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Abstract 

Chaotic map including Chebyshev’s polynomial have 

been studied and used in many cryptographic areas 

recently due to its low cost of computation and high level 

of security. Some research works have been proposed to 

use Chebyshev’s polynomial in image encryption by 

setting up two-stage encryption algorithms. Pixels of a 

plain image are first permuted by a Permutation process. 

Then each pixel values are changed by a Diffusion 

process. A two-stage image encryption algorithm is 

generally believed to be more secure than a single stage 

image encryption algorithm.  

In this paper, however, we demonstrate a recent two-

stage image encryption algorithm proposed by Wang et 

al., is insecure against chosen plaintext attack. An 

attacker may be able to decrypt a cipher image after 

knowing some ciphers of images which are chosen by the 

attacker. We present an subtle but efficient improvement 

over Wang et al.’s algorithm so that it is not only immune 

to the attack we presented but also statistically improved 

when experiment is conducted to measure pixels’ 

correlation, NPCR and UACI.  

Keywords: Image encryption, Chaotic map, Security, 

Chosen plaintext attack 

1 Introduction 

Traditional symmetric key encryption algorithm 

DES and AES are designed to encrypt general purpose 

content and have been widely used in the world. With 

the fast growth of image technologies, researchers are 

still putting their efforts in designing new algorithm to 

protect digital image from piracy, counterfeiting, or 

simply data secrecy. This is due to the fact that image 

encryption usually involves a large storage capacity 

and a high correlation among pixels, therefore the 

general purpose encryption scheme are too slow or 

consume too many storage while not achieving a 

significant better security.  

Some recent works [1-18] studied the possibility of 

applying chaotic maps on image encryption. There are 

some nice properties, such as ergodicity, pseudo-

randomness, and sensitivity, from the chaotic map 

hinting that it is a good candidate of primitives for 

constructing an image encryption algorithm.  

Recently researchers have been studying the 

structure of two-stage encryption to further decorrelate 

the adjacent pixels and to enhance image security. A 

two-stage encryption algorithm can be roughly 

understood as that pixels of a plain image is first 

permuted and then modified according to key and the 

previous processed pixel. In 2012, Huang [6] proposed 

an efficient chaotic image encryption algorithm that 

first generates two pseudorandom chaotic sequences by 

a discrete Chebyshev function. The two sequences are 

used to decorrelate adjacent pixels in a permutation 

process. Then, a pseudorandom chaotic sequence is 

generated by a two-dimensional Chebyshev function in 

diffusion process. Recently, Wang et al. [8] pointed out 

Huang’s image encryption algorithm is insecure 

against a chosen plaintext attack. Meanwhile, they also 

proposed a modification based on his encryption 

algorithm so that they claim their algorithm would be 

secure under a chosen plaintext attack model. In this 

paper, however, we find Wang et al.’s encryption 

algorithm is vulnerable against chosen plaintext and 

chosen ciphertext attacks. In order to overcome the two 

attacks, we propose an improvement based on Wang et 

al.’s algorithm. The simulation results are shown that 

our improved image encryption algorithm has a better 

efficiency than Wang et al.’s algorithm.  

The remainder of this paper is organized as follows. 
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In Section 2 we present the background of the 

algorithm that includes Chebyshev’s polynomial, some 

related works, and our adversary model. It is followed 

by a review of Wang et al.’s image encryption 

algorithm in Section 3. Then we present security flaws 

of Wang et al.’s algorithm under a chosen plaintext 

attack and our improvement in Section 4 and 5 

respectively. Some experiment results and analyses are 

given in Section 6 and a conclusion is given in Section 

7.  

2 Background 

2.1 Chebyshev Polynomial 

Many crypto research including Wang et al.’s adopt 

Chebyshev chaotic function in their design. It is 

because that a Chebyshev chaotic function provides 

three good properties: 

1. Ergodicity. Given a fixed domain, the chaotic 

function will traverse the entire corresponding range 

within a finite time. 

2. Sensitivity. For an arbitrarily small change or 

perturbation, the result of chaotic function may output 

significantly different values. 

3. Pseudo randomness. This property is coming from 

the ergodicity and the sensitivity. 

