
Processing Directional Continuous Queries for Mobile Objects on Road Networks 97

Processing Directional Continuous Queries for Mobile Objects on

Road Networks

Chow-Sing Lin, Ci-Ruei Jiang*

Department of Computer Science and Information Engineering, National University of Tainan, Taiwan

mikelin@mail.nutn.edu.tw, ha9mv8c@gmail.com

*Corresponding Author: Chow-Sing Lin; E-mail: mikelin@mail.nutn.edu.tw

DOI: 10.3966/160792642019012001009

Abstract

Traditional location-based services for range queries or

k nearest neighbor queries are omnidirectional, in which

some query results are probably not interesting to a user

because they are not on the way to destination. Due to the

prevalence of guiding systems and the advances of

electronic technologies and wireless communications,

most mobile objects on roads move along with the pre-

determined paths provided by path planning systems.

With the concept of “by the way”, there would be an

increasing demand on queries for objects on their paths

and ahead of them. In this paper, we define the issues of

directional continuous query for mobile objects on road

networks. To address this issue, we not only propose the

system architecture of a road network but also provide

approaches to determine the safe period in order to

efficiently update a directional query result. We elaborate

cases of when to exclude a mobile object from a query

result and when to insert a mobile object into a query

result. Experimental results show that the network

bandwidth dominates the preference of the adaptation of

the centralized or distributed directional mobile query

processing.

Keywords: Range query, kNN query, Directional

continuous query, Road network, Safe

period

1 Introduction

With the rapid development of wireless

communication networks and smart mobile devices,

travelers now can access GPS localization services and

wireless networks at any time. To date, several studies

of query processing on road networks have been made

on k-nearest neighbor queries [1-7] and range queries

[8-14] based on the different requirements of travelers.

To the best of our knowledge, these studies all focused

on omnidirectional queries. According to our

observation, however, a traveler usually query objects

of interest based on the direction of travel, which

indicates that the direction of traversals would

influence the results of queries. In this situation,

objects in the query result that are not on the way to

destination would be considered as redundant.

Due to the prevalence of guiding systems and the

advances of electronic technologies and wireless

communications, apparently, most mobile objects on

roads will move along with the pre-determined paths

provided by their path planning systems. With the

concept of “by the way”, there would be an increasing

demand on queries for objects on the travelling path

and ahead of them. Such queries can be classified into

two types, Range Query (RQ) and K-Nearest Neighbor

Query(KNN). With range query, mobile objects within

a certain range would be added into query result. On

the contrast, only the k-nearest mobile objects would

be added into query result. For example, what are the

convenience stores within 3 km on the way home (RQ)?

What are the three nearest taxies on the way to

destination for carpooling (KNN)? What are the trucks

belonging to the same fleet within 2 km on the way to

the same destination (RQ)? Where are the two closest

teammates in a cycling race (KNN)? To properly

answer those questions, several challenges arise.

• How to represent the moving path of a mobile object?

• How to determine the moving path of a mobile

object intersecting with another one?

• How to properly determine the result of a query for a

query mobile object on the way to destination?

• How to compute the safe period [12-14] of updating

a query result to reduce the frequency of position

report?

On the other hand, queries can be processed in the

central server (called centralized query processing) or

in access points (called distributed query processing).

Factors in an infrastructure, such computing power and

network bandwidth, would favor one of these two

processing types. In this paper, according to the types

of query and processing, we discuss four directional

query processings which are centralized directional

range query (CDRQ), centralized directional KNN

query (CDKQ), distributed directional range query

(DDRQ), and distributed directional KNN query

(DDKQ).

In this paper, we define the issues of these four

98 Journal of Internet Technology Volume 20 (2019) No.1

directional continuous queries for mobile objects on a

road network. To address these issues, we not only

propose the system architecture of a road network but

also design road block code to represent a moving path.

How to determine one moving path intersected with

another to produce proper query results is also

discussed in the paper. In addition, we also provide

approaches to determine a safe period in order to

efficiently update a query result. We elaborate cases of

when to exclude a mobile object from a query result

and when to insert a mobile object into a query result.

To our best knowledge, this is the first research

work which discusses the directional query processing

for road networks with the concept of “by the way”,

which more commonly meets a user’s daily needs. In

this paper, we assume there is at least one access point

(AP) located at each intersection, which may be

premature in current infrastructure, but we truly

believe it would be realized in future road networks.

Our experiments were deployed in centralized and

distributed query processing schemes, and the

experimental results show that when the bandwidth of

a central server is high, the centralized directional

continuous query processing is more efficient than the

distributed one; on the other hand, the distributed query

processing is better than the centralized one while the

bandwidth of a central server is low. In addition, when

the bandwidth of a central server is high, the

centralized processing directional continuous queries

has shorter average response time than the distributed

one with the larger range in range query. When the

value of k and the bandwidth of a central server are

high, the centralized k Nearest Neighbor (kNN) query

has shorter average response time than the distributed

one.

The remainder of this paper is organized as follows.

System architecture of road networks is described in

Section 2. In Section 3, 4, 5, and 6, we describe the

concept of directional continuous query and provide

detailed discussion of how to efficiently update the

query result by safe period in centralized range query,

centralized kNN query, distributed range query, and

distributed kNN query, respectively. The experimental

results are presented in Section 7. Finally, Conclusions

are drawn in Section 8.

