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Abstract 

Recently, Gaussian mixture model have been studied 

extensively in image denoising, for the reason that it can 

better represent image prior. However, the current 

Gaussian mixture model based image denoising approach 

commonly employs global regularization parameter, 

therefore leading to limited denoising performance. To 

further enhance the performance this method, we exploit 

a new scheme for spatially adaptive regularization 

parameter selection, which utilizes scale space technique 

and residual image statistics to set regularization 

parameter value according to image details. The 

experiment results show that our proposed image 

denoising method can obtain relatively well results both 

in vision and the value of peak signal to noise ratio. 

Keywords: Image denoising, Gaussian Mixture Model, 

Regularization parameter selection 

1 Introduction 

Digital image has been widely applied to many 

scientific and industrial fields, such as computer 

science, remote sensing, medical science and so on. In 

reality, digital images are unavoidably degraded by the 

noise generated from the imaging device or external 

environment in acquisition and transmission process. 

In order to enhance the accuracy of image analysis and 

understanding, image denoising plays a significant role 

in digital image processing.  

Commonly, image degradation process can be 

modelled as a linear model: 
0

u u n= + , where 
0

u  and 

u  are noisy image and original image, respectively, 

and n  often denotes the additive Gaussian white noise 

(GWN). In general, estimating ideal image u  from 

noisy image 
0

u  is an ill-posed inverse problem [1]. It is 

well known that regularization technique is a powerful 

tool to handle this troublesome problem [2]. In the past 

decades, various nonlinear regularization models has 

been introduced [3-4]. Among them, image 

regularization term has drawn much attention, which is 

closely related to image prior learning. Employing 

image prior as driving force for image regularization 

has been a hot issue.  

To date, numerous image priors have been presented, 

for instance, such as gradient based [5], non-local 

based [6-9] and sparse representation based method 

[10-12], and so on [13]. Traditional image denoising 

method as the total variation (TV) [5] uses priors of 

image gradient distributions to remove noise in a local 

way. The TV model can obtain well good denoised 

results on cartoon images. However, it tends to 

generate staircase effect and over-smoothed results. 

The non-local prior [6-9] is primarily used for the 

texture image processing and analysis. Suppose similar 

patches are contained in a whole image, the non-local 

self-similarity prior is utilized to by the non-local 

image restoration methods, and has obtained favorable 

achievement. In recent years, the sparsity priors [10-12] 

has been employed to image restoration, with the 

observation that image patches can be sparsely 

represented over a dictionary. Among proposed 

adaptive sparse representation approaches, K-SVD [10] 

is a classical one. This method assumes that digital 

image can be expressed by linear combination of atoms 

in the sparse dictionary. Therefore, the key is to learn 

the redundant dictionary and calculate its sparse 

coefficient. However, K-SVD can be able to produce 

good denoised images with specific structures, because 

of the independence assumption on the dictionary 

atoms. 

In fact, certain atoms of dictionary are usually 

strongly correlated. Considering interdependency 

between atoms in the sparse dictionary, many 

structured sparse representation method have been 

introduced recently, including non-local self-similarity 

based method [14], group and block sparse based 

method [15] and mixture model based method [16-19]. 

Among them, mixture model based method has been 

proved amazingly competitive in terms of image 

restoration. In order to learn image patch priors, 

mixture model based method established the statistical 

model of image patches by few mixture components. 
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Image structures are easier to be modeled in a local 

small windows. Mixture model based image restoration 

method has comparatively lower computation 

complexity and more comprehensible mathematical 

mechanism. Compared with other mixture models, 

Gaussian Mixture Model (GMM) model [16, 18-19] 

has been widely applied in image restoration for its 

good clustering performance and flexibility. Recently, 

Expected Patch Log Likelihood (EPLL) based prior 

and its variants [16, 20-22] has been shown to be 

surprisingly competitive in image denoising. 

Nevertheless, regularization parameter selection is still 

an open problem for the EPLL-based image denoising 

method [23-25]. 

As well known that regularization parameters 

selection drastically affects the performance of 

regularization method. When regularization parameter 

value is too large, there will be residual noise in the 

results. In contrast, when the regularization parameter 

value is too small, the denoised image will probably 

lose important structure, such as the edges and textures. 

A variety of parameter estimation methods have been 

introduced, including Lagrange multiplier method [26], 

the L-curve based method [27-28], the structure tensor 

based method [9, 29], the discrepancy principle based 

method [30], the scale space based method [31-32], 

and the residual image statistics based method [33]. In 

this paper, we devote to the regularization parameter 

selection using residual image statistics based 

technique for EPLL based image denoising problem. 

