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Abstract 

Traditional location-based services for range queries or 

k nearest neighbor queries are omnidirectional, in which 

some query results are probably not interesting to a user 

because they are not on the way to destination. Due to the 

prevalence of guiding systems and the advances of 

electronic technologies and wireless communications, 

most mobile objects on roads move along with the pre- 

determined paths provided by path planning systems. 

With the concept of “by the way”, there would be an 

increasing demand on queries for objects on their paths 

and ahead of them. In this paper, we define the issues of 

directional continuous query for mobile objects on road 

networks. To address this issue, we not only propose the 

system architecture of a road network but also provide 

approaches to determine the safe period in order to 

efficiently update a directional query result. We elaborate 

cases of when to exclude a mobile object from a query 

result and when to insert a mobile object into a query 

result. Experimental results show that the network 

bandwidth dominates the preference of the adaptation of 

the centralized or distributed directional mobile query 

processing. 

Keywords: Range query, kNN query, Directional 

continuous query, Road network, Safe 

period 

1 Introduction 

With the rapid development of wireless 

communication networks and smart mobile devices, 

travelers now can access GPS localization services and 

wireless networks at any time. To date, several studies 

of query processing on road networks have been made 

on k-nearest neighbor queries [1-7] and range queries 

[8-14] based on the different requirements of travelers. 

To the best of our knowledge, these studies all focused 

on omnidirectional queries. According to our 

observation, however, a traveler usually query objects 

of interest based on the direction of travel, which 

indicates that the direction of traversals would 

influence the results of queries. In this situation, 

objects in the query result that are not on the way to 

destination would be considered as redundant. 

Due to the prevalence of guiding systems and the 

advances of electronic technologies and wireless 

communications, apparently, most mobile objects on 

roads will move along with the pre-determined paths 

provided by their path planning systems. With the 

concept of “by the way”, there would be an increasing 

demand on queries for objects on the travelling path 

and ahead of them. Such queries can be classified into 

two types, Range Query (RQ) and K-Nearest Neighbor 

Query( KNN). With range query, mobile objects within 

a certain range would be added into query result. On 

the contrast, only the k-nearest mobile objects would 

be added into query result. For example, what are the 

convenience stores within 3 km on the way home (RQ)? 

What are the three nearest taxies on the way to 

destination for carpooling (KNN)? What are the trucks 

belonging to the same fleet within 2 km on the way to 

the same destination (RQ)? Where are the two closest 

teammates in a cycling race (KNN)? To properly 

answer those questions, several challenges arise. 

• How to represent the moving path of a mobile object? 

• How to determine the moving path of a mobile 

object intersecting with another one? 

• How to properly determine the result of a query for a 

query mobile object on the way to destination? 

• How to compute the safe period [12-14] of updating 

a query result to reduce the frequency of position 

report? 

On the other hand, queries can be processed in the 

central server (called centralized query processing) or 

in access points (called distributed query processing). 

Factors in an infrastructure, such computing power and 

network bandwidth, would favor one of these two 

processing types. In this paper, according to the types 

of query and processing, we discuss four directional 

query processings which are centralized directional 

range query (CDRQ), centralized directional KNN 

query (CDKQ), distributed directional range query 

(DDRQ), and distributed directional KNN query 

(DDKQ).  

In this paper, we define the issues of these four 
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directional continuous queries for mobile objects on a 

road network. To address these issues, we not only 

propose the system architecture of a road network but 

also design road block code to represent a moving path. 

How to determine one moving path intersected with 

another to produce proper query results is also 

discussed in the paper. In addition, we also provide 

approaches to determine a safe period in order to 

efficiently update a query result. We elaborate cases of 

when to exclude a mobile object from a query result 

and when to insert a mobile object into a query result.  

To our best knowledge, this is the first research 

work which discusses the directional query processing 

for road networks with the concept of “by the way”, 

which more commonly meets a user’s daily needs. In 

this paper, we assume there is at least one access point 

(AP) located at each intersection, which may be 

premature in current infrastructure, but we truly 

believe it would be realized in future road networks. 

Our experiments were deployed in centralized and 

distributed query processing schemes, and the 

experimental results show that when the bandwidth of 

a central server is high, the centralized directional 

continuous query processing is more efficient than the 

distributed one; on the other hand, the distributed query 

processing is better than the centralized one while the 

bandwidth of a central server is low. In addition, when 

the bandwidth of a central server is high, the 

centralized processing directional continuous queries 

has shorter average response time than the distributed 

one with the larger range in range query. When the 

value of k and the bandwidth of a central server are 

high, the centralized k Nearest Neighbor (kNN) query 

has shorter average response time than the distributed 

one. 

The remainder of this paper is organized as follows. 