2 System Architecture of Road Networks

In our system, a mobile object is equipped with GPS

and its moving path to the destination is assumed to be

pre-determined by a central server capable of path

planning, such as Google Maps. There is an access

point (or called roadside unit) at each intersection

which is capable of communicating with mobile

objects within a certain range by wireless

communication. It is assumed that the wireless

communication range for a road section can be equally

covered by access points located at the both ends of a

road section. Access points are interconnected by

underground cables, which are formed as a meshed

road network. An access point is responsible for

monitoring mobile objects [15-16] within its service

range, bookkeeping information of those mobile

objects, processing queries, relaying communication

messages between mobile objects and a central server,

etc. The central server is wire connected to the meshed

road network, and it is responsible for path planning,

maintaining locations of mobile objects, processing

query, etc. Figure 1 shows the system architecture of a

road network [17-20].

Figure 1. System architecture of a road network

In general, roads consist of a sequence of road

sections and intersections [21-22]. To efficiently

process moving paths of mobile objects in our system,

we can divide roads into a number of ”roadlet” which

consists of an intersection and road sections connected

to the intersection. An intersection may be 3- way,

called T junction or fork; or 4-way intersection, called

a crossroad; or more. In this paper, without losing

generality, we assume all intersections on roads are 4-

way. Figure 2(a) shows a road let with 4-way

intersection. As shown in the figure, a roadlet can be

divided into five regions which are the intersection

(R5), the eastern road section (R2), the western road

section (R4), the southern road section (R3), and the

northern road section (R1).

The intersection R5 is further divided into four equal

blocks which are upper right (M4), upper left (M3),

lower right (M6), and lower left (M5). Each road

section is also further divided into two blocks M1 and

M2 based on driving directions. Figure 2(b) shows the

representation of an intersection and four road sections

of a roadlet. Assume that a roadlet is identified by the

unique ID of its associated access point, each road

block can be uniquely coded by sequentially

concatenating the ID of the resided roadlet (access

point), the region ID, and the block ID, which is called

road block code, such as AP12R4M3. Given a pre-

determined moving path provided by a route planning

system, it now can be represented as a sequence of

road block codes. Figure 3 shows an example of the

Processing Directional Continuous Queries for Mobile Objects on Road Networks 99

(a) Roadlet of 4-way intersection

(b) Representation of an intersection and five road sections

Figure 2. Representation of a roadlet

Figure 3. An example of moving path for a mobile

object

path moving from point A to B for a mobile object, O1.

The road block code of this moving path is {AP1R2M2,

AP2R4M1, AP2R5M5, AP2R3M2, AP6R1M1,

AP6R5M3, AP6R5M5, AP6R5M6, AP6R2M2,

AP7R4M1, AP7R5M5, AP7R5M6, AP7R2M2,

AP8R4M1}. Note that the first element of a road block

code represents the current location of a mobile object

and it is accordingly updated as it is moving. The

hierarchical structure of road blocks also favors the

indexing of mobile objects by any kind of data

structure used for spatial searching, such as R-tree.

Figure 4 shows the indexing in R-tree for the three

mobile objects in Figure 2(a). Note that literatures

showed that R-TPR+-Tree [23-24] might be more

suitable for indexing mobile objects on road networks.

However, our system architecture is independent of

any spatial indexing methods and the discussion of the

pros and cons of those indexing methods is beyond the

scope of this paper.

AP

R3R2R1 R4 R5

M1 M2 M1 M2 M1 M2 M1 M2 M3 M4 M5 M6

O2O3O1

Figure 4. Indexing in R-tree for the three mobile

objects in Figure 2(a)

3 Centralized Directional Continuous

Range Query(CDRQ) Processing

Assume that there are m mobile objects on the roads,

the road block code of the moving path for a mobile

object Oi is denoted as Ci, 1 ,i m≤ ≤ and the k-th

element of his road block code is denoted as Ci,k. Given

the moving path of a query mobile object Q, how many

mobile objects with the same driving direction will

appear in his query, such as range or k-Nearest

Neighbors (kNN) query, on his way to destination?

This type of query is called directional continuous

query. To answer this kind of queries, we need to

compare the road block code of the query mobile

object against that of every mobile objects, says Oi, on

the roads to find out if an intersection between the two

road block codes exists, which leads to two cases. The

first case is that there is no intersection between the

road block code of Q and that of any mobile objects on

the roads. That is, Q iC C =∅∩ , 1 .i m≤ ≤ No mobile

objects will become the query result on the way of the

Q to destination, and therefore, there are no mobile

objects to be monitored. The second case, there exists

an intersection between the road block code of Q and

that of any mobile object on the roads. That is,

,Q iC C ≠ ∅∩ 1 .i m≤ ≤ Some mobile objects will

become the query result on the way of Q to destination.

Assume that the Rpotential denotes the set of mobile

objects whose road block codes intersect with the road

block code of a query mobile object CQ, Rpotential can be

computed as follows,

 { | ,1 }potential i Q iR O C C i m= ≠ ∅ ≤ ≤∩ (1)

Mobile objects in Rpotential whose first element of

the road block code belongs to CQ may be immediately

included into the query result, R, once the query is

issued based on the criteria of the query type, such as

the range for range query (e.g., 1km) or the value of k

for kNN (e.g., k=5). Therefore, the initial query result,

Rinit, can be computed as follows.

100 Journal of Internet Technology Volume 20 (2019) No.1

,1
{ | , , _ ()holds},init i i potential Q i iR O O R C C q crit O= ∀ ∈ ≠∅∩

where q_crit() represents the criteria function of query

type which can be range query or kNN query. In this

case, q_crit() represents range query.

Initial, R = Rinit. Assume that the set of mobile

objects which may be included into R is denoted as

Rcandidate,

 .candidate potential initR R R= − (2)

The update of query result R involves in excluding

mobile objects from R and including mobile objects in

Rcandidate into R, which will be discussed in the

following section. Figure 5 shows an example of a

query mobile object Q and mobile objects O1, O2, O3,

and O4. As shown in the figure, Q is moving from

location A to B, O1 is moving from location C to D, O2

is moving from location E to F, O3 is moving from

location G to H, O4 is moving from location I to J.

