
Efficient Searching with a TCAM-based Parallel Architecture 2215

Efficient Searching with a TCAM-based Parallel Architecture

Bin Zhang1, Donghong Qin2, Xingchun Diao3, Kun Ding3, Hao Yan3*

1 Peng Cheng Laboratory, Shenzhen, China
2 School of Information Science and Engineering, GuangXi University for Nationalities, China

3 Nanjing Telecommunication Technology Research Institute of CESEC, China

bin.zhang@pcl.ac.cn, dhqin@guet.edu.cn, {diaoxch640222, njdingkun}@163.com, yanhao0114@yeah.net

*Corresponding Author: Donghong Qin; E-mail: dhqin@guet.edu.cn

DOI: 10.3966/160792642018121907024

Abstract

Ternary Content-Addressable Memory (TCAM) is a

popular hardware device for fast IP address lookup. High

link transmission speed of Internet backbone demands

more powerful IP address lookup engine. Restricted by

the memory access speed, the lookup engine for next-

generation routers demands exploiting parallelism among

multiple TCAM chips. How to design an efficient engine

with high IP lookup speed and less update time while

keeping low power consumption is a great challenge in

building the next-generation routers. At present, no

parallel schemes can make full use of TCAM chips’

capability. In this paper, we propose a fast lookup,

efficient update and power-saving scheme which can

basically make full use of TCAM chips’ capability. With

N parallel TCAM chips, our proposed scheme can

achieve a worst-case speedup factor of (N-1)*90% in

cache-update state, and a worst-case speedup factor of

N*90% in normal work state. Compared with previous

works, our scheme can apparently improve IP lookup

performance and update efficiency while keeps low

power consumption.

Keywords: Parallel TCAM, Route lookup, Update,

Power consumption

1 Introduction

Due to the rapid growth of traffic in the Internet,

backbone links of several gigabits per second are

commonly deployed. To handle gigabit-per-second

traffic rates, the backbone routers must be able to

forward millions of packets per second on each of their

ports. Fast IP address lookup in the routers, which uses

the packet’s destination address to determine the next

hop for each packet, is therefore crucial to achieve the

packet forwarding rates required. Today, many

researchers have studied fast lookup schemes for the

development of the high performance routers [1]. Most

of the schemes can be classified into software

approaches based on trie-based and hardware

approaches based on TCAM.

Although many alterations have been proposed to

optimize the original trie structures [2-4], trie-based IP

lookup schemes usually require several memory

accesses per lookup and those accesses may be

serialized. The lookup speed in trie-based mechanisms

using Dynamic Random Access Memory (DRAM) or

Static Random Access Memory (SRAM) can hardly be

further improved because of its intrinsic characteristic.

For many contemporary hardware architects and

system designers Content Addressable Memory (CAM)

is a primary choice when it comes to designing high

performance lookup systems [5-7]. A specifically

interesting type of CAM, called Ternary CAM (TCAM)

can store don’t-care values in addition to 0s and 1s.

This gives TCAM the ability to store variable size

pieces of data (called prefixes). TCAM can look up a

given key among its contents and find all matching

prefixes, all in one clock cycle [8]. Moreover, updating

the forwarding table in TCAM-based schemes is

generally simpler than that in Trie-based algorithms.

Therefore, TCAM have been more and more used in

high speed Internet routers in recent years.

However, challenges arises from that (1) the length

of IP prefix is variable and the incoming packet does

not carry the prefix length information for IP lookup,

one IP address may match multiple prefixes in the

forwarding table and the longest matching

prefix(LMP), should be chosen; (2) advances in fiber-

optic technology is pushing the line rate of core routers

to 40Gbps or even higher, The state-of-the-art 18Mb

TCAM can only operate at a speed of up to 266MHz

and performs 133 millions lookup per second [9],

barely enough to keep up with the 40Gbps line rate

today; (3) the size of the route table has been

increasing at a rate of about 10-50k entries per year in

the past few years [10]. When IPv6 is widely deployed,

even more storage space is needed; (4) frequent

updates may consume many computation cycles in the

IP lookup engine and result in the degradation of the

lookup performance. Efficient update is one of the

most important issues together with lookup

performance in TCAM-based schemes; (5) the high

cost to density ratio and high power consumption are

traditionally the major problems in building the lookup

engine.

2216 Journal of Internet Technology Volume 19 (2018) No.7

According to the challenges, we classify 3 major

concerns in building a forwarding engine based on

TCAM: (1) lookup performance; (2) update time; (3)

power consumption. We were motivated by the desire

to make full use of the TCAM chips free space to

increase the lookup throughout as well as achieve fast

update and simultaneously reduce power consumption.

With this objective, our main work focuses on:

(1) Employing a partitioning technique to evenly

distribute the route table entries among the TCAM

chips.

(2) Using all free space of every TCAM chip for

cache to improve the lookup efficiency.

(3) Updating cache entries efficiently to get a high

cache hit rate.

(4) Reducing the update time of route prefixes

entries to improve the update efficiency of the whole

system.

This work is an extension of our previous work “Bin

Zhang, et al., Efficient Searching with Parallel TCAM

Chips. The 35th IEEE Conference on Local Computer

Networks, LCN 2010, 11-16 Oct. 2010, Denver,

Colorado, U.S.A.”

The rest of the paper is organized as follows.

Related works on parallel schemes of TCAM and our

investigation are described in section 2. Section 3

describes the complete architecture of the proposed

efficient parallel engine. We present our theoretical

performance evaluation in section 4 and simulation

results in section 5. We compare the present parallel

TCAM lookup schemes in section 6. Finally, we

conclude our work in section 7.

2 Related Work and Investigation

Chip-level parallel TCAMs were deployed to

circumvent the limitation of a single TCAM, where

issues should be appropriately addressed: (1) high

memory efficiency, (2) balanced traffic load

distribution among parallel TCAM chips, (3) less

update time, (4) economical power dissipation.

