
Security Analysis and Improvement on an Image Encryption Algorithm Using Chebyshev Generator 13

Security Analysis and Improvement on an Image Encryption

Algorithm Using Chebyshev Generator

Tsu-Yang Wu1,2,3, Xiaoning Fan4, King-Hang Wang5, Jeng-Shyang Pan2,3, Chien-Ming Chen4*

1 College of Computer Science and Engineering, Shandong University of Science and Technology, China
2 Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, China
3National Demonstration Center for Experimental Electronic Information and Electrical Technology Education,

Fujian University of Technology, China
4 Harbin Institute of Technology (Shenzhen), China

5 Department of Computer Science and Engineering, Hong Kong University of Science and Technology

wutsuyang@gmail.com, 1203119830@qq.com, kevinw@cse.ust.hk,

jengshyangpan@fjut.edu.cn, chienming.taiwan@gmail.com

*Corresponding Author: Chien-Ming Chen; E-mail: chienming.taiwan@gmail.com

DOI: 10.3966/160792642019012001002

Abstract

Chaotic map including Chebyshev’s polynomial have

been studied and used in many cryptographic areas

recently due to its low cost of computation and high level

of security. Some research works have been proposed to

use Chebyshev’s polynomial in image encryption by

setting up two-stage encryption algorithms. Pixels of a

plain image are first permuted by a Permutation process.

Then each pixel values are changed by a Diffusion

process. A two-stage image encryption algorithm is

generally believed to be more secure than a single stage

image encryption algorithm.

In this paper, however, we demonstrate a recent two-

stage image encryption algorithm proposed by Wang et

al., is insecure against chosen plaintext attack. An

attacker may be able to decrypt a cipher image after

knowing some ciphers of images which are chosen by the

attacker. We present an subtle but efficient improvement

over Wang et al.’s algorithm so that it is not only immune

to the attack we presented but also statistically improved

when experiment is conducted to measure pixels’

correlation, NPCR and UACI.

Keywords: Image encryption, Chaotic map, Security,

Chosen plaintext attack

1 Introduction

Traditional symmetric key encryption algorithm

DES and AES are designed to encrypt general purpose

content and have been widely used in the world. With

the fast growth of image technologies, researchers are

still putting their efforts in designing new algorithm to

protect digital image from piracy, counterfeiting, or

simply data secrecy. This is due to the fact that image

encryption usually involves a large storage capacity

and a high correlation among pixels, therefore the

general purpose encryption scheme are too slow or

consume too many storage while not achieving a

significant better security.

Some recent works [1-18] studied the possibility of

applying chaotic maps on image encryption. There are

some nice properties, such as ergodicity, pseudo-

randomness, and sensitivity, from the chaotic map

hinting that it is a good candidate of primitives for

constructing an image encryption algorithm.

Recently researchers have been studying the

structure of two-stage encryption to further decorrelate

the adjacent pixels and to enhance image security. A

two-stage encryption algorithm can be roughly

understood as that pixels of a plain image is first

permuted and then modified according to key and the

previous processed pixel. In 2012, Huang [6] proposed

an efficient chaotic image encryption algorithm that

first generates two pseudorandom chaotic sequences by

a discrete Chebyshev function. The two sequences are

used to decorrelate adjacent pixels in a permutation

process. Then, a pseudorandom chaotic sequence is

generated by a two-dimensional Chebyshev function in

diffusion process. Recently, Wang et al. [8] pointed out

Huang’s image encryption algorithm is insecure

against a chosen plaintext attack. Meanwhile, they also

proposed a modification based on his encryption

algorithm so that they claim their algorithm would be

secure under a chosen plaintext attack model. In this

paper, however, we find Wang et al.’s encryption

algorithm is vulnerable against chosen plaintext and

chosen ciphertext attacks. In order to overcome the two

attacks, we propose an improvement based on Wang et

al.’s algorithm. The simulation results are shown that

our improved image encryption algorithm has a better

efficiency than Wang et al.’s algorithm.

The remainder of this paper is organized as follows.

14 Journal of Internet Technology Volume 20 (2019) No.1

In Section 2 we present the background of the

algorithm that includes Chebyshev’s polynomial, some

related works, and our adversary model. It is followed

by a review of Wang et al.’s image encryption

algorithm in Section 3. Then we present security flaws

of Wang et al.’s algorithm under a chosen plaintext

attack and our improvement in Section 4 and 5

respectively. Some experiment results and analyses are

given in Section 6 and a conclusion is given in Section

7.

2 Background

2.1 Chebyshev Polynomial

Many crypto research including Wang et al.’s adopt

Chebyshev chaotic function in their design. It is

because that a Chebyshev chaotic function provides

three good properties:

1. Ergodicity. Given a fixed domain, the chaotic

function will traverse the entire corresponding range

within a finite time.

2. Sensitivity. For an arbitrarily small change or

perturbation, the result of chaotic function may output

significantly different values.

3. Pseudo randomness. This property is coming from

the ergodicity and the sensitivity.

The Chebyshev chaotic function, sometime also

referred as the Chebyshev polynomial, of the order n

[19-27] is recursively defined over real number by

1 2

1, 0

() , 1

2 () (), 2

n

n n

 if n

T x x if n

x T x T x if n
− −

=⎧
⎪

= =⎨
⎪ ⋅ − >⎩

 (1)

where (), [1,1].
n
T x x∈ − It can also be expressed as

() :[1,1] [1,1]
n
T x − → − by

 () cos(arccos) 0,1,...
n

T x n x for n= = (2)

A two dimensional Chebyshev function [28] is

recursively defined by

2

1

1

1

cos(arccos)

i i

i i

x y

y x

α

β

−

−

⎧ = − ⋅⎪
⎨

= ⋅⎪⎩
 (3)

for given two control parameters ,α β and initial values

x0 and y0 ∈ (−1, 1). This two dimensional function

allows us to process on a 2D image easier later.

