
A Proposed Framework Against Code Injection Vulnerabilities in Online Applications 83

A Proposed Framework Against Code Injection Vulnerabilities in

Online Applications

Teresa K. George, K. Poulose Jacob, Rekha K. James*

Department of Computer Science, Cochin University of Science and Technology, India

susanteresa12@gmail.com, kpj0101@gmail.com, rekhajames@cusat.ac.in

*Corresponding Author: Teresa K. George; E-mail: susanteresa12@gmail.com

DOI: 10.3966/160792642019012001008

Abstract

Security vulnerabilities are frequently detected and

exploited in modern web applications. Intruders obtain

unrestricted access to the information stored at the back-

end database server of a web application by exploiting

security vulnerabilities. Code injection attacks top the list

due to lack of effective strategies for detecting and

blocking injection attacks. The proposed Token based

Detection and Neural Network based Reconstruction

(TbD-NNbR) framework is a unique approach to detect

and block code injections with negligible processing

overheads. This framework makes use of an efficient

token mapping and validation technique to match the

statically generated legal query tokens against the parsed

dynamic query tokens at run time. The proposed

approach also has the provision to reconstruct queries

from authenticated users. The prototype implementation

of TbD-NNbR shows that it does not demand any source

code modifications and incurs only a negligible

computational overhead without any incidents of false

positives or false negatives.

Keywords: Code injection attack, Neural network,

Query validation, Reconstruction, Security

vulnerability

1 Introduction

Security vulnerabilities are becoming a severe issue

in web applications as successful attacks lead to loss of

integrity, confidentiality and make it a very sensitive

subject in software security. Code Injection through a

dynamic web page is one of the most dangerous threats

that exploit the application layer vulnerabilities [1].

The existing techniques or strategies may not be

enough to handle many of the vulnerabilities due to the

unknown and often obscure nature of vulnerability

issues. Existing input validation techniques still require

more sophistication. The attack on a given database

violates the Confidentiality, Integrity, Availability

(CIA) triangle of security. Most of the SQL injection

attack prevention approaches result in false positives,

which will decrease the system availability for the

authenticated users [2].

In SQL injection attacks, an attacker attempts to

change the syntax and semantics of legitimate SQL

statements by inserting unintended keywords, symbols

or malicious codes on the SQL statements accepted

through dynamic web pages. By exploiting this

vulnerability, an attacker can directly interact with the

database server and gain access to the critical data and

thus compromise security. This paper proposes a

Token based Detection and Neural Network based

Reconstruction (TbD-NNbR) framework against code

injection vulnerabilities. The proposed framework

blocks all malicious entries and only the benign query

can access the data from the back-end database server.

The TbD-NNbR framework also has the provision to

reconstruct the queries from authenticated users at run

time, using the neural network, which increases the

system availability and mitigates the denial of service

attack [3].

The rest of the paper is organized as follows:

Section 2 deals with SQL injection attack categories.

Section 3 handles the related works. The proposed

Token based Detection and Neural Network based

Reconstruction (TbD-NNbR) framework are explained

in Section 4. The prototype implementation of TbD-

NNbR is described in Section 5. Section 6 discusses

the evaluation of the proposed model and a conclusion

is given in Section 7.

2 SQL Injection Attack Categories

SQL injection attack is one of the most dangerous

types of vulnerability attacks adopted by web hackers

to compromise the security features of a critical

application. In most of the vulnerability analysis,

Tautology, Union queries, Piggybacked queries,

Logically-incorrect queries, Stored procedures,

Inferences and Alternate encoding are the

classifications of SQL injection attacks. A detailed

description of SQL injection attacks along with

examples are as follows [2, 4-5].

84 Journal of Internet Technology Volume 20 (2019) No.1

2.1 Tautologies

In this attack, the hacker injects code into a

conditional statement to evaluate it as true there by

allowing the malicious user to bypass the user

authentication or extract data from a database. For

example, suppose that a malicious user inputs the SQL

statement as SELECT * FROM books WHERE ID=

‘1’ or ‘1’= ‘1’--AND password= ‘pass’;

2.2 Logically Incorrect Query/Illegal Queries

This type of attack is used to gather information

about the back-end database of a web application

through error messages of type mismatch or logical

error, while the query gets rejected. For example, the

injected query on the given URL can be in the format:

http://www.elearning/mct/? id_user= ‘123’.

2.3 Union Query

These types of queries trick the database into

returning the results from database tables which are

different from what was intended. For example, an

injected query can be of the format: SELECT * FROM

users WHERE userid=22 UNION SELECT item,

results FROM reports.

2.4 Piggy Backed Queries

The attacker tries to inject additional queries along

with the original queries, which are said to ‘piggyback’

onto the original query. Hence the database gets

multiple queries for execution. For example, SELECT

Login ID FROM users ID WHERE login ID= ‘john’

and password=’’; DROP TABLE users- AND

ID=2345.

2.5 Alternate Encoding

These types of attacks use the char () function and

ASCII /Hexadecimal encoding. For example: SELECT

accounts FROM users WHERE login=”” AND pin=0;

exec (char (0x73687574646j776e)).

2.6 Stored Procedure

In these attacks, hackers aim to perform privilege

escalation, denial of service and remote command

execution using stored procedures through the user

interface to back-end servers. For example, UPDATE

users SET password=‘Nicky’ WHERE id= ‘2’ UNION

SHUTDOWN;--.

2.7 Inference Attack

Here, the hackers aim to identify the injectable

parameters and extract data from databases. Blind SQL

injection attack and Timing SQL injection attack are

the two categories of Inference attacks. For example

the injected queries in the Timing SQL injection

category can be in the following format: SELECT

name, password FROM user WHERE id = 12; IF

(LEN (SELECT TOP 1 column_name from test

DB.information_schema. columns where table_name=

‘user’),4) WAITFOR DELAY ‘00:00:10’.