Many researchers have strived to optimize the

TCAM-based lookup engines [11-17]. The partition

table is divided by output port into several smaller

tables in [11]. The number of tables is equal to the

number of output ports on the router. Each table holds

a collection of all the entries that map to the output port

it corresponds with. Since all entries in a partitioned

table map to the same output port, there is no longer a

need to keep the entries sorted. When a search occurs,

each TCAM looks up the IP address in parallel. Each

table outputs the matched lengths to a selection logic.

After the selection logic chooses the longest length, the

packet is forwarded to the output port based on which

table had the longest prefix match.

The basic idea of [12] is to partition all prefixes into

different sets based on the relationship among them.

For a given destination IP address, the prefixes which

have ancestor-descendant relation will be matched

simultaneously. The depth of a prefix search trie

currently does not exceed 7 even including the default

prefix so there can be at most 7 matches. If the

forwarding table is partitioned into several TCAMs so

that there is no ancestor-descendant relation in each

partitioned TCAM, then it is guaranteed that there

exists at most one match in each TCAM. The work

[11-12] focus only on the update time. The update

efficiency is 0(1) of both schemes, but the lookup

performance is poor and power consumption is high.

Panigrahy and Sharma [13] partition all prefixes into

8 different parts equally based on the address range.

They put each part in a TCAM chip. When a search

occurs, each TCAM looks up the IP address in parallel

based on address range. The packet is forwarded to the

output port based on which table had the longest prefix

match. Hence the lookup performance can be improved.

The power consumption can be saved by decreasing

the number of the triggered TCAMs access in each

lookup operation. CoolCAMs scheme is proposed by

[16] to further reduce the power consumption.

However, the improved look performance is very

limited in [13, 16] due to no further efficient

mechanism.

Kai Zheng et al. proposed an architecture in which

each TCAM chip had one abundant partition to balance

traffic load [15]. It assumed that the lookup traffic

distribution among IP prefixes can be derived from the

traffic traces. In their optimized system evaluation with

simulated traffic, a speedup factor of nearly four can be

achieved. However, when the traffic is temporarily

biased to a limited number of route prefixes, the

multiple selectors will frequently access the same

block. The system can only fulfill one of the requests at

a time, which drastically hampers the whole

throughput.

The more efficient parallel TCAM architecture at

present was proposed by Lin et al. [14]. They design a

preorder-split method based on the idea of range-base

partitioning to evenly distribute the route table entries

among the TCAM chips. They analyzed the Internet

traffic and observed that the average overall bandwidth

utilization was very low but the Internet traffic could

be very bursty, so mapping route table partitions into

TCAM chips based on long-term traffic distribution

[15] cannot effectively balance the workload of

individual TCAM chip during bursty periods. After

analysis of Internet real traces they found the

temporary locality is very strong. Bursts from large

TCP flows were the major source of the overall bursty

Internet traffic. Nine most common causes of source-

level IP traffic bursts exist in Internet, one for UDP and

eight for TCP flows. Most of these were due to

anomalies or auxiliary mechanisms in TCP and

applications. It is indicated that TCP’s window-based

congestion control itself leads to bursty traffic. As long

as a TCP flow cannot fill the pipe between the sender

Efficient Searching with a TCAM-based Parallel Architecture 2217

and the receiver, bursts always occur.

Hence, instead of mapping route table partitions into

TCAM chips relying on long-term traffic statistics,

they used the concept of cache to balance the traffic

load adaptively. They used a partition on each TCAM

chip as a logical cache for load balancing. A new

lookup request was distributed to the TCAM chip with

the shortest input queue. There are three different

alternatives. (1) If the incoming IP address has been

sent to its home TCAM (the TCAM that may contain

the matching prefixes), it will get a search operation on

the partition and the final result is done. (2) If the

incoming IP address has been sent to a non-home

TCAM, it will get a search operation on the logical

cache. When it is cache-matched, the final result is

done. (3) When a cache miss occurs, it will be sent

back to the home TCAM directly and case 1) happens

again.

In our previous work [17], we propose a crossed

address range division and shared caching scheme to

balance the traffic on chips, and propose a buddy

update method to improve the update efficiency. Our

work [17] mainly focuses on update efficiency while

keeping the lookup throughput as in [14]. Both

schemes [14, 17] are very efficient but both of them

still cannot make full use of the parallel TCAM chips’

capability. In this work, we take advantage of the all

free spaces left in TCAM chips, and improve the

previous scheme [14] from six sides:

(1) There is still much free space on each TCAM

chip in [14]. Can we use them to increase the logical

cache space size? That means we can use all the free

space on each TCAM chip as cache to achieve a more

efficient lookup performance.

(2) Entries on each logical cache are all same in [14].

In fact, the TCAM chip route entries and the entries of

logical cache on that chip may repeat. Hence we need

not update the logical cache on that chip when using an

entry in the TCAM chip to update caches, which can

also save the logical cache space to get a high hit rate.

(3) All TCAM chips have to stop searching when

proceeding cache update in [14]. Can we update caches

in a pipeline way? We can make sure that there will be

N-1 TCAM chips working in parallel during updating

cache in this way.

(4) When cache missing occurs a package was sent

back to the home TCAM directly in [14], which may

lead to dropping packages when bursty traffic hits on

one TCAM chip at some time. Can we tag the package

with a number counting the times of cache missing?

Only when the number exceeds the limit the package

can be sent back to home TCAM, otherwise the

package is still sent to the TCAM with shortest

queuing length. The reason is that cache missing of this

cycle does not mean cache missing the next cycle.

(5) Multiple partitions put in one TCAM chip can

reduce power consumption using partition-disable

technique in [14], but leading to three burdens: (a)

Needs to reconstruct all partitions when any partition is

full during update; (b) Needs more complex address

range arbitration logic; (c) More partitions means more

ranges, more ranges means more entries crossing

multiple ranges, which weighs update burden. In our

scheme, we split the route table into N (denotes TCAM

chips number) partitions, and put one partition on one

TCAM chip to trade-off update efficiency and power

consumption.

We use an efficient update method on each TCAM

chip to achieve a worst-case update time O (7) for each

TCAM chip. All partitions need to be reconstructed

only when any TCAM chip is full during update.