The Chebyshev chaotic function, sometime also 

referred as the Chebyshev polynomial, of the order n 

[19-27] is recursively defined over real number by 
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A two dimensional Chebyshev function [28] is 

recursively defined by 
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for given two control parameters ,α β and initial values 

x0 and y0 ∈ (−1, 1). This two dimensional function 

allows us to process on a 2D image easier later. 

2.2 Related Works 

Our research is aiming at presenting a vulnerability 

of Wang et al. [8] which is motivated by the 

philosophy of Huang’s research [6] which has been 

cracked by Wang et al in their paper. We will give a 

more detail description of Wang et al.’s scheme in a 

later section. Here we present some relevant works in 

the literature. 

Chaotic maps have been received more and more 

attentions from research community when designing 

image encryption algorithms. Some literature [2, 5, 7, 

10] adopt diffusion process only in their encryption 

algorithms. Behnia et al. [2] proposed a novel image 

encryption algorithm based on coupled maps. It 

combines one-dimensional and two-dimensional 

chaotic maps to generate random sequences for hiding 

the pixel values of the image. Hussian et al. [5] 

proposed an image encryption algorithm with 

combining a NCA map [29] and a S8 S-box [30]. 

However, Zhang and Xiao [7] showed that Hussian et 

al.’s algorithm is insecure against chosen plaintext 

attack. They concluded that S-box-only image ciphers 

cannot be secure against chosen plaintext attacks. 

To break through the security limits of diffusion-

only schemes, researchers [1, 3-4, 6, 8-9, 11] adopt 

both permutation (confusion) and diffusion processes 

with two separated encryption keys to strengthen their 

encryption systems. Gao and Chen [1] used two 

shuffling vectors generated by a Logistic map to 

scramble the rows and columns of image pixels and 

then encrypted the shuffling image by a hyper-chaos 

system. However, Rhouma and Belghith [3] found 

their algorithm is insecure against chosen plaintext and 

chosen ciphertext attacks and proposed their 

improvement scheme. Jeng et al. [11] later pointed out 

that the Rhouma-Belghith improvement and the Gao-

Chen algorithm have low sensitivity towards the 

changes in the plain image which suggested their 

schemes are vulnerable to chosen-plaintext attacks. On 

a separated branch Liu and Wang [4] proposed a 

chaotic color image encryption algorithm. In their 

encryption process only each RGB channel is 

encrypted separately using a key generated by a 

piecewise linear Chebyshev map. 

In the work by Wang and Guo [9], a chaotic 

sequence is generated by a Logistic map to shuffle the 

position of plain image. This encryption process is 

repeated for many rounds in order to decorrelate pixels. 

However, Yap et al. [12] found that the Wang and 

Guo’s encryption algorithm [9] is insecure against the 

differential attack where then two chosen images are 

encrypted the differential information of these two 

cipher will allow the attacker to break the system. Such 

a technique is also employed in our paper, but in a 

different way. Xu et al. [15] presented an algorithm 

that divides the plain image is into two sequences for 

processing. This idea is also adopted in Huang [6], the 

trunk of our research branch. Later Wang et al. [13], 

Wang et al. [14], and Ye and Huang [16] proposed 

their own schemes that use different technologies like 

Logistic map, Tent map, coupled map lattice, DNA 

sequence operation, 3D cat map, and SHA-3 hash 

function. 

As we can see many of the recent research 

mentioned above share some similar properties: 

1. Using both confusion and diffusion processes in 
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their algorithm design. 

2. Using two separated key generated by a chaotic 

map. 

3. Recognizing the importance of chosen plaintext 

attacks and trying to avoid it in their design, regardless 

if they can avoid it or not. 

We presented the differential attacks on a particular 

encryption algorithm in this paper while we did not 

deny the possibility that our attack can also be applied 

on some other algorithms that share the same 

properties. In fact we are working toward to explore 

such possibility. 

2.3 Attacker Models  

The terms Chosen Plaintext Attacks (CPA), one-

wayness (OW), indistinguishable (IND) are commonly 

used in the crypto-community to describe different 

models. CPA describes the capability of an adversary 

while OW and IND describes different goals of the 

adversary. We briefly describe them in this section. 

Readers may take the following references [3, 7-8, 11, 

31-33] if they are keen to explore further. 