2.2 Related Works

Our research is aiming at presenting a vulnerability

of Wang et al. [8] which is motivated by the

philosophy of Huang’s research [6] which has been

cracked by Wang et al in their paper. We will give a

more detail description of Wang et al.’s scheme in a

later section. Here we present some relevant works in

the literature.

Chaotic maps have been received more and more

attentions from research community when designing

image encryption algorithms. Some literature [2, 5, 7,

10] adopt diffusion process only in their encryption

algorithms. Behnia et al. [2] proposed a novel image

encryption algorithm based on coupled maps. It

combines one-dimensional and two-dimensional

chaotic maps to generate random sequences for hiding

the pixel values of the image. Hussian et al. [5]

proposed an image encryption algorithm with

combining a NCA map [29] and a S8 S-box [30].

However, Zhang and Xiao [7] showed that Hussian et

al.’s algorithm is insecure against chosen plaintext

attack. They concluded that S-box-only image ciphers

cannot be secure against chosen plaintext attacks.

To break through the security limits of diffusion-

only schemes, researchers [1, 3-4, 6, 8-9, 11] adopt

both permutation (confusion) and diffusion processes

with two separated encryption keys to strengthen their

encryption systems. Gao and Chen [1] used two

shuffling vectors generated by a Logistic map to

scramble the rows and columns of image pixels and

then encrypted the shuffling image by a hyper-chaos

system. However, Rhouma and Belghith [3] found

their algorithm is insecure against chosen plaintext and

chosen ciphertext attacks and proposed their

improvement scheme. Jeng et al. [11] later pointed out

that the Rhouma-Belghith improvement and the Gao-

Chen algorithm have low sensitivity towards the

changes in the plain image which suggested their

schemes are vulnerable to chosen-plaintext attacks. On

a separated branch Liu and Wang [4] proposed a

chaotic color image encryption algorithm. In their

encryption process only each RGB channel is

encrypted separately using a key generated by a

piecewise linear Chebyshev map.

In the work by Wang and Guo [9], a chaotic

sequence is generated by a Logistic map to shuffle the

position of plain image. This encryption process is

repeated for many rounds in order to decorrelate pixels.

However, Yap et al. [12] found that the Wang and

Guo’s encryption algorithm [9] is insecure against the

differential attack where then two chosen images are

encrypted the differential information of these two

cipher will allow the attacker to break the system. Such

a technique is also employed in our paper, but in a

different way. Xu et al. [15] presented an algorithm

that divides the plain image is into two sequences for

processing. This idea is also adopted in Huang [6], the

trunk of our research branch. Later Wang et al. [13],

Wang et al. [14], and Ye and Huang [16] proposed

their own schemes that use different technologies like

Logistic map, Tent map, coupled map lattice, DNA

sequence operation, 3D cat map, and SHA-3 hash

function.

As we can see many of the recent research

mentioned above share some similar properties:

1. Using both confusion and diffusion processes in

Security Analysis and Improvement on an Image Encryption Algorithm Using Chebyshev Generator 15

their algorithm design.

2. Using two separated key generated by a chaotic

map.

3. Recognizing the importance of chosen plaintext

attacks and trying to avoid it in their design, regardless

if they can avoid it or not.

We presented the differential attacks on a particular

encryption algorithm in this paper while we did not

deny the possibility that our attack can also be applied

on some other algorithms that share the same

properties. In fact we are working toward to explore

such possibility.

2.3 Attacker Models

The terms Chosen Plaintext Attacks (CPA), one-

wayness (OW), indistinguishable (IND) are commonly

used in the crypto-community to describe different

models. CPA describes the capability of an adversary

while OW and IND describes different goals of the

adversary. We briefly describe them in this section.

Readers may take the following references [3, 7-8, 11,

31-33] if they are keen to explore further.

Chosen Plaintext Attacks. In this attack model, we

assume that adversary A has obtained a temporary

access of encryption machinery E. Then, A can choose

a set of plain images P to construct the corresponding

cipher images C. The adversary shall use this

machinery as a black-box without knowing the internal

states of it nor the key. Then, the adversary will be

challenged with an encrypted image. With the

challenge the attacker needs to complete a specific goal.

This goal could be OW or IND.

One-wayness (OW). With the given challenge the

adversary would need to produce the corresponding

plaintext.

Indistinguishable (IND). He will be required to

differentiate the plain image of the encrypted image

and a random image with the same size.

We name OW-CPA or IND-CPA for a chosen

plaintext attacker who need to perform OW or IND

respectively. When we say it is secure against OW-

CPA or IND-CPA that means no polynomial time

adversary could achieve their goal with CPA capability.

3 Review of Wang et al.’s Image

Encryption Algorithm

The notations used in Wang et al.’s algorithm [8] are

summarized in Table 1 and the flowchart of their

algorithm is depicted in Figure 1. Wang et al.’s

algorithm consists of three main processes: Sequences

Generation, Permutation, and Diffusion. Briefly

speaking, in the process Sequences Generation two set

of encryption sequences are generated. One set as

denoted by (H, L), is used in the permutation process

and is referred as the permutation key. The other set, as

denoted by
1

{ }mn
i i

µ
=

, is used in the diffusion process and

is referred as the diffusion key. In the Permutation

process, a 2D monocolor image I will be scrambled by

the permutation key resulting a 2D monocolor image I′

such that the position of each pixel will be different.