System architecture of road networks is described in 

Section 2. In Section 3, 4, 5, and 6, we describe the 

concept of directional continuous query and provide 

detailed discussion of how to efficiently update the 

query result by safe period in centralized range query, 

centralized kNN query, distributed range query, and 

distributed kNN query, respectively. The experimental 

results are presented in Section 7. Finally, Conclusions 

are drawn in Section 8. 

2 System Architecture of Road Networks 

In our system, a mobile object is equipped with GPS 

and its moving path to the destination is assumed to be 

pre-determined by a central server capable of path 

planning, such as Google Maps. There is an access 

point (or called roadside unit) at each intersection 

which is capable of communicating with mobile 

objects within a certain range by wireless 

communication. It is assumed that the wireless 

communication range for a road section can be equally 

covered by access points located at the both ends of a 

road section. Access points are interconnected by 

underground cables, which are formed as a meshed 

road network. An access point is responsible for 

monitoring mobile objects [15-16] within its service 

range, bookkeeping information of those mobile 

objects, processing queries, relaying communication 

messages between mobile objects and a central server, 

etc. The central server is wire connected to the meshed 

road network, and it is responsible for path planning, 

maintaining locations of mobile objects, processing 

query, etc. Figure 1 shows the system architecture of a 

road network [17-20]. 

 

Figure 1. System architecture of a road network 

In general, roads consist of a sequence of road 

sections and intersections [21-22]. To efficiently 

process moving paths of mobile objects in our system, 

we can divide roads into a number of ”roadlet” which 

consists of an intersection and road sections connected 

to the intersection. An intersection may be 3- way, 

called T junction or fork; or 4-way intersection, called 

a crossroad; or more. In this paper, without losing 

generality, we assume all intersections on roads are 4-

way. Figure 2(a) shows a road let with 4-way 

intersection. As shown in the figure, a roadlet can be 

divided into five regions which are the intersection 

(R5), the eastern road section (R2), the western road 

section (R4), the southern road section (R3), and the 

northern road section (R1). 

The intersection R5 is further divided into four equal 

blocks which are upper right (M4), upper left (M3), 

lower right (M6), and lower left (M5). Each road 

section is also further divided into two blocks M1 and 

M2 based on driving directions. Figure 2(b) shows the 

representation of an intersection and four road sections 

of a roadlet. Assume that a roadlet is identified by the 

unique ID of its associated access point, each road 

block can be uniquely coded by sequentially 

concatenating the ID of the resided roadlet (access 

point), the region ID, and the block ID, which is called 

road block code, such as AP12R4M3. Given a pre-

determined moving path provided by a route planning 

system, it now can be represented as a sequence of 

road block codes. Figure 3 shows an example of the  
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(a) Roadlet of 4-way intersection 

 

(b) Representation of an intersection and five road sections 

Figure 2. Representation of a roadlet 

 

Figure 3. An example of moving path for a mobile 

object 

path moving from point A to B for a mobile object, O1. 

The road block code of this moving path is {AP1R2M2, 

AP2R4M1, AP2R5M5, AP2R3M2, AP6R1M1, 

AP6R5M3, AP6R5M5, AP6R5M6, AP6R2M2, 

AP7R4M1, AP7R5M5, AP7R5M6, AP7R2M2, 

AP8R4M1}. Note that the first element of a road block 

code represents the current location of a mobile object 

and it is accordingly updated as it is moving. The 

hierarchical structure of road blocks also favors the 

indexing of mobile objects by any kind of data 

structure used for spatial searching, such as R-tree. 

Figure 4 shows the indexing in R-tree for the three 

mobile objects in Figure 2(a). Note that literatures 

showed that R-TPR+-Tree [23-24] might be more 

suitable for indexing mobile objects on road networks. 

However, our system architecture is independent of 

any spatial indexing methods and the discussion of the 

pros and cons of those indexing methods is beyond the 

scope of this paper.  

AP

R3R2R1 R4 R5

M1 M2 M1 M2 M1 M2 M1 M2 M3 M4 M5 M6

O2O3O1
 

Figure 4. Indexing in R-tree for the three mobile 

objects in Figure 2(a) 

3 Centralized Directional Continuous 

Range Query(CDRQ) Processing 

Assume that there are m mobile objects on the roads, 

the road block code of the moving path for a mobile 

object Oi is denoted as Ci, 1 ,i m≤ ≤  and the k-th 

element of his road block code is denoted as Ci,k. Given 

the moving path of a query mobile object Q, how many 

mobile objects with the same driving direction will 

appear in his query, such as range or k-Nearest 

Neighbors (kNN) query, on his way to destination? 

This type of query is called directional continuous 

query. To answer this kind of queries, we need to 

compare the road block code of the query mobile 

object against that of every mobile objects, says Oi, on 

the roads to find out if an intersection between the two 

road block codes exists, which leads to two cases. The 

first case is that there is no intersection between the 

road block code of Q and that of any mobile objects on 

the roads. That is, Q iC C =∅∩ , 1 .i m≤ ≤  No mobile 

objects will become the query result on the way of the 

Q to destination, and therefore, there are no mobile 

objects to be monitored. The second case, there exists 

an intersection between the road block code of Q and 

that of any mobile object on the roads. That is, 

,Q iC C ≠ ∅∩  1 .i m≤ ≤  Some mobile objects will 

become the query result on the way of Q to destination. 