From the above investigations, we can see that the

scheme in this work has the following advantages as

listed in Table 1.

Table 1. Comparison of schemes

Scheme
Lookup

Speed

Update

Time

Power

Consumption

[11-12] Not improved Improved Not improved

[13, 16] Limited improved Not improved Improved

[15] Improved Not improved Improved

[14, 17] Improved Limited Improved Improved

Our scheme Highly improved Highly Improved Improved

3 Proposed IP Lookup Architecture

3.1 Deciding Partition Method

The first thing in this approach is the partition rule.

A good partition rule must meet two primary

conditions:

(1) It must create roughly equal partitions;

(2) It must be simple so that the Indexing Logic

becomes simple and fast. In other words, determining

the target partition by given search key should be

possible in one cycle using simple hardware.

Generally three kinds of methods for partitioning the

entire routing table were proposed, i.e., key-ID based

[15], prefix Trie-based [16] and range-based [13-14]

partitioning. The key-ID approach suffered from

uneven sub-table sizes and uncontrolled redundancy,

which result in a higher memory and power cost. Trie-

based partitioning can lower the redundancy and unify

sub-table sizes, but it required an extra index TCAM to

perform the block selection. As a result, two TCAM

accesses are occupied for each lookup request. Range-

based partitioning can lower the redundancy and unify

sub-table sizes to the most through splitting the routing

table into multiple buckets with identical size

according to the address range, which is introduced by

Panigrahy and Sharma [13] and implemented by Lin et

al. using pre-order splitting algorithm [14]. So range-

based partitioning can meet condition 1.

Figure 1 illustrates the pipelined structure of the

Indexing Logic for TCAM chip selection. It is

2218 Journal of Internet Technology Volume 19 (2018) No.7

composed of pairs of parallel comparing logics and an

index table. Each pair of parallel comparing logic

corresponds to one TCAM chip and is composed of

two registers which store the boundary points of each

TCAM partition (a partition corresponds to a TCAM

chip). Next to the parallel comparing logics is an index

table with encoder. The index table which stores the

partition distribution information returns a partition

number indicating which chip/partition may contain the

prefix matching the IP address by the encoded

information. Because the data width of the Indexing

Logic is fixed and only simple “compare” operation is

executed, it can work at very high speed. So range-

based partitioning can also meet condition 2. Based on

our analysis we choose the range-based partitioning

method in [14] to divide the route table.

Figure 1. Schematics of the indexing logic

3.2 Logical Cache for Load Balancing

3.2.1 Cache Organization

As mentioned in Section 2, temporal locality of

internet traffic is much stronger in the core routers

because of the great effect of heavy flow aggregations.

To achieve higher lookup throughput, a straightforward

design is to deploy a first stage caches working in front

of a second stage data TCAMs. An obvious drawback

of this conventional approach is that the cache is

required to operate at N times the speed of TCAM if

there are N parallel TCAMs in the system, which is

impractical. Another approach is to add some small

extra TCAM chips as caches to work in parallel, but it

will increase the complexity of the system structure.

Logical cache was proposed in [14] since there is no

additional cache module which implies fewer pins and

less packaging cost. Furthermore, employing the

existing TCAM cells as logical caches exhibits a better

performance cost ratio. We still use logic cache but

differently as we mentioned in Section 2. Only a small

fixed part of a TCAM chip was used for logic cache in

[16], still much free space exists in each TCAM chip

unused. Different with the scheme in [14] we use all

free space for caching. Our logical cache of each

TCAM chip has two parts: the fixed parts and the

variant parts, which can significantly increase the

cache size.

As depicted in Figure 2, each TCAM chip includes 3

parts: (1) The Route Entry Part is used for prefix

entries of a partition. It will gradually enlarge with

route table update. When it reaches the bottom line of

the fixed cache part and just covers the variant cache

part completely, we think the TCAM chip is full. (2)

The Variant Cache Part and (3) The Fixed Cache Part

are both used for caching. The difference between

them is that the fix part is always used for caching and

cannot be used for the update of route table entries,

which can assure the worst-case speedup factor over

N*90% on average with N parallel TCAM chips if the

average cache hit rate exceeds 90%. We can get the

fixed part size by evaluation to meet the demand. Since

the cache entries do not contain these entries in the

route entry part, we can confirm that the fixed cache

part size is smaller than the logical cache size in [14]

when they get the same cache hit rate.

Figure 2. TCAM chip organization

3.2.2 Cache Update

There are two kinds of algorithms for cache

mechanisms are proposed in route lookup literatures,

caching destination addresses (IPs) [18-20] and

caching prefixes [21]. We choose to use the caching

prefixes algorithm because it can get the cache hit rate

the same as IPs by saving the 97% memories [18-20].

But for caching prefixes, there is one important issue

need to be resolved. Suppose p and q are two prefixes

where q is a sub-range of p, i.e. p is a prefix of q. If

there is a lookup request r redirected to the cache and p

is the LMP of r, then p will be added to the cache.

However, in some later time if another request r’

(whose LMP is q) is redirected to the cache, then the

cache will return p as the lookup result (where the

correct result should be q). To resolve this problem, we

adopt the RRC-ME algorithm [18] in managing the

cache. In the above example, the shorter prefix p will

be expanded into a longer prefix, based on the Minimal

Expansion Prefix (MEP) method in [18]. For instance,

there are only two prefixes in a route table, i.e. 1* and

111*. Hence, the MEP for request 1111 is 111*, the

MEP for request 1000 is 10*(it has the same next hop

as 1*), the MEP for request 1100 is 110*(it has the

same next hop as 1*). Since the expanded prefixes are

disjoint, there is one and only one possible match result

for every input address. Thus, the match result, if any,

returned by looking up a cache is valid. Another

advantage of prefix expansion method is that any

Efficient Searching with a TCAM-based Parallel Architecture 2219

update to the cache only requires one TCAM cycle

because the prefixes need not be ordered.

There is another issue about the cache update put

forward in [14]. In the proposed cache organization, a

TCAM chip is not available to perform IP lookup

during cache updates. Hence, a high cache update

frequency will seriously affect the system performance.