Table 1 shows the road block codes of these five

mobile objects. Based on above equations, we can get

{ , , },potential 1 3 4R O O O= { }
init 1

R O= and { , }.
candidate 3 4

R O O=

Figure 5. Moving paths of Q, O1, O2, O3, and O4

Table 1. The road block codes of mobile objects in

Figure 5

Type Path

Q

AP1R4M1, AP1R5M5, AP1R5M6, AP1R2M2,

AP2R4M1, AP2R5M5, AP2R5M6, AP2R3M2,

AP6R1M1, AP6R5M3, AP6R5M6, AP6R2M2,

AP7R4M1, AP7R5M5, AP7R5M6, AP7R2M2,

AP8R4M1, AP8R5M5, AP8R5M6, AP8R2M2

O1
AP6R2M2, AP7R4M1, AP7R5M5, AP7R5M6,

AP7R2M2, AP8R4M1

O2
AP8R1M2, AP4R3M1, AP4R5M6, AP4R5M4,

AP4R1M2

O3

AP7R2M1, AP7R5M4, AP7R5M3, AP7R4M2,

AP6R2M1, AP6R5M4, AP6R5M3, AP6R4M2,

AP5R2M1, AP5R5M4, AP5R5M3, AP5R4M2

O4
AP1R1M1, AP1R5M3, AP1R5M5, AP1R3M2,

AP5R1M1, AP5R5M3, AP5R5M5, AP5R3M2

3.1 Update of Query Result

Once the initial query result is generated, the next

question is when the query result R should be updated?

This would be classified in two scenarios. First, R

should be updated when mobile objects in R are no

longer eligible for query result. That is, mobile objects

which would be excluded from R are the ones

deviating from the route of Q or getting out of its query

range. Second, R should be updated when mobile

objects in Rcandidate are eligible for query result. This

would happen when a mobile object enters the moving

path of Q or the query range. Intuitively, frequently

updating the current locations of mobile objects would

result in accurate query result at the cost of the

consumption of network bandwidth and computation.

To address this issue, we also apply the concept of safe

period to reduce the frequency of location update for

power saving in above two scenarios while updating R,

which are discussed in the following sections.

3.2 Excluding Mobile Objects from Query

Result

In this paper, we assume the speed of a mobile

object O is bounded in
min max

[,].
O O

V V When a mobile

object in query result R being excluded can be

classified into three cases, which are 1) the query

mobile object Q catching up with a mobile object in R;

2) a mobile object in R moving out of the query range;

3) a mobile object in R deviating from the moving path

of Q. Figure 6 shows these three possible exit points,

denoted accordingly as tcatchup, texit, and tdeviate for a

mobile object O being excluded from the range query

result.

Q

Query Range, x

moving path of Q
O

moving path of O

T
tcatchup tdeviate texit

deviation point,

Pdeviate

Figure 6. Three possible exit points for a mobile object

O being excluded from the range query result

1. tcatchup: The shortest time that the query mobile

object Q may catch up with a mobile object O. If

,

max min

Q OV V≤ there is no way that Q would catch up

with Q; otherwise, the equivalence of the catch up time,

tcatchup, can be stated as

 (,)max min

Q actchup O actchupV t Dist Q O V t× = + ×

and

 (,) /(),max min

actchup Q Ot Dist Q O V V= − (3)

where Dist(Q, O) denotes the current distance between

Q and O.

2. texit: The shortest time that a mobile object O may

move out of the query range x at the same driving

direction. If ,

max min

Q OV V≤ this case would not happen;

otherwise, the equivalence of the exit time, texit, can be

stated as

Processing Directional Continuous Queries for Mobile Objects on Road Networks 101

 ((,))max min

O exit Q exitV t x Dist Q O V t× = − + ×

and

 ((,) /()).max min

exit O Qt x Dist Q O V V= − − (4)

3. tdeviate: The shortest time that a mobile object O

may deviate from the moving path of Q. The tdeviate can

be computed as, (,) / ,max

DEVIATE deviate O
t Dist O P V= where

Pdeviate denotes the location of O deviating from the

moving path of Q.

Let SPO denotes the safe period of a mobile object O

in R, and then SPO = Min {tcatchup, texit, tdeviate}. Within

the safe period, SPO, the O being one of query result R

remains valid, and there is no need for O to report its

location to the central server. Once the safe period SPO

is elapsed, the O needs to report its location to the

central server for updating the query result and

compute a new safe period based on steps described

above.

3.3 Inserting Mobile Objects into Query

Result

For those who in the Rcandidate, it is necessary to

estimate when they are going to be included into R.

Mobile objects in Rcandidate can be classified into two

types. The first type includes mobile objects that are

already on the moving path of Q but not within the

query range. The first element of road block code of a

mobile object, O, in this type must belong to road

block code of the query mobile object, i.e.,
,O 1 QC C∈ .

Figure 7 shows the case of a mobile object O ahead of

a query mobile object Q but not within the query range.

If ,

max min

Q O
V V≤ the O would be definitely impossible to

enter the query range and be included into R. In this

case, the O should be immediately excluded from

Rcandidate. Otherwise, the equivalence of the shortest

time of O being included into R, tenter, can be stated as

(,) ,max max

O enter Q enterDist Q O V t x V t+ × = + × and
enter
t =

((,)) /().max min

Q ODist Q O x V V− − − Note that if ,
enter deviate
t t≥

a mobile object deviates from the moving path of Q

before becoming the query result. In this case, again,

this mobile object is excluded from Rcandidate.

