
Consistency Maintenance of Collaborative Shared Documents in Unstable Network Environment 1

Consistency Maintenance of Collaborative Shared Documents in

Unstable Network Environment

Liping Gao1,2, Dan Wang3, Naixue Xiong1, Bing Wang4*

1 Computer Engineering, University of Shanghai for Science &Technology, China
2 Shanghai Key Laboratory of Data Science, Fudan University, China

3 Computer Center University of Shanghai for Science &Technology, China
4 Information Office, University of Shanghai for Science &Technology, China

lipinggao@usst.edu.cn, wangdandjxy@sina.com, nxiong@coloradotech.edu.cn, wbing73@usst.edu.cn

*Corresponding Author: Liping Gao; E-mail: lipinggao@usst.edu.cn

DOI: 10.3966/160792642019012001001

Abstract

Aim to the instability of the mobile internet, the paper

proposes an algorithm to achieve the consistency

maintenance of the shared documents during the

collaborative editing process in the broken network

environment. Unlike with the previous studies, we divide

network statuses into three types: break-before, break-

after and connect-after, in order to record the document

and net states, the paper puts forward two new definitions

about cursor and network statuses. In the break-before

phase, the algorithm updates all the collaborative sites’

cursors regularly to record the latest consistency point. In

the break-after phase, the algorithm packs the operations

according to cursor and network attributes. While in the

connect-after process, the algorithm adapts the address

space transformation strategy to resend and execute lost

operations as well as constructing necessary performing

condition for ABST or other algorithms that support

asynchronous cooperation. In this paper, a case analysis

is given to describe the execution process of strategy, and

correctness proof is also given to validate the whole

strategy.

Keywords: Unstable network, Mobile network, CSCW,

Consistency maintenance

1 Introduction

The tremendous development of computer

technology visually changes people’s life. With the

popularization of the wireless network, the work

territory has stepped over the office to the outside.

However, due to the increasing workload and design

scale, it is inevitable that people face a series of

problems like huge amount of operations and time-

consuming, etc. especially when they are solving a

complex project only by one person. So the emerge of

CSCW (Computer Supported Cooperative Work) [1]

technique comes to support the collaborative work of a

team.

Real-time group editors allow multiple users in

distributed areas to participate in the editing and make

modification of the shared data objects. To achieve

high responsiveness, the full replication architecture

[2-6] is adopted, which suggests to remain a local

replica and the local operations is executed

immediately after their releases from the user interface.

Then, because of the reordering execution processes of

the operations, how to transform remote operations or

documents to make local replica consistent with other

collaborative sites, is a big challenge, which is called

consistency maintenance.

There are two optimistic concurrency control

methods in the collaborative editing techniques, which

are Operational Transformation (OT) [9] and Address

Space Transformation (AST) [6, 11]. Almost all the

researches before in this filed made the assumption that

the network is stable. In recent years, with the

development of the mobile devices (such as pad, cell

phone, etc.), text editing systems have become popular

for these devices. However, its potential weakness of

unstable network is against the premise of OT or AST

technique, which needs an ideal, non-blocking network

environment. It assumes that no operations are lost

during the broadcasting process, and all remote

operations are received only once time and must be

executed correctly. The researchers mainly focus on

the horizontal development of the technology, for

example, they paid more attention to optimize the

efficiency of algorithm or to find new conflicts to solve,

omitting a fact that these works must be done in stable

network. On the contrary, for the vertical development

of the technology, there are fewer researches to

mention it, which study and solve the consistency

maintenance conflicts that appear in the unstable

network. Therefore, the conflict caused by unstable

network must be a fatal problem in the development of

the collaborative applications especially for the mobile

devices.

2 Journal of Internet Technology Volume 20 (2019) No.1

Shao presented an efficient transformation algorithm

ABST [7] (An admissibility-based sequence

transformation) algorithm based on OT architecture.

Users can work in parallel style during disconnection

periods on the local replica, when the net is re-

connected, sequences of update operations made by

different users are merged to produce a consistent

result of the shared documents. It not only improves

editing efficiency, but also provides possible

technology for consistency maintenance in mobile

group editing environment. Yet, ABST just focuses on

how to transform the operations while disconnection,

ignores the analysis of whether the documents states of

the collaborative sites are identical or not. This paper

aims to analyze the document status when the network

is down, transforms the corresponding operations to

build the necessary execution pre-condition of the

ABST algorithm, and maintains the document

consistency with the ABST and AST algorithms in

different network statuses. And the algorithm we

provide in this paper totally solve the problem of lost

operations in unstable network environment. In other

words, the consistency maintenance algorithm we

provide in this paper, not only help ABST algorithm

construct main precondition in the unstable network,

its ability to track and catch lost operations, and

handles lost operations to make all collaborative sites’

copies same, also help other algorithms that support

asynchronous cooperation get important operating

precondition (copies of all collaborative sites’ are the

same).

The rest of this paper is organized as follows: Firstly,

section 2 introduces the related works about

consistency maintenance techniques. Section 3 makes a

brief introduction of ABST and gives the necessary

precondition of the algorithm, and proposes the basic

concepts and notations to be used in this paper. After

that, section 4 presents the consistency maintenance

algorithm in the unstable network environment.

Section 5 analyzes the efficiency of this algorithm.

Section 6 gives an example to describe the whole

workflow of the strategy. Section 7 analyzes the

correctness of the consistency maintenance algorithm

proposed in this paper. Finally, Section 8 concludes the

paper and discusses possible future research directions.