Assume that the Rpotential denotes the set of mobile 

objects whose road block codes intersect with the road 

block code of a query mobile object CQ, Rpotential can be 

computed as follows,  

 { | ,1 }potential i Q iR O C C i m= ≠ ∅ ≤ ≤∩  (1) 

Mobile objects in Rpotential whose first element of 

the road block code belongs to CQ may be immediately 

included into the query result, R, once the query is 

issued based on the criteria of the query type, such as 

the range for range query (e.g., 1km) or the value of k 

for kNN (e.g., k=5). Therefore, the initial query result, 

Rinit, can be computed as follows. 
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,1
{ | , , _ ( )holds},init i i potential Q i iR O O R C C q crit O= ∀ ∈ ≠∅∩  

where q_crit() represents the criteria function of query 

type which can be range query or kNN query. In this 

case, q_crit() represents range query. 

Initial, R = Rinit. Assume that the set of mobile 

objects which may be included into R is denoted as 

Rcandidate, 

 .candidate potential initR R R= −  (2) 

The update of query result R involves in excluding 

mobile objects from R and including mobile objects in 

Rcandidate into R, which will be discussed in the 

following section. Figure 5 shows an example of a 

query mobile object Q and mobile objects O1, O2, O3, 

and O4. As shown in the figure, Q is moving from 

location A to B, O1 is moving from location C to D, O2 

is moving from location E to F, O3 is moving from 

location G to H, O4 is moving from location I to J. 

Table 1 shows the road block codes of these five 

mobile objects. Based on above equations, we can get 

{ , , },potential 1 3 4R O O O= { }
init 1

R O=  and { , }.
candidate 3 4

R O O=  

 

Figure 5. Moving paths of Q, O1, O2, O3, and O4 

Table 1. The road block codes of mobile objects in 

Figure 5 

Type Path 

Q 

AP1R4M1, AP1R5M5, AP1R5M6, AP1R2M2, 

AP2R4M1, AP2R5M5, AP2R5M6, AP2R3M2, 

AP6R1M1, AP6R5M3, AP6R5M6, AP6R2M2, 

AP7R4M1, AP7R5M5, AP7R5M6, AP7R2M2, 

AP8R4M1, AP8R5M5, AP8R5M6, AP8R2M2 

O1 
AP6R2M2, AP7R4M1, AP7R5M5, AP7R5M6, 

AP7R2M2, AP8R4M1 

O2 
AP8R1M2, AP4R3M1, AP4R5M6, AP4R5M4, 

AP4R1M2 

O3 

AP7R2M1, AP7R5M4, AP7R5M3, AP7R4M2, 

AP6R2M1, AP6R5M4, AP6R5M3, AP6R4M2, 

AP5R2M1, AP5R5M4, AP5R5M3, AP5R4M2 

O4 
AP1R1M1, AP1R5M3, AP1R5M5, AP1R3M2, 

AP5R1M1, AP5R5M3, AP5R5M5, AP5R3M2 

3.1 Update of Query Result 

Once the initial query result is generated, the next 

question is when the query result R should be updated? 

This would be classified in two scenarios. First, R 

should be updated when mobile objects in R are no 

longer eligible for query result. That is, mobile objects 

which would be excluded from R are the ones 

deviating from the route of Q or getting out of its query 

range. Second, R should be updated when mobile 

objects in Rcandidate are eligible for query result. This 

would happen when a mobile object enters the moving 

path of Q or the query range. Intuitively, frequently 

updating the current locations of mobile objects would 

result in accurate query result at the cost of the 

consumption of network bandwidth and computation. 

To address this issue, we also apply the concept of safe 

period to reduce the frequency of location update for 

power saving in above two scenarios while updating R, 

which are discussed in the following sections. 

3.2 Excluding Mobile Objects from Query 

Result 

In this paper, we assume the speed of a mobile 

object O is bounded in 
min max

[ , ].
O O

V V  When a mobile 

object in query result R being excluded can be 

classified into three cases, which are 1) the query 

mobile object Q catching up with a mobile object in R; 

2) a mobile object in R moving out of the query range; 

3) a mobile object in R deviating from the moving path 

of Q. Figure 6 shows these three possible exit points, 

denoted accordingly as tcatchup, texit, and tdeviate for a 

mobile object O being excluded from the range query 

result. 