Q

Query Range, x

moving path of Q
O

moving path of O

T
tdeviatetenter

Figure 7. A mobile object O ahead of the query mobile

object Q but not within the query range

The second type included mobile objects who are

not currently on the moving path of Q but will be in the

future. A mobile object in this type whose road block

code CO except the first element intersects with CQ, i.e.,

,

() .O O 1 QC C C− ≠ ∅∩ Figure 8 shows the case of a

mobile object O will move into the travelling path of a

query mobile object Q at the rendezvous point, Prend.

The shortest rendezvous time, trend can be computed as,

(,) / .max

rend rend O
t Dist O P V= Once the trend is elapsed,

there are three possible cases, (1) the O is within the

query range of Q; (2) the O is ahead of Q but not

within the query range; (3) the O is behind Q. Cases 1

and 2 are identical to the cases of Figure 6 and Figure 7,

respectively. Figure 9 shows case 3 is a mobile object

O behind a query mobile object Q. If ,

max min

O QV V≤

there is no way that the O can be included into the

query result, and it is then excluded from Rcandidate;

otherwise, the equivalence of the shortest time to have

O become the query result, tarrive, would be

(,),max min

O arrive Q arriveV t V t Dist Q O× = × + and
arrive
t =

(,) /().max min

O QDist Q O V V− Again, if ,
arrive deviate
t t≥ the O

is immediately excluded from Rcandidate. Algorithm 1

shows the algorithm of CDRQ.

Q

Query Range, x

moving path of Q

O moving path of O

T
tdeviate

deviation point,

Pdeviate

trend

rendezvous point,

Prend

Figure 8. A mobile object O moving into the traveling

path of a query mobile object Q

Query Range, x

moving path of Q
O

moving path of O

T
tdeviatetarrive

Q

deviation point,

Pdeviate

Figure 9. A mobile object O behind a query mobile

object Q

4 Centralized Directional Continuous kNN

Query(CDKQ) Processing

In CDKQ, we need to find the k-nearest objects

ahead of the mobile object Q on its moving path. The

q_crit() in the definition of Rinit now represents kNN

query. Note that if the number of the returned mobile

objects is less than k, the query is failed. For an

example of Figure 5 and k equal to one, we can get

{ , , },potential 1 3 4R O O O= { }
init 1

R O= and { , }.
candidate 3 4

R O O=

102 Journal of Internet Technology Volume 20 (2019) No.1

In order to reduce the frequency of updating query

result, again we also adopt the concept of safe period.

The update of kNN query results is same as that of

range query which can be classified into two possible

cases, which are (1) excluding a mobile object from the

query result R; (2) inserting a mobile object into the

query result R. Note that in kNN query excluding a

mobile object from R will trigger inserting R a mobile

object, which is just ahead of the kth mobile object in R,

to maintain |R| equal to k. On the other hand, inserting

a mobile object into R will automatically remove the

last mobile object from R. The computation of tcatchup,

tdeviate, tenter, and trend in CDKQ is very similar to that in

CDRQ and to save space, there are no further

discussions in these issues. Algorithm 2 shows the

algorithm of CDKQ.

5 Distributed Directional Continuous

Range Query (DDRQ) Processing

In DDRQ, a mobile object is assumed to have full

knowledge about the travelling route, i.e., its road

block code. An AP maintains an R-tree as shown in

Figure 4 to index mobile objects in its monitoring

range. In DDRQ, queries are processed only in APs

without the intervention of a central server. When a

mobile object, Oi, issues a range query, which may

contain {Oi, Ci, x}, its resided AP would receive and

then process the query. If the query can be satisfied,

the resided AP would directly response the query result

to the mobile object; otherwise, the remaining query

will be forwarded to the next AP on its moving path

until the query is fully answered. Such a concept is

called “query forwarding” shown in Figure 10.

Apparently, each involved AP would be also

responsible for returning the query result to the

originated AP and finally the resided AP provides the

collected query result to the mobile object.

In DDRQ, given the location of a query mobile

object, assume that P represents the list of the APs

possible involving in query processing, which would

orderly include its resided AP and APs ahead of the

resided AP on the moving path. Let Pi denote the ith

AP in P and I denote the APs responsible for

answering the query. The steps of determining I are

described as follows.

Processing Directional Continuous Queries for Mobile Objects on Road Networks 103

Figure 10. The query forwarding in DDRQ

Step 1. i =1 and Pi is inserted into I. Determine the

location of query object Q with respect to the resided

AP. If Q is behind the resided AP, go to Step 2;

otherwise, go to Step 3.

Step 2. If
1

(,) / 2 (,),
i i i

x Dist P P Dist Q P
+

> + x←

1
((,) / 2 (,)),

i i i
x Dist P P Dist Q P

+
− + go to Step 4.

Step 3. If
1

(,) / 2 (,),
i i i

x Dist P P Dist Q P
+

> − x←

1
((,) / 2 (,))

i i i
x Dist P P Dist Q P

+
− + .

Step 4. 1.i i← + Pi is inserted into I. If x >

1 1 2
(,) / 2 (,),

i i i i
Dist P P Dist P P

+ + +
+

1
(,) / 2

i i
x x Dist P P

+
← −

1 2
(,)

i i
Dist P P

+ +
− go to Step 4.

Each AP would maintain a query table whose

attributes may include object id, query type, query

quantity (query range or k), involved road blocks, and

query result, to trace active queries processed by the

AP. When a query object is handed off to the next AP,

the query issued by it should be removed from the

query table in the previous AP. When to

exclude/include mobile objects from/to query result for

DDRQ is discussed in the following sections.

