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Abstract 

Ternary Content-Addressable Memory (TCAM) is a 

popular hardware device for fast IP address lookup. High 

link transmission speed of Internet backbone demands 

more powerful IP address lookup engine. Restricted by 

the memory access speed, the lookup engine for next-

generation routers demands exploiting parallelism among 

multiple TCAM chips. How to design an efficient engine 

with high IP lookup speed and less update time while 

keeping low power consumption is a great challenge in 

building the next-generation routers. At present, no 

parallel schemes can make full use of TCAM chips’ 

capability. In this paper, we propose a fast lookup, 

efficient update and power-saving scheme which can 

basically make full use of TCAM chips’ capability. With 

N parallel TCAM chips, our proposed scheme can 

achieve a worst-case speedup factor of (N-1)*90% in 

cache-update state, and a worst-case speedup factor of 

N*90% in normal work state. Compared with previous 

works, our scheme can apparently improve IP lookup 

performance and update efficiency while keeps low 

power consumption. 

Keywords: Parallel TCAM, Route lookup, Update, 

Power consumption 

1 Introduction 

Due to the rapid growth of traffic in the Internet, 

backbone links of several gigabits per second are 

commonly deployed. To handle gigabit-per-second 

traffic rates, the backbone routers must be able to 

forward millions of packets per second on each of their 

ports. Fast IP address lookup in the routers, which uses 

the packet’s destination address to determine the next 

hop for each packet, is therefore crucial to achieve the 

packet forwarding rates required. Today, many 

researchers have studied fast lookup schemes for the 

development of the high performance routers [1]. Most 

of the schemes can be classified into software 

approaches based on trie-based and hardware 

approaches based on TCAM.  

Although many alterations have been proposed to 

optimize the original trie structures [2-4], trie-based IP 

lookup schemes usually require several memory 

accesses per lookup and those accesses may be 

serialized. The lookup speed in trie-based mechanisms 

using Dynamic Random Access Memory (DRAM) or 

Static Random Access Memory (SRAM) can hardly be 

further improved because of its intrinsic characteristic.  

For many contemporary hardware architects and 

system designers Content Addressable Memory (CAM) 

is a primary choice when it comes to designing high 

performance lookup systems [5-7]. A specifically 

interesting type of CAM, called Ternary CAM (TCAM) 

can store don’t-care values in addition to 0s and 1s. 

This gives TCAM the ability to store variable size 

pieces of data (called prefixes). TCAM can look up a 

given key among its contents and find all matching 

prefixes, all in one clock cycle [8]. Moreover, updating 

the forwarding table in TCAM-based schemes is 

generally simpler than that in Trie-based algorithms. 

Therefore, TCAM have been more and more used in 

high speed Internet routers in recent years. 

However, challenges arises from that (1) the length 

of IP prefix is variable and the incoming packet does 

not carry the prefix length information for IP lookup, 

one IP address may match multiple prefixes in the 

forwarding table and the longest matching 

prefix(LMP), should be chosen; (2) advances in fiber-

optic technology is pushing the line rate of core routers 

to 40Gbps or even higher, The state-of-the-art 18Mb 

TCAM can only operate at a speed of up to 266MHz 

and performs 133 millions lookup per second [9], 

barely enough to keep up with the 40Gbps line rate 

today; (3) the size of the route table has been 

increasing at a rate of about 10-50k entries per year in 

the past few years [10]. When IPv6 is widely deployed, 

even more storage space is needed; (4) frequent 

updates may consume many computation cycles in the 

IP lookup engine and result in the degradation of the 

lookup performance. Efficient update is one of the 

most important issues together with lookup 

performance in TCAM-based schemes; (5) the high 

cost to density ratio and high power consumption are 

traditionally the major problems in building the lookup 

engine.  
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According to the challenges, we classify 3 major 

concerns in building a forwarding engine based on 

TCAM: (1) lookup performance; (2) update time; (3) 

power consumption. We were motivated by the desire 

to make full use of the TCAM chips free space to 

increase the lookup throughout as well as achieve fast 

update and simultaneously reduce power consumption. 

With this objective, our main work focuses on: 

(1) Employing a partitioning technique to evenly 

distribute the route table entries among the TCAM 

chips. 

(2) Using all free space of every TCAM chip for 

cache to improve the lookup efficiency. 

(3) Updating cache entries efficiently to get a high 

cache hit rate. 

(4) Reducing the update time of route prefixes 

entries to improve the update efficiency of the whole 

system. 

This work is an extension of our previous work “Bin 

Zhang, et al., Efficient Searching with Parallel TCAM 

Chips. The 35th IEEE Conference on Local Computer 

Networks, LCN 2010, 11-16 Oct. 2010, Denver, 

Colorado, U.S.A.” 

The rest of the paper is organized as follows. 

Related works on parallel schemes of TCAM and our 

investigation are described in section 2. Section 3 

describes the complete architecture of the proposed 

efficient parallel engine. We present our theoretical 

performance evaluation in section 4 and simulation 

results in section 5. We compare the present parallel 

TCAM lookup schemes in section 6. Finally, we 

conclude our work in section 7. 