Moreover, immediate cache update in the event of

cache missing is very difficult since the system has to

evaluate the MEP decomposition of the corresponding

prefix. A slow-update mechanism with LRU algorithm

was adopted in [14]. Only one cache-missed element is

updated within a predefined interval, during this period

the other cache-missed elements are ignored. The

slow-update mechanism cannot assure the cache hit

rate. Our cache update mechanism is described as

follows:

(1) The logical cache in each TCAM is filled with

prefix entries in other TCAMs’ partition at initial state.

A register for each TCAM is used to indicate the

entries’ number of the partition on the TCAM. We

increase its value with route table entries’ update. We

name this kind of register as entry indicator. Its max

value equals to TCAM’s capability minus the fixed

cache capability.

(2) We tag the package with a number counting the

times of cache missing. Only when the number exceeds

the limit the package can be sent back to home TCAM,

which indicates the contention for this entry is very

strong. Only in this case we update the caches on other

TCAMs.

(3) We update other caches using the cache-missed

entry and also its 10 adjacent entries in a pipeline way

(The reason is temporal locality of internet traffic is

very strong), which can greatly increase the following

cache hit rate and can assure N-1 TCAMs work in

parallel during cache update.

(4) The match index is instantly available as the

home TCAM search results, but the prefix is usually

impossible or very slow to read for the commercially

available TCAMs. Therefore, to obtain the route prefix

the system has to refer to the associated SRAM block.

It is assumed that each entry in the SRAM blocks

stores the associated prefix together with other

forwarding information, besides, each SRAM entry has

a flag that indicates whether or not this entry

corresponds to a parent prefix. A parent prefix

represents a route that has more specific route

advertisements (i.e. encompassed prefixes) in the same

forwarding table. We adopt the RRC-ME algorithm to

deal this situation.

(5) We use a register for each logical cache to

indicate the cache update start point every time. We

name this kind of register cache indicator. Its initial

value equals to the initial value of entry indicator. We

can start cache update from this point upward and

increase cache indicator’s value correspondingly till

the value reaches TCAM capability. Cache indicator’s

value is set back to entry indicator’s value when it

reaches its highest value.

(6) Route table update on each TCAM chip will

make route table entries directly cover the cache entries

in variant cache part. When TCAMs finishing route

table update the system should check the values of

cache indicator and entry indicator. If the entry

indicator’s value exceeds the cache indicator’s value

the cache indicator’s value is set equal to the entry

indicator’s value. If the entry indicator’s value reaches

the max value the system needs to reconstruct all

partitions. The two kinds of indicator’s value are set

equal to new partition entries’ number after

reconstruction.

Our cache update mechanism is of high efficiency.

In our architecture the fixed part size is about 1/10 of

the whole TCAM chip, and the initial route table

makes each route entry part takes up about half of the

whole TCAM chip. The experiment result in Section 5

shows the average cache-update interval is about 8000

clock cycles and the lowest cache hit rate can exceed

96% in this case. The worst case is in TCAM full state,

and every route entry part takes 9/10 of the whole

TCAM chip. In this case the experiment result shows

the average cache-update interval is about 4000 clock

cycles and the lowest cache hit rate can exceed 90%.

3.2.3 Proposed Architecture

The detailed implementation architecture of the

parallel lookup engine is presented in Figure 3, and the

working step can be discribed in Algorithm 1.

Given an incoming IP packet to be searched, the IP

address is extracted and delivered to the Indexing

Logic (see Figure 1) for a comparison. The Indexing

Logic will return a partition number indicating the

home TCAM that may contain the matching prefixes.

Only when the cache-missing times exceeds the limit

(the limit value will be get by test) we set the package

can be sent back to the home TCAM, otherwise, the

package will be still sent to the TCAM with shortest

queuing length. A cache-missing counter tag (initial

value is 0) is needed to indicate the cache-missing

times. Since multiple input queues and feedback exist

in the proposed scheme, incoming IP addresses maybe

processed in a non-FIFO order. The Re-ordering Logic

maintains the original sequence by using the time

stamp attached. The package consists of IP address,

partition number (TCAM number), cache-missing

counter and time stamp before sent to the adaptive load

balance logic.

The package will be sent to the Adaptive Load

Balance Logic to decide which TCAMs’ FIFO queue

should be sent to. The Adaptive Load Balance Logic

arbitrates based on two rules: (1) If the cache-missing

counter’s value exceeds the limit the packet will be

sent to the home TCAM directly, otherwise, the packet

will be sent to the idlest FIFO; (2) When existing more

2220 Journal of Internet Technology Volume 19 (2018) No.7

Figure 3. Schematics of the complete implementation architecture

Algorithm 1. The working flow of our scheme

1. An IP packet arrived.

2. The destination IP is extracted and delivered to the

Indexing Logic

3. Output a partition number indicating the matching

prefixes.

4. The packet further tagged by cache-missing counter

and time stamp.

5. The Adaptive Load Balance Logic decides which

TCAMs’ FIFO queue the packet should be sent to.

5.1 If the cache-missing counter’s value exceeds

the limit, the packet� home TCAM;

5.2 or, the packet�the idlest FIFO

5.2.1 More than one idlest FIFO, home TCAM

has priority.

5.2.2 Others have equal opportunity.

6. TCAM outputs the next hop information for the

packet.

6.1 home TCAM directly outputs the next hop

information;

6.2 Other TCAMs using cache to decide

6.2.1 Cache match, output the next hop.

6.2.2 Cache missing, send back to Adaptive

Load Balance Logic.

7. The re-ordering logic reorders packets based on

timestamp to output.

than one idlest FIFO, if the home TCAM is among the

idlest ones the package will be sent to the home TCAM,

else it will be sent to chip in a random way.