The image will be transformed into a 1D vector v and

processed by the diffusion process. The diffusion

process will encrypt each pixel using the diffusion key

and resulting a cipher vector c′. By rearranging the

cipher vector it becomes a cipher image c.

Table 1. Table of Notations

Notation Meanings

I An 8-bit gray image with size m×n

C
A cipher image with the same size as the plain

image.

0 0
ˆ(,)x x

The encryption key for the Permutation

process.

(x0, y0)
The encryption key for the Diffusion process.

p, q System parameters for the Permutation key.

r

A system parameter for the Diffusion key.

H, L
The Permutation key – encryption sequences

for the Permutation process.

1
{ }mn

i i
u

=
The Diffusion key – an encryption sequence

for the Diffusion process.

x mod y The remainder of x divided by y.

c0, t
Two arbitrary constants used in the Diffusion

process.

g(·) Any simple function, for example, g(x) = x.

x << y
A bitwise cyclic left shift operation on x by

y-bits.

),,ˆ,(00 qpxx),,(00 ryx

Generating sequences

 H&L

Generating sequence

}{
i

µ

Permutation

Process

Transforming

into one

dimension

vector

Diffusion

Process

Rearranging into

two dimension

matrix

plain image I I' V

C'Cipher image C

Figure 1. The flowchart of Wang et al.’s algorithm

3.1 Details of the Wang et al.’s Scheme

1. Generating Pseudo-random sequences.

‧ Inputs: The encryption key
0 0 0 0
ˆ(, , ,)x x x y and the

system parameters (p, q, r)

‧ Outputs: Two sets of encryption sequences: the

permutation key (H, L) where H is size m, L with

size n, and the diffusion key { }
i
u with size m×n.

‧ Procedures - Generating the Permutation Key:

(a) The process computes two chaotic sequences

0 0
ˆ{ } { }

i i i i
x and x

∞ ∞

= =
using the following iterations with

the inputted initial values
0 0

ˆx and x .

16 Journal of Internet Technology Volume 20 (2019) No.1

 4 2

1 1
8 8 1,

i i i
x x x

− −

= − + (4)

(b) It defines two new sequences
1 1

{ } { }m n m n p

i i i i p
x x

+ + +

= = +
′ ′=

and
1 1

ˆ ˆ{ } { }m n m n q

i i i i q
x x

+ + +

= = +
= . Then, dividing the sequence

1
{ }m n

i i
x

+

=
′ into two parts

1 1 2 1
{ } { }m m n

i i i i m
P x and P x

+

= = +
′ ′= = .

Similarly, the sequence
1

ˆ{ }m n

i i
x

+

=
′ is divided into

1 1
ˆ{ }n
i i

Q x
=

′= and
2 1

ˆ{ }m n

i i n
Q x

+

= +
′= .

(c) P2 and Q2 are then sorted ascendingly and the

original position of each terms, becomes the sequences

S1 and S2. So for example if P2 = {0.4, −0.2, 0.3, 0.5},

S1 would be {2, 3, 1, 4}. Note the length of S1 and S2

would be n and m respectively. Each element in S1 and

S2 would be a unique integer in the range [1, n] and [1,

m] respectively. Then, it reorders the sequences Q1 and

P1 according S1 and S2 respectively, the resulted

sequences are called
11

Q and P′ ′ .

(d) Two sequences
11

Q and P′ ′ are then sorted again

ascendingly and the original position of each terms

becomes the sequences H and L respectively. Note that

H has m unique elements from [1, m] and L has n

unique elements from [1, n].

‧ Procedures - Generating the Diffusion Key:

(a) Assume r is a defined system parameter, a

chaotic sequence

1 1 1 2 2 / 2 / 2

{ } { , , , , , , }mn

i i r r r r mn mn
w x y x y x y

= + + + +
= �

is defined using the two-dimensional Chebyshev

iteration as follows:

2

1

1

1 2

cos(6 arccos)

i i

i i

x y

y x

−

−

⎧ = − ⋅⎪
⎨

= ⋅⎪⎩
 (5)

where x0 and y0 are two secret keys. Note that the

sequence {wi} has a length mn.

(b) We output the diffusion key as the sequence

1
{ }mn

i i
µ

=

 by the following:

 14mod(10 ,256).
i i

wµ ⎢ ⎥= ×⎣ ⎦ (6)

2. Permutation process.

(a) Inputs: An 8-bit gray color m-by-n pixels plain

image I and the Permutation keys H and L.

(b) Outputs: An 8-bit gray color m-by-n pixels

scrambled image I′.

(c) Procedures: The image I is treated as 2D array.

For each row i in I will be moved to a new row

according to the i-th element in H. On each column j of

the resulting array will be moved to a new column

according to the j-th element in L. The shifted array is

assigned as the scrambled image I′.

3. Diffusion process.

(a) Inputs: The Diffusion key
1

{ }mn
i i

µ
=

and a length-mn

1D vector v transformed from the scrambled image I′,

by scanning it from top to bottom, left to right.

(b) Outputs: A length-mn 1D vector c′ which can be

transformed back to an encrypted image c by filling the

pixel with the value in c′, from top to bottom, left to

right.

(c) Procedures: For each vi ∈ v for i = 1, 2,…, mn,

computes

1

(mod 256)
i i i i i

c v t u c µ
−

′= + ⋅ + ⊕ (7)

and

 (()) mod(8)
i i i i

c g c mod µ µ′ = ⊕ << (8)

where t and c0 are two arbitrary constants and g is an

arbitrary simple function. It returns c′ =

1 2

{ , , , }
mn

c c c′ ′ ′
… .