Q

Query Range, x

moving path of Q
O

moving path of O

T
tcatchup tdeviate texit

deviation point, 

Pdeviate

 

Figure 6. Three possible exit points for a mobile object 

O being excluded from the range query result 

1. tcatchup: The shortest time that the query mobile 

object Q may catch up with a mobile object O. If 

,

max min

Q OV V≤  there is no way that Q would catch up 

with Q; otherwise, the equivalence of the catch up time, 

tcatchup, can be stated as 

 ( , )max min

Q actchup O actchupV t Dist Q O V t× = + ×   

and 

 ( , ) /( ),max min

actchup Q Ot Dist Q O V V= −  (3) 

where Dist(Q, O) denotes the current distance between 

Q and O. 

2. texit: The shortest time that a mobile object O may 

move out of the query range x at the same driving 

direction. If ,

max min

Q OV V≤  this case would not happen; 

otherwise, the equivalence of the exit time, texit, can be 

stated as 



Processing Directional Continuous Queries for Mobile Objects on Road Networks 101 

 

 ( ( , ))max min

O exit Q exitV t x Dist Q O V t× = − + ×   

and 

 ( ( , ) /( )).max min

exit O Qt x Dist Q O V V= − −  (4) 

3. tdeviate: The shortest time that a mobile object O 

may deviate from the moving path of Q. The tdeviate can 

be computed as, ( , ) / ,max

DEVIATE deviate O
t Dist O P V=  where 

Pdeviate denotes the location of O deviating from the 

moving path of Q. 

Let SPO denotes the safe period of a mobile object O 

in R, and then SPO = Min {tcatchup, texit, tdeviate}. Within 

the safe period, SPO, the O being one of query result R 

remains valid, and there is no need for O to report its 

location to the central server. Once the safe period SPO 

is elapsed, the O needs to report its location to the 

central server for updating the query result and 

compute a new safe period based on steps described 

above. 

3.3 Inserting Mobile Objects into Query 

Result 

For those who in the Rcandidate, it is necessary to 

estimate when they are going to be included into R. 

Mobile objects in Rcandidate can be classified into two 

types. The first type includes mobile objects that are 

already on the moving path of Q but not within the 

query range. The first element of road block code of a 

mobile object, O, in this type must belong to road 

block code of the query mobile object, i.e., 
,O 1 QC C∈ . 

Figure 7 shows the case of a mobile object O ahead of 

a query mobile object Q but not within the query range. 

If ,

max min

Q O
V V≤  the O would be definitely impossible to 

enter the query range and be included into R. In this 

case, the O should be immediately excluded from 

Rcandidate. Otherwise, the equivalence of the shortest 

time of O being included into R, tenter, can be stated as 

( , ) ,max max

O enter Q enterDist Q O V t x V t+ × = + ×  and 
enter
t =  

( ( , ) ) /( ).max min

Q ODist Q O x V V− − −  Note that if ,
enter deviate
t t≥  

a mobile object deviates from the moving path of Q 

before becoming the query result. In this case, again, 

this mobile object is excluded from Rcandidate. 

Q

Query Range, x

moving path of Q
O

moving path of O

T
tdeviatetenter  

Figure 7. A mobile object O ahead of the query mobile 

object Q but not within the query range 

The second type included mobile objects who are 

not currently on the moving path of Q but will be in the 

future. A mobile object in this type whose road block 

code CO except the first element intersects with CQ, i.e., 

,

( ) .O O 1 QC C C− ≠ ∅∩  Figure 8 shows the case of a 

mobile object O will move into the travelling path of a 

query mobile object Q at the rendezvous point, Prend. 

The shortest rendezvous time, trend can be computed as, 

( , ) / .max

rend rend O
t Dist O P V=  Once the trend is elapsed, 

there are three possible cases, (1) the O is within the 

query range of Q; (2) the O is ahead of Q but not 

within the query range; (3) the O is behind Q. Cases 1 

and 2 are identical to the cases of Figure 6 and Figure 7, 

respectively. Figure 9 shows case 3 is a mobile object 

O behind a query mobile object Q. If ,

max min

O QV V≤  

there is no way that the O can be included into the 

query result, and it is then excluded from Rcandidate; 

otherwise, the equivalence of the shortest time to have 

O become the query result, tarrive, would be 

( , ),max min

O arrive Q arriveV t V t Dist Q O× = × +  and 
arrive
t =  

( , ) /( ).max min

O QDist Q O V V−  Again, if ,
arrive deviate
t t≥  the O 

is immediately excluded from Rcandidate. Algorithm 1 

shows the algorithm of CDRQ.  