Chosen Plaintext Attacks. In this attack model, we 

assume that adversary A has obtained a temporary 

access of encryption machinery E. Then, A can choose 

a set of plain images P to construct the corresponding 

cipher images C. The adversary shall use this 

machinery as a black-box without knowing the internal 

states of it nor the key. Then, the adversary will be 

challenged with an encrypted image. With the 

challenge the attacker needs to complete a specific goal. 

This goal could be OW or IND. 

One-wayness (OW). With the given challenge the 

adversary would need to produce the corresponding 

plaintext. 

Indistinguishable (IND). He will be required to 

differentiate the plain image of the encrypted image 

and a random image with the same size. 

We name OW-CPA or IND-CPA for a chosen 

plaintext attacker who need to perform OW or IND 

respectively. When we say it is secure against OW-

CPA or IND-CPA that means no polynomial time 

adversary could achieve their goal with CPA capability. 

3 Review of Wang et al.’s Image 

Encryption Algorithm 

The notations used in Wang et al.’s algorithm [8] are 

summarized in Table 1 and the flowchart of their 

algorithm is depicted in Figure 1. Wang et al.’s 

algorithm consists of three main processes: Sequences 

Generation, Permutation, and Diffusion. Briefly 

speaking, in the process Sequences Generation two set 

of encryption sequences are generated. One set as 

denoted by (H, L), is used in the permutation process 

and is referred as the permutation key. The other set, as 

denoted by 
1

{ }mn
i i

µ
=

, is used in the diffusion process and 

is referred as the diffusion key. In the Permutation 

process, a 2D monocolor image I will be scrambled by 

the permutation key resulting a 2D monocolor image I′ 

such that the position of each pixel will be different. 

The image will be transformed into a 1D vector v and 

processed by the diffusion process. The diffusion 

process will encrypt each pixel using the diffusion key 

and resulting a cipher vector c′. By rearranging the 

cipher vector it becomes a cipher image c. 

Table 1. Table of Notations 

Notation Meanings 

I An 8-bit gray image with size m×n 

C 
A cipher image with the same size as the plain 

image. 

0 0
ˆ( , )x x  

The encryption key for the Permutation 

process. 

(x0, y0) 
The encryption key for the Diffusion process. 

p, q System parameters for the Permutation key. 

r
 

A system parameter for the Diffusion key. 

H, L 
The Permutation key – encryption sequences 

for the Permutation process. 

1
{ }mn

i i
u

=  
The Diffusion key – an encryption sequence 

for the Diffusion process. 

x mod y The remainder of x divided by y. 

c0, t 
Two arbitrary constants used in the Diffusion 

process. 

g(·) Any simple function, for example, g(x) = x. 

x << y 
A bitwise cyclic left shift operation on x by  

y-bits. 

),,ˆ,( 00 qpxx ),,( 00 ryx

Generating sequences

              H&L

Generating sequence

}{
i

µ

Permutation 

Process

Transforming      

into one 

dimension 

vector

Diffusion

Process

Rearranging into 

two dimension 

matrix

plain image I I' V

C'Cipher image C

 

Figure 1. The flowchart of Wang et al.’s algorithm 

3.1 Details of the Wang et al.’s Scheme 

1. Generating Pseudo-random sequences. 

‧ Inputs: The encryption key 
0 0 0 0
ˆ( , , , )x x x y and the 

system parameters (p, q, r) 

‧ Outputs: Two sets of encryption sequences: the 

permutation key (H, L) where H is size m, L with 

size n, and the diffusion key { }
i
u with size m×n. 

‧ Procedures - Generating the Permutation Key: 

(a) The process computes two chaotic sequences 

0 0
ˆ{ } { }

i i i i
x  and x

∞ ∞

= =
using the following iterations with 

the inputted initial values 
0 0

ˆx  and x . 
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1 1
8 8 1,

i i i
x x x

− −

= − +  (4) 

(b) It defines two new sequences
1 1

{ } { }m n m n p

i i i i p
x x

+ + +

= = +
′ ′=  

and 
1 1

ˆ ˆ{ } { }m n m n q

i i i i q
x x

+ + +

= = +
= . Then, dividing the sequence 

1
{ }m n

i i
x

+

=
′ into two parts 

1 1 2 1
{ } { }m m n

i i i i m
P x  and  P x

+

= = +
′ ′= = . 