We propose an adaptive regularization parameter 

selection method through using the local variance of 

the residual image as spatially varying constraints, 

which estimate regularization parameter adaptively for 

EPLL based image denoising method.  

The rest of this paper is organized as follows. In 

section 2, we briefly review the EPLL based image 

denoising methods. Then, we describe our proposed 

methods with adaptive regularization parameters in 

details in section 3. The experimental results are shown 

in section 4. Finally, section 5 summarizes the whole 

work.  

2 EPLL based Image Denoising Method 

Image u  containing N  pixels can be separated into 

N  overlapping image patches with the size of 

.D D×  The vectorized image patches ( )L
i i i
u Pu u= ∈ℜ  

is obtained from image u  at position i  by extracting 

operator 
i
P . Suppose that image paches are 

independent of each other and there exist K  mixture 

components, the density function of the GMM on 
i
u  

can be defined as: 

 
1

( ) ( | , )
k

i i j i j j

j

P u N uπ μ

=

= Σ∑  (1) 

Where 
j

π  is the mixing coefficient, 
j

μ  and 
j

Σ  are the 

mean and covariance matrix respectively, and 

( | , )
i j j

N u µ Σ  expresses the Gaussian distribution [34], 

which can be written as: 

 

1

2 2

1

1
( | , ) exp

(2 ) | |

1
{ ( ) ( )}

2

i j j D

j

T

i j j i j

N u

u u

μ

π

μ μ
−

Σ =

Σ

− − Σ −

  (2) 

Then, the EPLL for image u  is modeled as follows: 

 ( ) log ( )EPLL u p u=  (3) 

 
11

( ) ( | , )
N k

j i j j

ji

p u N uπ μ

==

= Σ∑∏  (4) 

With (3) and (4), the EPLL based image denoising 

model can be written as: 

 2

0

1

min{ || || log ( )}
2

N

i
u

i

u u p Pu
λ

=

− −∑  (5) 

Where λ  denotes the regularization parameter. In 

general, given the noise level 2
σ , regularization 

parameter can be computed by 
2

D
λ

σ
= . (5) can be 

solved by the Half Quadratic Splitting algorithm [16] 

by introducing a set of auxiliary variables i
z  into (5): 

 2 2

0
,

min{ || || { (|| || log ( )}}
2 2i

i i i
u Z

i

u u Pu z p z
λ β

− + − −∑  (6) 

Where β  is the penalty parameter which often is set to 

be large enough to ensure that the solution of (6) is 

close to that of (5). Then formula (6) can be minimized 

by alternatively updating i
z  and 

i
u . 

3 Proposed Method with Adaptive 

Regularization Parameters 

The cartoon pyramid model (CPM) [32] consists of 

three components as follows: 

 
0 C NC n

u u u u= + +  (7) 

where 
C

u  denotes the cartoon image, 
NC

u  is the non-

cartoon image and 
n

u  is the GWN. 
C NC

u u u= +  is the 

original image and non-cartoon image 
NC

u  is often 

rich in small scale details. With (7), the residual image 

R
u  generally contain non-cartoon image 

NC
u  and noise 

n
u . 

 
0R NC n

u u u u u= − = +� �
 (8) 

In image denoising, we firstly use the following 
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constrained model to smooth the noisy image 
0

u  and 

generate residual image 
R

u  for estimate regularization 

parameters: 

 
1

2 2

0

min{ log ( )}

1
s.t. || ||

| |

N

i
u

i

p Pu

u u ασ

=

−

− =
Ω

∑
 (9) 

where α  is a scale factor related to the noise variance. 

The noise and relevant textures can be separated by 

formula (9). Then, the local variance can be defined as: 

 2

,

1
( , ) ( ( , )) ( , )

| |
z z x y
P x y u x y x y dxdyω≡

Ω
∫ � � � � � �

 (10) 

Where 
,

( , )
x y

x yω � �   denotes a normalized and radially 

symmetric smoothing window. According to the 

definition of the local variance, we calculate the local 

variance of residual image 
R

u  as follows: 

 var( )
R R
P dxdy u

Ω
=∫  (11) 

Suppose that the local variance of the residual image 

R
u  satisfies the priori ( , )S x y , we can obtain the 

following modified version of constrained problem as: 

 1

ˆ

min{ log ( )}

s.t. ( , ) ( , )