3 Related Works

SQL Injection has been an issue for many years, and

several tools and strategies are developed to tackle this

situation [6-7]. Researchers Calvi and Vigan, in 2016

proposed some automated approaches of testing the

security of the web application against the constant

attack [8]. Researchers Johari and Pankaj, in 2012

conducted a detailed study on Injection vulnerabilities,

and strategies for countermeasures [1]. As analyzed

and documented by Skrupsky and Bisht et al. in 2013,

the website security is improved by implementing

appropriate web vulnerability scanners, and penetration

testers [9]. During security testing phase, documented

by Lebeau and Franck et al. in 2013, the vulnerability

assessment should be carried out using appropriate

strategies, mitigation process and with an in-depth

understanding of the organization’s infrastructure and

critical processes [10]. Martin Burkhart and Dominik

deal with asymmetry in the attack space injected traffic

pattern and the role of network data anonymization

[11]. One of the recent research works carried out by

Deepa and Santhi has proposed black box detection

strategies for code injection attack and parameter

tampering vulnerabilities on XML database.

Most of the model based countermeasures suggested

by previous researchers have indicated some very

useful strategies in the field of security and protection.

Some of the very efficient model-based approaches are

as follows: SQLrand suggests randomized SQL query

language to identify and abort queries which contain

injected code [12]. In SQLCHECK, a runtime checking

algorithm evaluates a real-world web application with

a real dynamic attack data as input. It prevents SQL

injection attacks without any false positives and false

negatives [13]. AMNESIA uses a combination of static

and dynamic analysis to analyze web application codes

and to monitor dynamically generated queries. In the

next step, the building of a query model with all

possible queries are identified by the hotspot. The

runtime monitoring methodology will reject or report

the queries that violate the model [13-14].

4 Proposed TbD-NNbR Frame Work

Token based Detection and Neural Network based

Reconstruction (TbD-NNbR) is a hybrid model which

consists of a Token based Detection (TbD) module and

Neural Network based Reconstruction (NNbR) module.

Figure 1 shows the proposed TbD-NNbR framework.

A Proposed Framework Against Code Injection Vulnerabilities in Online Applications 85

Figure 1. Proposed TbD-NNbR framework

Figure 1, shown above is a combined representation

of the TbD module and NNbR module. The Web

Server, accepts user requests through dynamic web

pages and directs the queries to the proxy server that

lies in between the web server and the database server.

The detailed evaluation procedure is shown under

corresponding module description. Reconstruction of

queries are performed only within the NNbR module

and only for the authenticated user queries.

Reconstruction procedure is not considered in the TbD

module but, has a strong token based detection and

malicious query blocking strategy. The malicious

queries from unauthenticated users are usually logged

for future work of Identification of new injection

pattern.

4.1 Token Based Detection (TbD)

One of the primary purposes of this module is to

detect and block SQL-Injection attack. Only the benign

query can access the data from the back-end database

server. The proxy server executes the user query and

validates it before redirecting it to the database server.

The server blocks malicious queries and generates an

alert message if the injection is detected. This method

uses an efficient query validation technique to match

the statically generated legal query tokens against the

parsed dynamic query tokens at runtime [15]. A

template repository stores the legal query tokens with a

unique identity and a format. Figure 2 presents the

main elements of the Token based Detection (TbD)

module.

4.1.1 Standard Query Template Creator (SQTC)

The standard query template creator module

statically analyzes the web application, identifies and

collects the standard legal queries in the web pages.

The template creator module makes use of the

Standard Query Template Creator (SQTC) algorithm to

parse the queries. Table 1 presents SQTC algorithm. In

most of the web applications, there are multiple SQL

requests in each web page as the hotspot for malicious

Figure 2. Token based Detection (TbD)

Table 1. Standard Query Template Creator Algorithm

Standard Query Template Creator Algorithm (SQTC)
Input: web application URL, user credentials

Begin

Procedure SQTC (Sq, Tk)

Begin

Sq←Standard query

Tk ←Tokens generated from Sq

Tk [i] ← {query-type, used-tables, columns, system-

variables, global-variables, functions,

 joins, special-symbols, operators,

comment-symbols and keywords}

 Begin

 Sq-Id← get (Sq-Id) from JSON parser for each query

 Do

 get new Sq-Id

 //till all the pages are checked and queries

tokenized with a unique Sq-id

 for each Query

 Tl (Sq-Id)← Template for each Sq-Id // created

by the parser

 Return

 While All ‘ Sq-Id’ is generated // End of web

pages

 End Do

 End.

 End

user entries, which are directly accessing the database

server. The module splits the complex queries into

several independent queries by using a depth-first tree

traversal procedure, and tokenizes each independent

query. There can be multiple queries in each web page.

During the static analysis, all the queries in the web

application are identified for malicious entries and

undergo the similar procedure to tokenize the query

and further validation with a dynamic query at run time.

For each input query accessing the backend database, it

generates a unique ID [16].

In the algorithm given above, the web crawler

identifies the input entry (the form entry field) by

checking the user credentials entered and the URL or

the specified path to the given web application. For

86 Journal of Internet Technology Volume 20 (2019) No.1

each assigned form field, there is a corresponding SQL

query. While splitting/parsing the query, the algorithm

generates tokens as per the predefined template

specification for each standard SQL statement. The

tokens parsed are grouped under any one of the

following attribute specification namely query-type,

used-tables, columns, system-variables, global

variables, functions, joins, special-symbols, operators,

comment symbols and keywords. The attributes of the

identified queries are grouped and assigned a Tl (sq-Id),

which is unique for each query and stores the

corresponding template details in the JSON format.

During parsing, if there is any extra field in the queries

other than the token-specification mentioned above,

then each additional field identified in the query is

expanded as an added column in the template

specification to accommodate the fields [16]. There can

be “n” added columns created based on the input query

type.

4.1.2 Template Repository

The template repository holds all the possible legal

query identity (ID), and template (TI) of the underlying

online application stored in JSON format. It arranges

the corresponding ID for each page and stores in the

repository by using a particular jar/package file facility

available in the application.

4.1.3 Dynamic Query Parser

During a dynamic interaction, the user queries

accepted through dynamic web pages must undergo the

tokenizing/parsing procedure by the parser to have the

token mapping against the dynamic query.

4.1.4 Template Retriever and Mapper

The template retriever retrieves the corresponding

standard tokens from the template repository. To check

the validity, the template mapper maps the appropriate

standard query from the template repository against the

dynamic query with the support of a proposed SQL-

Injection detection algorithm, which is shown in Table

2.