Q

Query Range, x

moving path of Q

O moving path of O

T
tdeviate

deviation point, 

Pdeviate

trend

rendezvous point, 

Prend

 

Figure 8. A mobile object O moving into the traveling 

path of a query mobile object Q 

Query Range, x

moving path of Q
O

moving path of O

T
tdeviatetarrive

Q

deviation point, 

Pdeviate

 

Figure 9. A mobile object O behind a query mobile 

object Q 

4 Centralized Directional Continuous kNN 

Query(CDKQ) Processing 

In CDKQ, we need to find the k-nearest objects 

ahead of the mobile object Q on its moving path. The 

q_crit() in the definition of Rinit now represents kNN 

query. Note that if the number of the returned mobile 

objects is less than k, the query is failed. For an 

example of Figure 5 and k equal to one, we can get 

{ , , },potential 1 3 4R O O O=  { }
init 1

R O=  and { , }.
candidate 3 4

R O O=  
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In order to reduce the frequency of updating query 

result, again we also adopt the concept of safe period. 

The update of kNN query results is same as that of 

range query which can be classified into two possible 

cases, which are (1) excluding a mobile object from the 

query result R; (2) inserting a mobile object into the 

query result R. Note that in kNN query excluding a 

mobile object from R will trigger inserting R a mobile 

object, which is just ahead of the kth mobile object in R, 

to maintain |R| equal to k. On the other hand, inserting 

a mobile object into R will automatically remove the 

last mobile object from R. The computation of tcatchup, 

tdeviate, tenter, and trend in CDKQ is very similar to that in 

CDRQ and to save space, there are no further 

discussions in these issues. Algorithm 2 shows the 

algorithm of CDKQ. 

5 Distributed Directional Continuous 

Range Query (DDRQ) Processing 

In DDRQ, a mobile object is assumed to have full 

knowledge about the travelling route, i.e., its road 

block code. An AP maintains an R-tree as shown in 

Figure 4 to index mobile objects in its monitoring  

 
 

range. In DDRQ, queries are processed only in APs 

without the intervention of a central server. When a 

mobile object, Oi, issues a range query, which may 

contain {Oi, Ci, x}, its resided AP would receive and 

then process the query. If the query can be satisfied, 

the resided AP would directly response the query result 

to the mobile object; otherwise, the remaining query 

will be forwarded to the next AP on its moving path 

until the query is fully answered. Such a concept is 

called “query forwarding” shown in Figure 10. 

Apparently, each involved AP would be also 

responsible for returning the query result to the 

originated AP and finally the resided AP provides the 

collected query result to the mobile object.  

In DDRQ, given the location of a query mobile 

object, assume that P represents the list of the APs 

possible involving in query processing, which would 

orderly include its resided AP and APs ahead of the 

resided AP on the moving path. Let Pi denote the ith 

AP in P and I denote the APs responsible for 

answering the query. The steps of determining I are 

described as follows. 
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Figure 10. The query forwarding in DDRQ 

Step 1. i =1 and Pi is inserted into I. Determine the 

location of query object Q with respect to the resided 

AP. If Q is behind the resided AP, go to Step 2; 

otherwise, go to Step 3. 

Step 2. If 
1

( , ) / 2 ( , ),
i i i

x Dist P P Dist Q P
+

> +  x←  

1
( ( , ) / 2 ( , )),

i i i
x Dist P P Dist Q P

+
− +  go to Step 4. 

Step 3. If 
1

( , ) / 2 ( , ),
i i i

x Dist P P Dist Q P
+

> −  x←  

1
( ( , ) / 2 ( , ))

i i i
x Dist P P Dist Q P

+
− + . 

Step 4. 1.i i← +  Pi is inserted into I. If x >  

1 1 2
( , ) / 2 ( , ),

i i i i
Dist P P Dist P P

+ + +
+  

1
( , ) / 2

i i
x x Dist P P

+
← −  

1 2
( , )

i i
Dist P P

+ +
−  go to Step 4. 

Each AP would maintain a query table whose 

attributes may include object id, query type, query 

quantity (query range or k), involved road blocks, and 

query result, to trace active queries processed by the 

AP. When a query object is handed off to the next AP, 

the query issued by it should be removed from the 

query table in the previous AP. When to 

exclude/include mobile objects from/to query result for 

DDRQ is discussed in the following sections. 

5.1 Excluding Mobile Objects from Query 

Result 

When a query is issued, a series of road blocks 

starting from the current road block of the query object 

are involved in answering the query, which can be 

divided into two sets of road blocks called partial road 

block (PRB) and full road block (FRB). Generally, the 

first and last road block, called the front and rear 

partial road block respectively, may become the 

member of PRB where only some objects in these two 

road blocks may be the query result, and other road 

blocks are in the set of FRB. Figure 11 shows an 

example of the partial and full road blocks where 

AP6R2M2 and AP7R3M2 belong to PRB; AP6R4M1 

and AP7R4M5 belong to FRB. Note that road blocks in 

PRB or FRB are accordingly updated along with the 

moving of the query object. 