2 Related Work

In 1989, Elis [9] proposes the technique of operation

transformation firstly and constructed the basic model

of OT algorithm. Then a collaborative editing system

Grove adopts the dOPT strategy, which is also OT-

based. In the Next time, Ressel [15] finds that there

may exist inconsistent problem at collaborative sites in

some specific conditions, and modifies the previous

research work based on OT. Compared to the early

consistency model, Sun introduces the CCI [8]

(Convergence Causality Intention) model and pointed

out an important correct standard—Intention

Preservation. Therefore, a lot of consistency

maintenance algorithm, which are satisfied with the

CCI model are raised, such as adopted [9], GOT [12,

14, 16], GOTO [8], COT [17], SCOT4 [18], LBT [19],

TIBOT [20], ABT [21], ABST [7, 22], ABTS [10, 23],

etc. Because of the complex transformation rules and

poor efficiency, and the difficulty of correctness proof

of OT, a new Mark & Retrace based method called

AST is put forward, which searches the target position

by retracing the document’s address space to the state

when the operation is generated, instead of

transforming the operations. The AST strategy

improves the executing efficiency significantly, and its

correctness is easier to be verified.

In the mobile network, Shao. [10] puts forward a

string-wise consistence maintenance algorithm ABTS

which is based the ABT framework. And, in his later

work ABTSO is proposed to optimize the executing

details of delete operations, which further improves the

performing efficiency and practical degree on mobile

devices. The ABST algorithm supports mobile and

asynchronous collaboration, under the premise of the

mobile network status is smooth. It preserves the users’

intention according to merge and swap operation

sequences between local and remote sites. In 2014, Xia.

[13] creates a collaborative mobile commenting system,

taking into account the small memory and poor internet

connection, which introduces to use the partial

replication architecture to replace the full replication

architecture. It uses comment nodes to save the

detailed contents of user’s requests, gets the skeleton

node according to the replicating rule, and constructs

the skeleton tree as well as the local partial replica

finally. Compared to the full replication architecture, it

saves the memory and updating time of local replica

greatly.

However, the previous consistency maintenance

researches in the mobile network, mostly consider the

disadvantages of small storage space and poor internet

connection. In practice, lost operations may appear

caused by the unstable network, while ABST algorithm

just deals with the operation sequences generated in no

linking network. If there exist some lost operations to

make the operation sequence incomplete, the

correctness of ABST cannot be guaranteed.

3 The ABST Algorithm

In order to find the necessary precondition of ABST,

firstly we overview its basic idea, and analyze whether

the precondition can be destroyed by broken network.

Besides, we introduce the basic concepts of document,

History Buffer and primitive operation, etc., which are

related with the consistency maintenance algorithm in

this paper.

Consistency Maintenance of Collaborative Shared Documents in Unstable Network Environment 3

3.1 ABST Basis

ABST [7] is a novel OT-based algorithm optimized

for supporting mobile and asynchronous collaboration.

It focuses on how to transform real-time collaboration

to asynchronous collaboration and deal with the

operations when facing a negative network connection.

In simple terms, the algorithm refuses to broadcast

local operations to remote sites in the poor network,

instead, it packages all the operations, to a request

sequence until it meets an optimistic network, and then

it broadcasts the sequence to the remote sites.

Receivers transform the operation sequence to its

execution status and merge it with local history buffer

after executed, and then, the HB is split to HBi and

HBd, which is composed of the Insert and Delete

operations respectively.

Take Figure 1 as the example, two users Alice and

Bob are co-authoring a document with the initial state

of “abcd”. Both of them choose to edit on their local

replica, without operation transmission between two

sites. We define the current network state as net-broken,

which the collaborative sites cannot communicate with

each other. After breaking, Alice executes operation

sequence T1, and updates the local replica to “pabq”;

Bob changes the local document from “abcd” to “yzd”

by performing T2 and T3. Suppose that the period of

the local operation sequences’ broadcasting, the

transforming and the executing after receiving to

produce a consistent document finally, is regard as net-

survive. Still considering the scenario in Figure 1, after

Alice receives two sequences of operations T2 and T3

submitted by Bob, T2 and T3 will be transformed by

comparing the operations in the local history buffer to

produce T2’ and T3’, and after the execution of T2’

and T3’, the document status is updated to “pyzq”.

Figure 1. Alice submitted sequence T1 and Bob

submitted two sequences T2

However, the research assumption of ABST is that

the network status is ideal, clear and explicitly divided

by users. It must ensure that all collaborative sites’

copies are the same when the network is broken. In

another words, at net-broken time, every collaborative

site should have submitted all local operations and

executed all remote operations successfully. But, in the

unstable network environment, it is difficult to ensure

this precondition. For example, at the fault moment

(which is indicated with a red line in Figure (1): T2

arrives at site Alice and is executed in the form of

transition to get the document’s state “pxq”; besides,

T1 follows and changes the document’s state to “pyzq”.

Suppose that if the network breaks at this time, T3 is in

the broadcasting process and it has not arrived at site

Alice. In this condition, it is obvious that the states of

two sites’ documents are not identical. According to

the ABST, the operation requests, which are below the

fault line should be packaged to wait for posting to

remote sites once network links again. However,

because of the loss of T3, even all the operations

generated after the fault line can be transformed and

executed correctly at the collaborative sites, the final

documents of different sites are inconsistent yet. So,

how to capture lost operations and manage them to get

consistent replica is a main problem we should resolve.

For this problem, we propose a consistency

maintenance algorithm to support the collaborative

editing in unstable mobile network environment, and

confirm the correctness of this algorithm through a

case analysis.

3.2 Document Model and Primitive Operations

The consistency maintenance algorithm presented in

this paper is combined with Address Space

Transformation (AST) [6] to dispose the problem of

lost operations. In order to construct the necessary

execution precondition of ABST, we model the shared

data as a linear string (or sequence), and consider two

primitive operations ins (p,c) and del (p,c), which

insert and delete one object (or character) “c” at

position p, respectively. As shown in Table 1, unlike

the past definitions of operations, we append some new

attributes to the operations. For each operation o, we

define the following six attributes: o.id is the id of the

collaborative site, which generates it originally; o.v is

the timestamp when o is generated, some appropriate

changes will be made to the definition of timestamp v

in order to adapt to the AST strategy. Different from

the ABST [7] using a one-dimensional array to define

the type of timestamp. We stipulate the o.v as N-

dimensional Array <1, 2…, n>, with n=1, 2, 3,…. To

simplify discussion, the elements in o.v are ordered by

the id (e.g. v<1, 3> expresses site1 and site2 has

executed 1 and 3 operations, respectively); o.type is

either ins or del; o.pos is the target position; and o.c is

the target object that o inserts or deletes; o.net uses 0

and 1 to distinguish between the operations at the

moment of break-before and break-after network. For

example, Oa=(1,v,ins,2,h,0), Oa.v=<3,0> represents

Oa is the third request operation generated at site1 in

the period of smooth net connection as well as in the

break-before network, and it attempts to insert

character “h” at the second position of the document.