The algorithm mentioned above validates the tokens

of user input query with the token of the legal query

placed in the template repository. While validating

tokens of both queries, each character, pattern and

length of the user input query is compared with the

tokens of the legal query stored in JSON format from

the repository. The algorithm generates tokens as per

the predefined template specification for each standard

SQL statement while performing splitting/parsing the

query. If each token of the input query and the legal

query exactly matches (TL(sq) ⊕ TL(Dq) == 0), then

there is no injection in the query. Otherwise (TL(Sq)

⊕ TL(Dq) ≠ 0) there is injection detected, where Sq is

the standard/Legal query and Dq is the Dynamic /user-

Input query. Figure 3 illustrates the key steps of the

detection procedure with flow directions.

Table 2. SQL Token mapper algorithm

SQL Token mapper Algorithm

Input: Legal query model, user input query, user credentials

Output: Detection result

procedure for SQL-Tokenmapper (Sq-Id, Dq-Id)

Begin

DetectionResult [sq-Id, Dq-Id] ← Boolean getMatch (List1,

List2)

boolean getMatch (List1, List2) //To mapp Sq-Id with Dq-

Id//

 Do while all the tokens are mapped

 Retrieve corresponding Sq-id & Dq-Id from Template

Repository for maping

 List1 ← All tokens from DynamicQuery:Dq

 List2← All tokens from, StandardQuery:Sq

 If (LengthOfList1== LengthOfList2) Then

 For i= 1 to n

 Check

 If (List1 [i]!=List2 [i])

 Boolean getmatch ()← False;//not matching//

 Else

 Boolen getmatch ()← True//Exact match//

 End If

 Next i

 End If

 If (TL (Sq) ⊕ TL (Dq) == 0),

 there is an exact match

 set message as ‘No injection detected in the

token’

 else

 exact match not found

 set message as ‘Injection detected in the token’

 endif

 End Do

End

Figure 3. Detection procedure

4.1.5 Query Evaluation Engine

The Query evaluation engine keeps track of all the

detection results by the mapper and redirects the

corresponding alert message (detection result) to the

server. If there is an exact match found between the

A Proposed Framework Against Code Injection Vulnerabilities in Online Applications 87

standard and the dynamic query, then the alert message

is displayed as ‘Injection not detected’ otherwise

‘Injection detected’ message is displayed. The benign

queries can move further to access the database server.

4.2 Neural Network Based Reconstruction

(NNbR)

The Neural Network based Reconstruction (NNbR)

provides better availability of a web application and

reduces the denial of service attack by facilitating the

reconstruction option for the authenticated user query.

In this module, SQL queries are trained using an

Artificial Neural Network (ANN) and a trained model

is stored in the template repository. The main

components of Neural Network based Reconstruction

(NNbR) module is shown in Figure 4.

Figure 4. Neural Network based Reconstruction

(NNbR)

The proposed model learns the ideal query model for

the seven identified attack categories, using the

machine learning technique, for further process and

reconstruction. This framework facilitates

reconstruction of queries from authenticated users,

irrespective of the underlying database. As a pre-

requisite of reconstruction procedure, it validates each

query with authentication credentials of the user. If the

query derives from an authenticated user, then the

query is labelled as reconstruction required. The

model redirects such queries with reconstruction

required labels to the reconstruction procedure. The

remaining queries with invalid authentication details

can be logged in for model implementation and pattern

matching procedure in the training stage.

4.2.1 Multilayer Artificial Neural Network (ANN)

for Machine Learning

The multilayer artificial neural networks has three

layers such as input layer, hidden layer, and output

layer [3]. It has a set of synaptic weights, propagation

function (Σ) and an activation function (φ) which takes

the output of the propagation function. During the

processing stage, each input is multiplied by their

respective weighing factor (w (n)) and then the

modified inputs are fed into the propagation function

[17]. This function can produce some different values

which are forwarded further and sent into a transfer

function which will turn it into a real output value

using the selected procedure. The transfer function also

can scale up the output or control its value. The

propagation function (Σ) includes sum, max, min, OR,

AND, etc. The activation function (φ) is a Hyperbolic

tangent, Linear, Sigmoid, etc. Figure 5 illustrates the

multilayer representation of the neural network.

Figure 5. Multilayer representation of neural network

The multilayer neural network differentiates a feed-

forward network from the feed-backward based on the

architecture [4].

4.2.2 Back Propagated-Neural Network model

The Back Propagated-Neural Network (BP-NN)

model trains the queries efficiently and gets the ideal

model for further procedure specified by the

authenticated user. The trained model can be used to

perform various tasks such as pattern recognition and

pattern association with the support of ‘Back

Propagation’ algorithm [18]. Figure 6 shows the

representation of BP-NN learning for SQL trained

model.

Figure 6. BP-NN learning for SQL trained model

The input layer accepts legal and injected SQL

queries. From the collected queries, the training phase

uses 80%, and the testing phase uses 20% of the

queries at the Neural Network. The back-propagation

algorithm classifies the output from the NN model as

either ‘benign’ or ‘malicious’ query [4, 18].

4.2.3 Training Data

The NNbR module collects the SQL queries from

online applications and trains these queries by Back

Propagated-Neural Network (BP-NN). One of the best

learning algorithms is Back Propagation Algorithm

(BPA) [3-4].

88 Journal of Internet Technology Volume 20 (2019) No.1

4.2.4 Template Store

The template store has BP-NN trained ideal model,

which are available for the API for further mapping

and reconstruction of queries after being identified as

‘queries from authenticated user’.

4.2.5 Template Mapper

The Template mapper component retrieves the legal

query from template store and maps against the

dynamic input query. In the proposed approach, we

create a model file from the training set and validate

every user query against this model. The SQLIAShield,

a jar file, facilitates easy accessing of trained queries

from template store to perform the pattern matching

using the regular expressions with the dynamic query.

The model template for each query from the repository

is identified accurately to perform matching procedure

[4, 19].

4.2.6 SQLIA Detection Engine

SQL Injection Attack (SQLIA) detection engine

invokes the matching process against the trained data

model from the template repository [20]. The detection

engine generates the status report and passes it to SQL

Reconstruction component for further process.

4.2.7 SQL Reconstruction

SQL Reconstructor component reconstructs dynamic

queries from the authenticated user. Table 3 shows the

reconstruction algorithm (R-Iq). Reconstruction

process takes care of the task of re-establishing

injected portions of the actual query by either

eliminating it or substituting it with a null value. High

accuracy of detection is obtained using the proposed

method, without much loss of efficiency. [17-18]. We

use regular expressions to search for complex patterns.