4 Cryptanalysis on Wang et al.’s

Algorithm

In this section, we show that Wang et al.’s image

encryption algorithm is insecure against a chosen

plaintext attack. As we are going to illustrate in this

attack, the attacker may recover the sequences H and L

after requesting at most max(m, n) number of chosen

plaintext. Then, using H and L the attacker can recover

all unencrypted pixels from a challenge image c.

4.1 Recover Sequences H and L

We depict the algorithm for recovering the

Permutation key in Algorithm 1. The idea is to

construct a pair of twins images with one pixel

difference. In the Permutation process this pixel will be

shifted to another coordinate, says (i, j). Since an

image is encrypted sequentially in the Diffusion

process, the pixels before (i, j) of the twins images

would be identical and diffused at (i, j) onwards. That

implies (i, j) is the starting point of the differentiation.

That would reveal the value of one element of the H

and L permutation keys. Iterating the process through

the size of the permutation keys (depends which one is

larger) would allow us to recover the entire key pair.

For better illustration, we demonstrate one iteration

(k = 55) of the attack on a square size image as an

example. Two plain images P and Pk with only one

pixel value different at the position (55, 55) are

constructed, as shown in Figure 2(a) and Figure 2(b),

where P is set 100 and Pk is set 200. The attacker

requests the encryption of P and Pk from the encryption

oracle and produced C and Ck respectively, as shown in

Figure 2(c) and Figure 2(d).

Computing C ⊕Ck and then scanning the image

from top to bottom, left to right, to search the first non-

zero element. The element is at (107, 3) as shown in

Figure 3. Thus, we can find the 55-th row is permuted

to the 107th row and the 55-th column is permuted to

the 3th column, say H(107) = 55 and L(3) = 55. In

Table 2, we demonstrate some recovered values of H

and L.

Security Analysis and Improvement on an Image Encryption Algorithm Using Chebyshev Generator 17

(a) P (b) Pk

(c) C (d) Ck

Figure 2. The twins images P and Pk created with only

the position (55, 55) and their cipher images C and Ck

Figure 3. C ⊕Ck. It is observed that pixels have a

value of zero (black) before the position (107; 3)

Table 2. Array H[] and L[] after executing the 55-th

iteration

index 1 … 54 55 56 … 256

H[] 43 … 242 107 - … -

L[] 2 … 68 3 - … -

Algorithm 1. Recovering H and L

procedure Recovering(Encryption oracle: O, Image dimension: m, n)

Define size m integer array H, size n integer array L.

P ← random image with size m-by-n.

C ← O(P) ◃ Request the cipher image C of P.

for k ← 1, max(m, n) − 1 do

km ← k mod m, kn ← k mod n.

Pk ← P

Change the pixel (km, kn) of Pk to a random value.

Ck ← O(Pk) ◃ Request the cipher image Ck of Pk.

(i, j) ← the coordinate of the first non-zero element of Ck ⊕ C.

H[km] ← i, L[kn] ← j.

end for

Fill the last blank cell in H[] and L[] by the missing value.

return H ← H[], L ← L[].

end procedure

4.2 Breaking the Indistinguishability

In the IND-CPA model the attacker should be

unable to distinguish which a cipher image is

encrypted from either of the two same size images. We

present a way for the attacker to break this

indistinguishability.

Let I be a 2D array representing a plain image. We

define I′ = π(I) where π a permutation of the elements

according to the Permutation process and I′ is an 2D

array representing the scramble image. We denote

I[y][x] (respectively I′[y][x]) as the y-th row, x-th

column pixel of the image I (respectively I′). We use

the symbol ′ to denote the new position of a pixel after

the Permutation process, that is, a pixel of an image I at

the coordinate (i, j) will be shifted to the coordinate (i′,

j′) after the Permutation process. In other words, I[y][x]

= I[y′][x′] for every possible y and x.

Given the H and L obtained in Subsection 4.1, the

attacker would be feasible to compute the function π

and its inverse π−1 and also (y′, x′) for every pair (y, x).

The attacker creates 256 scrambled images
i
I ′ for i ∈

[0, 255], so that points on these images are random

except the pixel [1][1] .
i
I i′ = In other words, the first

pixel of this set of scrambled images should be takes

all possible values from 0 to 255. The attacker requests

the encryption of all plain images Ii, which can be

computed by π−1(I′i), from the encryption oracle. The

first bit outputted from the Diffusion process,
1
c′ ,

depends on the Diffusion key, constants, and the first

pixel of the scrambled images only. Therefore the first

18 Journal of Internet Technology Volume 20 (2019) No.1

bit of the cipher of these images should be all different.

A table storing i and the corresponding
1
c′ are built.

This table should contains exactly 256 entries.

Then the attacker is given a challenge cipher image

and two plain images to decide which one produces the

cipher image. What the attacker needs to do is to

scramble the two plain images and look at the first

pixels of them. From the table just created the attacker

find the corresponding value
1
c′ and compare that with

the first pixel of the cipher image.

By this the attacker would be able to distinguish

which plain image produces the cipher text.

This algorithm fails only when the first pixel of the

scrambled version of the two plain images are the same,

with probability 1/256. And the algorithm can be

extended to enumerate all first k-bits of the scrambled

images with the cost of 256k oracle queries where the

failure probability would be suppressed to 1/256k.

We declare the insecurity of Wang et al. algorithm

while we only need not more than max(m, n) + dk of

non-adaptive encryption oracle queries in total to break

their algorithm where m, n are the dimension of the

image, d is the color depth of the image (d = 256 in this

case)with success rate 1 −1/dk.