R4M1 R4M5

PQ_rear
Query range x, 1750m

250m 900m 100m 600m

AP7AP6

R2M2 R3M2Q

 

Figure 11. The partial and full road blocks 

Once an initial query result is created, it should be 

updated periodically by applying safe period to avoid 

excessive location reporting of mobile objects, which 

can be categorized into three cases:  

1. For each mobile object in FRB, a mobile object 

should report its location to the resided AP once its 

safe period straying its current road block this query is 

expired. If the deviation point, Pdeviate, is in the resided 

road block, the safe period can be easily determined by 

tdeviate. If not, its safe period can be calculated by 

( , ) / ,MAX

left Ot Dist O E V=  where E denotes the end point 

of the resided road block. Figure 12 shows an example 

of safe periods of two objects in FRB.  

Full Road Block (FRB)

moving path of O1
O2

moving path of O2

T
tdeviate

O1

deviation point, 

Pdeviate

E

tleft  

Figure 12. Safe periods of two objects in FRB 

2. For each mobile object in the front partial road 

block, if ,

MAX min

Q OV V≤  the safe period can be 

determined similar to the case of mobile objects in 

FRB; otherwise, if its Pdeviate is not in the resided road 

block, we compute tlefe and tcatchup. If the tcatchup is less 

than tleft, the safe period is tcatchup.; otherwise is tleft. On 

the other hand, if its Pdeviate is in the resided road block, 

similarly, if the tdeviate is less than tleft, the safe period is 

tdeviate; otherwise is tleft. The safe period would be the 

minimum value of tcatchup, tleft, and tdeviate. Figure 13 

shows an example of safe periods of two objects in 

front PRB. 

Front Partial Road Block 

(PRB)

moving path of O2

T
tdeviate

O1

deviation point, 

Pdeviate

E

tleft

Q
O2

tcatchup

moving path 

of O1

 

Figure 13. Safe periods of two objects in front PRB 

3. For each mobile object in the rear partial road 

block, if ,

MAX MIN

O QV V≤  the safe period is tdeviate if its 

deviation point is in this road block; the safe period is 
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tleft if not. On the other hand, if ,

MAX MIN

O QV V>  we first 

compute the time that the mobile object moves out of the 

query range, 
_

( , ) /( ).MAX MIN

moveout Q rear O Qt Dist O P V V= −  

The safe period would be the minimum value of tmoveout, 

tleft, and tdeviate. Figure 14 shows an example of safe 

periods of two objects in rear PRB. 

Rear Partial Road Block 

(PRB)

moving path of O2

T

tdeviate

O1

Pdeviate

E

tmoveout

O2

tleft

moving path of 

O1

PQ_rear

 

Figure 14. Safe periods of two objects in rear PRB 

Note that once a query object Q moves into a new 

road block, this road block immediately becomes the 

first partial road block. On the other hand, as Q moves, 

the rear partial road block would become a full road 

block. If the type of a road block changes, the safe 

period of objects resided in the road block should be 

updated accordingly if necessary.  

5.2 Inserting Mobile Objects into Query 

Result 

In DDRQ, inserting mobile objects into existing 

query results can be triggered by handing off messages 

received by destination APs. That is, when a mobile 

object moves into a new road block, the destination AP 

would proactively be notified its arrival and the results 

of queries listed in the destination AP should be 

updated accordingly. The safe period of moving into a 

new road block for a mobile object can be easily 

obtained by tleft. 

Furthermore, objects possibly being inserted into a 

query result would be those who are in front or rear 

PRB but not inside the query range, similar to cases 

shown in Figure 7 and Figure 9. For those objects 

ahead and behind the query range, their safe periods to 

become the query result can be easily calculated by 

tenter and tleft, respectively. Algorithm 3 shows the 

algorithm of DDRQ. 

6 Distributed Directional Continuous kNN 

Query (DDKQ) Processing 

In DDKQ, a mobile object Q issues a kNN query to 

its resided AP, says k = 8. If the query can be satisfied 

by the resided AP, the query result would be answered 

immediately; otherwise, the remaining query, says k = 

6, would be forwarded to the next AP on the moving 

path until the query could be totally satisfied, and the 

query result would be then routed back to the 

originated AP, similar to DDRQ. Once the initial query 

result is generated, the next question is when to update  

 
 

the result. Again, we apply the concept of safe period 

to effectively reduce the frequency of position 

reporting of mobile objects. 

Like DDRQ, APs and road blocks responsible for 

answering the query can be more than one. Figure 15 

shows an example of DDKO, k=8. The involved APs 

can be classified as front PRB, FRB and rear PRB. The 

determination of safe periods of excluding mobile 

objects from query result is same as the one in DDRQ. 