4 Journal of Internet Technology Volume 20 (2019) No.1

Table 1. Basic definition

Symbol Brief Description

o.id the id of site that originally generates o

o.v the timestamp when o is generated

o.type the operation type of o, either ins or del

o.pos the position of o relative to the data model

o.c the character inserted or deleted by o

o.net to distinguish the network station by using 0 or 1

DOC the local linear replica

HB
an operation sequence stores the executed

operations

HBset
storing the operations selected from checking

process

cursor
storing the length of operation set which has

been executed at all sites

In the replicated architecture, any participating sites

of the collaborative editing team must generate the

local document replica, which reduces the

responsiveness dramatically by allowing local

operations to be applied immediately. The local replica

is defined as Doc; and two linear structures are defined

at each site, with one storing the executed operations

(i.e. HB), while another storing the operations set,

which are selected from checking process. (i.e. HBset).

The indexes of both HB and HBset are from 1.

Following AST [6] strategy, we restore the operations

together with their timestamps to the character’s linear

node, and using the “effective/ineffective” mark to

indicate the validity of each node in the linear structure.

3.3 Definitions of Operations Relationships

Definition 1: Given two operations O1 and O2,

O1=O2, iff:

O1.id = O2.id;

O1.v[id] = O2.v[id].

In this paper, every local operation is executed

immediately on local replica after generation, and the

corresponding timestamp will be modified

automatically. Assuming that at site1, a new operation

O is generated, and its timestamp is O.v=<id=1,

id=2…, id=n>. After the execution of O, id=1 will be

increased to 2. In simple terms, every value in O.v

records the execution order of operations at

corresponding site. So the timestamps of two

operations generated at the same site cannot be equal.

It should be noted that the reason why we propose this

equal relationship is to compare and integrate

operations during the packaging process, which will be

introduced in detail later.

Definition 2: There are two local replicas Doc1 and

Doc2, which are maintained at site1 and site2

respectively, and their history buffers are HB1 and

HB2. So if Doc1=Doc2, it must satisfy the following

conditions:

(1) HB1.length=HB2.length;

(2) HB1∩HB2=HB1 and HB1∩HB2=HB2;

(3) (HB1∩HB2).length=HB1.length

and (HB1∩HB2).length=HB2.length.

Because the consistency maintenance algorithm

adopted in this paper is based on AST and ABST. In

the previous researches, the CCI [8] (Convergence

Causality Intention) model has been used to prove the

correctness of the groupware system. The Convergence

feature of CCI guarantees that when the same

operations have been executed at all sites, all copies of

the shared document should be identical, even

executed in different orders. The above two techniques

successfully satisfy CCI model. It is complex to

compare Doc1 with Doc2 just according to the detail

content by using compare algorithm [26-28]. Hence,

we just need to compare the history buffers of different

collaborative sites to prove whether the document

copies are identical, which judges if these collaborative

sites executed the same operation set.

3.4 Dynamic Cursor

We propose the definition of dynamic cursor,

expressed as cursor to track the last operation set in

HB when replicas of collaborative sites are consistent

after comparing. So cursor is defined as numeric type

and stores the length of operation set which has been

executed at all sites. With the increasing number of the

operations in the real-time group editing system, the

value of the cursor should be updated frequently. An

example is given to explain the usage of the cursor.

Assume that at some points, the history buffers of site1

and site2 are HB1={O1, O2, O5, O3} and HB2={O5,

O2, O1, O4}, the initial value of cursor is 0, after

compared with each other, the HBset is created as {O1,

O2, O5}, which is composed of the operations that

have been executed in both sites even in different

orders. And, the value of the cursor is changed by

HBset.length, that is cursor=3.

The advantage of the cursor is that: It tremendously

reduces the checking time and totally improves

algorithm efficiency because we only need to check the

operations behind the cursor, no need to check the

operations again that have been checked before.

4 Consistent Maintenance Algorithm in

Unstable Network

The distinguishing feature of the mobile network is

instability, since it may be affected by electricity,

signal and hardware performance, etc. As shown in

Figure 2, in this article, we divide network into three

statuses: break-before, break-after and connect-after.

The main algorithm and mission in each status are not

the same, but the ultimate purpose is to make all

document copies of the collaborative sites identical by

using a series of transformation when network

connects again, no matter what states of the replicas at

the net-broken point are, even some operations are lost

at the point. It should be pointed out that we just focus

Consistency Maintenance of Collaborative Shared Documents in Unstable Network Environment 5

on how to capture and manage the lost operations to

get identical copies, so the consistency maintenance

algorithm used in break-before is un-constraint, and we

suggest AST strategy in our research work.

Figure 2. The main process in different network states

4.1 Break-before Period

In the period of break-before, the local operations,

and the history buffer with the cursor should be

broadcasted to remote sites. After the remote sites

receiving the operations and the HB, they first compare

it with local HB and then update the value of cursor.

But, in practice, HB is an operation sequence and its

size is larger than 1. So, if the local HB and the new

operation are broadcasted to remote sites

simultaneously, long time is needed for the process,

which will reduce the efficiency of collaborative work.

For this reason, the paper suggests to post HB

automatically at a specific time interval.

Algorithm 1. Generate(Ou, HBu)

1. Execute(Ou);

2. Ou.net=0; // the value of .net is initialized

3. HBu.Append(Ou);

4. Broadcast(Ou);

 //The following is a broadcast timer which

stipulates a specific time interval for posting local

HB, researchers can define the interval in need; it

sends local HB to remote sites automatically if

current time satisfies the broadcasting interval.