N

i
u

i

R

p Pu

P x y S x y

=

−

=

∑
 (12) 

where 
4

( , )
( , )

R

S x y
P x y

σ

= and 
ˆ 0R

U u u C= − − ( C is a 

constant). Then, using the Lagrange multiplier method, 

a new cost function and its Euler-Lagrange equation 

can be written as follows: 

2

ˆ

1

1
{( || ) log ( )} ( , ) ( , )
2 2

n

i i i R

i

E Pu z p z x y P x y
β

λ
=

= − − +∑  (13) 

 
0

( , )( ) ( ) 0T

i i i

i

x y u u C R R u zλ β− − + − =∑  (14) 

Here (14) can be solved by the gradient descent 

algorithm. Thus, Image and auxiliary variables i
z  can 

be alternatively updated: 

 

1

0
[ ( , )( )

( )]

n n n

T n u

i i i

i

u u t x y u u C

R Pu z

λ

β

+

= + Δ − + −

−∑
 (15) 

 
max max max

1 11 1
( ) ( )n n

i j i j j
z I Pu Iμ

β β

+ −

= Σ + ⋅ Σ +  (16) 

where I  denotes the identity matrix. In order to 

estimate adaptive regularization parameter ( , )x yλ , we 

multiply the Euler-Lagrange equation by 
0

( )n

u u C− +  

and integrate over the domain Ω . Therefore, ( , )x yλ  

can be computed by: 

0

2

0

( ) ( ) ( , )
( , )

( ) ( , )

T

i i i i
u u C R Ru z Q x y

x y
u u C X x y

β
λ

− − Σ −
= =

− −
 (17) 

 
0

( , ) ( ) ( )T

i i i

i

Q x y u u C R R u zβ= − − = −∑  (18) 

 

0
( , )( ( , ) ( , )

( , )

x y u x y u x y dxdy
C

x y dxdy

λ

λ

Ω

Ω

−

=

∫
∫

 (19) 

In summary, the proposed denoising algorithm is 

implemented as follows: 

Step 1. Input corrupted image 
0
,u  model parameters 

, ,tα β  and iteration stopping tolerance ε , initialize 

regularization parameter λ ; 

Step 2. Compute the residual image 
R

u  and minimize 

equation (9) for separating the noise and 

 Textures; 

Step 3. Calculate the local variance of the residual 

image ( , )
R
P x y  by (10); 

Step 4. Compute the local constraints ( , )S x y  by 
4

( , )
( , )

R

S x y
P x y

σ

= ; 

Step 5. Choose the most likely Gaussian mixing 

coefficient 
max
j  for each image patch and calculate 

auxiliary variables 1

i
z  using formula (16); 

Step 6. Compute 1
u  using formula (15) with updated 

regularization parameters ( , )x yλ  and constant C  

according to (17) and (19); 

Step 7. Compute 1n

i
z

+  formula using (16); 

Step 8. Estimate image 1n

u
+ using (15) with updated 

( , )x yλ  and C ; 

Step 9. Repeat Steps 7-8 until satisfying stopping 

criterion. 

4 Implementation and Experiment Results 

In the experiments, we compare our proposed image 

denoising approach with original EPLL [16], K-SVD 

method [10], EPLL with gradient fidelity term [24]. 

The GMM model with 200 mixture components is 

learned from 6
2 10×  images patches contained in 200 

natural images which are sampled from the Berkeley 

Segmentation Database Benchmark (BSDS300). The 

noisy images are produced through adding white 

Gaussian noise with zero mean and standard variance 

25δ =  into original images. The parameters are set as 

follows: the image patch size 64D = , the weighted 
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coefficients 
2

1
*[14816]β

δ
= , symmetric smoothing 

window 
,

5
x y

ω = , scale factor 1.5α = . 

Figure 1 illustrate the denoised results of the original 

EPLL method, K-SVD method, EPLL with gradient 

fidelity term and our proposed method on zebra image. 

Figure 1(a) is a piecewise smooth original zebra image 

in the Berkeley Database (No. 253027). Figure 1(b) is 

a noisy image with zero mean and variance 
2

25δ = . 

Figure 1(c) is the result of the original EPLL based 

denoising method. we can see that in Figure 1(c) 

pseudo textures appear in some flat regions. Figure 1(d) 

shows the denoised image by K-SVD. It can be 

observed that some textures in Figure 1(d) are 

smoothed out, for the reason that the K-SVD fails to 

consider the correlation between the atoms. Figure 1(e) 

is the result of EPLL with gradient fidelity term. Since 

the method employs the gradient fidelity term to 

enhance the performance of EPLL, it can preserve 

more image detail structures while remove noise. 