REGEXP handles meta-characters and literals

separately during the search function [21]. The meta-

characters such as: +, ?, *, {n}, \, ^, \n, etc. identified

are used for searching the pattern. Some of the basic

string matching functions with SQL Regular expression

is: REGEXP_LIKE, REWGEXP_ REPLACE, REGEXP_

INSTR and REGEXP_SUBSTR.

In the reconstruction algorithm in Table 3, if it

detects injection (extra character/string) in the input

query and if an authenticated user raises the query,

then it is diverted for reconstruction. If the algorithm

detects malicious user queries at first level (Case I):

then it assigns each valid token to a regular expression.

Tokens of injected query are matched with valid tokens

of the model for detection of injected string and

assigned a null value or remove the content of the

injected (additional strings/characters) portion. Then

the token is considered as the reconstructed one and is

compared with the model token to recheck and prove

Table 3. Reconstruction (R-Iq) algorithm

Reconstruction (R-Iq) Algorithm

Procedure Reconstruction (Iq, Sq)

Begin

Sq← Standard query

Iq ← Input query

Regexp [] ← Regexp (Sq)

Sq- List []← Get query-spliter (Sq) // parser split Sq based

on the input field

Iq- List []← Get input-extractor (Iq, sq-list)

 For i = 1 to length (lq-List)

 If Sq- List [i] == Iq- List [i] // validate Iq with regular

expression

 Valid-input [i] ← Iq- List [i]

 Else

 Valid-input [i] ← Null;

 Endif

 Next

 For i = 1to length (Sq-List-1)

 Rejuvenate-Iq = Sq-List[i] + Valid-Input[i];

 Next

End

that the token of injected query and token from the

model query are equal and there are no more injected

or new fields with the input query. The algorithm

considers such queries as queries without injected

fields. If the input query (complex queries) is required

to undergo a multilevel detection procedure (Case II):

then invoke tree traversal algorithm to split the

complex query into independent queries. Invoke

Reconstruction (R-Iq) algorithm for each separate

query. Repeat the procedure for each independent

query separately and perform reconstruction procedure.

5 Proposed TbD-NNbR Frame Work

The proposed prototype Token based Detection and

Neural Network based Reconstruction (TbD-NNbR), is

developed and implemented using Java based

application software and MySQL as back-end database

server. Web crawler functionality is implemented in

the web application, to identify the hot spot or form

field identification of user input queries and to make a

template model for the detection framework. The

captured queries are parsed or split into different

tokens and stored in a template repository like the data

structure server. Malicious queries are logged in and

documented for developing the anomaly pattern to

have a stronger detection model in the later stage for

handling the zero-day vulnerability. The TbD-NNbR

intercepts the SQL queries before placing them to the

web server, with the intervention of the proxy server

and allows only benign queries through the web server.

5.1 TbD Training Phase

This phase identifies the underlying web application

for template creation of the SQL query. It also

A Proposed Framework Against Code Injection Vulnerabilities in Online Applications 89

generates the pre-defined token formats. The primary

components under this stage is

‧ Crawler to identify the hotspot or input field

‧ Standard query template creator (SQTC)

The TbD-NNbR, model makes use of Uniform

Resource Locator (URL) of the web application and

user authentication credentials as inputs and generates

a number of tokens using the standard query template

creator (SQTC) for dynamic user query validation at

the run time or testing phase. Authentication details,

URL for each web page are intercepted or captured and

analyzed by a proxy server during the training phase.

The SQTC creates the query model, which will be

stored in the repository and later used for dynamic

query template mapping. The model creation phase or

the training phase is shown in Figure 7.

Figure 7. Tb-D training phase

5.2 Identification of Hot Spot/Form Field

Entry in the Web Pages

A custom-made crawler is deployed/ implemented to

browse through the underlying web application to

identify the user entry/ input field on each web page.

Each input field, which can be the vulnerable point,

can be filled with appropriate value and submitted. The

crawler also keeps track of the URL and authentication

details of the http request. The entire application is

crawled to record all the input entry fields in each web

page without any missing entry in the forms, especially

the entry fields which are critically vulnerable based on

the type of data requested by that entry field. The

deployed web crawler can identify with much precision,

all the hot spots or the form entry fields, which the user

fills on each web page.

For example, the http request on the form field of

login page (an injected query) is shown in Figure 8.

Figure 8. http request on the form field of a login page

(An injected query)

The corresponding SQL query: SELECT * FROM

administrators WHERE username=Arun OR ‘1’= ‘1’

AND password =”;

5.3 Standard Query Template Creator (SQTC)

The proposed framework creates the Standard Query

Template Creator (SQTC) model by parsing each

query into various predefined tokens, and a unique

query ID and template is created and stored in the

template repository (a database structure server) in

JSON format. The use of JSON format substantially

decreases the storage overhead. The crawler identifies

the query, and the SQTC on the proxy server tokenizes

it as per the pre-defined tokens designed and developed

by analyzing the schema and grammar of the SQL

statements. A similar token specification is applicable

for the queries submitted to an Oracle server, MySQL

and SQL Server. In this approach, while sending the

standard query, it is possible to select any one of the

databases as there is no difference in SQL query format

in the databases mentioned above. It generates the

unique Template-ID for each query with the

corresponding template format and stores it in the

template repository.

5.4 Learning Phase of Back Propagated

Neural Network Learned Model

The reconstruction module has two options for

generating the standard model. It can either make use

of an SQTC application or a neural network based

trained query model. This research work focused on

neural network trained model for reconstruction. The

learning phase of neural network based model also

takes all the form field in response to the actual user

inputs extracted from the crawler and set of SQL

queries are collected from the URL of each web page.

It also considers all possible input query injections for

each form field during the learning of appropriate

model template. Approximately, 32,000 URLs are

tested during the training/learning phase to achieve a

strong model template. The ideal Standard query

model template corresponding to each page of the web

application is learned to use a back-propagated

artificial neural network and stored in the template

store.

5.5 Testing Phase of TbD-NNbR

As shown in Figure 9, the testing phase of TbD-

NNbR consists of the following major components for

detecting the SQL injection attack:

‧ Template generator/parser

‧ The Model mapper

‧ SQL Injection Attack Detection Engine

‧ Reconstruction component

90 Journal of Internet Technology Volume 20 (2019) No.1

Figure 9. TbD testing phase

5.6 Template Generator/Parser for User

Input Query

In the testing phase of the TbD framework, the

template generator or parser splits the user queries

accepted through the web pages. It performs the

splitting of the queries by invoking the template creator

procedure of Standard Query Template Creator

(SQTC).