5. If (Current-Time is Broad-Time)

6. {Broadcast(HBu);}

7. //Or return Generate algorithm to manage new

operation

8. Else

9. {Return;}

If any operation at local site is being executed when

remote HB arrives, for operation priority, the operation

is firstly handled to update the local HB and then the

history buffers are compared to refresh the value of the

cursor.

Algorithm 2. Receive(Ou, HBu)

1. If Ou is casually ready

2. {

3. Execute(Ou);

4. HB.Append(Ou);

5. }

6. If remote HB is received

7. {

8. Check(HBlocal, HBremote, cursor);

9. cursor=newCursor;

10. }

11. Else

12. {

13. Return;

14. }

In order to improve the checking efficiency, we set

the checking length as the shorter one of the length of

the two HBs of the collaborative sites. According to

the operation definition in this article, because of the

value of user.id and timestamp is unique, there is no

equivalent operation in one HB, which ensures the

correctness of check function (HBlocal, HBremote,

cursor).

Function 1. Check (HBlocal, HBremote, cursor)

1. If (HBlocal.lengh>=HBremote.length)

2. {length=HBremote.length;}

3. Else {

4. Length=HBlocal.length;

5. }

6. If(length==cursor)

7. { break; }

8. Else{

9. For(i=cursor+1 to length)

10. {For(j=cursor+1 to length)

11. {If(HBlocal[i].id==HBremote[j].id and

 HBlocal[i].v[id]==HBremote[j].v[id])

12. { HBset.Append(HBremote[j]); }

13. }

14. }

15. }

16. If(HBset.length==length-cursor)

17. {

18. cursor=length;

19. }

20. Else{

21. length=cursor + HBset.length;

22. Goto step 5 -23;

23. }

6 Journal of Internet Technology Volume 20 (2019) No.1

4.2 Break-after Period

In the former introduction of the operation

definitions, O.net is used to distinguish the net status

when an operation is generated, with 0 and 1

representing the net statuses of break-before and break-

after respectively. So once the network is dis-

connected, the operations generated during the period

of break-after should be packed with the value of net as

1. Then for all collaborative sites, as Figure 3, packing

the local HB at position started from cursor as two

packages SQ0 and SQ1 according to the value of net,

with SQ0 composed of operations with O.net=0 and

SQ1 composed of operations with O.net=1.

Figure 3. The differences between SQ0 and SQ1

Algorithm 3. Package(SQ0, SQ1)

1. Execute(O);

2. O.net=1;//Since the operation is generated during

break-after period, it is executed immediately and

its net value is set to 1

3. SQ1.Append(O);

4. For(i=cursor to HB.length)

5. {

6. if(HB[i].net=0)

7. {SQ0.Append(HB[i]);}

8. if(HB[i].net=1)

9. {SQ1.Append(HB[i]);}

10. }

4.3 Connect-after Period

After the re-connection of the net, the operations

packaged in SQ0 and SQ1 of local site should be

broadcasted to remote sites. When the remote sites

receive these packages, it firstly identifies the lost

operations in SQ0 and executes them to construct the

execution precondition of the performing operations in

SQ1. Because the main problem we resolve in this

paper is how to execute the lost operations caused by

net -broken, the concrete transforming process of the

operations in SQ1 can be referred to the examples in

ABST [7].

Algorithm 4. Send (SQ0, SQ1)

1. BroadCast(SQ0);// Preferentially post SQ0 to the

collaborative sites to update the value of the

cursor.

2. BroadCast(SQ1);// The size of SQ1 is bigger than

SQ0, actually.

3. Excute(Ou);

4. Ou.net=0;//It emphasis that the net value is set to 1

after connect-after.

Like the send(SQ0, SQ1) algorithm, remote sites

firstly deal with the operations in SQ0. The puzzling

problems caused by the broken network can be divided

into two points:

(1) It is difficult to judge the relationships [8]

between the lost operations and the local operations;

(2) If there exist lost operations that are generated

before the operations which have been executed at

remote sites, how to transform the lost operations when

it is received after re-send is difficult to define.

Take Figure 4 as the example. There are two sites:

siteA and siteB, and the initial value of cursor is 0 at

two sites. Assume that O2 and O3 have been post to

siteB and siteA and executed separately. O1 is a lost

operation, which is generated before O2 at siteA, this

scenario satisfies the second point discussed above in

section 4.

Figure 4. Broadcasting process between two sites

At this time, A.SQ0={O1, O2, O3}, B.SQ0={O3,

O2}, O1 should exclude the effect of O3 to guarantee

that siteB can perform O1 correctly.

Similarly, O1 and O3 have been executed at siteB

and siteA already. Because of the disconnecting

network, O2 becomes the lost operation, which cannot

be broadcasted to siteB, this conforms to the first point

discussed in section 4.

Now, A.SQ0={O1, O2, O3}, B.SQ0={O1, O3}, and

after receiving O2 at siteB, O2 should be transformed

against O3 due to the concurrent relationship between

them.

Considering the complex relationship between lost

operations and executed operations we prefer AST

algorithm to deal with the lost operations. In the

recover process, we use operation sequence Larry to

store the operations whose id are remoteid in SQ0local,

and Rarry to store the operations in SQ0remote whose

id are remoteid.

Consistency Maintenance of Collaborative Shared Documents in Unstable Network Environment 7

Algorithm 5. Recover (SQ0remote, SQ1remote)

1. Receive(SQ0remote);

2. For(i=1 to SQ0local.length)

3. {//Select the operation where id=remoteid in local

SQ0 and append it to Larry.

4. if(SQ0local[i].id==remoteid)

5. Larry.Append(SQ0local[i]);

6. }

7. For(j=1 to SQ0remote.length)

8. {// Select the operation where id=remoteid in

remote SQ0 and append it to Rarry.

9. If(SQ0remote[j].id==remoteid)

10. Rarry.Append(SQ0remote[j]);

11. }

12. If(Larry.length==Rarry.length)

13. {//It indicates that all operations generated before

the break have been executed in all the

collaborative sites, but the value of the cursor has

not been updated immediately.