2 Related Work and Investigation 

Chip-level parallel TCAMs were deployed to 

circumvent the limitation of a single TCAM, where 

issues should be appropriately addressed: (1) high 

memory efficiency, (2) balanced traffic load 

distribution among parallel TCAM chips, (3) less 

update time, (4) economical power dissipation. 

Many researchers have strived to optimize the 

TCAM-based lookup engines [11-17]. The partition 

table is divided by output port into several smaller 

tables in [11]. The number of tables is equal to the 

number of output ports on the router. Each table holds 

a collection of all the entries that map to the output port 

it corresponds with. Since all entries in a partitioned 

table map to the same output port, there is no longer a 

need to keep the entries sorted. When a search occurs, 

each TCAM looks up the IP address in parallel. Each 

table outputs the matched lengths to a selection logic. 

After the selection logic chooses the longest length, the 

packet is forwarded to the output port based on which 

table had the longest prefix match.  

The basic idea of [12] is to partition all prefixes into 

different sets based on the relationship among them. 

For a given destination IP address, the prefixes which 

have ancestor-descendant relation will be matched 

simultaneously. The depth of a prefix search trie 

currently does not exceed 7 even including the default 

prefix so there can be at most 7 matches. If the 

forwarding table is partitioned into several TCAMs so 

that there is no ancestor-descendant relation in each 

partitioned TCAM, then it is guaranteed that there 

exists at most one match in each TCAM. The work 

[11-12] focus only on the update time. The update 

efficiency is 0(1) of both schemes, but the lookup 

performance is poor and power consumption is high. 

Panigrahy and Sharma [13] partition all prefixes into 

8 different parts equally based on the address range. 

They put each part in a TCAM chip. When a search 

occurs, each TCAM looks up the IP address in parallel 

based on address range. The packet is forwarded to the 

output port based on which table had the longest prefix 

match. Hence the lookup performance can be improved. 

The power consumption can be saved by decreasing 

the number of the triggered TCAMs access in each 

lookup operation. CoolCAMs scheme is proposed by 

[16] to further reduce the power consumption. 

However, the improved look performance is very 

limited in [13, 16] due to no further efficient 

mechanism. 

Kai Zheng et al. proposed an architecture in which 

each TCAM chip had one abundant partition to balance 

traffic load [15]. It assumed that the lookup traffic 

distribution among IP prefixes can be derived from the 

traffic traces. In their optimized system evaluation with 

simulated traffic, a speedup factor of nearly four can be 

achieved. However, when the traffic is temporarily 

biased to a limited number of route prefixes, the 

multiple selectors will frequently access the same 

block. The system can only fulfill one of the requests at 

a time, which drastically hampers the whole 

throughput. 

The more efficient parallel TCAM architecture at 

present was proposed by Lin et al. [14]. They design a 

preorder-split method based on the idea of range-base 

partitioning to evenly distribute the route table entries 

among the TCAM chips. They analyzed the Internet 

traffic and observed that the average overall bandwidth 

utilization was very low but the Internet traffic could 

be very bursty, so mapping route table partitions into 

TCAM chips based on long-term traffic distribution 

[15] cannot effectively balance the workload of 

individual TCAM chip during bursty periods. After 

analysis of Internet real traces they found the 

temporary locality is very strong. Bursts from large 

TCP flows were the major source of the overall bursty 

Internet traffic. Nine most common causes of source-

level IP traffic bursts exist in Internet, one for UDP and 

eight for TCP flows. Most of these were due to 

anomalies or auxiliary mechanisms in TCP and 

applications. It is indicated that TCP’s window-based 

congestion control itself leads to bursty traffic. As long 

as a TCP flow cannot fill the pipe between the sender 
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and the receiver, bursts always occur.  

Hence, instead of mapping route table partitions into 

TCAM chips relying on long-term traffic statistics, 

they used the concept of cache to balance the traffic 

load adaptively. They used a partition on each TCAM 

chip as a logical cache for load balancing. A new 

lookup request was distributed to the TCAM chip with 

the shortest input queue. There are three different 

alternatives. (1) If the incoming IP address has been 

sent to its home TCAM (the TCAM that may contain 

the matching prefixes), it will get a search operation on 

the partition and the final result is done. (2) If the 

incoming IP address has been sent to a non-home 

TCAM, it will get a search operation on the logical 

cache. When it is cache-matched, the final result is 

done. (3) When a cache miss occurs, it will be sent 

back to the home TCAM directly and case 1) happens 

again. 

In our previous work [17], we propose a crossed 

address range division and shared caching scheme to 

balance the traffic on chips, and propose a buddy 

update method to improve the update efficiency. Our 

work [17] mainly focuses on update efficiency while 

keeping the lookup throughput as in [14]. Both 

schemes [14, 17] are very efficient but both of them 

still cannot make full use of the parallel TCAM chips’ 

capability. In this work, we take advantage of the all 

free spaces left in TCAM chips, and improve the 

previous scheme [14] from six sides: 

(1) There is still much free space on each TCAM 

chip in [14]. Can we use them to increase the logical 

cache space size? That means we can use all the free 

space on each TCAM chip as cache to achieve a more 

efficient lookup performance. 

(2) Entries on each logical cache are all same in [14]. 