5.7 The Model Mapper

The major task of the model mapper is to locate and

retrieve the accurate unique ID and template of the

SQL query from the template repository, corresponding

to the form field entry of the dynamic user queries. To

have faster retrieval of the appropriate query, a

SQLIAShield (JAR file) is deployed with this frame

work. For example, the SQLIAShield for accepting

user input through the log-in form can be specified by

the path specification as:

SQLIAShield (“D:\\SQLIAConfig\\Template\\st_

fdb52977-8288-4a7f-82e0-1b9c23e9a3d4.txt”, “D:\\

SQLIAConfig\\Output”);

There is a SQLIAShield for each legal query in each

page to specify the location/ path. This module invokes

a template mapper algorithm at this stage for mapping

the parsed dynamic user queries with the legal query

model against Code Injection attack. Figure 10 shows

the identified standard and Input Query ID for mapping

in JSON format.

Figure 10. Identified Query ID for mapping in JSON

format

5.8 SQL Injection Attack Detection Engine

The detection engine detects SQL injection attacks

by matching the parsed user input query against the

legal query model developed during the training phase.

Figure 11 shows a sample evaluation result of the

prototype tool TbD. SELECT Name, Phone from

customers where id = 1 UNION ALL select

creditcardNumber, 1 from CreditCardTable is the

dynamic query. The SQL Token mapper algorithm

checks the match between the dynamic query and the

standard query. But there is no match on the tokens

such as Tables, Special symbols, and Operators. So,

the injection is detected and is displayed as shown in

Figure 11. Since the above dynamic query had no sub-

queries, the procedure is not repeated, and so it is a

first level detection. The detection process of complex

queries with multiple sub-queries is carried out by

repeating the detection procedure for the second time,

and then the detection engine displays the result as

‘second level detection’ based on the validation

requirement of the queries in the given application.

Figure 11. A sample evaluation result of the prototype

tool TbD

Figure 11 shows the matched result by the detection

engine using SQTC for a simple query of first level

detection and mapping of user input query and the

Standard query template ID of the SQTC model.

A Proposed Framework Against Code Injection Vulnerabilities in Online Applications 91

5.9 Reconstruction Component

In the proposed TbD-NNbR framework,

reconstruction of queries is carried out after comparing

the user input queries with BPNN learnt legal model

and later reconstructing the queries with the support of

REGEX function. The module invokes the

reconstruction procedure only when the http request re-

confirms that the malicious query is from an

authenticated/ registered user.

Figure 12 shows the status report of the

reconstruction process with several injected (malicious)

queries and the corresponding reconstructed portion/

string (Rejuvenated query). For example, consider the

dynamic query: insert into login (Username,

Password, User Type, User Status) values

(‘student2@mail.com’; drop table login--,

‘Student2@123’, ‘Student’, ‘Active’). Here “drop table

login - -”; is the injected portion of the query which

must be removed or replaced with a null value. So, the

reconstruction algorithm rejuvenates the malicious

query and converts it into a benign query.

Reconstruction functionality included with this

prototype mitigates the denial of service attack at a

certain level. The deployed SQLIAShield with

appropriate path specification for the corresponding

SQL statement given in each web page will support the

system with faster processing capability.

Figure 12. Status report of reconstruction procedure in

TbD-NNbR framework

6 Evaluation

The factors such as query execution time, efficiency,

effectiveness and precision are considered to evaluate

the performance of the proposed TbD-NNbR

framework. A data structure server or the template

repository deploys the Standard Query Template

Constructor (SQTC) within the TbD-NNbR prototype.

A relational database server is placed at the backend to

capture and execute the queries in SQL schema. The

prototype is designed and developed for window based

operating system. Since JSON format is used to store

the query template, it decreases the storage overhead

and reduces the run time overhead. It assigns an

SQLIAShield to each web page with appropriate path

specification for the corresponding SQL statement

given in the web application. Various attack categories

of queries were analyzed to get the possible structure

of the required learnt SQL model using Back

Propagated Neural Network (BPNN). Apart from

evaluating the prototype with the various standard

applications and Cheat sheet, a customized school

management application is exclusively developed and

implemented to test the effectiveness and efficiency of

the reconstruction prototype. The empirical analysis

carried out on various test beds, and the test result of

injection attacks shows that the proposed framework

can identify and detect any injections.

6.1 Data Set Used for Testing TbD-NNbR

We evaluate the TbD-NNbR prototype by using

three different data sets collected from several standard

open test suites, known vulnerability testing sites and

cheat sheets/URL after conducting a detailed survey.

6.1.1 Dataset I: Data Available from Cheat Sheets/

URL

Table 4 shows the data collected from the cheat

sheet/ URL. The application type, number of attack

requested listed in the application and details about the

successful detection are also represented with

corresponding false positives.

Table 4. Data collected from the cheat sheet/URL

Cheat sheet/URL
Attack

Request

Successful

Detection

False

Positives

Schoolmate 26 26 0

Webchess 32 32 0

Faqforge 21 21 0

EVE 22 22 0

Geccbblite 32 32 0

http://groups.csail.mit.edu/

pag/ardilla
48 48 0

http://pentestmonkey.net/

cheat-sql-injection/oracle-

sql-injection-cheat-sheet

35 35 0

6.1.2 Dataset II: Standard Test Suites Provided by

Halfond and Orso

The following applications in a standard test suite

(the test suite used to evaluate AMENSIA tool)

provided by Halfond and Orso are used to assess the

TbD-NNbR prototype. The below-mentioned applications

use a relational database as the backend server. Table 5

shows the identified application and number of

hotspots identified in each application.

Table 5. The identified application with hotspots

Application Description #Hotspots

Book store Online book store 25

Events Event tracking system 12

Employee Directory Online Employee directory 10

92 Journal of Internet Technology Volume 20 (2019) No.1

Table 6 indicates the number of forms identified in

each application and out of which how many forms are

expected to be vulnerable is also clearly shown. The

table also shows the detected vulnerable forms along

with false positive and false negative incidents. In each

of the identified web forms, there can be multiple

hotspots which are susceptible. Almost 25 form fields

are vulnerable in Book store, 12 in Events application

and 10 in Employee directory application.