With the feedback mechanism depicted in Figure 3,

there are three different alternatives. (1) If the

incoming IP address has been sent to its home TCAM,

it will get a search operation on the partition indicated

by the Indexing Logic and the final result is done; (2)

If the incoming IP address has been sent to a non-home

TCAM, it will get a search operation on the logical

cache. When it is cache-matched (the result is

guaranteed by the RRC-ME), the final result is done. (3)

If the incoming IP address has been sent to a non-home

TCAM, and when a cache miss occurs, it must be sent

back to the Adaptive Load Balance Logic after

increasing the cache-missing counter’s value by 1 via

the Feed Back Logic and case 1) happens again.

4 Performance Analysis

4.1 Lookup Performance

The speedup factor of our scheme is apparently N(N

indicates all TCAM chips number) in the best case as

in [14-15, 17] when all TCAMs work in parallel. The

value of the speedup factor in the average case depends

on the incoming streams distribution. The authors of

[15] use queuing theory to model the lookup engine

and assume that the arrival process of the incoming IP

addresses is a Poisson process with average arrival rate,

which does not conform to real Internet traffic. Lin et

al. [14] has calculated that its lower bound of the

speedup factor can reach n-1 on the basis that the

average hit rate is no less than (N-2)/(N-1). The work

[17] proved their speedup factor larger than N-1 for the

real traffic.

Since the logical cache on each TCAM chip in our

scheme can have much more space than the logical

cache in [14] in the same condition, we can assure that

the lookup performance can be much better than [14]

due to much higher cache hit rate. Moreover, the cache

update mechanism of our scheme is more efficient than

[14], which can be testified in Section 5 by experiment.

Further, the pipeline cache update way can assure N-1

TCAM chips continue searching during cache update.

If N denotes the parallel TCAM chips’ number, and

P denotes the average cache hit rate. The speedup

factor of our scheme is always a little larger than (N-

1)*P in cache-update state, and a little larger than N*P

in normal work state.

In our architecture we set fixed part size about 1/10

of the whole TCAM chip, and initial route table makes

each route entry part takes about half of the whole

Efficient Searching with a TCAM-based Parallel Architecture 2221

TCAM chip. The best condition is in the initial state,

which the cache size is the biggest before no new route

table entries join in. The experiment result in Section 5

shows the average cache-update interval is about 8000

clock cycles and the lowest cache hit rate can exceed

96% in this case. This means in initial state the

speedup factor is over (N-1)*96% during cache-update,

and over N*96% otherwise.

The worst case is in the TCAM full state, and every

route entry part takes 9/10 of the whole TCAM chip. In

this case the experiment result shows the average

cache-update interval is about 4000 clock cycles and

the lowest cache hit rate can exceed 90%. This means

the worst-case speedup factor is over (N-1)*90% in

cache-update state, and over N*90% in normal work

state.

4.2 Update Efficiency

One TCAM chip is divided into several buckets in

[14-15]. The system has to reconstruct when any

bucket reaches full even if there are many free spaces

in other buckets on the same chip. If the total number

of entries is n, TCAM number is x, and the buckets

number is y, the update time complexity is O(n/y) for

inner bucket update. The system has to reconstruct for

inter-bucket update. The system reconstruction will

stop the IP lookup operation, drastically hampering the

whole system performance. The work [17] use a buddy

update algorithm to improve the update efficiency, the

update time complexity can get O(n/2x) for inner-chip

update and O(2n/x) for inter-chip update on average.

Similar to our work [17], there are 4 TCAM chips in

our parallel lookup engine. So the route table should be

divided into 4 partitions as Figure 4 illustrated. This

can have 3 advantages versus dividing more partitions

and putting multiple partitions on one TCAM: (1) Less

reconstruction times during update; (2) Less entries

crossing multiple ranges; (3) Less compare logics

needed in the Indexing Logic (see Figure 1).

Figure 4. Dividing prefix into 4 equal size partitions

We use the Preorder-Splitting algorithm in [14] to

divide route table into 4 equal size partitions. Let B1,

B2, ... denote the boundary points that partition the IP

address number line. We place each partition of

prefixes in a separate TCAM chip. As for prefixes that

fall into multiple ranges, we put them into the chips

that correspond to those ranges. It is easy to know that

there are at most 32*2 = 64 boundary prefixes that

need to be present in a TCAM chip (these prefixes fall

into multiple ranges). In fact, the depth of a prefix

search trie currently does not exceed 7 even including

the default prefix so at most 7*2 = 16 boundary

prefixes need to be present in a TCAM chip. This is

because any prefix that falls into multiple ranges must

be on the path from one of these boundaries to the root.

Otherwise, it will strictly lie in the interior of one of

the regions carved out by these paths. Each range will

need to include, besides prefixes in the interior, the

prefixes on the two boundary paths.

During update, two or more TCAM chips need

update for a boundary prefix and one TCAM chip need

update for an interior prefix. If entry indicator’s value

of each TCAM chip is less than the max value (TCAM

capability menus the fixed cache capability), only chip-

level update is needed. Otherwise, we need to

reconstruct all partitions using pre-order splitting

method. The registers value in the Indexing Logic also

needs update according to the new boundary after

reconstruction.

Route table update on each TCAM chip will make

route table entries directly cover the cache entries in

variant cache part as we illustrate in Section 3. As the

update on each TCAM chip is individual and does not

affect each other, we can use the fast update algorithm

proposed by Shah and Gupta [22] on each TCAM chip.

Shah and Gupta proposed two fast updating algorithms

which are PLO_OPT and CAO_OPT, to reduce the

number of memory movements during update. In

PLO_OPT all the existing prefixes are sorted by their

lengths and free locations are reserved in the middle of

the table. Then the number of memory movements per

update is no more than L/2 where L is the maximum

prefix length, i.e., 32 in IPv4. CAO_OPT exploits the

fact that the ordering needs to be maintained only

between two prefixes one of which is the prefix of the

other. In this algorithm the ordering is referred to as the

chain-ancestor ordering (CAO) where a chain means

the collection of the prefixes on the path from the root

to a leaf node in a prefix search trie. In CAO_OPT the

worst case number of memory movements per update

has been reduced to D/2 where D is the maximum

length of chains. However, free locations are not

reserved in the middle of the table on TCAM chip in

our scheme (see Figure 2), but they are reserved in

front of the table on TCAM chip. Hence, the chip-level

update efficiency can achieve an O(D) worst-case

update by CAO_OPT algorithm. The depth of a prefix

search trie currently does not exceed 7 even including

the default prefix so the worst-case update time is

about O(7). To support the update operations, the

algorithm needs to maintain an auxiliary trie data

structure to keep track of the prefixes stored in the

TCAM.