In fact, the TCAM chip route entries and the entries of 

logical cache on that chip may repeat. Hence we need 

not update the logical cache on that chip when using an 

entry in the TCAM chip to update caches, which can 

also save the logical cache space to get a high hit rate. 

(3) All TCAM chips have to stop searching when 

proceeding cache update in [14]. Can we update caches 

in a pipeline way? We can make sure that there will be 

N-1 TCAM chips working in parallel during updating 

cache in this way. 

(4) When cache missing occurs a package was sent 

back to the home TCAM directly in [14], which may 

lead to dropping packages when bursty traffic hits on 

one TCAM chip at some time. Can we tag the package 

with a number counting the times of cache missing? 

Only when the number exceeds the limit the package 

can be sent back to home TCAM, otherwise the 

package is still sent to the TCAM with shortest 

queuing length. The reason is that cache missing of this 

cycle does not mean cache missing the next cycle. 

(5) Multiple partitions put in one TCAM chip can 

reduce power consumption using partition-disable 

technique in [14], but leading to three burdens: (a) 

Needs to reconstruct all partitions when any partition is 

full during update; (b) Needs more complex address 

range arbitration logic; (c) More partitions means more 

ranges, more ranges means more entries crossing 

multiple ranges, which weighs update burden. In our 

scheme, we split the route table into N (denotes TCAM 

chips number) partitions, and put one partition on one 

TCAM chip to trade-off update efficiency and power 

consumption. 

We use an efficient update method on each TCAM 

chip to achieve a worst-case update time O (7) for each 

TCAM chip. All partitions need to be reconstructed 

only when any TCAM chip is full during update. 

From the above investigations, we can see that the 

scheme in this work has the following advantages as 

listed in Table 1. 

Table 1. Comparison of schemes 

Scheme 
Lookup 

Speed 

Update  

Time 

Power 

Consumption 

[11-12] Not improved Improved Not improved 

[13, 16] Limited improved Not improved Improved 

[15] Improved Not improved Improved 

[14, 17] Improved Limited Improved Improved 

Our scheme Highly improved Highly Improved Improved 

3 Proposed IP Lookup Architecture 

3.1 Deciding Partition Method 

The first thing in this approach is the partition rule. 

A good partition rule must meet two primary 

conditions:  

(1) It must create roughly equal partitions;  

(2) It must be simple so that the Indexing Logic 

becomes simple and fast. In other words, determining 

the target partition by given search key should be 

possible in one cycle using simple hardware.  

Generally three kinds of methods for partitioning the 

entire routing table were proposed, i.e., key-ID based 

[15], prefix Trie-based [16] and range-based [13-14] 

partitioning. The key-ID approach suffered from 

uneven sub-table sizes and uncontrolled redundancy, 

which result in a higher memory and power cost. Trie-

based partitioning can lower the redundancy and unify 

sub-table sizes, but it required an extra index TCAM to 

perform the block selection. As a result, two TCAM 

accesses are occupied for each lookup request. Range-

based partitioning can lower the redundancy and unify 

sub-table sizes to the most through splitting the routing 

table into multiple buckets with identical size 

according to the address range, which is introduced by 

Panigrahy and Sharma [13] and implemented by Lin et 

al. using pre-order splitting algorithm [14]. So range-

based partitioning can meet condition 1.  

Figure 1 illustrates the pipelined structure of the 

Indexing Logic for TCAM chip selection. It is 
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composed of pairs of parallel comparing logics and an 

index table. Each pair of parallel comparing logic 

corresponds to one TCAM chip and is composed of 

two registers which store the boundary points of each 

TCAM partition (a partition corresponds to a TCAM 

chip). Next to the parallel comparing logics is an index 

table with encoder. The index table which stores the 

partition distribution information returns a partition 

number indicating which chip/partition may contain the 

prefix matching the IP address by the encoded 

information. Because the data width of the Indexing 

Logic is fixed and only simple “compare” operation is 

executed, it can work at very high speed. So range-

based partitioning can also meet condition 2. Based on 

our analysis we choose the range-based partitioning 

method in [14] to divide the route table. 

 

Figure 1. Schematics of the indexing logic 

3.2 Logical Cache for Load Balancing 

3.2.1 Cache Organization 

As mentioned in Section 2, temporal locality of 

internet traffic is much stronger in the core routers 

because of the great effect of heavy flow aggregations. 

To achieve higher lookup throughput, a straightforward 

design is to deploy a first stage caches working in front 

of a second stage data TCAMs. An obvious drawback 

of this conventional approach is that the cache is 

required to operate at N times the speed of TCAM if 

there are N parallel TCAMs in the system, which is 

impractical. Another approach is to add some small 

extra TCAM chips as caches to work in parallel, but it 

will increase the complexity of the system structure. 

Logical cache was proposed in [14] since there is no 

additional cache module which implies fewer pins and 

less packaging cost. Furthermore, employing the 

existing TCAM cells as logical caches exhibits a better 

performance cost ratio. We still use logic cache but 

differently as we mentioned in Section 2. Only a small 

fixed part of a TCAM chip was used for logic cache in 

[16], still much free space exists in each TCAM chip 

unused. Different with the scheme in [14] we use all 

free space for caching. Our logical cache of each 

TCAM chip has two parts: the fixed parts and the 

variant parts, which can significantly increase the 

cache size. 