Table 6. Effectiveness of TbD-NNbR

Application #Forms
Expected

Vuln_form-ent

Detected

Vuln_form_ent

F_Positive

F_Negative

Book Store 25 21 20 1 1

Events 12 8 8 0 0

Employee

Directory
10 7 6 1 0

Vuln_form-ents: Vulnerable form entries; F-Postitive: False

positive; F-Negative: False Negative

Figure 13. Effectiveness of TbD-NNbR (Vulnerability

report)

The analysis from the above table shows that in

Book store and Employee directory applications, there

is one of each vulnerable form, which is not detected

correctly and skipped by the web crawler application.

The expected vulnerable forms could not be identified

correctly during the training phase. Because of this

inaccurate crawling functionality employed in the

application, the proxy server functionality at the TbD-

NNbR prototype could not block the malicious entry,

and it bypasses or skips the model checking and

mapping procedure. Hence, there is an incidence of

false positives, and false negatives. We can avoid such

occurrences if the crawler can identify the vulnerable

forms with a better accuracy or with a perfect detection

procedure. By considering the above strategies, the

detection rate of the prototype on SQL Injection query

is 95.66%, which is the best result in comparison with

other models.

6.1.3 Dataset III: Customized SchoolEconnect

System

The SchoolEconnect web application developed

exclusively for testing the prototype can handle the

following sub-applications/ modules such as E-learning

portal for students, Employee directory for the teaching

support & staff, online resource management system

and event planner for the school activities. Table 7

shows the identified hotspots, expected attacks,

detected attacks and the corresponding false positive

rates.

Table 7. Modules of SchoolEconnect with attack

detection details

Application Description
Hotspot

Identified

Expected

attack

Detected

attack

False

positives

E-portal E-learning portal 23 18 18 0

Emp directory Employee management 14 10 9 1

Online Resource
Online Resource

management system
27 22 22 0

Event-planner 18 12 11 0

Figure 14. SchoolEconnect with attack detection

details

The above details reported in Table 7 indicate that

there is only one attack bypassed in the employee

directory due to the inappropriate authentication

credentials registered and stored in the database server,

which has blocked the mapper functionality of the

TbD-NNbR framework. Event planner application has

a drawback of handling the time and date function. We

can quickly rectify it, and with this patching up, 100%

detection is possible.

6.2 Performance Measures

We can assess the performance of the proposed

model by considering the time overhead or process

delay imposed on the prototype at runtime. JSON data

at the database level is a valid technique to simplify the

data resource implementation cost such as

configuration, table handling, filtering, and dynamic

query processing. The factors such as efficiency,

effectiveness and precision are the base for the

evaluation of the proposed model [22-23].

6.2.1 Process Time Overhead

The process time overhead is directly related to the

rate at which each web page gets loaded, the number of

form fields on each page and the type of database

servers assigned for execution of queries. The

performance metrics measures the average CPU time

spent for processing the query. Since we use JSON

format, the storage and retrieval of standard queries in

the TbD-NNbR model are easier and faster as

compared to the other standard models. The proposed

model has a strategy for detecting the queries by

A Proposed Framework Against Code Injection Vulnerabilities in Online Applications 93

placing them in different attack categories and

complexity levels. In most of the cases the less

complex queries can be identified in the first level but

the queries which are complex and require traversing

technique to split it into a smaller format, only need a

little longer time for detection, which is the second

level of the procedure. In both cases of simple and

complex query analysis, the time taken for detection is

only few seconds and the reconstruction of queries are

also carried out with a negligible delay in response

time. Hence the processing time and the overhead

involved in executing the query are negligible when

comparing with the response time of a browser in

accessing the web application.

Figure 15. Efficiency of TbD-NNbR

6.2.2 Efficiency

There is a secure and insecure version of

SchoolEconnect application designed and deployed as

part of this research work. To understand the efficiency

of the proposed framework we have empirically

analyzed the successful attacks detected as shown in

Table 8. We test the queries against the secure and

insecure version of the same application designed and

deployed by using Java based application software.

The performance penalty for the execution of the

individual query with the proposed techniques (secured

version) is the processing overhead of the queries

received. The prototype is evaluated with the secured

version and insecure version of the ScoolEconnect

application to analyze and identify the process time

overhead. In the secure version, the proxy server with

TbD-NNbR module is implemented to check and block

the malicious or injected queries, before they reach the

backend server of the SchoolEconnect.

Table 8. Time overhead in SchoolEconnect application

Application
Successful

Detection

Avg.Time

Insecure Version

Avg.Time

Secure Version

Overhead

Time in Sec

E-portal 32 0.43 0.67 0.24

Emp directory 63 0.32 0.57 0.25

Online Resource 45 0.28 0.49 0.21

Event planner 72 21 0.43 0.26

The insecure version of the SchoolEconnect

application demonstrates how the injected queries can

bypass the authentication logic, but those queries are

detected and blocked for further execution with the

secured version. The time overhead incurred in query

execution of secure SchoolEconnect application is 21

to 24 Seconds. It is negligible when compared with the

time taken for loading a page of a web application in

the browser or with the time taken for getting a

response from a web application. The standard

response time to get an answer to the query is a few

seconds, which is not a significant overhead and is

ignored. Therefore, the overhead incurred by deploying

the secure TbD-NNbR is negligible, and, we ignore the

processing delay. The proposed architecture is

complimentary to many of the available models due to

faster detection and low overhead on storage. The

model appropriately identifies all the tested queries,

and this proved that the proposed system is highly

efficient.

6.2.3 Precision

Precision measures the rate of false positives. The

dataset of legal and injected query tabulated during the

initial stage of the research study, apart from the

dataset from the applications mentioned above are

being tested to understand the precision measure of

TbD-NNbR model. The analysis in Table 9, shows that

out of 1655 queries tested, 451 queries belong to

malicious categories, and 1204 queries refer to legal

queries. There are only 4 cases of false positives due to

the inappropriate authentication credentials on the test

bed used and crawler functionality at the identification

of form entry fields at the training stage of TbD-NNbR.

We patch this in the trial run.

Table 9. Analysis of False positives in General

Identified/tested

Queries

Legal

Queries

Malicious

Queries

Successful

Detection

False

positives

Detection

%

1655 1204 451 1651 4 99.75

Table 10 shows the empirical analysis of TbD-

NNbR using multiple variations of the queries

mentioned above, tested with the SchoolEconnect

application.