Similarly, the sequence 
1

ˆ{ }m n

i i
x

+

=
′ is divided into 

1 1
ˆ{ }n
i i

Q x  
=

′= and 
2 1

ˆ{ }m n

i i n
Q x

+

= +
′= . 

(c) P2 and Q2 are then sorted ascendingly and the 

original position of each terms, becomes the sequences 

S1 and S2. So for example if P2 = {0.4, −0.2, 0.3, 0.5}, 

S1 would be {2, 3, 1, 4}. Note the length of S1 and S2 

would be n and m respectively. Each element in S1 and 

S2 would be a unique integer in the range [1, n] and [1, 

m] respectively. Then, it reorders the sequences Q1 and 

P1 according S1 and S2 respectively, the resulted 

sequences are called 
11

Q  and P′ ′ . 

(d) Two sequences
11

Q  and P′ ′ are then sorted again 

ascendingly and the original position of each terms 

becomes the sequences H and L respectively. Note that 

H has m unique elements from [1, m] and L has n 

unique elements from [1, n]. 

‧ Procedures - Generating the Diffusion Key: 

(a) Assume r is a defined system parameter, a 

chaotic sequence 

 
1 1 1 2 2 / 2 / 2

{ } { , , , , , , }mn

i i r r r r mn mn
w x y x y x y

= + + + +
= �   

is defined using the two-dimensional Chebyshev 

iteration as follows:  
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where x0 and y0 are two secret keys. Note that the 

sequence {wi} has a length mn. 

(b) We output the diffusion key as the sequence 

1
{ }mn

i i
µ

=

 by the following: 

 14mod( 10 ,256).
i i

wµ ⎢ ⎥= ×⎣ ⎦  (6) 

2. Permutation process. 

(a) Inputs: An 8-bit gray color m-by-n pixels plain 

image I and the Permutation keys H and L. 

(b) Outputs: An 8-bit gray color m-by-n pixels 

scrambled image I′. 

(c) Procedures: The image I is treated as 2D array. 

For each row i in I will be moved to a new row 

according to the i-th element in H. On each column j of 

the resulting array will be moved to a new column 

according to the j-th element in L. The shifted array is 

assigned as the scrambled image I′. 

3. Diffusion process. 

(a) Inputs: The Diffusion key
1

{ }mn
i i

µ
=

and a length-mn 

1D vector v transformed from the scrambled image I′, 

by scanning it from top to bottom, left to right. 

(b) Outputs: A length-mn 1D vector c′ which can be 

transformed back to an encrypted image c by filling the 

pixel with the value in c′, from top to bottom, left to 

right. 

(c) Procedures: For each vi ∈ v for i = 1, 2,…, mn, 

computes 

 
1

( mod 256)
i i i i i

c v t u c    µ
−

′= + ⋅ + ⊕  (7) 

 

and 

 ( ( ) ) mod( 8)
i i i i

c g c  mod µ µ′ = ⊕ <<  (8) 

where t and c0 are two arbitrary constants and g is an 

arbitrary simple function. It returns c′ =

 
1 2

{ , , , }
mn

c c c′ ′ ′
… . 

4 Cryptanalysis on Wang et al.’s 

Algorithm 

In this section, we show that Wang et al.’s image 

encryption algorithm is insecure against a chosen 

plaintext attack. As we are going to illustrate in this 

attack, the attacker may recover the sequences H and L 

after requesting at most max(m, n) number of chosen 

plaintext. Then, using H and L the attacker can recover 

all unencrypted pixels from a challenge image c. 

4.1 Recover Sequences H and L 

We depict the algorithm for recovering the 

Permutation key in Algorithm 1. The idea is to 

construct a pair of twins images with one pixel 

difference. In the Permutation process this pixel will be 

shifted to another coordinate, says (i, j). Since an 

image is encrypted sequentially in the Diffusion 

process, the pixels before (i, j) of the twins images 

would be identical and diffused at (i, j) onwards. That 

implies (i, j) is the starting point of the differentiation. 

That would reveal the value of one element of the H 

and L permutation keys. Iterating the process through 

the size of the permutation keys (depends which one is 

larger) would allow us to recover the entire key pair. 