As depicted in Figure 2, each TCAM chip includes 3 

parts: (1) The Route Entry Part is used for prefix 

entries of a partition. It will gradually enlarge with 

route table update. When it reaches the bottom line of 

the fixed cache part and just covers the variant cache 

part completely, we think the TCAM chip is full. (2) 

The Variant Cache Part and (3) The Fixed Cache Part 

are both used for caching. The difference between 

them is that the fix part is always used for caching and 

cannot be used for the update of route table entries, 

which can assure the worst-case speedup factor over 

N*90% on average with N parallel TCAM chips if the 

average cache hit rate exceeds 90%. We can get the 

fixed part size by evaluation to meet the demand. Since 

the cache entries do not contain these entries in the 

route entry part, we can confirm that the fixed cache 

part size is smaller than the logical cache size in [14] 

when they get the same cache hit rate.  

 

Figure 2. TCAM chip organization 

3.2.2 Cache Update 

There are two kinds of algorithms for cache 

mechanisms are proposed in route lookup literatures, 

caching destination addresses (IPs) [18-20] and 

caching prefixes [21]. We choose to use the caching 

prefixes algorithm because it can get the cache hit rate 

the same as IPs by saving the 97% memories [18-20]. 

But for caching prefixes, there is one important issue 

need to be resolved. Suppose p and q are two prefixes 

where q is a sub-range of p, i.e. p is a prefix of q. If 

there is a lookup request r redirected to the cache and p 

is the LMP of r, then p will be added to the cache. 

However, in some later time if another request r’ 

(whose LMP is q) is redirected to the cache, then the 

cache will return p as the lookup result (where the 

correct result should be q). To resolve this problem, we 

adopt the RRC-ME algorithm [18] in managing the 

cache. In the above example, the shorter prefix p will 

be expanded into a longer prefix, based on the Minimal 

Expansion Prefix (MEP) method in [18]. For instance, 

there are only two prefixes in a route table, i.e. 1* and 

111*. Hence, the MEP for request 1111 is 111*, the 

MEP for request 1000 is 10*(it has the same next hop 

as 1*), the MEP for request 1100 is 110*(it has the 

same next hop as 1*). Since the expanded prefixes are 

disjoint, there is one and only one possible match result 

for every input address. Thus, the match result, if any, 

returned by looking up a cache is valid. Another 

advantage of prefix expansion method is that any 
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update to the cache only requires one TCAM cycle 

because the prefixes need not be ordered. 

There is another issue about the cache update put 

forward in [14]. In the proposed cache organization, a 

TCAM chip is not available to perform IP lookup 

during cache updates. Hence, a high cache update 

frequency will seriously affect the system performance. 

Moreover, immediate cache update in the event of 

cache missing is very difficult since the system has to 

evaluate the MEP decomposition of the corresponding 

prefix. A slow-update mechanism with LRU algorithm 

was adopted in [14]. Only one cache-missed element is 

updated within a predefined interval, during this period 

the other cache-missed elements are ignored. The 

slow-update mechanism cannot assure the cache hit 

rate. Our cache update mechanism is described as 

follows: 

(1) The logical cache in each TCAM is filled with 

prefix entries in other TCAMs’ partition at initial state. 

A register for each TCAM is used to indicate the 

entries’ number of the partition on the TCAM. We 

increase its value with route table entries’ update. We 

name this kind of register as entry indicator. Its max 

value equals to TCAM’s capability minus the fixed 

cache capability. 

(2) We tag the package with a number counting the 

times of cache missing. Only when the number exceeds 

the limit the package can be sent back to home TCAM, 

which indicates the contention for this entry is very 

strong. Only in this case we update the caches on other 

TCAMs. 

(3) We update other caches using the cache-missed 

entry and also its 10 adjacent entries in a pipeline way 

(The reason is temporal locality of internet traffic is 

very strong), which can greatly increase the following 

cache hit rate and can assure N-1 TCAMs work in 

parallel during cache update. 

(4) The match index is instantly available as the 

home TCAM search results, but the prefix is usually 

impossible or very slow to read for the commercially 

available TCAMs. Therefore, to obtain the route prefix 

the system has to refer to the associated SRAM block. 

It is assumed that each entry in the SRAM blocks 

stores the associated prefix together with other 

forwarding information, besides, each SRAM entry has 

a flag that indicates whether or not this entry 

corresponds to a parent prefix. A parent prefix 

represents a route that has more specific route 

advertisements (i.e. encompassed prefixes) in the same 

forwarding table. We adopt the RRC-ME algorithm to 

deal this situation. 

(5) We use a register for each logical cache to 

indicate the cache update start point every time. We 

name this kind of register cache indicator. Its initial 

value equals to the initial value of entry indicator. We 

can start cache update from this point upward and 

increase cache indicator’s value correspondingly till 

the value reaches TCAM capability. Cache indicator’s 

value is set back to entry indicator’s value when it 

reaches its highest value. 