14. cursor==cursor+SQ0local.length;

15. }

16. Else

17. {//There exist lost operations, which results in the

inconsistency of the document copies of the

collaborative sites.

18. For(k=1 to Rarry.length)

19. { //Search and manage the lost operation.

20. If(Rarry[k] not in Larry)

21. { Retracing(Doc, Rarry[k].v);

22. Excute(Rarry[k]);

23. Rarry[k].v[remoteid]++;

24. HBlocal.Append(Rarry[k]);

25. Retracing(Doc, v);

26. }

27. }

28. cursor=cursor+SQ0local.length+Rarry.length

 -Larry.length;

29. }

30. Receive(SQ1remote);

31. ABST(SQ1remote);

5 Efficiency Analysis

We divide the network statuses into three types:

break-before, break-after and connect-after, and

employ different control algorithms in different

statuses, so the processing of the three statuses is

parallel.

The check (HBlocal, HBremote, cursor）algorithm

used in break-before period mainly records the latest

synchronization point, where the document copies of

the collaborative sites are identical, and updates the

value of cursor by comparing the operations in their

history buffers. The definition of cursor proposed in

this paper significantly improves the efficiency and

shorten the comparing time. Suppose that it costs d

times’ comparisons to update the value of cursor, its

time complexity is expressed as O(d·(HBlocal.length-

cursor)·(HBremote.length-cursor)). So the more

frequently the check algorithm runs, the faster the

cursor updates. However, with the increasing of

comparing times, the comparing length will be shorter

gradually. Therefore, in reality, the overall efficiency is

higher than we analyze above.

The main work in break-after period is to divide the

operations into two packages according to the net

statuses. Its time complexity is linear which is

expressed as O(HB.length-cursor).

In the connect-after period, the collaborative sites

identify and execute the lost operations. The step 1-11

in algorithm 4 Recover(SQ0remote, SQ1remote)

mainly selects the operations with given id, and its

comprehensive time complexity is less than step 16-27

which focuses on finding and managing the lost

operations. Because we utilize AST control algorithm

to manage lost operations in the connect-after phase,

the amortized costs of the Insert and Delete are both

O(logn) (where n is the number of the document’s

character nodes). However, it has to traverse all the

operations of Rrray in order to compare with

operations in Larry for searching lost data, and the

running efficiency during this period is

O(Rarry.length·Larry.length). The comprehensive time

complexity of the Recover algorithm is

O(Rarry.length·Larry.length·logn), which can be

simplified as O(logn) when the lost operations are less.

6 Case Analysis

As shown in Figure 5, the initial document’s state is

“”, and the value of cursor is 0. “T1” is the time to

update the value of cursor after broadcasting local HB

to remote sites. “Mark” indicates the lost operations

during the net dis-connecting period. “net” is used to

indicate whether an operation is produced before the

breakpoint or not, with 0 indicating the status of break-

after, while 1 otherwise. This paper focuses on dealing

with the operations, which are lost during the

broadcasting process or not send for constructing the

necessary precondition of the ABST algorithm

correctly. So, we just pay attention to how to manage

the operations with O.net=0.

Figure 5. An example of consistency maintenance

algorithm

8 Journal of Internet Technology Volume 20 (2019) No.1

Firstly, the detailed description of the operations in

Figure 5 is as follows.

Site1 generates operations:

O1=Ins(b,1), O4=Ins(c,2), O6=Ins(d,1), O7=Ins(e,2);

Site2 generates operations:

O2=Ins(a,1), O3=Del(b,2), O5=Ins(x,2).

In the following, we will analyze the document

states, HB and cursor of site1 and site2 at time point

T1. And the values of main parameters on two sites at

the point T1 can refer to the Table 2.

Table 2. The values of parameters on two sites at the

point “T1”

parameters Site1 Site2

HB {O1, O4, O2, O3} {O2, O1, O3, O4}

cursor 4 4

Doc “ac” “ac”

net 0 0

v (2,2) (2,2)

Site1: O1 and O2 are generated and executed

immediately at local site. After that the document state

is changed to “bc”, and the timestamp vector is set as

(2,0). When O2 arrives at site1 with the timestamp

(0,1), the control process first retraces the Address

Space of site1 to get the document state “bc”

(characters which tagged by underline represent

ineffective nodes), then determines the accurate insert

position b by using function Rang-Scan [6], and then

updates the document’s state and timestamp as “abc”

and (2,1) respectively. Finally, the Address Space is

retraced to the current time to get the ultimate state

“abc”. O3 is the last arrived operation which

transforms the document’s state to “ac” and alters the

timestamp vector as (2,2).

Site2: After the execution of O2 generated at local

site, the timestamp and document’s state is changed to

(0,1) and “a” respectively. Afterwards, O1 arrives at

site2 with timestamp (1,0) and the state of document is

changed from “a” to “ab” by using the AST strategy

like site1, and the timestamp vector is updated as (1,1).

O3 is executed instantly, and then O4 arrives and

executed, resulting in the timestamp result of (2,2), and

the final document’s state of “ac”.

Because the current time does not satisfy the posting

condition, so there is no HB broadcasted or received,

or the value of cursor has no change; At this time,

HB1={O1, O4, O2, O3}, HB2={O2, O1, O3, O4} and

both of two states of the documents of the sites are

“ac”.

(1) In the break-before phase, the local site

broadcasts HB to remote sites, and updates the local

value of cursor to unite with the old cursor. Take the

scenario at site1 as the example, after HB2 is received

from site2 with HB2={O2, O1, O3, O4}, it is

compared with local HB1={O1, O4, O2, O3} by using

algorithm Check(HBlocal, HBremote, cursor), and the

detailed process is as follows.

The value of checking length is set as the shorter one

between HB1.length and HB2.length, i.e. length=4.The

operations are selected, which satisfies that both O.id

and O.v[id] equal to that of the operations in HB2 are

selected from HB1[cursor+1] to HB1[length] (the

index of the linear sequences appear in this article all

starts from (1), and added them into HBset, finally

resulting HBset={O1, O4, O2, O3}. Because

HBset.length=length, only one time is needed to search

the operations performed at two sites. There are four

operations that have been executed already and

document statuses at site1 and site2 are identical even

in different orders. After the checking process, the

value of local cursor is updated to cursor+length

immediately, that is cursor=4.