Note that in DDKQ, each exclusion would trigger the 

insertion of the mobile object ahead of the last mobile 

object in query result (the kth) into query result which 

is handled by the AP of rear PRB. On the other hand, 

the determination of safe periods of insertion mobile 

objects into query result is again same as the one in 

DDRQ. Similarly, each insertion would trigger the 

exclusion of the the last mobile object in query result 

(the kth) from query result which is handled by the AP 

of rear PRB. Algorithm 4 shows the algorithm of 

DDKQ. 
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Figure 15. An example of DDKQ, k=8 

 

7 Experimental Results 

Figure 16 shows the map of 1.6km×1.6km used in 

our experiments, which is the San Min district of 

Kaohsiung city in Taiwan with the center of latitude 

and longitude, (120.308342, 22.639607). The central 

server for the experiments is equipped with an Intel 

Core i7-4970, 4GB RAM, and running on 32-bit 

Windows 7. In our experiments, mobile objects were 

randomly scattered on the map. The mobility of a 

mobile object followed Random Waypoint Model [25-

26]. The path planning was done by Google Maps [27]. 

Table 2 shows the default variables of the parameters 

of experiments. The bandwidths of a central server and 

an AP were 1000KBps and 10MBps. In addition, there 

was a dedicated bandwidth of 10MBps between two 

APs. The message packet size was 512KBytes [28]. 

The default value of k was 8 and the default range of a 

query was 1000m.  

 

Figure 16. The map for experiments (San Min district, 

Kaohsiung City) 

Table 2. The initial variables of the experimental 

environment 

Variables Value 

Bandwidth of a central server 1000 Kbps 

Bandwidth of and AP 10 Mbps 

Bandwidth between two APs 10 Mbps 

Message packet size 512 Kbytes 

k 8 

Range 1000 m 

 
Q Q R R

centralized srv

ap srv srv ap

S S S S
T T

TB TB TB TB
= + + + +  (3) 

We use Eq. 3 to calculate the response time of 

centralized query processing, Tcentralized, where SQ 

denotes the message packet size of a query mobile 

object Q. SR denotes the return message packet size of 

a mobile object, SO denotes the request message packet 

size of a mobile object O, Tsrv denotes the process time 

of a central server, TBap denotes the bandwidth 

between an AP and a mobile object, and TBsrv denotes 

the bandwidth of a central server. When a mobile 

object issues a query, this query request first is 

delivered to the resided AP. Then, the AP passes the 

query to the central server. After finishing the query 

processing, the server returns the query result to the 

originated AP. Finally, the AP delivers the query result 

to the query mobile object. 

Similarly, we use Eq. 4 to calculate the response 

time of distributed query processing, Tdistributed, where 

TBap−ap denotes the dedicated bandwidth between two 
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APs, i denotes the number of APs involved in query 

processing, SRp denotes the number of mobile objects 

satisfied with the query condition in the pth AP on the 

moving path, and Tap denotes the query processing 

time of involved APs. 

1

2

( 1)

( 1)

i
Q p Q

distributed O i ap

pap ap ap ap

pi
O

p ap ap

S SR S i
T S X T

TB TB TB

S i

TB

=
−

=
−

× −

= + × + +

× −

+

∑

∑

 (4) 

Figure 17 shows the average response time with 

respect to the various ranges for CDRQ and DDRQ. In 

this experiment, the bandwidth of a central server was 

512KBps, and other parameters of the experiments are 

same as those showing in Table 2. As the query range 

increases, the number of the query results also rises, 

inevitably leading to the increase of the loading of 

computation and the number of message packets. As a 

result, the average response time of range query 

increases along with the increase of the range. As 

shown in the figure, with the query range 100m or less, 

the average response time of CDRQ is 15% longer than 

those of DDRQ under different query ranges. However, 

the upward trend of DDRQ is more noticeable than that 

of CDRQ, which is 5% higher than the latter. Because 

as the query range increases, the time of computing the 

distance between the query mobile object and the 

mobile objects whose moving paths overlap that of the 

query mobile object in CDRQ also increases, and the 

time of delivering the messages in DDRQ also 

increases. It is shown that the DDRQ rises more 

significantly than the CDRQ in our experiment. In 

addition, the lower value of initial bandwidth of a 

central server leads the longer average response time. 

When the query range is 322m which is calculated by 

interpolation method, the average response times of 

both are the same. With the query range of 500m, the 

average response time of CDRQ is shorter than that of 

DDRQ. On average, when the query range is between 

500m and 1500m, the average response time of CDRQ 

is 19% shorter than those of DDRQ, and the upward 

change of DDRQ is 8% higher than that of CDRQ. In 

general, the effect of the query range is not obvious in 

CDRQ, but the growth of messages transferring time is 

significant in DDRQ. Clearly, DDRQ outperforms 

CDRQ only in small range of query. 