(6) Route table update on each TCAM chip will 

make route table entries directly cover the cache entries 

in variant cache part. When TCAMs finishing route 

table update the system should check the values of 

cache indicator and entry indicator. If the entry 

indicator’s value exceeds the cache indicator’s value 

the cache indicator’s value is set equal to the entry 

indicator’s value. If the entry indicator’s value reaches 

the max value the system needs to reconstruct all 

partitions. The two kinds of indicator’s value are set 

equal to new partition entries’ number after 

reconstruction. 

Our cache update mechanism is of high efficiency. 

In our architecture the fixed part size is about 1/10 of 

the whole TCAM chip, and the initial route table 

makes each route entry part takes up about half of the 

whole TCAM chip. The experiment result in Section 5 

shows the average cache-update interval is about 8000 

clock cycles and the lowest cache hit rate can exceed 

96% in this case. The worst case is in TCAM full state, 

and every route entry part takes 9/10 of the whole 

TCAM chip. In this case the experiment result shows 

the average cache-update interval is about 4000 clock 

cycles and the lowest cache hit rate can exceed 90%. 

3.2.3 Proposed Architecture 

The detailed implementation architecture of the 

parallel lookup engine is presented in Figure 3, and the 

working step can be discribed in Algorithm 1. 

Given an incoming IP packet to be searched, the IP 

address is extracted and delivered to the Indexing 

Logic (see Figure 1) for a comparison. The Indexing 

Logic will return a partition number indicating the 

home TCAM that may contain the matching prefixes. 

Only when the cache-missing times exceeds the limit 

(the limit value will be get by test) we set the package 

can be sent back to the home TCAM, otherwise, the 

package will be still sent to the TCAM with shortest 

queuing length. A cache-missing counter tag (initial 

value is 0) is needed to indicate the cache-missing 

times. Since multiple input queues and feedback exist 

in the proposed scheme, incoming IP addresses maybe 

processed in a non-FIFO order. The Re-ordering Logic 

maintains the original sequence by using the time 

stamp attached. The package consists of IP address, 

partition number (TCAM number), cache-missing 

counter and time stamp before sent to the adaptive load 

balance logic. 

The package will be sent to the Adaptive Load 

Balance Logic to decide which TCAMs’ FIFO queue 

should be sent to. The Adaptive Load Balance Logic 

arbitrates based on two rules: (1) If the cache-missing 

counter’s value exceeds the limit the packet will be 

sent to the home TCAM directly, otherwise, the packet 

will be sent to the idlest FIFO; (2) When existing more  
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Figure 3. Schematics of the complete implementation architecture 

Algorithm 1. The working flow of our scheme 

1.  An IP packet arrived.  

2. The destination IP is extracted and delivered to the 

Indexing Logic 

3. Output a partition number indicating the matching 

prefixes. 

4. The packet further tagged by cache-missing counter 

and time stamp. 

5. The Adaptive Load Balance Logic decides which 

TCAMs’ FIFO queue the packet should be sent to. 

5.1 If the cache-missing counter’s value exceeds 

the limit, the packet� home TCAM;  

5.2 or, the packet�the idlest FIFO  

5.2.1 More than one idlest FIFO, home TCAM 

has priority.  

5.2.2 Others have equal opportunity. 

6. TCAM outputs the next hop information for the 

packet. 

6.1 home TCAM directly outputs the next hop 

information;  

6.2 Other TCAMs using cache to decide  

6.2.1 Cache match, output the next hop.  

6.2.2 Cache missing, send back to Adaptive 

Load Balance Logic. 

7. The re-ordering logic reorders packets based on 

timestamp to output. 

 

than one idlest FIFO, if the home TCAM is among the 

idlest ones the package will be sent to the home TCAM, 

else it will be sent to chip in a random way.  

With the feedback mechanism depicted in Figure 3, 

there are three different alternatives. (1) If the 

incoming IP address has been sent to its home TCAM, 

it will get a search operation on the partition indicated 

by the Indexing Logic and the final result is done; (2) 

If the incoming IP address has been sent to a non-home 

TCAM, it will get a search operation on the logical 

cache. When it is cache-matched (the result is 

guaranteed by the RRC-ME), the final result is done. (3) 

If the incoming IP address has been sent to a non-home 

TCAM, and when a cache miss occurs, it must be sent 

back to the Adaptive Load Balance Logic after 

increasing the cache-missing counter’s value by 1 via 

the Feed Back Logic and case 1) happens again. 

4 Performance Analysis 

4.1 Lookup Performance 

The speedup factor of our scheme is apparently N(N 

indicates all TCAM chips number) in the best case as 

in [14-15, 17] when all TCAMs work in parallel. The 

value of the speedup factor in the average case depends 

on the incoming streams distribution. The authors of 

[15] use queuing theory to model the lookup engine 

and assume that the arrival process of the incoming IP 

addresses is a Poisson process with average arrival rate, 

which does not conform to real Internet traffic. Lin et 

al. [14] has calculated that its lower bound of the 

speedup factor can reach n-1 on the basis that the 

average hit rate is no less than (N-2)/(N-1). The work 

[17] proved their speedup factor larger than N-1 for the 

real traffic. 

