥ , the cost remains unchanged. 

In reality, both NPA-CMDP and CSCM find the 
optimal solution. 

We first replace usage weight w  with w M− , and 

then replace s , c  with s M− , c M− , respectively, to 

reveal the effect of usage weight and DC weight. The 
overall cost is detailed in Table 5. We can find that 
with the weights decreasing, the overall cost also 
decreases. 

Table 5. Solutions change when usage and DC weights 
change 

 Random NPA-CMDP CSCM Opt. 
, ,w c s   102.0633 95.2356 87.4067 84.03 

w M−  68.1096 60.1802 57.8713 57.62 

,c M s M− −  103.3146 81.8068 79.1335 79.13 

6 Conclusion 

Considering the feasibility of moving geo-
distributed big data to cloud, multiple target DCs 
selection problem is explored in this paper to seek fast 
access and low cost. The problem generalizes the 
traditional k-supplier problem, UFL and k-median 
problem. When the underlying graph is incomplete, a 
tight 3- approximation algorithm is proposed to 
accommodate fast access. It can be simplified when the 
graph is complete. Low cost is achieved by a simple 
heuristic. 
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