5.1 Excluding Mobile Objects from Query

Result

When a query is issued, a series of road blocks

starting from the current road block of the query object

are involved in answering the query, which can be

divided into two sets of road blocks called partial road

block (PRB) and full road block (FRB). Generally, the

first and last road block, called the front and rear

partial road block respectively, may become the

member of PRB where only some objects in these two

road blocks may be the query result, and other road

blocks are in the set of FRB. Figure 11 shows an

example of the partial and full road blocks where

AP6R2M2 and AP7R3M2 belong to PRB; AP6R4M1

and AP7R4M5 belong to FRB. Note that road blocks in

PRB or FRB are accordingly updated along with the

moving of the query object.

R4M1 R4M5

PQ_rear
Query range x, 1750m

250m 900m 100m 600m

AP7AP6

R2M2 R3M2Q

Figure 11. The partial and full road blocks

Once an initial query result is created, it should be

updated periodically by applying safe period to avoid

excessive location reporting of mobile objects, which

can be categorized into three cases:

1. For each mobile object in FRB, a mobile object

should report its location to the resided AP once its

safe period straying its current road block this query is

expired. If the deviation point, Pdeviate, is in the resided

road block, the safe period can be easily determined by

tdeviate. If not, its safe period can be calculated by

(,) / ,MAX

left Ot Dist O E V= where E denotes the end point

of the resided road block. Figure 12 shows an example

of safe periods of two objects in FRB.

Full Road Block (FRB)

moving path of O1
O2

moving path of O2

T
tdeviate

O1

deviation point,

Pdeviate

E

tleft

Figure 12. Safe periods of two objects in FRB

2. For each mobile object in the front partial road

block, if ,

MAX min

Q OV V≤ the safe period can be

determined similar to the case of mobile objects in

FRB; otherwise, if its Pdeviate is not in the resided road

block, we compute tlefe and tcatchup. If the tcatchup is less

than tleft, the safe period is tcatchup.; otherwise is tleft. On

the other hand, if its Pdeviate is in the resided road block,

similarly, if the tdeviate is less than tleft, the safe period is

tdeviate; otherwise is tleft. The safe period would be the

minimum value of tcatchup, tleft, and tdeviate. Figure 13

shows an example of safe periods of two objects in

front PRB.

Front Partial Road Block

(PRB)

moving path of O2

T
tdeviate

O1

deviation point,

Pdeviate

E

tleft

Q
O2

tcatchup

moving path

of O1

Figure 13. Safe periods of two objects in front PRB

3. For each mobile object in the rear partial road

block, if ,

MAX MIN

O QV V≤ the safe period is tdeviate if its

deviation point is in this road block; the safe period is

104 Journal of Internet Technology Volume 20 (2019) No.1

tleft if not. On the other hand, if ,

MAX MIN

O QV V> we first

compute the time that the mobile object moves out of the

query range,
_

(,) /().MAX MIN

moveout Q rear O Qt Dist O P V V= −

The safe period would be the minimum value of tmoveout,

tleft, and tdeviate. Figure 14 shows an example of safe

periods of two objects in rear PRB.

Rear Partial Road Block

(PRB)

moving path of O2

T

tdeviate

O1

Pdeviate

E

tmoveout

O2

tleft

moving path of

O1

PQ_rear

Figure 14. Safe periods of two objects in rear PRB

Note that once a query object Q moves into a new

road block, this road block immediately becomes the

first partial road block. On the other hand, as Q moves,

the rear partial road block would become a full road

block. If the type of a road block changes, the safe

period of objects resided in the road block should be

updated accordingly if necessary.

5.2 Inserting Mobile Objects into Query

Result

In DDRQ, inserting mobile objects into existing

query results can be triggered by handing off messages

received by destination APs. That is, when a mobile

object moves into a new road block, the destination AP

would proactively be notified its arrival and the results

of queries listed in the destination AP should be

updated accordingly. The safe period of moving into a

new road block for a mobile object can be easily

obtained by tleft.

Furthermore, objects possibly being inserted into a

query result would be those who are in front or rear

PRB but not inside the query range, similar to cases

shown in Figure 7 and Figure 9. For those objects

ahead and behind the query range, their safe periods to

become the query result can be easily calculated by

tenter and tleft, respectively. Algorithm 3 shows the

algorithm of DDRQ.

6 Distributed Directional Continuous kNN

Query (DDKQ) Processing

In DDKQ, a mobile object Q issues a kNN query to

its resided AP, says k = 8. If the query can be satisfied

by the resided AP, the query result would be answered

immediately; otherwise, the remaining query, says k =

6, would be forwarded to the next AP on the moving

path until the query could be totally satisfied, and the

query result would be then routed back to the

originated AP, similar to DDRQ. Once the initial query

result is generated, the next question is when to update

the result. Again, we apply the concept of safe period

to effectively reduce the frequency of position

reporting of mobile objects.

Like DDRQ, APs and road blocks responsible for

answering the query can be more than one. Figure 15

shows an example of DDKO, k=8. The involved APs

can be classified as front PRB, FRB and rear PRB. The

determination of safe periods of excluding mobile

objects from query result is same as the one in DDRQ.

Note that in DDKQ, each exclusion would trigger the

insertion of the mobile object ahead of the last mobile

object in query result (the kth) into query result which

is handled by the AP of rear PRB. On the other hand,

the determination of safe periods of insertion mobile

objects into query result is again same as the one in

DDRQ. Similarly, each insertion would trigger the

exclusion of the the last mobile object in query result

(the kth) from query result which is handled by the AP

of rear PRB. Algorithm 4 shows the algorithm of

DDKQ.

Processing Directional Continuous Queries for Mobile Objects on Road Networks 105

R4M1 R4M5

AP7AP6

R2M2 R3M2

Q
O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

Figure 15. An example of DDKQ, k=8

7 Experimental Results

Figure 16 shows the map of 1.6km×1.6km used in

our experiments, which is the San Min district of

Kaohsiung city in Taiwan with the center of latitude

and longitude, (120.308342, 22.639607). The central

server for the experiments is equipped with an Intel

Core i7-4970, 4GB RAM, and running on 32-bit

Windows 7. In our experiments, mobile objects were

randomly scattered on the map. The mobility of a

mobile object followed Random Waypoint Model [25-

26]. The path planning was done by Google Maps [27].