2222 Journal of Internet Technology Volume 19 (2018) No.7

4.3 Power Consumption

There are two ways to decrease the number of

entries triggered during a lookup operation. One is to

store the entries in multiple small chips instead of a

single large one. The other one benefits from a new

feature of some TCAMs called “partition-disable”. The

key idea is to split the entire routing table into multiple

partitions or buckets, where each bucket is laid out

over one or more TCAM blocks. During a parallel

lookup operation, only the block(s) containing the

prefixes that match the incoming IP address is (are)

triggered instead of all the entries in the original table.

In this fashion, TCAM’s power consumption can be

dramatically reduced.

Similar to the work [14-15], Our proposed scheme

can benefit from both. If the TCAM chips have not the

“partition-disable” feature, assume the power

consumption for a TCAM without partitioning search

is K, and the TCAM is split into N TCAM chips, let M

(M<=N) denotes the TCAM chips number in a

working state at a moment. The power consumption

should be MK/N at this moment. So the power

consumption can be no more than K at any moment.

If the TCAM chips have the “partition-disable”

feature, as we mentioned in Section 3 there is a register

called entry indicator for each TCAM chip indicating

the border of partition area and cache area. We can

decide the blocks for each area (maybe a block shared

by the two parts at the border) according to the entry

indicator. When a package was sent to a home TCAM

chip, only the blocks of partition area are triggered.

When a package was sent to a non-home TCAM chip,

only the blocks of cache area are triggered. Assume the

power consumption for a TCAM without partitioning

search is K, the blocks number of the TCAM without

partitioning is T, and S denotes the blocks number

being triggered at a moment. The power consumption

should be SK/T at this moment. If the cache area and

the partition area almost equal, the power consumption

is about K/2 when the lookup engine works at full

speed.

5 Experiments and Simulations

In addition to the theoretical analysis we have run a

series of experiments and simulations to measure the

scheme performance. Table 2 shows the parameters of

a real implementation of our scheme. Our scheme is

flexible and scalable, and can be easily extended for

IPv6 address lookup. Yang et al. [23] discuss how to

extend for IPv6 address lookup.

Table 2. Parameters in the test scheme

Feature Parameter

Number of TCAM Chips 4

Chip Size 32K*36b

Percentage of the Fixed Cache 10%

Max. Number of Route Entries Supporting 115.2K

Working Frequency of TCAM Chips 266MHz

Max. Lookup Throughput 1.064Gbps

Max. Power Consumption(rare)
5*4*90%=18W

(5W/per chip)

Number of Data Buses 4

The route entries are collected from backbone router

of the China Education and Research Network

(CERNet). The reason we use 32K*32b chip size (one

can decide the chip size based on the real situation,

usually bigger than this size) is that the largest route

entries number is about 120K. We must make all

TCAM chip full for the worst-case test so the max

router entries number of our system cannot exceed

120K. To get about half of the whole chip space for

cache on each chip in the initial state, we select

randomly about 57.6K entries from 120K entries and

partition them using pre-order splitting algorithm in

[16]. For the worst case (TCAM full state) we use

about 115.2K entries from 120K entries and partition

them using pre-order splitting algorithm. Table 3 and

Table 4 show the partitioned results of the two cases

respectively.

Table 3. Partition result in the initial state

Partition Range Low Range High Size

1 0.0.0.0 70.89.255.255 16745

2 70.90.0.0 128.56.78.255 16745

3 128.56.79.0 192.65.132.255 16745

4 192.65.133.0 255.255.255.255 16747

Table 4. Partition result in the TCAM full state

Partition Range Low Range High Size

1 0.0.0.0 65.156.220.255 29491

2 65.156.221.0 112.114.255.255 29491

3 112.117.0.0 145.186.158.255 29491

4 145.186.159.0 255.255.255.255 29492

Before the performance test there are two

parameters to be decided. One is the input queue’s

depth. The other is the limit of cache-missing times. In

initial state the comparisons of the parameters with

different buffer depth and different limit are shown in

Figure 5 to Figure 8. Trading off between the packet

loss probability and the system response time, we

choose 10 as a typical value of buffer depth and 3 as

the limit value of cache-missing times. From Figure 7

we can see the trace sampled from 1Gbps line can be

forwarded by our system without packet loss and with

high system response time when choosing the two

values.

Efficient Searching with a TCAM-based Parallel Architecture 2223

Figure 5. Parameters comparison with different buffer

depth when the cache-miss times limit value equals 1

Figure 6. Parameters comparison with different buffer

depth when the cache-miss times limit value equals 2

Figure 7. Parameters comparison with different buffer

depth when the cache-miss times limit value equals 3

Figure 8. Parameters comparison with different buffer

depth when the cache-miss times limit value equals 4

The trace for our test is sampled from the core router

located in the network center of Tsinghua University

which belongs to Beijing Regional Network Center. It

operates at 1Gbps of the Ethernet link bandwidth. The

trace is collected from 9:00 to 10:00 on Feb. 21, 2009

and only outbound packets were recorded. The

comparisons of the cache-hit rate between the scheme

in [14] and our scheme in initial state and in cache-full

state (the worst case) are shown in Figure 9 and Figure

10 respectively. The cache-update interval changes

according to the cache hit rate in our scheme. The

higher cache hit rate, the longer update interval. Figure

9 shows the lowest cache hit rate can exceed 96% in

initial state after about 3 seconds in our scheme and the

average cache-update interval is about 8526 clock

cycles. We choose 8,526 clock cycles as the cache-

update interval for the scheme in [14] for comparison.