However, image gradient is sensitive to noise. It takes 

much time to select proper parameters. Figure 1(f) 

shows the result of our method. Compared with Figure 

1(c) to Figure 1(e), we can see that our method can 

obtain comparatively good tradeoff between preserving 

details and denoising. 

   

(a) Original zebra image (b) Noisy image with zero mean and 

variance 2
25δ =  

(c) EPLL, K-SVD, EPLL with gradient 

fidelity term and our method, 

respectively 

 

  

(d) EPLL, K-SVD, EPLL with 

gradient fidelity term and our 

method, respectively 

(e) EPLL, K-SVD, EPLL with 

gradient fidelity term and our 

method, respectively 

(f) EPLL, K-SVD, EPLL with gradient 

fidelity term and our method, 

respectively 

Figure 1. Comparison of the proposed method with other methods on zebra image 

Figure 2 compares the performance of the four 

image denoising methods on a plane image. Figure 2(a) 

is a clean building image in the Berkeley Database (No. 

126007). Figure 2(b) is a noisy image with zero mean 

and variance 2
25δ = . the denoised result of original 

EPLL method is shown in Figure 2(c). Figure 2(d) 

displays the result of K-SVD method. We can also 

observe that K-SVD tends to generate over-smoothed 

image and EPLL method often produces pseudo 

texture in image flat regions. Figure 2(e) demonstrates 

the denoised result of the EPLL method with gradient 

fidelity term. Compared with the above-mentioned 

image denoising methods, we find that our proposed 

method performs relatively well good. In Figure 2(f), 

our method can better preserve the edges and some 

textures in images. It is probably because our approach 

can adaptively select regularization parameters. We 

also compare the four methods on other kinds of image, 

such as plane image and human face image. The results 

are displayed in Figure 3 and Figure 4, respectively. 

Once again, from the two images, we can see that our 

method yields satisfying denoised images. 
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(a) Original building image in 

BSDS300 

(b) Noisy image with zero mean and 

variance 2
25δ =  

(c) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

   

(d) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

(e) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

(f) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

Figure 2. Comparison of the proposed method with other methods on building image 

   

(a) Original plane image in BSDS300 (b) Noisy image with zero mean and 

variance 2
25δ =  

(c) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

   

(d) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

(e) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

(f) EPLL, K-SVD, EPLL with 

gradient fidelity term and our method, 

respectively 

Figure 3. Comparison of the proposed method with other methods on plane image  
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(a) Original face image in BSDS300 (b) Noisy image with zero mean and 

variance 2
25δ =  

(c) EPLL, K-SVD, EPLL with 

gradient fidelity term and our 

method, respectively 

   

(d) EPLL, K-SVD, EPLL with gradient 

fidelity term and our method, 

respectively 

(e) EPLL, K-SVD, EPLL with gradient 

fidelity term and our method, 

respectively 

(f) EPLL, K-SVD, EPLL with 

gradient fidelity term and our 

method, respectively 

Figure 4. Comparison of the proposed method with other methods on human face image

Additionally, the peak signal-to-noise ratio (PSNR) 

value is used to quantitatively assess the denoised 

images, which are shown in Table1. From Table 1, we 

can clearly see that the PSNR value of our method are 

higher than other three methods, that is EPLL and K-

SVD, and EPLL with gradient fidelity term. This 

verifies that adaptive regularization parameters can 

enable the improved performance of EPLL method. 

Table 1. The PSNR (dB) results of different denoising 

methods 

Image Noisy 
Original 

EPLL 
K-SVD 

EPLL with gradient 

fidelity term 

our 

method 

zebra 24.10 27.22 26.23 27.56 27.61

building 24.82 30.03 28.59 30.09 30.27

plane 25.41 37.06 36.40 37.25 37.33

human face 25.41 32.49 31.72 32.60 32.75

5 Conclusions 

Image prior plays a significant role in various image 

regularization task. The GMM is a powerful tool for 

learning image prior and has attracted much attention 

in image restoration in recent years. In this paper, to 

improve the performance of image denoising method 

with GMM, that is EPLL based method, we present a 

new adaptive regularization parameter estimation 

method for it through using residual image statistics 

technique. Because of that we can adaptively assign 

regularization parameter values to different image 

structures, the herein proposed image denoising 

method can adjust the smoothing extent according to 

the image content. The experiment results illustrate that 

our method can produce visually satisfying denoised 

images. 
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