4.3 Completely Decrypting a Cipher Image

In the above section we have already demonstrated

their algorithm is insecure with a small number of

encryption oracle queries. In this section we

demonstrate how to decrypt a cipher image with a

chosen plaintext attack, i.e., proving the system in not

OW-CPA secure.

Again we assume the permutation key is obtained

and the permutation function π is computable by the

attacker. The basic idea of the attack is to match each

pixel of the encrypted images by querying some

prepared images. Since the permutation is known and

the encryption of each pixel depends on the key and a

previous pixel, the adversary can recover one pixel

with at most 256 queries. We describe the attack in

Algorithm 2.

Figure 4 demonstrates a snapshot of reconstructed

images using the above algorithm.

(a) Cipher image c′ (b) Intermediate result (c) Final result

Figure 4. Snapshot of reconstructed images. The first on shows the cipher image. The second one shows the

intermediate result when y = x = 50. The final one shows the complete decrypted image which is the same as the

plain image

Algorithm 2. Decrypting a cipher image

procedure Decrypting(Cipher: c′, Encryption oracle: O, Permutation Function π)

Define size m-by-n integer array p.

for y ← 1, m do

for x ← 1, n do

for i ← 0, 255 do

i
I ′ ← p

i
I ′ [y][x] ← i

C ← O(π−1(
i
I ′)) ◃ π−1(

i
I ′) unscrambles

i
I ′ .

if C[y][x] = c′[y][x] then

p[y][x] ← i

Continue in x-loop.

end if

end for

end for

end for

return I ← p.

end procedure

Security Analysis and Improvement on an Image Encryption Algorithm Using Chebyshev Generator 19

5 Our Improvement and Simulation

Results

5.1 Our Improvement

Based on Wang et al.’s image encryption algorithm

we propose an improvement to overcome the

mentioned weaknesses. Learnt from the above analysis

their algorithm is vulnerable against differential attacks.

We try to improve their algorithm by amending the

Permutation Key generation while keeping the rest of

the encryption algorithm remains the same. The basic

idea is that we generate the Permutation Key with

some partial information of the plain image where

these partial information can also be computed from

the ciphertext as well. Alternatively it could be

understood as having a function G : I → R such G(I) =

G(π(I)) and G(I) is used to generated the Permutation

Key. Some statistical functions like mean, standard

deviation, max/min, mode, etc satisfies the equality. In

the following context, we assume G is chosen as the

mean function divided by 256 (the color depth of the

image) so that we can assert any pixel change will after

the value computed from G while the value of G is

normalized between [0, 1].

Permutation Key Generation:

1. Inputs: The encryption key
0 0

ˆ(, ,)x p x , the plain

image I (alternatively the scrambled image obtained in

the decryption process), and the system parameters (p,

q).

2. Outputs: The permutation key (H, L) where H is

size m, L with size n.

3. Procedures - Generating the Permutation Key:

(a) Compute t = G(I) where G(I) =
1 1

[][]

256

m n

y x

I y x

m n

= =

× ×

∑∑
.

(b) The process computes two chaotic sequences

0 0
ˆ{ } { }

i i i i
x and x

∞ ∞

= =
using the following iterations with

the inputted initial values
0 0

ˆx t and x t× × .

 4 2

1 1
8 8 1

i i i
x x x .

− −

= − + (9)

The result of the process remains the same, namely:

(c) It defines two new sequences
1 1

{ } { }m n m n p

i i i i p
x x

+ + +

= = +
′ ′=

and
1 1

ˆ ˆ{ } { }m n m n q

i i i i q
x x

+ + +

= = +
= . Then, dividing the sequence

1
{ }m n

i i
x

+

=
′ into two parts

1 1 2 1
{ } { }m m n

i i i i m
P x and P x

+

= = +
′ ′= = .

Similarly, the sequence
1

ˆ{ }m n

i i
x

+

=
′ is divided into

1 1
ˆ{ }n
i i

Q x
=

′= and
2 1

ˆ{ }m n

i i n
Q x

+

= +
′= .

(d) P2 and Q2 are then sorted ascendingly and the

original position of each terms, becomes the sequences

S1 and S2. So for example if P2 = {0.4, −0.2, 0.3, 0.5},

S1 would be {2, 3, 1, 4}. Note the length of S1 and S2

would be n and m respectively. Each element in S1 and

S2 would be a unique integer in the range [1, n] and [1,

m] respectively. Then, it reorders the sequences Q1 and

P1 according S1 and S2 respectively, the resulted

sequences are called
11

Q and P′ ′ .

(e) Two sequences
11

Q and P′ ′ are then sorted again

ascendingly and the original position of each terms

becomes the sequences H and L respectively. Note that

H has m unique elements from [1, m] and L has n

unique elements from [1, n].

The output Permutation key will be used in the

Permutation phase of the encryption and the decryption.

Note that the decryption would require the scrambled

image, which is computed at the inverse of the

diffusion process, as an input to generate the

permutation key. Since the permutation does not

change the statistics of the image thus the selected

function G would satisfies G(I) = G(π(I)).

6 Implementation and Analysis

We have implemented Wang et al.’s algorithm and

our improvement with C++ on a Windows 7 32-bits

desktop machine, running against some sampled

images. The running time our algorithm is around

200ms for a 256 × 256 gray image and 700ms for a 720

×576 gray image. It incurs on average 5.8% additional

running time over Wang et al’s algorithm. We analysis

our algorithm with the following security perspectives

to inspect if the encrypted image is statistically random

and robust against differential attacks.

6.1 Histogram Analysis

The histogram of a plain image shows the

statistically distribution of the pixels. Figure 5, Figure

6, Figure 7 show three sets of the histogram of a plain

image and the corresponding cipher image. As we can

see the statistical information has been destroyed after

encryption.