Table 3. The values of parameters on two sites when

net-broken

parameters Site1 Site2

HB
{O1, O4, O2,

O3, O6, O7}

{O2, O1, O3,

O4, O5}

cursor 4 4

Doc “deac” “axc”

net 1 1

v (4,2) (2,3)

(2) In the break-after phase, there may exist several

operations lost or not be sent during the posting

process (such as the operations between “mark” and

“net” in Figure 5), and local site may continue

generating a set of operations (such as the operations

below the “net” line, and this problem had been

resolved in ABST). So at site1, the value of O.net of

the new operations, which are generated in the period

of break-after, will be set as 1. Next, the operations

from HB1.[cursor+1] to the end will be packed

according to the value of O.net to create two packages

SQ0 and SQ1. Since HB1={O1, O4, O2, O3, O6, O7},

SQ0.site1 is set to {O6, O7} and SQ1.site1 to {}.

(3) In the connect-after phase, the local site

broadcasts SQ0 and SQ1 to the collaborative sites. In

site1, firstly, SQ0.site2={O5} is received from remote

site2, and after the comparison between SQ0.site1 and

SQ0.site2, we can deduce that O5 is lost during the

broadcasting process. How to make consistent copies

by calling Recover() algorithm is described in the

following:

Step 1: Select the operations with id=2 in SQ0.site2

and SQ0.site1, add them to the operation sequences

Rarry and Larry separately. Thus we get Rarry={O5},

Larry={};

Step 2: Judge Rarry.length to decide whether it is

equal to Larry.length. If so, the value of cursor is

updated to cursor+SQ0.length. If not, find the

operations that do not exist in Larry but in Rarry. As

for every operation in Rarry [n] (n=1, 2,…), apply AST

strategy to execute them. In this example, Rarry [1] (i.e.

O5) should be executed on site1, and after the

Consistency Maintenance of Collaborative Shared Documents in Unstable Network Environment 9

execution of O6 and O7, the document’s state and the

timestamp are “deac” and (4,2) respectively. Rarry [1]

(namely O5) with the timestamp vector (2,3) should be

executed at site1, on the basis of function Retracing()

to get the state of the document as “deac” and ensure

the position for inserting character “x” is in the middle

of “ac”, finally O5 is executed and the document’s

state is retraced to “deaxc”.

Step 3: The value of cursor should be updated from

4 to (4+SQ0.site1.length+Rarry.length-Larry.length).

Similar to site1, we get Rarry={O6, O7} and Larry =

{} at site2, so that O6 and O7 are executed with the

AST strategy. O6 changes the document’s state and

timestamp to “daxc” and (3,3), while O7 updates the

content of the local copy to “deaxc” with the

timestamp (4,3). Finally, the value of cursor is

refreshed to (oldcursor+SQ0.site2.length + Rarry.

length-Larry.length) the oldcursor represents the last

value of cursor. And the Table 4 shows the comparison

data on two collaborative sites.

Table 4. The values of parameters on two sites after

process recover()

parameters Site1 Site2

HB
{O1, O4, O2, O3,

O6, O7, O5}

{O2, O1, O3, O4,

O5, O6, O7}

cursor 7 7

Doc “deaxc” “deaxc”

net 0 0

v (4,3) (4,3)

7 Correctness Analysis

In the break-before and the break-after phases, we

adapt AST [6] strategy to dispose the remote

operations and new operations generated at local. In

the connect-after phase, we also use AST to re-execute

the lost operations caused by net broken. For the

operations generated during the period of break-after,

they will be packed as an operations sequence (the SQ1

introduced above) and be transformed through ABST

[7] control algorithm. The correctness of AST and

ABST algorithm have been confirmed in the related

articles, therefore, both of them conform to the CCI

model. Thus, next we mainly validate the correctness

of the consistency maintenance algorithm proposed in

this paper. Firstly, we overview the specific content of

CCI [8] model:

(1) Convergence: when the same operation set has

been executed at all sites, all copies of the shared

document are identical.

(2) Causality-preservation: for any pair of

operations Oa and Ob, if Oa→Ob, Oa is executed

before Ob at all sites.

(3) Intention-preservation: for any operations O,

the effects of executing O at all sites are the same as

the intention of O, and the effect of executing O does

not change the effects of independent operations.

For Convergence, in the three network statuses

introduced in this article, the operations generated in

the period of break-after cannot be broadcasted to

remote sites, of course, there may exist some lost

operations during the posting process in the break-

before phase because of the unstable network. But the

function check(), which introduced in the break-before,

mainly compares local HB with remote HB to update

the value of cursor, we can confirm that the operations

before cursor must have been executed at all

collaborative sites. Once the net is broken, the

package() process involves in the break-after will pack

the operations behind cursor as two operation

sequences according to the value of net. We append the

operations with the value of net is 0 into operation

sequence SQ0, and the operations in SQ0 are divided

into two types: one is broadcasted and executed

correctly at remote sites, while the other is the lost

operations we raise in this paper. Finally, in the

connect-after phase, remote sites capture the lost

operations in the received SQ0 through Recover()

algorithm, and then execute them to refresh the local

HB and cursor. To sum up, in the whole process, we

find, re-post and execute lost operations by referring to

the value of cursor, promising that every collaborative

site executes the same operation set, thus guaranteeing

the Convergence.

For Causality-preservation, because we use AST

strategy to manage the lost operations, it only

transforms the address space of document according to

the timestamps of the operations, there is no need to

consider the relationship between operations.

For Intention-preservation, in the above example,

according to the process of disposing lost operations in

SQ0, we get the consistent copies at all collaborative

sites (both site1 and site2 create the identical copies

with the state of “deaxc”). When receiving the

operation sequence SQ1, because of the necessary

precondition of running ABST algorithm has been

created in the above consistency maintenance

technique, the SQ1 can be executed correctly by ABST

algorithm. All collaborative sites will get the identical

document statuses

The key technique to implement consistency

maintenance in our proposed algorithm, is the cursor.