Table 2 shows the default variables of the parameters

of experiments. The bandwidths of a central server and

an AP were 1000KBps and 10MBps. In addition, there

was a dedicated bandwidth of 10MBps between two

APs. The message packet size was 512KBytes [28].

The default value of k was 8 and the default range of a

query was 1000m.

Figure 16. The map for experiments (San Min district,

Kaohsiung City)

Table 2. The initial variables of the experimental

environment

Variables Value

Bandwidth of a central server 1000 Kbps

Bandwidth of and AP 10 Mbps

Bandwidth between two APs 10 Mbps

Message packet size 512 Kbytes

k 8

Range 1000 m

Q Q R R

centralized srv

ap srv srv ap

S S S S
T T

TB TB TB TB
= + + + + (3)

We use Eq. 3 to calculate the response time of

centralized query processing, Tcentralized, where SQ

denotes the message packet size of a query mobile

object Q. SR denotes the return message packet size of

a mobile object, SO denotes the request message packet

size of a mobile object O, Tsrv denotes the process time

of a central server, TBap denotes the bandwidth

between an AP and a mobile object, and TBsrv denotes

the bandwidth of a central server. When a mobile

object issues a query, this query request first is

delivered to the resided AP. Then, the AP passes the

query to the central server. After finishing the query

processing, the server returns the query result to the

originated AP. Finally, the AP delivers the query result

to the query mobile object.

Similarly, we use Eq. 4 to calculate the response

time of distributed query processing, Tdistributed, where

TBap−ap denotes the dedicated bandwidth between two

106 Journal of Internet Technology Volume 20 (2019) No.1

APs, i denotes the number of APs involved in query

processing, SRp denotes the number of mobile objects

satisfied with the query condition in the pth AP on the

moving path, and Tap denotes the query processing

time of involved APs.

1

2

(1)

(1)

i
Q p Q

distributed O i ap

pap ap ap ap

pi
O

p ap ap

S SR S i
T S X T

TB TB TB

S i

TB

=
−

=
−

× −

= + × + +

× −

+

∑

∑

 (4)

Figure 17 shows the average response time with

respect to the various ranges for CDRQ and DDRQ. In

this experiment, the bandwidth of a central server was

512KBps, and other parameters of the experiments are

same as those showing in Table 2. As the query range

increases, the number of the query results also rises,

inevitably leading to the increase of the loading of

computation and the number of message packets. As a

result, the average response time of range query

increases along with the increase of the range. As

shown in the figure, with the query range 100m or less,

the average response time of CDRQ is 15% longer than

those of DDRQ under different query ranges. However,

the upward trend of DDRQ is more noticeable than that

of CDRQ, which is 5% higher than the latter. Because

as the query range increases, the time of computing the

distance between the query mobile object and the

mobile objects whose moving paths overlap that of the

query mobile object in CDRQ also increases, and the

time of delivering the messages in DDRQ also

increases. It is shown that the DDRQ rises more

significantly than the CDRQ in our experiment. In

addition, the lower value of initial bandwidth of a

central server leads the longer average response time.

When the query range is 322m which is calculated by

interpolation method, the average response times of

both are the same. With the query range of 500m, the

average response time of CDRQ is shorter than that of

DDRQ. On average, when the query range is between

500m and 1500m, the average response time of CDRQ

is 19% shorter than those of DDRQ, and the upward

change of DDRQ is 8% higher than that of CDRQ. In

general, the effect of the query range is not obvious in

CDRQ, but the growth of messages transferring time is

significant in DDRQ. Clearly, DDRQ outperforms

CDRQ only in small range of query.

Figure 18 illustrates the average response time with

respect to the various values of k for CDKQ and

DDKQ. In this experiment, the bandwidth of a central

server was 1500KBps, the bandwidth between APs

was 7.5MBps. As the value of k increases, again the

number of query results also rises, undoubtedly

causing the increase of loading of computation and the

number of message packets. As a result, the average

response time of kNN query increases along with the

increase of the value of k. As shown in the figure, with

Figure 17. Effect of the range on CDRQ and DDRQ

Figure 18. Effect of the value of k on CDKQ and

DDKQ

the value of k less than or equal to 2, the average

response time of DDKQ is 8% shorter than that of

CDKQ. However, the upward trend of DDKQ is more

noticeable than that of CDKQ, which is 12% higher

than the latter. In CDKQ, we must first compute the

distance between the query mobile object and the

mobile objects whose moving paths overlap that of the

query mobile object, and sort these overlapped mobile

objects by the distance from the query object. The k-

nearest mobile objects is then added into query result.

On the other hand, in DDKQ, multiple APs may

involve in answering the query result. With the small

value of k, the query would not run through many APs

so that the average response times of CDKQ are longer

than those of DDKQ. When k is 3, both of the average

response time is almost the same. When k equals to or

larger than 4, the average response times of CDKQ is

shorter than that of DDKQ because the number of

involved APs increases along with the value of k.

Generally, the difference of the average response times

between two methods increases along with the increase

of k. Obviously, the value of k affects the average

response time more in DDKQ than in CDKQ. A larger

value of k would definitely not favor CDKQ.