For better illustration, we demonstrate one iteration 

(k = 55) of the attack on a square size image as an 

example. Two plain images P and Pk with only one 

pixel value different at the position (55, 55) are 

constructed, as shown in Figure 2(a) and Figure 2(b), 

where P is set 100 and Pk is set 200. The attacker 

requests the encryption of P and Pk from the encryption 

oracle and produced C and Ck respectively, as shown in 

Figure 2(c) and Figure 2(d). 

Computing C ⊕Ck and then scanning the image 

from top to bottom, left to right, to search the first non-

zero element. The element is at (107, 3) as shown in 

Figure 3. Thus, we can find the 55-th row is permuted 

to the 107th row and the 55-th column is permuted to 

the 3th column, say H(107) = 55 and L(3) = 55. In 

Table 2, we demonstrate some recovered values of H 

and L. 
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(a) P (b) Pk 

 

(c) C (d) Ck 

Figure 2. The twins images P and Pk created with only 

the position (55, 55) and their cipher images C and Ck 

 

Figure 3. C ⊕Ck. It is observed that pixels have a 

value of zero (black) before the position (107; 3) 

Table 2. Array H[] and L[] after executing the 55-th 

iteration 

index 1 … 54 55 56 … 256 

H[] 43 … 242 107 - … - 

L[] 2 … 68 3 - … - 

 

 

Algorithm 1. Recovering H and L 

procedure Recovering(Encryption oracle: O, Image dimension: m, n) 

Define size m integer array H, size n integer array L. 

P ← random image with size m-by-n. 

C ← O(P)                                            ◃  Request the cipher image C of P. 

for k ← 1, max(m, n) − 1 do 

km ← k mod m, kn ← k mod n. 

Pk ← P 

Change the pixel (km, kn) of Pk to a random value. 

Ck ← O(Pk)                                     ◃  Request the cipher image Ck of Pk. 

(i, j) ← the coordinate of the first non-zero element of Ck ⊕ C. 

H[km] ← i, L[kn] ← j. 

end for 

Fill the last blank cell in H[] and L[] by the missing value. 

return H ← H[], L ← L[]. 

end procedure 

 

4.2 Breaking the Indistinguishability 

In the IND-CPA model the attacker should be 

unable to distinguish which a cipher image is 

encrypted from either of the two same size images. We 

present a way for the attacker to break this 

indistinguishability. 

Let I be a 2D array representing a plain image. We 

define I′ = π(I) where π a permutation of the elements 

according to the Permutation process and I′ is an 2D 

array representing the scramble image. We denote 

I[y][x] (respectively I′[y][x]) as the y-th row, x-th 

column pixel of the image I (respectively I′). We use 

the symbol ′ to denote the new position of a pixel after 

the Permutation process, that is, a pixel of an image I at 

the coordinate (i, j) will be shifted to the coordinate (i′, 

j′) after the Permutation process. In other words, I[y][x] 

= I[y′][x′] for every possible y and x.  

Given the H and L obtained in Subsection 4.1, the 

attacker would be feasible to compute the function π 

and its inverse π−1 and also (y′, x′) for every pair (y, x). 

The attacker creates 256 scrambled images 
i
I ′ for i ∈ 

[0, 255], so that points on these images are random 

except the pixel [1][1] .
i
I i′ =  In other words, the first 

pixel of this set of scrambled images should be takes 

all possible values from 0 to 255. The attacker requests 

the encryption of all plain images Ii, which can be 

computed by π−1(I′i), from the encryption oracle. The 

first bit outputted from the Diffusion process, 
1
c′ , 

depends on the Diffusion key, constants, and the first 

pixel of the scrambled images only. Therefore the first 
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bit of the cipher of these images should be all different. 

A table storing i and the corresponding 
1
c′ are built. 

This table should contains exactly 256 entries. 

Then the attacker is given a challenge cipher image 

and two plain images to decide which one produces the 

cipher image. What the attacker needs to do is to 

scramble the two plain images and look at the first 

pixels of them. From the table just created the attacker 

find the corresponding value 
1
c′ and compare that with 

the first pixel of the cipher image.  

By this the attacker would be able to distinguish 

which plain image produces the cipher text. 

This algorithm fails only when the first pixel of the 

scrambled version of the two plain images are the same, 

with probability 1/256. And the algorithm can be 

extended to enumerate all first k-bits of the scrambled 

images with the cost of 256k oracle queries where the 

failure probability would be suppressed to 1/256k. 