6.2 Correlation Analysis

We then look at the correlation between two

adjacent pixels. In plain image two adjacent pixels are

highly correlated. The correlation coefficients rx,y are

defined among pixels by

()

() ()
xy

cov x, y
r

D x D y
= (10)

where

1

() (())(())
N

i i

i 1

cov x, y x E x y E y
N

=

= ∑ － － (11)

1

()
N

i

i 1

E x x
N

=

= ∑ (12)

20 Journal of Internet Technology Volume 20 (2019) No.1

(a) Plain image (b) Histogram of the image (c) Histogram of the Cipher

Figure 5. Histogram analysis of CameraMan

(a) Plain image (b) Histogram of the image (c) Histogram of the Cipher

Figure 6. Histogram analysis of Baboon

(a) Plain image (b) Histogram of the image (c) Histogram of the Cipher

Figure 7. Histogram analysis of Lena

 21
() (())

N

i

i 1

D x x E x
N

=

= ∑ － (13)

Here x and y denote the gray values of two adjacent

pixels in an image I, while N denotes the number of

sampled pixel pairs. The correlation coefficients of two

adjacent pixel should be closer to zero to indicate the

pixels are less correlated.

We randomly sample the adjacent pixels from a

ciphertext in horizontal, vertical, and diagonal

directions. Tests are conducted on two sets of 10

images encrypted by Wang et al’s algorithm and ours.

The result are displayed in Table 3.

With these data we conduct a paired t-Test with

confidence level 95% assumption the initial hypothesis

H0 they have a different same mean and alternative

hypothesis H1 is they have the same mean. With α =

0.05, df = 29, the critical value is given in the t-table

t0.05 = 2.045. The calculated test statistic t∗ = 0.117 340

< t0.05 and therefore we reject H0, i.e., they have the

same mean. This conclude that our improvement share

the same correlation test performance as Wang et al’s

algorithm.

Security Analysis and Improvement on an Image Encryption Algorithm Using Chebyshev Generator 21

Table 3. Result of Correlation Test

Wang et al’s algorithm Our Improvement
Images

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena(256×256) -0.064 0.0064 0.0147 0.007 0.0139 -0.0063

CameraMan(256×256) 0.0028 -0.0365 0.0423 -0.0353 -0.0209 -0.0047

Baboon (512×512) -0.0289 0.0568 0.0137 -0.0236 0.0183 0.0025

Boats(720×576) -0.0272 0.0751 -0.0026 -0.0288 -0.0362 -0.0315

Barbara(720×580) 0.0719 -0.0227 0.0157 0.0172 0.0013 -0.0126

Dog(290×180) -0.0238 0.0237 -0.0714 -0.0508 0.021 0.0034

Flower(453×502) -0.0048 -0.0049 -0.0521 0.0833 0.0247 -0.0158

Fruit(444×336) -0.0137 0.0117 -0.0258 0.0539 0.0047 -0.0084

Girl(244×202) -0.016 0.0335 0.024 -0.0113 -0.0454 0.0222

Tree(402×265) -0.0035 0.0265 0.0019 0.0161 0.0052 0.0304

6.3 NPCR and UACI

NPCR (number of pixels change rate) and UACI

(Unified average changing intensity) are widely used to

evaluate the sensitivity of an image encryption

algorithm [2, 4-6, 9-11, 14-15]. They are defined as

follows:

()

100%
i , j

D i,j

NPCR
m n

= ×

×

∑
 (14)

and

 1 2
| () () |

100%
255i ,j

C i,j C i,j
UACI

m n

⎡ ⎤−
= ×⎢ ⎥

× ×⎣ ⎦
∑ (15)

where

2

2

0 () ()
()

1 () ()

1

1

 C i,j C i,j
D i,j

 C i,j C i,j

=⎧
= ⎨

≠⎩
 (16)

C1 and C2 are two cipher images with size m × n whose

the corresponding original plain images have only one

pixel different. The ideal value of NPCR is254/255 =

0.996 while the ideal value of UACI is 0.5 if the

statistically distribution of the ciphertexts is random

white noise.

The performances of our algorithm against Wang et

al’s algorithm are summerized in Table 4. It is easy to

see that our improvement has a better statistical

performance than Wang et al’s algorithm in NPCR, and

UACI. This meets our expectation where our

improvement is designed to prevent differential attacks.

Table 4. Comparisons of performances between Wang et al.’s algorithm and our improvement

Test
Cipher image

(Wang et al.)

Cipher image

(Our algorithm)
Improvement(%)

NPCR(%)

Lena

CameraMan

Baboon

0.581985

0.581985

0.741348

0.996231

0.995956

0.99601

71.17%

71.13%

24.35%

UACI(%)

Lena

CameraMan

Baboon

0.195764

0.196763

0.248687

0.333317

0.335368

0.334766

70.26%

70.44%

34.61%

6.4 Security Against Differential Attacks

Apparently the differential attack for Wang et al.’s

algorithm cannot be directly applied here since the

differential images have a different average. Despite

this difference is very subtle (1/(256 × m × n)),

Chebyshev’s iteration is very sensitive to this

difference and the permutation key would therefore be

completely different.

Readers may find some sort of modification can be

done and mount the same attack against our algorithm.

For example, one may consider swapping two pixels in

a plain image and analyzing the differential results. In

this case, truly the permutation could be retrieved.

However, that is only confined to the images with the

same pixels-mean. When a challenge cipher is given to

an attacker, the value of the pixels-mean is not known

to him. Therefore even if the attacker has a set of

permutation keys for several different pixels-mean he

will be unable to figure out which set of permutation

key to try.