Since the logical cache on each TCAM chip in our 

scheme can have much more space than the logical 

cache in [14] in the same condition, we can assure that 

the lookup performance can be much better than [14] 

due to much higher cache hit rate. Moreover, the cache 

update mechanism of our scheme is more efficient than 

[14], which can be testified in Section 5 by experiment. 

Further, the pipeline cache update way can assure N-1 

TCAM chips continue searching during cache update. 

If N denotes the parallel TCAM chips’ number, and 

P denotes the average cache hit rate. The speedup 

factor of our scheme is always a little larger than (N-

1)*P in cache-update state, and a little larger than N*P 

in normal work state. 

In our architecture we set fixed part size about 1/10 

of the whole TCAM chip, and initial route table makes 

each route entry part takes about half of the whole 
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TCAM chip. The best condition is in the initial state, 

which the cache size is the biggest before no new route 

table entries join in. The experiment result in Section 5 

shows the average cache-update interval is about 8000 

clock cycles and the lowest cache hit rate can exceed 

96% in this case. This means in initial state the 

speedup factor is over (N-1)*96% during cache-update, 

and over N*96% otherwise. 

The worst case is in the TCAM full state, and every 

route entry part takes 9/10 of the whole TCAM chip. In 

this case the experiment result shows the average 

cache-update interval is about 4000 clock cycles and 

the lowest cache hit rate can exceed 90%. This means 

the worst-case speedup factor is over (N-1)*90% in 

cache-update state, and over N*90% in normal work 

state. 

4.2 Update Efficiency 

One TCAM chip is divided into several buckets in 

[14-15]. The system has to reconstruct when any 

bucket reaches full even if there are many free spaces 

in other buckets on the same chip. If the total number 

of entries is n, TCAM number is x, and the buckets 

number is y, the update time complexity is O(n/y) for 

inner bucket update. The system has to reconstruct for 

inter-bucket update. The system reconstruction will 

stop the IP lookup operation, drastically hampering the 

whole system performance. The work [17] use a buddy 

update algorithm to improve the update efficiency, the 

update time complexity can get O(n/2x) for inner-chip 

update and O(2n/x) for inter-chip update on average.  

Similar to our work [17], there are 4 TCAM chips in 

our parallel lookup engine. So the route table should be 

divided into 4 partitions as Figure 4 illustrated. This 

can have 3 advantages versus dividing more partitions 

and putting multiple partitions on one TCAM: (1) Less 

reconstruction times during update; (2) Less entries 

crossing multiple ranges; (3) Less compare logics 

needed in the Indexing Logic (see Figure 1). 

 

Figure 4. Dividing prefix into 4 equal size partitions 

We use the Preorder-Splitting algorithm in [14] to 

divide route table into 4 equal size partitions. Let B1, 

B2, ... denote the boundary points that partition the IP 

address number line. We place each partition of 

prefixes in a separate TCAM chip. As for prefixes that 

fall into multiple ranges, we put them into the chips 

that correspond to those ranges. It is easy to know that 

there are at most 32*2 = 64 boundary prefixes that 

need to be present in a TCAM chip (these prefixes fall 

into multiple ranges). In fact, the depth of a prefix 

search trie currently does not exceed 7 even including 

the default prefix so at most 7*2 = 16 boundary 

prefixes need to be present in a TCAM chip. This is 

because any prefix that falls into multiple ranges must 

be on the path from one of these boundaries to the root. 

Otherwise, it will strictly lie in the interior of one of 

the regions carved out by these paths. Each range will 

need to include, besides prefixes in the interior, the 

prefixes on the two boundary paths. 

During update, two or more TCAM chips need 

update for a boundary prefix and one TCAM chip need 

update for an interior prefix. If entry indicator’s value 

of each TCAM chip is less than the max value (TCAM 

capability menus the fixed cache capability), only chip-

level update is needed. Otherwise, we need to 

reconstruct all partitions using pre-order splitting 

method. The registers value in the Indexing Logic also 

needs update according to the new boundary after 

reconstruction. 

Route table update on each TCAM chip will make 

route table entries directly cover the cache entries in 

variant cache part as we illustrate in Section 3. As the 

update on each TCAM chip is individual and does not 

affect each other, we can use the fast update algorithm 

proposed by Shah and Gupta [22] on each TCAM chip. 

Shah and Gupta proposed two fast updating algorithms 

which are PLO_OPT and CAO_OPT, to reduce the 

number of memory movements during update. In 

PLO_OPT all the existing prefixes are sorted by their 

lengths and free locations are reserved in the middle of 

the table. Then the number of memory movements per 

update is no more than L/2 where L is the maximum 

prefix length, i.e., 32 in IPv4. CAO_OPT exploits the 

fact that the ordering needs to be maintained only 

between two prefixes one of which is the prefix of the 

other. In this algorithm the ordering is referred to as the 

chain-ancestor ordering (CAO) where a chain means 

the collection of the prefixes on the path from the root 

to a leaf node in a prefix search trie. In CAO_OPT the 

worst case number of memory movements per update 

has been reduced to D/2 where D is the maximum 

length of chains. However, free locations are not 

reserved in the middle of the table on TCAM chip in 

our scheme (see Figure 2), but they are reserved in 

front of the table on TCAM chip. Hence, the chip-level 

update efficiency can achieve an O(D) worst-case 

update by CAO_OPT algorithm. The depth of a prefix 

search trie currently does not exceed 7 even including 

the default prefix so the worst-case update time is 

about O(7). To support the update operations, the 

algorithm needs to maintain an auxiliary trie data 

structure to keep track of the prefixes stored in the 

TCAM. 
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4.3 Power Consumption 