We can see from Figure 9 that our scheme is far

superior to the scheme in [14]. The reason is that there

are more cache space and more efficient cache-update

mechanism guaranteed. The cache hit rate is not 0 at

the start versus the scheme in [14] because the cache in

each TCAM is filled with route table entries on other

TCAMs’ partition in initial state. Figure 10 shows the

average cache-update interval is about 5,112 clock

cycles and the lowest cache hit rate can exceed 90% in

initial state after about 4 seconds in our scheme. We

choose 5,112 clock cycles as the cache-update interval

for the scheme in [14] for comparison. We can see

from Figure 10 that our scheme is still superior to the

scheme in [14]. One reason is that the cache-update

mechanism is more efficient in our scheme for the

same cache size. Another reason is that the cache needs

not hold the redundant entries of in the same TCAM

chip. The result of the two figures shows the more free

space in each TCAM, the more superior of our scheme

versus [14].

The comparisons of the lookup throughout between

the scheme in [14] and our scheme in initial state and

in cache-full state (worst case) are shown in Figure 11

2224 Journal of Internet Technology Volume 19 (2018) No.7

and Figure 12 respectively. We can see from the two

figures that our scheme can support better for the

1Gbps trace than the scheme in [14], especially in

initial state.

Figure 9. Cache hit rate comparison in initial state

Figure 10. Cache hit rate comparison in TCAM full

state

Figure 11. Throughput comparison in initial state

Figure 12. Throughput comparison in TCAM full state

6 Performance Comparison

In this section, we compare our scheme with the

schemes of [14-15, 17] in three aspects: (1) lookup

performance; (2) update time; (3) power consumption.

Table 5 lists the parameters in performance comparison,

and table 6 give a detailed performance comparison

with scheme [14-15, 17].

Table 5. Parameters in Performance Comparison

Parameter Concrete Meaning

n the parallel TCAM chips number

K
the power consumption for a TCAM without

partitioning search

m the working state TCAM chips number

t the whole TCAM block number

s triggered block number when searching

H total entries num

y buckets num

Table 6. Performance Comparison

Scheme IP Lookup Update time Power consumption

[15] <n - 1 O(H/y) Ks/t

[14] >(n-2)/(n-1) O(H/y) Ks/t

[17] > n - 1 O(H/2n) Km/n

Our scheme 90%*n O(7) Ks/t

In IP lookup performance respect, from table 6 we

can see that our scheme is superior to schemes [14-15,

17] when n<10. In real implementation, for practice,

the parallel TCAMs’ number will not too large. Hence,

our scheme is superior to other schemes [14-15, 17] in

practice.

In update time respect, since the total entries number

is much larger than the TCAM chips number and

bucket number, our scheme is far superior to schemes

[14-15, 17].

In power consumption respect, our scheme is

equivalent to [14-15] and superior to [17]. The scheme

[17] cannot use the “partition-disable” feature of

Efficient Searching with a TCAM-based Parallel Architecture 2225

TCAM. For a lookup operation, a chip instead of a

partition in a chip must be triggered.

From the above comparison, we can see that our

scheme improves both lookup performance and update

efficiency while keeps a low power consumption. The

basic reason is that our scheme can make almost full

use of the free space in the chips to improve efficiency.

7 Conclusions

To distinctly increase the lookup speed and meet the

demand of the next-generation routers, parallel

mechanism using multiple chips should be deployed.

In this paper, we proposed a fast lookup, efficient

update and power-saving parallel TCAM-based lookup

engine to satisfy the growing demand now. Our key

contributions for the parallel TCAM-based lookup

engine are as follows:

‧ Proposed a scheme that can almost make full use of

the free space of parallel TCAM chips, which never

has been proposed before.

‧ Proposed an efficient cache-update mechanism.

‧ Used the state of art mechanisms efficiently to

improve the TCAM entries’ update and reduce the

power consumption.

Compared with previous parallel IP lookup schemes,

our schemes can apparently improve the IP lookup

performance and update efficiency while keeps a low

power dissipation. The scheme is easy to implement

and scalable and flexible.

Acknowledgments

The authors would like to express their appreciations

to Dong Lin et al. for their sharing the code in their

work for us. This work was supported by the Peng

Cheng Laboratory network technology simulation

verification platform No. PCL2018KP004, the

Independent Controllable Ecological Environment No.

PCL2018KP005, the National Natural Science

Foundation of China under Grant No. 61462009, the

China Postdoctoral Science Foundation under No.

2015M582832, the Jiangsu Post-doctor Research Fund

of China under No. 1402138C, the Natural Science

Foundation of Guangxi under Grant No.

2018JJA17014.

References

[1] M. A. Ruiz-Sanchez, E. W. Biersack, W. Dabbous, Survey

and Taxonomy of IP Address Lookup Algorithms, IEEE

Network, Vol. 15, No. 2, pp. 8-23, March/April, 2001.

[2] P. Gupta, S. Lin, N. McKeown, Routing Lookups in

Hardware at Memory Access Speeds, IEEE INFOCOM ’98.

Seventeenth Annual Joint Conference of the IEEE Computer

and Communications Societies, San Francisco, CA, 1998, pp.

1240-1247.

[3] N. F. Huang, S. M. Zhao, J. Y. Pan, C. A. Su, A Fast IP

Routing Lookup Scheme for Gigabits Switching Routers,

IEEE INFOCOM ’99. Eighteenth Annual Joint Conference of

the IEEE Computer and Communications Societies, Vol. 3,

New York, NY, 1999, pp. 1429-1436.

[4] D. Yu, B. C. Smith, B. Wei, Forwarding Engine for Fast

Routing Lookups and Updates, IEEE Global

Telecommunications Conference, GLOBECOM ’99, Vol. 2,

Rio de Janeireo, Brazil, 1999, pp. 1556-1564.

[5] T. Pei, C. Zukowski, Putting Routing Tables in Silicon, IEEE

Network Magazine, Vol. 6, No. 1, pp. 42-50, January, 1992.

[6] A. McAuley, P. Francis, Fast Routing Table Lookup Using

CAMs, IEEE INFOCOM ’93. Proceedings. Twelfth Annual

Joint Conference of the IEEE Computer and Communications

Societies. Networking: Foundation for the Future, San

Francisco, CA, 1993, pp. 1382-1391.