7 Conclusion

In this paper we present the vulnerability of Wang et

al.’s algorithm and present our improvement with

significant performance. The main reason that allows

us to break their algorithm is the fact that Permutation

22 Journal of Internet Technology Volume 20 (2019) No.1

process is deterministic and can be removed by a finite

number of oracle queries. Our improvement allows the

Permutation process reacts differently against each

image. We also recognize the risk of using mean to

implement G. In our future research we will study how

G can be better chosen so that it provides a better

security statistically and not scarifying too many

computation advantage.

Acknowledgements

The authors would thank the reviewers’ constructive

suggestions and comments. The work of Tsu-Yang Wu

was supported in part by the Science and Technology

Development Center, Ministry of Education, China

under Grant No. 2017A13025 and the Natural Science

Foundation of Fujian Province under Grant No.

2018J01636. The work of Chien-Ming Chen was

supported in part by Shenzhen Technical Project under

Grant number JCYJ20170307151750788 and in part

by Shenzhen Technical Project under Grant number

KQJSCX20170327161755.

References

[1] T. Gao, Z. Chen, A New Image Encryption Algorithm Based

on Hyper-chaos, Physics Letters A, Vol. 372, No. 4, pp. 394-

400, January, 2008.

[2] S. Behnia, A. Akhshani, H. Mahmodi, A. Akhavan, A Novel

Algorithm for Image Encryption Based on Mixture of Chaotic

Maps, Chaos, Solitons & Fractals, Vol. 35, No. 2, pp. 408-

419, January, 2008.

[3] R. Rhouma, S. Belghith, Cryptanalysis of a New Image

Encryption Algorithm Based on Hyper-chaos, Physics Letters

A, Vol. 372, No. 38, pp. 5973-5978, September, 2008.

[4] H. Liu, X. Wang, Color Image Encryption Based on One-

time Keys and Robust Chaotic Maps, Computers &

Mathematics with Applications, Vol. 59, No. 10, pp. 3320-

3327, May, 2010.

[5] I. Hussain, T. Shah, M. A. Gondal, An Efficient Image

Encryption Algorithm Based on S8 S-box Transformation

and NCA Map, Optics Communications, Vol. 285, No. 24, pp.

4887-4890, November, 2012.

[6] X. Huang, Image Encryption Algorithm Using Chaotic

Chebyshev Generator, Nonlinear Dynamics, Vol. 67, No. 4,

pp. 2411-2417, March, 2012.

[7] Y. Zhang, D. Xiao, Cryptanalysis of S-box-only Chaotic

Image Ciphers against Chosen Plaintext Attack, Nonlinear

Dynamics, Vol. 72, No. 4, pp. 751-756, June, 2013.

[8] X. Wang, D. Luan, X. Bao, Cryptanalysis of an Image

Encryption Algorithm Using Chebyshev Generator, Digital

Signal Processing, Vol. 25, pp. 244-247, February, 2014.

[9] X. Wang, K. Guo, A New Image Alternate Encryption

Algorithm Based on Chaotic Map, Nonlinear Dynamics, Vol.

76, No. 4, pp. 1943-1950, June, 2014.

[10] J. Zhao, S. Wang, Y. Chang, X. Li, A Novel Image

Encryption Scheme Based on an Improper Fractional-order

Chaotic System, Nonlinear Dynamics, Vol. 80, No. 4, pp.

1721-1729, June, 2015.

[11] F.-G. Jeng, W.-L. Huang, T.-H. Chen, Cryptanalysis and

Improvement of Two Hyper-chaos-based Image Encryption

Schemes, Signal Processing: Image Communication, Vol. 34,

pp. 45-51, May, 2015.

[12] W.-S. Yap, R. C.-W. Phan, W.-C. Yau, S.-H. Heng,

Cryptanalysis of a New Image Alternate Encryption

Algorithm Based on Chaotic Map, Nonlinear Dynamics, Vol.

80, No. 3, pp. 1483-1491, May, 2015.

[13] X. Wang, L. Liu, Y. Zhang, A Novel Chaotic Block Image

Encryption Algorithm Based on Dynamic Random Growth

Technique, Optics and Lasers in Engineering, Vol. 66, pp.

10-18, March, 2015.

[14] X.-Y. Wang, Y.-Q. Zhang, X.-M. Bao, A Novel Chaotic

Image Encryption Scheme Using DNA Sequence Operations,

Optics and Lasers in Engineering, Vol. 73, pp. 53-61,

October, 2015.

[15] L. Xu, Z. Li, J. Li, W. Hua, A Novel Bit-level Image

Encryption Algorithm Based on Chaotic Maps, Optics and

Lasers in Engineering, Vol. 78, No. 4, pp. 17-25, March,

2016.

[16] G. Ye, X. Huang, A Feedback Chaotic Image Encryption

Scheme Based on Both Bit-level and Pixel-level, Journal of

Vibration and Control, Vol. 22, No. 5, pp. 1171-1180, March,

2016.

[17] Q. Zhang, Y. Guo, W. Li, Q. Ding, Image Encryption Method

Based on Discrete Lorenz Chaotic Sequences, Journal of

Information Hiding and Multimedia Signal Processing, Vol.

7, No. 3, pp. 576-586, May, 2016.

[18] Y. Suryanto, Suryadi, K. Ramli, A Secure and Robust Image

Encryption Based on Chaotic Permutation Multiple Circular

Shrinking and Expanding, Journal of Information Hiding and

Multimedia Signal Processing, Vol. 7, No. 4, pp. 697-713,

July, 2016.