We declare the insecurity of Wang et al. algorithm 

while we only need not more than max(m, n) + dk of 

non-adaptive encryption oracle queries in total to break 

their algorithm where m, n are the dimension of the 

image, d is the color depth of the image (d = 256 in this 

case)with success rate 1 −1/dk. 

4.3 Completely Decrypting a Cipher Image 

In the above section we have already demonstrated 

their algorithm is insecure with a small number of 

encryption oracle queries. In this section we 

demonstrate how to decrypt a cipher image with a 

chosen plaintext attack, i.e., proving the system in not 

OW-CPA secure. 

Again we assume the permutation key is obtained 

and the permutation function π is computable by the 

attacker. The basic idea of the attack is to match each 

pixel of the encrypted images by querying some 

prepared images. Since the permutation is known and 

the encryption of each pixel depends on the key and a 

previous pixel, the adversary can recover one pixel 

with at most 256 queries. We describe the attack in 

Algorithm 2. 

Figure 4 demonstrates a snapshot of reconstructed 

images using the above algorithm. 

   

(a) Cipher image c′ (b) Intermediate result (c) Final result 

Figure 4. Snapshot of reconstructed images. The first on shows the cipher image. The second one shows the 

intermediate result when y = x = 50. The final one shows the complete decrypted image which is the same as the 

plain image 

Algorithm 2. Decrypting a cipher image 

procedure Decrypting(Cipher: c′, Encryption oracle: O, Permutation Function π) 

Define size m-by-n integer array p. 

for y ← 1, m do 

for x ← 1, n do 

for i ← 0, 255 do 

i
I ′ ← p 

i
I ′ [y][x] ← i 

C ← O(π−1(
i
I ′ ))                        ◃  π−1(

i
I ′ ) unscrambles

i
I ′ . 

if C[y][x] = c′[y][x]  then 

p[y][x] ← i 

Continue in x-loop. 

end if 

end for 

end for 

end for 

return I ← p. 

end procedure 
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5 Our Improvement and Simulation 

Results 

5.1 Our Improvement 

Based on Wang et al.’s image encryption algorithm 

we propose an improvement to overcome the 

mentioned weaknesses. Learnt from the above analysis 

their algorithm is vulnerable against differential attacks. 

We try to improve their algorithm by amending the 

Permutation Key generation while keeping the rest of 

the encryption algorithm remains the same. The basic 

idea is that we generate the Permutation Key with 

some partial information of the plain image where 

these partial information can also be computed from 

the ciphertext as well. Alternatively it could be 

understood as having a function G : I → R such G(I) = 

G(π(I)) and G(I) is used to generated the Permutation 

Key. Some statistical functions like mean, standard 

deviation, max/min, mode, etc satisfies the equality. In 

the following context, we assume G is chosen as the 

mean function divided by 256 (the color depth of the 

image) so that we can assert any pixel change will after 

the value computed from G while the value of G is 

normalized between [0, 1]. 

Permutation Key Generation: 

1. Inputs: The encryption key 
0 0

ˆ( , , )x p x , the plain 

image I (alternatively the scrambled image obtained in 

the decryption process), and the system parameters (p, 

q). 

2. Outputs: The permutation key (H, L) where H is 

size m, L with size n. 

3. Procedures - Generating the Permutation Key: 

(a) Compute t = G(I) where G(I) =
1 1

[ ][ ]

256

m n

y x

I y x

m n

= =

× ×

∑∑
. 

(b) The process computes two chaotic sequences 

0 0
ˆ{ } { }

i i i i
x  and x

∞ ∞

= =
using the following iterations with 

the inputted initial values 
0 0

ˆx t  and x t× × . 

 4 2

1 1
8 8 1

i i i
x x x .

− −

= − +  (9) 

The result of the process remains the same, namely: 

(c) It defines two new sequences
1 1

{ } { }m n m n p

i i i i p
x x

+ + +

= = +
′ ′=  

and 
1 1

ˆ ˆ{ } { }m n m n q

i i i i q
x x

+ + +

= = +
= . Then, dividing the sequence 

1
{ }m n

i i
x

+

=
′ into two parts 

1 1 2 1
{ } { }m m n

i i i i m
P x  and  P x

+

= = +
′ ′= = . 