Figure 19 indicates the average response time with

respect to the various bandwidths of a central server for

CDRQ and DDRQ. In this experiment the bandwidth

of a central server was 512KBps. Overall, as the

bandwidth of a central server increases, the average

Processing Directional Continuous Queries for Mobile Objects on Road Networks 107

Figure 19. Effect of the bandwidth of a central server

on range query

response time of CDRQ reduces drastically, and that of

DDRQ is almost unaffected. In CDRQ, most of query

processing is done by a central server and then the

query result is passed to the query mobile object by

interconnection network so that the bandwidth of the

server significantly affects the response times. On the

contrast, with DDRQ queries are processed locally by

APs, and the central server is hardly involved in query

processing. With the bandwidth of a central server

250KBps or less, CDRQ spends more time on query

processing, which is 3.4 times more than that of DDRQ.

As the bandwidth of the server is 326KBps, the

average response times of both are the same. When the

bandwidth of a central server reaches 512KBps, the

average response time of CDRQ becomes shorter than

that of DDRQ. With the bandwidth of the server

reaches 1000KBps and beyond, the average response

time of CDRQ is almost the same, where the time

spending on delivering messages is negligible

compared to the computation time.

With the bandwidth of a central server was

1500KBps and the bandwidth between APs was

7.5MBps, In Figure 20 shows the effect of the

bandwidth of a central server on CDKQ and DDKQ

similar to CDRQ and DDRQ. As the bandwidth of a

central server increases, the average response time of

CDKQ reduces dramatically, and that of DDKQ again

does not change noticeably. With the bandwidth of a

central server 500KBps or less, CDKQ spends more

time on query processing, which is 3.2 times more than

that of DDKQ. As the bandwidth of a central server is

increased to 688KBps, the average response times of

both are the same. When the bandwidth of a central

server reaches 1000KBps, the average response time of

CDRQ is shorter than that of DDRQ. Again, with the

bandwidth of the server reaches 1000KBps and beyond,

the average response time of CDKQ is almost the same,

where the time spending on delivering messages is

negligible compared to the computation time.

Figure 21 shows the average number of contacted

APs with respect to the various query ranges for

DDRQ and the various values of k for DDKQ. The

figure shows that as the query range of DDRQ

increases, the average number of contacted APs also

Figure 20. Effect of the bandwidth of a central server

on kNN query

Figure 21. Effect of the average number of contacted

APs in distributed query processing

increases, leading to the increase of the delivering time

of messages and then the time of query processing

shown in Figure 17. Similarly, as shown in the figure,

the average number of contacted APs increases along

with the increase of the value of k, leading to the

increase of the query processing time in DDKQ shown

in Figure 18.

8 Conclusion

In this paper, we address the issue of directional

continuous query for mobile objects on road networks.

We not only propose the system architecture of a road

network but also provide approaches to determine the

safe period in order to efficiently update the query

result. We elaborate cases of when to exclude a mobile

object from a query result and when to insert a mobile

object into a query result. The results of our

experiments show that the centralized directional

continuous query processing has shorter average

response time than the distributed one with the higher

bandwidth of a central server. In contrast, when the

bandwidth of a central server is low, the distributed

directional continuous query processing is more

efficient. In general, finding the most appropriate

method will depend on network bandwidths and the

type of mobile queries.

In the future, we plan to extend our research work to

108 Journal of Internet Technology Volume 20 (2019) No.1

providing query services on intelligent transportation

networks, or even for self-driving cars. Queries can be

issued not only by humans but also by vehicles. As the

intelligent infrastructure of transportations becomes

more complete, realizing such services would surely

become more feasible.

Acknowledgements

This research work was partially supported by

Ministry of Science and Technology, Taiwan, under

grand number 104-2221-E-024-002 and 103-2815-C-

024-025-E. We also want to thank Ms. Tiffany Lin for

her professional proofreading.

References

[1] U. Demiryurek, F. B. Kashani, C. Shahabi, Efficient

Continuous Nearest Neighbor Query in Spatial Networks

Using Euclidean Restriction, Advances in Spatial and

Temporal Databases, Aalborg, Denmark, 2009, pp. 25-43.

[2] H. Samet, J. Sankaranarayanan, H. Albotzi, Scalable Network

Distance Browsing in Spatial Databases, Proceedings of the

2008 Association for Computing Machinery Special Interest

Group on Management Of Data international conference on

Management of Data, Vancouver, Canada, 2008, pp. 43-54.

[3] K. C. K. Lee, W.-C. Lee, B. Zheng, Fast Object Search on

Road Networks, Proceedings of 12th International

Conference on Extending Database Technology: Advances in

Database Technology, Saint Petersburg, Russia, 2009, pp.

1018-1029.

[4] H. Hu, D. L. Lee, V. C. S. Lee, Distance Indexing on Road

Networks, Proceedings of the 32nd International Conference

on Very Large Data Bases, Seoul, Korea, 2006, pp. 894-905.

[5] W. Wu, W. Guo, K.-L. Tan, Distributed Processing of

Moving k-nearest Neighbor Query on Moving Objects,

International Conference on Data Engineering, Istanbul,

Turkey, 2007, pp. 1116-1125.

[6] G. S. Iwerks, H. Samet, K. Smith, Continuous k-nearest

Neighbor Queries for Continuously Moving Points with

Updates, Proceedings of the 29th International Conference

on Very Large Data Bases-Volume 29, Very Large Data

Bases Endowment, Berlin, Germany, 2003, pp. 512-523.

[7] T. P. Nghiem, A. B. Waluyo, D. Taniar, A Pure Peer-to-peer

Approach for kNN Query Processing in Mobile Ad Hoc

Networks, Personal and Ubiquitous Computing, Vol. 17, No.

5, pp. 973-985, June, 2013.

[8] H. Wang, R. Zimmermann, W. Ku, Distributed Continuous

Range Query Processing on Moving Objects, Proceedings of

Database and Expert Systems Applications, Krakow, Poland,

2006, pp. 655-665.