[7] P. C. Lekkas, Network Processors - Architectures, Protocols,

and Platforms, McGraw-Hill, 2004.

[8] V. Srinivasan, B. Nataraj, S. Khanna, Methods For Longest

Prefix Matching In a Content Addressable Memory, US

Patent 6,237,061, January 1999.

[9] CYRESS, http://www.cypress.com/.

[10] G. Huston, Route Table Analysis Reports, http://bgp.potaroo.

net/.

[11] E. Ng, G. Lee, Eliminating Sorting in IP Lookup Devices

using Partitioned Table, 16th IEEE International Conf. on

Application-Specific Systems, Architecture and Processors,

Samos, Greece, 2005, pp. 119-126.

[12] J. Kim, J. Kim, An Efficient IP Lookup Architecture with

Fast Update Using Single-Match TCAMs, 6th International

Conference on Wired/Wireless Internet Communications

(WWIC 2008), Tampere, Finland, 2008, pp. 104-116.

[13] R. Panigrahy, S. Sharma, Reducing TCAM Power

Consumption and Increasing Throughput, Proceedings 10th

Symposium on High Performance Interconnects, Stanford,

CA, 2002, pp. 107-112.

[14] D. Lin, Y. Zhang, C. Hu, B. Liu, X. Zhang, D. Pao, Route

Table Partitioning and Load Balancing for Parallel Searching

with TCAMs, 21st IEEE International Parallel & Distributed

Processing Symposium, Long Beach, CA, 2007, pp. 1-10.

[15] K. Zheng, C. Hu, H. Liu, B. Liu, An Ultra High Throughput

and Power Efficient TCAM-based IP Lookup Engine, IEEE

INFOCOM 2004, Vol. 3, Hong Kong, China, 2004, pp. 1984-

1994.

[16] F. Zane, G. Narlikar, A. Basu, CoolCAMs: Power-Efficient

TCAMs for Forwarding Engines, IEEE INFOCOM 2003.

Twenty-second Annual Joint Conference of the IEEE

Computer and Communications Societies, Vol. 1, San

Francisco, CA, 2003, pp. 42-52.

[17] B. Zhang, J. Yang, J. Wu, Q. Li, D. Qin, An Efficient Parallel

TCAM Scheme for the Forwarding Engine of the Next-

generation Router, IFIP/IEEE Int’l Symposium On Integrated

Network Management, Dublin, Ireland, 2011, pp. 454-461.

[18] W. L. Shyu, C. S. Wu, T. C. Hou, Efficiency Analyses on

Routing Cache Replacement Algorithms, 2002 IEEE

2226 Journal of Internet Technology Volume 19 (2018) No.7

International Conference on Communications. Conference

(ICC 2002), Vol. 4, New York, NY, 2002, pp. 2232-2236.

[19] T. Chiueh, P. Pradhan, High-Performance IP Routing Table

Lookup Using CPU Caching, INFOCOM ’99. Eighteenth

Annual Joint Conference of the IEEE Computer and

Communications Societies, Vol. 3, New York, NY, 1999, pp.

1421-1428.

[20] B. Talbot, T. Sherwood, B. Lin, IP Caching for Terabit Speed

Routers, Global Telecommunications Conference on Seamless

Interconnection for Universal Services (GLOBECOM ’99),

Vol. 2, Rio de Janeireo, Brazil, 1999, pp. 1565-1569.

[21] M. J. Akhbarizadeh, M. Nourani, Efficient Prefix Cache for

Network Processors, 12th Annual IEEE Symposium on High

Performance Interconnects, Stanford, CA, 2004, pp. 41-46.

[22] D. Shah, P. Gupta, Fast Updating Algorithms for TCAMs,

IEEE Micro, Vol. 21, No. 1, pp. 36-47, Januay/February,

2001.

[23] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, L. Mathy,

Guarantee IP Lookup Performance with FIB Explosion,

Proceedings of SIGCOMM, Chicago, IL, 2014, pp. 39-50.

Biographies

Bin Zhang received his Ph.D. degree

in Department of Computer Science

and Technology, Tsinghua University,

China in 2012. He received the

Bachelor degree in computer software

from Zhengzhou University, China in

1998 and the Master’s degree in

network information security from Shanghai Jiaotong

University, China, in 2005. During his Ph.D. career, he

publish more than 20 papers in refereed international

conferences (NOMS, IM, LCN, IWQoS, APNOMS,

etc) and journals (the Computer Journal, JCST, Journal

of Software). He is a post doctor in Nanjing

Telecommunication Technology Institute, Nanjing,

China. His current research interests focus on Internet

architecture and its protocols, IP routing technology,

network measurement, network management, etc.

Donghong Qin received his Ph.D.

degree in Department of Computer

Science and Technology, Tsinghua

University, China in 2013. He publish

more than 20 papers in refereed

international conferences and journals.

He is a professor in School of Information Science and

Engineering, GuangXi University for Nationalities,

Nanning, China. His current research interests focus on

Internet architecture and its protocols, IP routing

technology, network management, etc.

Xingchun Diao is the headmaster and

also a professor in Nanjing

Telecommunication Technology

Institute, Nanjing, China. He has

published more than 100 articles in

refereed international conferences and

journals, and two books on data quality and

management. Xinchun’s research interests include big

data processing, data quality, network measurement,

network management, etc. He also serves as a TPC

member for several international conferences.

Kun Ding is a senior engeer in

Nanjing Telecommunication

Technology Institute, Nanjing, China..

He has published more than 20

articles in refereed international

conferences and journals. Ding’s

research interests include network

measurement, network management, network traffic

anomaly detection, network topology discovery, etc.

Hao Yan is a senior engeer in Nanjing

Telecommunication Technology Institute,

Nanjing, China. He has published

more than 30 articles in refereed

international conferences and journals.

Hao’s research interests include data

quality, network management,

network security, Internet architecture and its protocols,

IP routing technology, etc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