Table 10. Analysis of false positives in School

Econnect application

Application
Queries

Tested

Legal Queries

(Successful)

Malicious Queries

(Successful)

False

positives

Detection

rate

E-portal 123 100 23 1 99.18

Emp directory 114 80 34 0 100

Online Resource 127 90 37 2 98.42

Event planner 118 90 28 1 99.15

The above analysis implies that the average

detection rate of modules listed in the SchoolEconnect

is 99.19 %, which is a highly recommended evaluation

94 Journal of Internet Technology Volume 20 (2019) No.1

result.

6.2.4 Effectiveness

We base the effectiveness of the proposed system on

the number of false negatives reported during the

empirical analysis. From the collected queries, 1655

queries were already tested with other techniques and

proved to be malicious queries. The empirical analysis

using the proposed method could also detect all the

queries, reported as successful attacks. Data shown in

Table 11 indicate that more than 98% detection is

possible based on the occurrence of false negatives and

false positives reported.

Table 11. Attack categories and detection rate in TbD-

NNbR

Type of Queries

(Attack categories)

Malicious

queries

Detected

Queries

False

Negatives

False

Positive

Detection

%

Tautology 65 64 0 1 98.46

Union Queries 45 45 0 0 100

Piggy Backed Queries 92 91 0 1 98.91

Logically Incorrect Queries 56 56 0 0 100

Stored procedure 78 77 0 1 98.71

Inference 67 66 0 1 98.50

Altemate Code 48 48 0 0 100

The average detection rate from the above analysis

is 99.23% which shows that the effectiveness of the

proposed system is rated as the best approach to the

SQL injection detection and blocking.

6.3 Type I & Type II Error

We tested the proposed TbD-NNbR with 1204 legal

queries and 451 malicious queries collected from an E-

learning module and a Student management system

(consisting of modules such as course advising,

registration, attendance and transcript management

system) of a technical college. This empirical analysis

shown in Figure 16 indicates that the TbD-NNbR

prototype correctly detects all the queries tested with

false positive rate 4%, and false negative rate 0%. The

above analysis shows that the proposed framework

achieved 100% detection.

Figure 16. Type I & Type II error rate

6.4 Receiver Operating Characteristic (ROC)

Curve

The reconstruction module performs the

reconstruction of queries only if the query is from an

authenticated user. The Receiver Operating

Characteristic curve (ROC) of BP-NN learned model

shown in Figure 17 indicates that the trained model is

achieving 100% result.

Figure 17. Receiver Operating Characteristic

6.5 Comparison of TbD-NNbR with Other

Models

Based on the type of queries, we compared the

proposed TbD-NNbR prototype with other standard

models such as AMNESIA, IDS, SQL-Check, SQL

guard, Tautology Checker, JDBC checker, and

SQLDOM [24-25]. The result of the comparative study

of TbD-NNbR with other standard techniques indicates

that most of the methods fail to detect SQL Injection

vulnerabilities under the category of stored procedure,

whereas the proposed framework can detect this attack

efficiently [26]. The other significant features that

differentiate the TbD-NNbR from the other models are

faster query processing, perfect detection and blocking

of malicious queries, less storage requirement and

efficient handling of Time-Space complexity [27].

7 Conclusion

The proposed prototype TbD-NNbR, detects and

blocks code injection vulnerabilities effectively with

negligible processing overhead and has the novel

technique of reconstructing queries. The token parsing

techniques used in the template creator application,

template files stored in the JSON format and Jar files

utilised in the template creator application contribute

equally in decreasing the storage overheads. The

empirical analysis that was carried out by using data

from various shared applications available online

A Proposed Framework Against Code Injection Vulnerabilities in Online Applications 95

Table 12. Comparison of TbD-NNbR with other models

Detection/Prevention

method
Tautologies Union Queries Illegal Queries Piggy-back Inference

Altemate

encoding

Stored

Procedure

AMNESIA � � � � � � �

IDS / / / / / / /

SQL Check � � � � � � �

SQL Guard � � � � � � �

Tautology checker � � � � � � �

JDBC Checker NA NA NA NA NA NA NA

SQL DOM � � � � � � �

Proposed TbD-NNbR � � � � � � �

Legend: �-Possible �-Impossible /-Partially possible NA-Not applicable

shows that an average of 99.23% detection is possible

using the proposed framework. The framework detects

all the malicious queries without any false negatives

which indicates that the proposed technique handles

malicious queries effectively. The Neural Network

based Reconstruction (NNbR) of queries from

authenticated users, increases the web application

availability and decreases the Denial of Service attack.

The empirical evaluation performed on Secure

SchoolEconnect (customized online application) shows

that the proposed system has only the bare minimum

overheads and Time-Space complexity.

Funding

This research did not receive any specific grant from

funding agencies in the public, commercial, or not-for-

profit sectors.

References

[1] R. Johari, P. Sharma, A Survey on Web Application

Vulnerabilities (SQLIA, XSS) Exploitation and Security

Engine for SQL Injection, 2012 International Conference on

Communication Systems and Network Technologie, Rajkot,

India, 2012, pp. 453-458.

[2] W.-G. J. Halfond, J. Viegas, A. Orso, A Classification of

SQL-injection Attacks and Counter Measures, Proceedings of

the IEEE International Symposium on Secure Software

Engineering, Washington, DC, 2006, pp. 13-15.

[3] N. M, Sheykhkanloo, Employing Neural Networks for the

Detection of SQL Injection Attack, Proceedings of the 7th

International Conference on Security of Information and

Networks, Glasgow, UK, 2014, pp. 318-323.

[4] F. Valeur, D. Mutz, G. Vigna, A Learning-based Approach to

the Detection of SQL Attacks, Proceedings of the Second

International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, Vienna, Austria,

2005, pp. 123-140.

[5] R. Dharam, S. G. Shiva, Runtime Monitoring Technique to

Handle Tutology Based SQL Injection Attacks, International

Journal of Cyber-Security and Digital Forensics, Vol. 1, No.

3, pp. 189-203, November, 2012.

[6] L. Zhang, Q. Gu, S. Peng, X. Chen, H. Zhao, D. Chen, A

Web Application Vulnerabilities Detection Tool Using

Characteristics of Web Forms, Fifth International Conference

on Software Engineering Advances, Nice, France, 2010, pp.