It records the latest consistency point of copies of

collaborative sites. The lost operations can also be

obtained by using the cursor changed last time even

the value of the cursor is not updated immediately. Of

course, it needs some time to process these lost

operations and un-updated cursor’s value in the

connect-after status. Although in the negative case, due

to the fast increasing number of the operations, the

cursor still holding the initial value, in other words, the

checking process is just finished in Recover()

algorithm, that will lead to low efficiency. However, it

is worth that we can get the consistent shared

documents in the end.

10 Journal of Internet Technology Volume 20 (2019) No.1

8 Conclusion and Further Work

With the popularity of the mobile network and fast

development of variable network conditions technique

[24-25], more and more people prefer to undertake

work with the mobile terminals, which is portable and

has no constraint of position. The research and

application development in mobile collaborative field

have become the development trend of the computer

science and technology. Not only on mobile terminals,

but also on desktop and laptop computers may appear

the condition of the network is slow, and some users

prefer to work remotely by using PC or Cloud storage

[26, 29, 31-32]. So the conflicts in unstable network

made by these kinds of situations can be resolved

through the consistent maintenance algorithm proposed

in this article.

The greatest contriburion of this paper is : proposes

a consistency maintenance algorithm to support the

collaborative editing work in unstable network. This

algorithm constructs the precondition for the correct

execution of the ABST strategy, combined with the

basic ideas about AST, however, if we just design a

cooperative system by using exsiting algorithm that

support asynchronous cooperation in unstable network,

it is difficult to gurantee that the program of

broadcasting doesn’t exsit lost operations, so the

consistency maintenance algorithm we provide just can

catch and handle lost operaions.

We plan to extend this work along two directions: (1)

because ABST is an OT-based algorithm, and we

employ the AST to manage the lost operations, there

may need more storage space to save the character

nodes and the primary operations. If we can develop

the consistency maintenance algorithm, which is AST-

based, huge storage space can be saved; (2) The

influential factors of mobile network (such as power,

geographic position and time, etc.) should also be

considered into our consistency maintenance algorithm,

we may made some detectors to analysis these index

[30].

Acknowledgements

We would like to thank the reviewers, whose

valuable critique and comments helped to improve this

paper. Moreover, this work is supported by the

National Science Foundation of China (NSFC) under

Grant No. 61202376 and 61572325, Shanghai Natural

Science Foundation under Grant No. 17ZR1419100,

the Open Project Program of Shanghai Key Laboratory

of Data Science (No. 201609060003), Shanghai Key

Science and Technology Project in Information

Technology Field (No. 14511107902), Shanghai

Leading Academic Discipline Project (No.

XTKX2012), Shanghai Engineering Research Center

Project (GCZX14014, C14001).

References

[1] C. A. Ellis, S. J. Gibbs, G. L. Rein, Groupware: Some Issues

and Experiences, Communications of Association for

Computing Machinery, Vol. 34, No. 1, pp. 39-58, January,

1991.

[2] Y. H. Feng, L. P. Gao, N. Gu, F. Wang, Locking Intention

Preservation Based on Address Space Transformation

Technique, International Conference on Pervasive

Computing & Applications, Alexandria, Egypt, 2008, pp.

497-502.

[3] H. S. Gu, X. Xie, Q. Lv, Y. Ruan, L. Shang, Etree: Effective

and Efficient Event Modeling for Real-time Online Social

Media Networks, International Conference on Web

Intelligence & Intelligent Agent Technology, Lyon, France,

2011, pp. 300-307.

[4] B. Shao, D. Li, T. Lu, N. Gu, An Operational Transformation

Based Synchronization Protocol for Web 2.0 Applications,

Association for Computing Machinery Conference on

Computer Supported Cooperative Work, Hangzhou, China,

2011, pp. 563-572.

[5] G. Oster, P. Urso, P. Molli, A. Imine, Data Consistency for

P2P Collaborative Editing, The 20th Anniversary Conference

on Computer Supported Cooperative Work, Banff, Alberta,

Canada, 2006, pp. 259-268.

[6] N. Gu, J. M. Yang, Q. W. Zhang, Consistency Maintenance

Based on the Mark & Retrace Technique in Groupware

Systems, International Association for Computing Machinery

Siggroup Conference on Supporting Group Work, Sanibel

Island, FL, 2005, pp. 264-273.

[7] B. Shao, D. Li, N. Gu, A Fast Operational Transformation

Algorithm for Mobile and Asynchronous Collaboration, IEEE

Transactions on Parallel and Distributed System, Vol. 21, No.

12, pp. 1707-1720, December, 2010.

[8] C. Z. Sun, C. A. Ellis, Operational Transformation in Real-

time Group Editors: Issues, Algorithms, and Achievements,

Association for Computing Machinery Conference on

Computer Supported Cooperative Work, Seattle, WA, 1998,

pp. 59-68.

[9] C. A. Ellis, S. J. Gibbs, Concurrency Control in Groupware

Systems, Association for Computing Machinery Sigmod

International Conference on Management of Data, Portland,

OR, 1989, pp. 399-407.

[10] B. Shao, D. Li, N. Gu, ABTS: A Transformation-based

Consistency Control Algorithm for Wide-area Collaborative

Applications, International Conference on Collaborative

Computing: Networking, Applications and Work Sharing,

Washington, DC, 2009, pp. 1-10.

[11] B. Shao, D. Li, N. Gu, A Sequence Transformation Algorithm

for Supporting Cooperative Work on Mobile Devices,

Association for Computing Machinery Conference on

Computer Supported Cooperative Work, Savannah, GA, 2010,

pp. 159-168.

[12] Y. Xu, C. Z. Sun, M. Li, Achieving Convergence in

Operational Transformation: Conditions, Mechanisms and

Systems, Association for Computing Machinery Conference

Consistency Maintenance of Collaborative Shared Documents in Unstable Network Environment 11

on Computer Supported Cooperative Work, Baltimore, MD,

2014, pp. 505-518.