Similarly, the sequence 
1

ˆ{ }m n

i i
x

+

=
′ is divided into 

1 1
ˆ{ }n
i i

Q x  
=

′= and 
2 1

ˆ{ }m n

i i n
Q x

+

= +
′= . 

(d) P2 and Q2 are then sorted ascendingly and the 

original position of each terms, becomes the sequences 

S1 and S2. So for example if P2 = {0.4, −0.2, 0.3, 0.5}, 

S1 would be {2, 3, 1, 4}. Note the length of S1 and S2 

would be n and m respectively. Each element in S1 and 

S2 would be a unique integer in the range [1, n] and [1, 

m] respectively. Then, it reorders the sequences Q1 and 

P1 according S1 and S2 respectively, the resulted 

sequences are called 
11

Q  and P′ ′ . 

(e) Two sequences
11

Q  and P′ ′ are then sorted again 

ascendingly and the original position of each terms 

becomes the sequences H and L respectively. Note that 

H has m unique elements from [1, m] and L has n 

unique elements from [1, n]. 

The output Permutation key will be used in the 

Permutation phase of the encryption and the decryption. 

Note that the decryption would require the scrambled 

image, which is computed at the inverse of the 

diffusion process, as an input to generate the 

permutation key. Since the permutation does not 

change the statistics of the image thus the selected 

function G would satisfies G(I) = G(π(I)). 

6 Implementation and Analysis 

We have implemented Wang et al.’s algorithm and 

our improvement with C++ on a Windows 7 32-bits 

desktop machine, running against some sampled 

images. The running time our algorithm is around 

200ms for a 256 × 256 gray image and 700ms for a 720

×576 gray image. It incurs on average 5.8% additional 

running time over Wang et al’s algorithm. We analysis 

our algorithm with the following security perspectives 

to inspect if the encrypted image is statistically random 

and robust against differential attacks. 

6.1 Histogram Analysis 

The histogram of a plain image shows the 

statistically distribution of the pixels. Figure 5, Figure 

6, Figure 7 show three sets of the histogram of a plain 

image and the corresponding cipher image. As we can 

see the statistical information has been destroyed after 

encryption. 

6.2 Correlation Analysis 

We then look at the correlation between two 

adjacent pixels. In plain image two adjacent pixels are 

highly correlated. The correlation coefficients rx,y are 

defined among pixels by 

 
( )

( ) ( )
xy

cov x, y
r   

D x D y
=  (10) 

where 

 
1

( ) ( ( ))( ( ))
N

i i

i 1

cov x, y   x   E x y   E y
N

=

= ∑ － －  (11) 

 
1

( )
N

i

i 1

E x   x
N

=
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(a) Plain image (b) Histogram of the image (c) Histogram of the Cipher 

Figure 5. Histogram analysis of CameraMan 

   

(a) Plain image (b) Histogram of the image (c) Histogram of the Cipher 

Figure 6. Histogram analysis of Baboon 

   

(a) Plain image (b) Histogram of the image (c) Histogram of the Cipher 

Figure 7. Histogram analysis of Lena 
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( ) ( ( ))

N

i

i 1

D x   x   E x
N

=

= ∑ －  (13) 

Here x and y denote the gray values of two adjacent 

pixels in an image I, while N denotes the number of 

sampled pixel pairs. The correlation coefficients of two 

adjacent pixel should be closer to zero to indicate the 

pixels are less correlated. 

We randomly sample the adjacent pixels from a 

ciphertext in horizontal, vertical, and diagonal 

directions. Tests are conducted on two sets of 10 

images encrypted by Wang et al’s algorithm and ours. 

The result are displayed in Table 3. 