There are two ways to decrease the number of 

entries triggered during a lookup operation. One is to 

store the entries in multiple small chips instead of a 

single large one. The other one benefits from a new 

feature of some TCAMs called “partition-disable”. The 

key idea is to split the entire routing table into multiple 

partitions or buckets, where each bucket is laid out 

over one or more TCAM blocks. During a parallel 

lookup operation, only the block(s) containing the 

prefixes that match the incoming IP address is (are) 

triggered instead of all the entries in the original table. 

In this fashion, TCAM’s power consumption can be 

dramatically reduced. 

Similar to the work [14-15], Our proposed scheme 

can benefit from both. If the TCAM chips have not the 

“partition-disable” feature, assume the power 

consumption for a TCAM without partitioning search 

is K, and the TCAM is split into N TCAM chips, let M 

(M<=N) denotes the TCAM chips number in a 

working state at a moment. The power consumption 

should be MK/N at this moment. So the power 

consumption can be no more than K at any moment. 

If the TCAM chips have the “partition-disable” 

feature, as we mentioned in Section 3 there is a register 

called entry indicator for each TCAM chip indicating 

the border of partition area and cache area. We can 

decide the blocks for each area (maybe a block shared 

by the two parts at the border) according to the entry 

indicator. When a package was sent to a home TCAM 

chip, only the blocks of partition area are triggered. 

When a package was sent to a non-home TCAM chip, 

only the blocks of cache area are triggered. Assume the 

power consumption for a TCAM without partitioning 

search is K, the blocks number of the TCAM without 

partitioning is T, and S denotes the blocks number 

being triggered at a moment. The power consumption 

should be SK/T at this moment. If the cache area and 

the partition area almost equal, the power consumption 

is about K/2 when the lookup engine works at full 

speed. 

5 Experiments and Simulations 

In addition to the theoretical analysis we have run a 

series of experiments and simulations to measure the 

scheme performance. Table 2 shows the parameters of 

a real implementation of our scheme. Our scheme is 

flexible and scalable, and can be easily extended for 

IPv6 address lookup. Yang et al. [23] discuss how to 

extend for IPv6 address lookup. 

 

 

 

Table 2. Parameters in the test scheme 

Feature  Parameter 

Number of TCAM Chips  4 

Chip Size  32K*36b 

Percentage of the Fixed Cache 10% 

Max. Number of Route Entries  Supporting 115.2K 

Working Frequency of TCAM Chips  266MHz 

Max. Lookup Throughput  1.064Gbps 

Max. Power Consumption(rare) 
5*4*90%=18W 

(5W/per chip) 

Number of Data Buses 4 

 

The route entries are collected from backbone router 

of the China Education and Research Network 

(CERNet). The reason we use 32K*32b chip size (one 

can decide the chip size based on the real situation, 

usually bigger than this size) is that the largest route 

entries number is about 120K. We must make all 

TCAM chip full for the worst-case test so the max 

router entries number of our system cannot exceed 

120K. To get about half of the whole chip space for 

cache on each chip in the initial state, we select 

randomly about 57.6K entries from 120K entries and 

partition them using pre-order splitting algorithm in 

[16]. For the worst case (TCAM full state) we use 

about 115.2K entries from 120K entries and partition 

them using pre-order splitting algorithm. Table 3 and 

Table 4 show the partitioned results of the two cases 

respectively. 

Table 3. Partition result in the initial state 

Partition Range Low Range High Size 

1 0.0.0.0 70.89.255.255 16745 

2 70.90.0.0 128.56.78.255 16745 

3 128.56.79.0 192.65.132.255 16745 

4 192.65.133.0 255.255.255.255 16747 

Table 4. Partition result in the TCAM full state  

Partition Range Low Range High Size 

1 0.0.0.0 65.156.220.255 29491 

2 65.156.221.0 112.114.255.255 29491 

3 112.117.0.0 145.186.158.255 29491 

4 145.186.159.0 255.255.255.255 29492 

 

Before the performance test there are two 

parameters to be decided. One is the input queue’s 

depth. The other is the limit of cache-missing times. In 

initial state the comparisons of the parameters with 

different buffer depth and different limit are shown in 

Figure 5 to Figure 8. Trading off between the packet 

loss probability and the system response time, we 

choose 10 as a typical value of buffer depth and 3 as 

the limit value of cache-missing times. From Figure 7 

we can see the trace sampled from 1Gbps line can be 

forwarded by our system without packet loss and with 

high system response time when choosing the two 

values. 
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Figure 5. Parameters comparison with different buffer 

depth when the cache-miss times limit value equals 1 

 

Figure 6. Parameters comparison with different buffer 

depth when the cache-miss times limit value equals 2 

 

Figure 7. Parameters comparison with different buffer 

depth when the cache-miss times limit value equals 3 

 