501-507.

[7] M. Ruse, T. Sarkar, S. Basu, Analysis and Detection of SQL

Injection Vulnerabilities via Automatic Test Case Generation

of Programs, 10th IEEE/IPSJ International Symposium in

Applications and the Internet, Seoul, South Korea, 2010, pp.

31-37.

[8] A. Calvi, L. Vigano, An Automated Approach for Testing the

Security of Web Applications against Chained Attacks,

Proceedings of the 31st Annual ACM Symposium on Applied

Computing, Pisa, Italy, 2016, pp. 2095-2102.

[9] N. Skrupsky, P. Bisht, T. Hinrichs, V. N. Venkatakrishnan, L.

Zuck, TamperProof: A Server-agnostic Defense for Parameter

Tampering Attacks on Web Applications, Proceedings of the

third ACM conference on Data and application security and

privacy, San Antonio, TX, 2013, pp. 129-140.

[10] F. Lebeau, B. Legeard, F. Peureux, A. Vernotte, Model-based

Vulnerability Testing for Web Applications, 2013 IEEE Sixth

International Conference on Software Testing, Verification

and Validation Workshops, Luxembourg, Luxembourg, 2013,

pp. 445-452.

[11] M. Burkhart, D. Schatzmann, B. Trammell, E. Boschi, B.

Plattner, The Role of Network Trace Anonymization under

Attack, ACM SIGCOMM Computer Communication Review,

Vol. 40, No. 1, pp. 5-11, January, 2010.

[12] S. W. Boyd, A. D. Keromytis, SQLrand: Preventing SQL

Injection Attacks, International Conference on Applied

Cryptography and Network Security, Yellow Mountain,

China, 2004, pp. 292-302

[13] W. G. J. Halfond, A. Orso, Combining Static Analysis and

Runtime Monitoring to Counter SQL-injection Attacks, ACM

Software Engineering Notes, Vol. 30. No. 4, pp. 1-7, July,

2005,

[14] W. G. J. Halfond, A. Orso, P. Manolios, WASP: Protecting

Web Applications Using Positive Tainting and Syntax-aware

Evaluation, IEEE Transactions on Software Engineering, Vol.

34. No. 1, pp. 65-81, January/ February, 2008.

[15] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, S.-Y.

Kuo, Securing Web Application Code by Static Analysis and

Runtime Protection, Proceedings of the 13th international

conference on World Wide Web, New York, NY, 2004, pp.

40-52.

96 Journal of Internet Technology Volume 20 (2019) No.1

[16] T.-K. George, R. James, P. Jacob, Proposed Hybrid Model to

Detect and Prevent SQL Injection, International Journal of

Computer Science and Information Security, Vo. 14, No. 6,

June, 2016.

[17] M. Moradi, M. Zulkernine, A Neural Network Based System

for Intrusion Detection and Classification of Attacks, Proc. of

the 2004 IEEE International Conference on Advances in

Intelligent Systems- Theory and Applications, Luxembourg,

2004, pp. 15-18.

[18] N. M. Sheykhkanloo, A Pattern Recognition Neural Network

Model for Detection and Classification of SQL Injection

Attacks, World Academy of Science, Engineering and

Technology, International Journal of Computer, Electrical,

Automation, Control and Information Engineering, Vol. 9.

No. 6, pp. 1443-1453, June, 2015.

[19] A. Moosa, Artificial Neural Network Based Web Application

Firewall for sql Injection, World Academy of Science,

Engineering & Technology, International Journal of

Computer and Information Engineering, Vol. 4. No. 4, pp.

610-619, April, 2010.

[20] D. Balzarotti, M. Cova, V. Felmetsger, V. Jovanovic, E.

Kirda, C. Kruegel, G. Vigna, Saner: Composing Static and

Dynamic Analysis to Validate Sanitization in Web

Applications, IEEE Symposium on Security and Privacy,

Okland, CA, 2008, pp. 387-401.

[21] K. Kemalis, T. Tzouramanis, SQL-IDS: A Specification-

based Approach for SQL-injection Detection, Proceedings of

the 2008 ACM symposium on Applied computing, Ceara,

Brazil, 2008, pp. 2153-2158.

[22] P. Kumar, R. K. Pateriya, DWVP: Detection of Web

Application Vulnerabilities Using Parameters of Web Form,

Proceedings of Joint International Conferences on CIIT,

Bhopal, India, 2013, pp. 437-443.

[23] M. A. Lawal, A. B. M. Sultan, A. O. Shakiru, Systematic

Literature Review on SQL Injection Attack, International

Journal of Soft Computing, Vol. 11. No. 1, pp. 26-35, January,

2016,.

[24] R. A. McClure, I. H. Kruger, SQL DOM: Compile Time

Checking of Dynamic SQL Statements, 27th International

Conference on Software Engineering, Saint Louis, MO, 2005,

pp. 88-96.

[25] S. Ali, A. Rauf, H. Javed, SQLIPA: An Authentication

Mechanism Against sql Injection, European Journal of

Scientific Research, Vol. 38, No. 4, pp. 604-611, December,

2009,.

[26] D. A. Kindy, A.-S. K. Pathan, A Detailed Survey on Various

Aspects of sql Injection in Web Applications, Vulnerabilities,

Innovative Attacks, and Remedies, arXiv preprint arXiv:

1203.3324, March, 2012.

[27] G. Deepa, P. S. Thilagam, Securing Web Applications from

Injection and Logic Vulnerabilities: Approaches and

Challenges, Information and Software Technology, Vol. 74,

pp. 160-180, June, 2016.

Biographies

Teresa K. George is a research

scholar at CUSAT, India. She is also

working at HCT Muscat, Oman. Her

teaching interests includes, Data base

and Information security, She has over

20 years of teaching experience and

published ten research papers in the

field of Information Security and web applications.

K. Poulose Jacob is a Professor of

Computer Science at CUSAT, Kerala.

He is a Professional member of the

ACM. His research interests are

mainly in Intelligent Architectures,

Networks, Information Systems and

Artificial Intelligence. He has more than 120

publications to his credit .

Rekha K. James is a Professor at

CUSAT, Cochin, India. Her research

interests include the design of RNS

based arithmetic circuit, Decimal

arithmetic, Reversible logic and Low

power Design. She has more than 20

publications to her credit.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