With these data we conduct a paired t-Test with 

confidence level 95% assumption the initial hypothesis 

H0 they have a different same mean and alternative 

hypothesis H1 is they have the same mean. With α = 

0.05, df = 29, the critical value is given in the t-table 

t0.05 = 2.045. The calculated test statistic t∗  = 0.117 340 

< t0.05 and therefore we reject H0, i.e., they have the 

same mean. This conclude that our improvement share 

the same correlation test performance as Wang et al’s 

algorithm. 
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Table 3. Result of Correlation Test 

Wang et al’s algorithm  Our Improvement 
Images 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Lena(256×256) -0.064 0.0064 0.0147 0.007 0.0139 -0.0063 

CameraMan(256×256) 0.0028 -0.0365 0.0423 -0.0353 -0.0209 -0.0047 

Baboon (512×512) -0.0289 0.0568 0.0137 -0.0236 0.0183 0.0025 

Boats(720×576) -0.0272 0.0751 -0.0026 -0.0288 -0.0362 -0.0315 

Barbara(720×580) 0.0719 -0.0227 0.0157 0.0172 0.0013 -0.0126 

Dog(290×180) -0.0238 0.0237 -0.0714 -0.0508 0.021 0.0034 

Flower(453×502) -0.0048 -0.0049 -0.0521 0.0833 0.0247 -0.0158 

Fruit(444×336) -0.0137 0.0117 -0.0258 0.0539 0.0047 -0.0084 

Girl(244×202) -0.016 0.0335 0.024 -0.0113 -0.0454 0.0222 

Tree(402×265) -0.0035 0.0265 0.0019 0.0161 0.0052 0.0304 

 

6.3 NPCR and UACI 

NPCR (number of pixels change rate) and UACI 

(Unified average changing intensity) are widely used to 

evaluate the sensitivity of an image encryption 

algorithm [2, 4-6, 9-11, 14-15]. They are defined as 

follows: 

 

( )

100% 
i , j

D i,j

NPCR    
m n

= ×

×

∑
 (14) 

and

 

 1 2
| ( ) ( ) |

100%
255i ,j

C i,j C i,j
UACI     

m n
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= ×⎢ ⎥
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where 
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2
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1 ( ) ( )

1

1
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D i,j

        C i,j  C i,j

=⎧
= ⎨

≠⎩
 (16) 

C1 and C2 are two cipher images with size m × n whose 

the corresponding original plain images have only one 

pixel different. The ideal value of NPCR is254/255 = 

0.996 while the ideal value of UACI is 0.5 if the 

statistically distribution of the ciphertexts is random 

white noise. 

The performances of our algorithm against Wang et 

al’s algorithm are summerized in Table 4. It is easy to 

see that our improvement has a better statistical 

performance than Wang et al’s algorithm in NPCR, and 

UACI. This meets our expectation where our 

improvement is designed to prevent differential attacks. 

Table 4. Comparisons of performances between Wang et al.’s algorithm and our improvement 

Test 
Cipher image 

(Wang et al.) 

Cipher image 

(Our algorithm) 
Improvement(%) 

NPCR(%) 

Lena 

CameraMan 

Baboon 

 

0.581985 

0.581985 

0.741348 

 

0.996231 

0.995956 

0.99601 

 

71.17% 

71.13% 

24.35% 

UACI(%) 

Lena 

CameraMan 

Baboon 

 

0.195764 

0.196763 

0.248687 

 

0.333317 

0.335368 

0.334766 

 

70.26% 

70.44% 

34.61% 

 

6.4 Security Against Differential Attacks 

Apparently the differential attack for Wang et al.’s 

algorithm cannot be directly applied here since the 

differential images have a different average. Despite 

this difference is very subtle (1/(256 × m × n)), 

Chebyshev’s iteration is very sensitive to this 

difference and the permutation key would therefore be 

completely different. 

Readers may find some sort of modification can be 

done and mount the same attack against our algorithm. 

For example, one may consider swapping two pixels in 

a plain image and analyzing the differential results. In 

this case, truly the permutation could be retrieved. 

However, that is only confined to the images with the 

same pixels-mean. When a challenge cipher is given to 

an attacker, the value of the pixels-mean is not known 

to him. Therefore even if the attacker has a set of 

permutation keys for several different pixels-mean he 

will be unable to figure out which set of permutation 

key to try. 

7 Conclusion 

In this paper we present the vulnerability of Wang et 

al.’s algorithm and present our improvement with 

significant performance. The main reason that allows 

us to break their algorithm is the fact that Permutation 
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process is deterministic and can be removed by a finite 

number of oracle queries. Our improvement allows the 

Permutation process reacts differently against each 

image. We also recognize the risk of using mean to 

implement G. In our future research we will study how 

G can be better chosen so that it provides a better 

security statistically and not scarifying too many 

computation advantage. 
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