Figure 18 illustrates the average response time with 

respect to the various values of k for CDKQ and 

DDKQ. In this experiment, the bandwidth of a central 

server was 1500KBps, the bandwidth between APs 

was 7.5MBps. As the value of k increases, again the 

number of query results also rises, undoubtedly 

causing the increase of loading of computation and the 

number of message packets. As a result, the average 

response time of kNN query increases along with the 

increase of the value of k. As shown in the figure, with  

 

Figure 17. Effect of the range on CDRQ and DDRQ 

 

Figure 18. Effect of the value of k on CDKQ and 

DDKQ 

the value of k less than or equal to 2, the average 

response time of DDKQ is 8% shorter than that of 

CDKQ. However, the upward trend of DDKQ is more 

noticeable than that of CDKQ, which is 12% higher 

than the latter. In CDKQ, we must first compute the 

distance between the query mobile object and the 

mobile objects whose moving paths overlap that of the 

query mobile object, and sort these overlapped mobile 

objects by the distance from the query object. The k- 

nearest mobile objects is then added into query result. 

On the other hand, in DDKQ, multiple APs may 

involve in answering the query result. With the small 

value of k, the query would not run through many APs 

so that the average response times of CDKQ are longer 

than those of DDKQ. When k is 3, both of the average 

response time is almost the same. When k equals to or 

larger than 4, the average response times of CDKQ is 

shorter than that of DDKQ because the number of 

involved APs increases along with the value of k. 

Generally, the difference of the average response times 

between two methods increases along with the increase 

of k. Obviously, the value of k affects the average 

response time more in DDKQ than in CDKQ. A larger 

value of k would definitely not favor CDKQ. 

Figure 19 indicates the average response time with 

respect to the various bandwidths of a central server for 

CDRQ and DDRQ. In this experiment the bandwidth 

of a central server was 512KBps. Overall, as the 

bandwidth of a central server increases, the average  
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Figure 19. Effect of the bandwidth of a central server 

on range query 

response time of CDRQ reduces drastically, and that of 

DDRQ is almost unaffected. In CDRQ, most of query 

processing is done by a central server and then the 

query result is passed to the query mobile object by 

interconnection network so that the bandwidth of the 

server significantly affects the response times. On the 

contrast, with DDRQ queries are processed locally by 

APs, and the central server is hardly involved in query 

processing. With the bandwidth of a central server 

250KBps or less, CDRQ spends more time on query 

processing, which is 3.4 times more than that of DDRQ. 

As the bandwidth of the server is 326KBps, the 

average response times of both are the same. When the 

bandwidth of a central server reaches 512KBps, the 

average response time of CDRQ becomes shorter than 

that of DDRQ. With the bandwidth of the server 

reaches 1000KBps and beyond, the average response 

time of CDRQ is almost the same, where the time 

spending on delivering messages is negligible 

compared to the computation time.  

With the bandwidth of a central server was 

1500KBps and the bandwidth between APs was 

7.5MBps, In Figure 20 shows the effect of the 

bandwidth of a central server on CDKQ and DDKQ 

similar to CDRQ and DDRQ. As the bandwidth of a 

central server increases, the average response time of 

CDKQ reduces dramatically, and that of DDKQ again 

does not change noticeably. With the bandwidth of a 

central server 500KBps or less, CDKQ spends more 

time on query processing, which is 3.2 times more than 

that of DDKQ. As the bandwidth of a central server is 

increased to 688KBps, the average response times of 

both are the same. When the bandwidth of a central 

server reaches 1000KBps, the average response time of 

CDRQ is shorter than that of DDRQ. Again, with the 

bandwidth of the server reaches 1000KBps and beyond, 

the average response time of CDKQ is almost the same, 

where the time spending on delivering messages is 

negligible compared to the computation time. 

Figure 21 shows the average number of contacted 

APs with respect to the various query ranges for 

DDRQ and the various values of k for DDKQ. The 

figure shows that as the query range of DDRQ 

increases, the average number of contacted APs also 

 

Figure 20. Effect of the bandwidth of a central server 

on kNN query 

 

Figure 21. Effect of the average number of contacted 

APs in distributed query processing 

increases, leading to the increase of the delivering time 

of messages and then the time of query processing 

shown in Figure 17. Similarly, as shown in the figure, 

the average number of contacted APs increases along 

with the increase of the value of k, leading to the 

increase of the query processing time in DDKQ shown 

in Figure 18. 

8 Conclusion 

In this paper, we address the issue of directional 

continuous query for mobile objects on road networks. 

We not only propose the system architecture of a road 

network but also provide approaches to determine the 

safe period in order to efficiently update the query 

result. We elaborate cases of when to exclude a mobile 

object from a query result and when to insert a mobile 

object into a query result. The results of our 

experiments show that the centralized directional 

continuous query processing has shorter average 

response time than the distributed one with the higher 

bandwidth of a central server. In contrast, when the 

bandwidth of a central server is low, the distributed 

directional continuous query processing is more 

efficient. In general, finding the most appropriate 

method will depend on network bandwidths and the 

type of mobile queries. 

In the future, we plan to extend our research work to 
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providing query services on intelligent transportation 

networks, or even for self-driving cars. Queries can be 

issued not only by humans but also by vehicles. As the 

intelligent infrastructure of transportations becomes 

more complete, realizing such services would surely 

become more feasible.  
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