[19] X. Liao, F. Chen, K.-W. Wong, On the Security of Public-key

Algorithms Based on Chebyshev Polynomials over the Finite

Field ZN, IEEE Transactions on Computers, Vol. 59, No. 10,

pp. 1392-1401, October, 2010.

[20] C.-M. Chen, L. Xu, T.-Y. Wu, C.-R. Li, On the Security of a

Chaotic Maps Based Three-party Authenticated Key

Agreement Protocol, Journal of Network Intelligence, Vol. 1,

No. 2, pp. 61-66, May, 2016.

[21] C.-M. Chen, W. Fang, K.-H. Wang, T.-Y. Wu, Comments on

an Improved Secure and Efficient Password and Chaos-based

Two-party Key Agreement Protocol, Nonlinear Dynamics,

Vol. 87, No. 3, pp. 2073-2075, February, 2017.

[22] C.-M. Chen, C.-T. Li, S. Liu, T.-Y. Wu, J.-S. Pan, A Provable

Secure Private Data Delegation Scheme for Mountaineering

Events in Emergency System, IEEE Access, Vol. 5, No. 1, pp.

3410-3422, February, 2017.

[23] M. Yu, Z. Du, X. Liu, D. Qun, H. Chen, The Method of

Obtaining Best Unary Polynomial for the Chaotic Sequence

of Image Encryption, Journal of Information Hiding and

Multimedia Signal Processing, Vol. 8, No. 5, pp. 1103-1110,

Security Analysis and Improvement on an Image Encryption Algorithm Using Chebyshev Generator 23

September, 2017.

[24] H. Zhu, Y. Zhang, An Efficient Chaotic Maps-based Deniable

Authentication Group Key Agreement Protocol, Wireless

Personal Communications, Vol. 96, No. 1, pp. 217-229,

September, 2017.

[25] N. Lin, H. Zhu, Enhancing the Security of Chaotic Maps-

based Password-authenticated Key Agreement Using Smart

Card, Journal of Information Hiding and Multimedia Signal

Processing, Vol. 8, No. 6, pp. 1273-1282, November, 2017.

[26] C.-M. Chen, K.-H. Wang, T.-Y. Wu, E. K. Wang, On the

Security of a Three-party Authenticated Key Agreement

Protocol Based on Chaotic Maps, Data Science and Pattern

Recognition, Vol. 1, No. 2, pp. 1-10, December, 2017.

[27] D. Fang, S. Sun, A New Scheme for Image Steganography

Based on Hyperchaotic Map and DNA Sequence, Journal of

Information Hiding and Multimedia Signal Processing, Vol.

9, No. 2, pp. 392-399, March, 2018.

[28] L. Wang, Q. Ye, Y. Xiao, Y. Zou, B. Zhang, An Image

Encryption Scheme Based on cross Chaotic Map, CISP 2008-

2008 International Congress on Image and Signal Processing,

Sanya, China, 2008, pp. 22-26.

[29] M. I. Sobhy, A.-E. Shehata, Methods of Attacking Chaotic

Encryption and Countermeasures, ICASSP 2001 - 2001 IEEE

International Conference on Acoustics, Speech, and Signal

Processing, Salt Lake, UT, 2001, pp. 1001-1004.

[30] I. Hussain, T. Shah, H. Mahmood, A New Algorithm to

Construct Secure Keys for AES, International Journal of

Contemporary Mathematical Sciences, Vol. 5, No. 26, pp.

1263-1270, January, 2010.

[31] C.-M. Chen, B. Xiang, K.-H. Wang, K.-H. Yeh, T.-Y. Wu, A

Robust Mutual Authentication with a Key Agreement Scheme

for Session Initiation Protocol, Applied Sciences, Vol. 8, No.

10, 1789, October 2018.

[32] K.-H. Wang, C.-M. Chen, W. Fang, T.-Y. Wu, On the

Security of a New Ultra-lightweight Authentication Protocol

in IoT Environment for RFID Tags, Journal of

Supercomputing, Vol. 74, No.1, pp. 65-70, January, 2018.

[33] K.-H. Yeh, C. Su, J.-L. Hou, W. Chiu, C.-M. Chen, A Robust

Mobile Payment Scheme with Smart Contract-based

Transaction Repository, IEEE Access, Vol. 6, pp. 59394-

59404, October 2018.

Biographies

Tsu-Yang Wu is currently an

Associate Professor in College of

Computer Science and Engineering at

Shandong University of Science and

Technology. He serves as executive

editor in Journal of Network

Intelligence and as associate editor in

Data Science and Pattern Recognition. His research

interests include cryptography and Network security.

Xiaoning Fan received the M.S.

degree in School of Computer Science

and Technology, Harbin Institute of

Technology (Shenzhen), China.

Currently, she is an engineer in

Huawei, China. Her research interest

includes information security.

King-Hang Wang received his Ph.D.

from the National Tsing Hua

University. He worked in the Hong

Kong Institute of Technology in 2010

as a lecturer. He joined the Hong

Kong University of Science and

Technology since 2015. His research focus is

cryptography, mobile security, and provable

authentication.

Jeng-Shyang Pan is currently the

Dean in College of Information

Science and Engineering and an

Assistant President at Fujian

University of Technology, China. He

is the IET Fellow, UK and was

offered Thousand Talent Program in China in 2010.

His research interests include information security and

artificial intelligence.

Chien-Ming Chen is currently an

Associate Professor in School of

Computer Science and Technology at

Harbin Institute of Technology

(Shenzhen). He serves as an Associate

Editor in Journal of Information Hiding and

Multimedia Signal Processing, Data Science and

Recognition, and Journal of Network Intelligence. His

research interests include network security, and

cryptography.

24 Journal of Internet Technology Volume 20 (2019) No.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