[9] B. Gedik, L. Liu, Mobieyes: A Distributed Location

Monitoring Service Using Moving Location Queries, Institute

of Electrical and Electronics Engineers Transaction on

Mobile Computing, Vol. 5, No. 10, pp. 1384-1402, October,

2006.

[10] X. Wang, W. Wang, Continuous Expansion: Efficient

Processing of Continuous Range Monitoring in Mobile

Environments, Database Systems for Advanced Applications,

Singapore, 2006, pp. 890-899.

[11] D. V. Kalashnikov, S. Prabhakar, W. G. Aref, S. E.

Hambrusch, Efficient Evaluation of Continuous Range

Queries on Moving Objects, Proceedings of the 13th

International Conference on Database and Expert Systems

Applications, Aix en Provence, France, 2002, pp. 731-740.

[12] J. Lee, H. Jung, H. Y. Youn, U. M. Kim. SPQI: An Efficient

Continuous Range Query Indexing Structure for a Mobile

Environment, Korean Institute of Information Scientists and

Engineers Transactions on Computing Practices, Vol. 21, No.

1, pp. 70-75, January, 2015.

[13] D. Stojanovic, S. Djordjevic-Kajan, A. N. Papadopoulos, A.

Nanopoulos, Continuous Range Query Processing for

Network Constrained Mobile Objects, International

Conference on Enterprise Information Systems, Paphos,

Cyprus, 2006, pp. 63-70.

[14] T. T. Do, K. A. Hua, C.-S. Lin, ExtRange: Continuous

Moving Range Queries in Mobile Peer-to-Peer Networks,

Mobile Data Management: Systems, Services and

Middleware, 2009 Tenth International Conference on

Institute of Electrical and Electronics Engineers, Taipei,

Taiwan, 2009, pp. 317-322.

[15] Y.-L. Hsueh, R. Zimmermann, W.-S. Ku, Efficient Location

Updates for Continuous Queries over Moving Objects,

Journal of Computer Science and Technology, Vol. 25, No. 3,

pp. 415-430, May, 2010.

[16] M. A. Cheema, L. Brankovic, W. Z. X. Lin, W. Wang,

Continuous Monitoring of Distance Based Range Queries,

Institute of Electrical and Electronics Engineers Transaction

on Knowledge and Data Engineering, Vol. 23, No. 8, pp.

1182-1199, August, 2011.

[17] Z.-B. Zhou, D. Zhao, L. Shu, H.-C. Chao, Efficient Multi-

Attribute Query Processing in Heterogeneous Wireless

Sensor Networks, Journal of Internet Technology, Vol. 15,

No. 5, pp. 699-712, September, 2014.

[18] E. Jenelius, L. G. Mattsson. Road Network Vulnerability

Analysis: Conceptualization, Implementation and Application,

Computers, Environment and Urban Systems, Vol. 49, pp.

136-147, January, 2015.

[19] M. Ranganathan, A. Acharya, J. Saltz, Distributed Resource

Monitors for Mobile Objects, Proceedings of the Fifth

International Workshop on Object-Orientation in Operating

Systems, Seattle, WA, 1996, pp. 19-23.

[20] T. C. Du, E. Y. Li, A.-P. Chang, Mobile Agents in

Distributed Network Management, Communications of the

Association for Computing Machinery, Vol. 46, No. 7, pp.

127-132, July, 2003.

[21] H. Yang, M. G. H. Bell, Models and Algorithms for Road

Network Design: A Review and Some New Developments,

Transport Reviews, Vol. 18, No. 3, pp. 257-278, March, 1998.

[22] L. J. LeBlanc, E. K. Morlok, W. P. Pierskalla, An Efficient

Approach to Solving the Road Network Equilibrium Traffic

Assignment Problem, Transportation Research, Vol. 9, No. 5,

Processing Directional Continuous Queries for Mobile Objects on Road Networks 109

pp. 309-318, October, 1975.

[23] J. Feng, J. Lu, Y. Zhu, N. Mukai, T. Watanabe, Indexing of

Moving Objects on Road Network Using Composite

Structure, Knowledge-Based Intelligent Information and

Engineering Systems, Vietri sul Mare, Italy, 2007, pp. 1097-

1104.

[24] J. Feng, T. Watanabe, Index and Query Methods in Road

Networks, Springer, 2015.

[25] C. Bettstetter, G. Resta, P. Santi, The Node Distribution of

the Random Waypoint Mobility Model for Wireless Ad Hoc

Networks, Institute of Electrical and Electronics Engineers

Transactions on Mobile Computing, Vol. 2, No. 3, pp. 257-

269, September, 2003.

[26] C. Bettstetter, H. Hartenstein, X. Perez-Costa, Stochastic

Properties of the Random Waypoint Mobility Model,

Wireless Networks, Vol. 10, No. 5, pp. 555-567, September,

2004.

[27] Google Maps, https://maps.google.com.tw, October, 2015.

[28] K.-C. Lai, Improving Zone-disjoint Multipath Routing

Algorithm for Mobile Ad-hoc Networks, Master’s Thesis,

Tatung University, Taipei, Taiwan, 2011.

Biographies

Chow-Sing Lin received the Ph.D.

degree in Computer Engineering from

the University of Central Florida,

Florida, USA, in 2000. He is currently

a Professor in the Department of

Computer Science and Information

Engineering, National University of

Tainan, Taiwan. His research interests include media

stream delivery, mobile computing, and media content

analyses.

Ci-Ruei Jiang is currently a graduate

student in the Department of

Computer Science and Information

Engineering, National Cheng Kung

University, Taiwan. His research

interests include mobile computing,

machine learning, and wireless

network.

110 Journal of Internet Technology Volume 20 (2019) No.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