Figure 8. Parameters comparison with different buffer 

depth when the cache-miss times limit value equals 4 

The trace for our test is sampled from the core router 

located in the network center of Tsinghua University 

which belongs to Beijing Regional Network Center. It 

operates at 1Gbps of the Ethernet link bandwidth. The 

trace is collected from 9:00 to 10:00 on Feb. 21, 2009 

and only outbound packets were recorded. The 

comparisons of the cache-hit rate between the scheme 

in [14] and our scheme in initial state and in cache-full 

state (the worst case) are shown in Figure 9 and Figure 

10 respectively. The cache-update interval changes 

according to the cache hit rate in our scheme. The 

higher cache hit rate, the longer update interval. Figure 

9 shows the lowest cache hit rate can exceed 96% in 

initial state after about 3 seconds in our scheme and the 

average cache-update interval is about 8526 clock 

cycles. We choose 8,526 clock cycles as the cache-

update interval for the scheme in [14] for comparison. 

We can see from Figure 9 that our scheme is far 

superior to the scheme in [14]. The reason is that there 

are more cache space and more efficient cache-update 

mechanism guaranteed. The cache hit rate is not 0 at 

the start versus the scheme in [14] because the cache in 

each TCAM is filled with route table entries on other 

TCAMs’ partition in initial state. Figure 10 shows the 

average cache-update interval is about 5,112 clock 

cycles and the lowest cache hit rate can exceed 90% in 

initial state after about 4 seconds in our scheme. We 

choose 5,112 clock cycles as the cache-update interval 

for the scheme in [14] for comparison. We can see 

from Figure 10 that our scheme is still superior to the 

scheme in [14]. One reason is that the cache-update 

mechanism is more efficient in our scheme for the 

same cache size. Another reason is that the cache needs 

not hold the redundant entries of in the same TCAM 

chip. The result of the two figures shows the more free 

space in each TCAM, the more superior of our scheme 

versus [14]. 

The comparisons of the lookup throughout between 

the scheme in [14] and our scheme in initial state and 

in cache-full state (worst case) are shown in Figure 11 
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and Figure 12 respectively. We can see from the two 

figures that our scheme can support better for the 

1Gbps trace than the scheme in [14], especially in 

initial state. 

 

Figure 9. Cache hit rate comparison in initial state 

 

Figure 10. Cache hit rate comparison in TCAM full 

state 

  

Figure 11. Throughput comparison in initial state 

 

Figure 12. Throughput comparison in TCAM full state 

6 Performance Comparison 

In this section, we compare our scheme with the 

schemes of [14-15, 17] in three aspects: (1) lookup 

performance; (2) update time; (3) power consumption. 

Table 5 lists the parameters in performance comparison, 

and table 6 give a detailed performance comparison 

with scheme [14-15, 17]. 

Table 5. Parameters in Performance Comparison  

Parameter Concrete Meaning 

n the parallel TCAM chips number 

K 
the power consumption for a TCAM without 

partitioning search 

m the working state TCAM chips number 

t the whole TCAM block number 

s triggered block number when searching 

H total entries num 

y buckets num 

Table 6. Performance Comparison 

Scheme IP Lookup Update time Power consumption 

[15] <n - 1 O(H/y) Ks/t 

[14] >(n-2)/(n-1) O(H/y) Ks/t 

[17] > n - 1 O(H/2n) Km/n 

Our scheme 90%*n O(7) Ks/t 

 

In IP lookup performance respect, from table 6 we 

can see that our scheme is superior to schemes [14-15, 

17] when n<10. In real implementation, for practice, 

the parallel TCAMs’ number will not too large. Hence, 

our scheme is superior to other schemes [14-15, 17] in 

practice. 

In update time respect, since the total entries number 

is much larger than the TCAM chips number and 

bucket number, our scheme is far superior to schemes 

[14-15, 17].  

In power consumption respect, our scheme is 

equivalent to [14-15] and superior to [17]. The scheme 

[17] cannot use the “partition-disable” feature of 
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TCAM. For a lookup operation, a chip instead of a 

partition in a chip must be triggered.  

From the above comparison, we can see that our 

scheme improves both lookup performance and update 

efficiency while keeps a low power consumption. The 

basic reason is that our scheme can make almost full 

use of the free space in the chips to improve efficiency.  

7 Conclusions 

To distinctly increase the lookup speed and meet the 

demand of the next-generation routers, parallel 

mechanism using multiple chips should be deployed. 

In this paper, we proposed a fast lookup, efficient 

update and power-saving parallel TCAM-based lookup 

engine to satisfy the growing demand now. Our key 

contributions for the parallel TCAM-based lookup 

engine are as follows: 

‧ Proposed a scheme that can almost make full use of 

the free space of parallel TCAM chips, which never 

has been proposed before. 

‧ Proposed an efficient cache-update mechanism. 

‧ Used the state of art mechanisms efficiently to 

improve the TCAM entries’ update and reduce the 

power consumption. 

Compared with previous parallel IP lookup schemes, 

our schemes can apparently improve the IP lookup 

performance and update efficiency while keeps a low 

power dissipation. The scheme is easy to implement 

and scalable and flexible. 
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