[13] H. H. Xia, T. Lu, B. Shao, G. Li, X. Ding, N. Gu, A Partial

Replication Approach for Anywhere Anytime Mobile

Commenting, Computer Supported Cooperative Work and

Social Computing, Baltimore, MD, 2014, pp. 530-541.

[14] Y. Xu, C. Z. Sun, Conditions and Patterns for Achieving

Convergence in OT-based Co-Editors, Transactions on

Parallel and Distributed Systems, Vol. 27, No. 3, pp. 695-709,

March, 2016.

[15] M. Ressel, D. Nitsche-Ruhland, R. Gunzenhäuser, An

Integrating, Transformation-oriented Approach to

Concurrency Control and Undo in Group Editors, Association

for Computing Machinery Conference on Computer

Supported Cooperative Work, Boston, MA, 1996, pp. 288-

297.

[16] C. Z. Sun, X. Jia, Y. Yang, D. Chen, Achieving Convergence,

Causality Preservation, and Intention Preservation in Real-

time Cooperative Editing Systems, Association for

Computing Machinery Transactions on Computer-Human

Interaction, Vol. 5, No. 1, pp. 63-108, March, 1998.

[17] D. Sun, C. Z. Sun, Operation Context and Context-based

Operational Transformation, The 20th anniversary conference

on Computer Supported Cooperative Work, Banff, Alberta,

Canada, 2006, pp. 279-288.

[18] N. Vidot, M. Cart, J. Ferrie, M. Suleiman, Copies

Convergence in a Distributed Real-time Collaborative

Environment, Computer Supported Cooperative Work,

Philadelphia, PA, 2000, pp. 171-180.

[19] R. Li, D. Li, A Landmark-based Transformation Approach to

Concurrency Control in Group Editors, International

Association for Computing Machinery Siggroup Conference

on Supporting Group Work, Sanibel Island, FL, 2005, pp.

284-293.

[20] R. Li, D. Li , C. Z. Sun, A Time Interval Based Consistency

Control Algorithm for Interactive Groupware Applications,

The 10th International Conference on Parallel and

Distributed Systems, Newport Beach, CA, 2004, pp. 429-436.

[21] D. Li, R. Li, An Admissibility-based Operational

Transformation Framework for Collaborative Editing

Systems, Computer Supported Cooperative Work, Vol. 19,

No. 1, pp. 1-43, February, 2010.

[22] B. Shao, D. Li, N. Gu, An Optimized String Transformation

Algorithm for Real-time Group Editors, The 15th Institute of

Electrical and Electronic Engineers International Conference

on Parallel and Distributed Systems, Shenzhen, China, 2009,

pp. 376-383.

[23] W. J. Huang, T. Lu, H. Y. Zhu, G. Li, N. Gu, Effectiveness of

Conflict Management Strategies in Peer Review Process of

Online Collaboration Projects, Association for Computing

Machinery Conference on Computer-Supported Cooperative

Work & Social Computing, San Francisco, CA, 2016, pp.

717-728.

[24] P. Guo, J. Wang, X. H. Geng, C. S. Kim, J.-U. Kim, A

Variable Threshold-value Authentication Architecture for

Wireless Mesh Networks, Journal of Internet Technology,

Vol. 15, No. 6, pp. 929-935, November, 2014.

[25] J. Shen, H.-W. Tan, J. Wang, J.-W. Wang, S.-Y Lee, A Novel

Routing Protocol Providing Good Transmission Reliability in

Underwater Sensor Networks, Journal of Internet Technology,

Vol. 16, No. 1, pp. 171-178, January, 2015.

[26] Y.-J. Ren, J. Shen, J. Wang, J. Han, S.-Y Lee, Mutual

Verifiable Provable Data Auditing in Public Cloud Storage,

Journal of Internet Technology, Vol. 16, No. 2, pp. 317-323,

March, 2015.

[27] Z. Xia, X. Wang, X. Sun, Q. Liu, N. Xiong, Steganalysis of

LSB Matching Using Differences between Nonadjacent

Pixels, Multimedia Tools and Applications, Vol. 75, No. 4, pp.

1947-1962, February, 2016.

[28] Y. Liu, N. Xiong, Y. Zhao, A. V. Vasilakos, J. Gao, Y. Jia,

Multi-layer Clustering Routing Algorithm for Wireless

Vehicular Sensor Networks, Institution of Engineering and

Technology Communications, Vol. 4, No. 7, pp. 810-816,

April, 2010.

Biographies

Liping Gao graduated from Fudan

University, China with a Ph.D. in

2009 in Computer Science. She

received her BSc and master degree in

Computer Science from Shandong

Normal University, China in 2002 and

2005 respectively. She is doing her research work in

University of Shanghai for Science and Technology as

an assistant professor. Her current research interests

include CSCW, heterogeneous collaboration,

consistency maintenance and collaborative engineering.

Dan Wang is a postgraduate student

in University of Shanghai for Science

and Technology. She obtained his BSc

degree in Computer Science from

Dalian Minzu University, China. Her

current research interests include

CSCW, collaborative design and collaborative

computer.

Naixue Xiong is a Professor at School

of Computer Science, Colorado

Technical University, Colorado

Spring, CO, USA and University of

Shanghai for Science and Technology,

China. He received his both PhD

degrees in Wuhan University (about software

engineering), and Japan Advanced Institute of Science

and Technology (about dependable networks),

respectively. Before attending Colorado Technical

University, he worked in Wentworth Technology

Institution, Georgia State University for many years.

His research interests include Cloud Computing,

Security and Dependability, Parallel and Distributed

Computing, Networks, and Optimization Theory.

12 Journal of Internet Technology Volume 20 (2019) No.1

Bing Wang graduated from

SooChow University, China with a

master degree in 2006 in School of

Computer Science and Technology.

He received his BSc degree in

Computer Science from XinYang

Normal University. He is doing his

research work in University of Shanghai for Science

and Technology as an engineer. His current research

interests include CSCW, Big Data and Educational

Informationization.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

