
Using Adaptive Message Replication on Improving Control Resilience of SDN 2163

Using Adaptive Message Replication on

Improving Control Resilience of SDN

Pang-Wei Tsai, Wai-Hong Fong, Wu-Hsien Chang, Chu-Sing Yang*

Institute of Computer and Communication Engineering, Department of Electrical Engineering,

National Cheng Kung University, Taiwan

pwtsai@ee.ncku.edu.tw, fongwh1016@gmail.com, whchang@ee.ncku.edu.tw, csyang@ee.ncku.edu.tw

*Corresponding Author: Chu-Sing Yang; E-mail: csyang@ee.ncku.edu.tw

DOI: 10.3966/160792642018121907019

Abstract

Software-defined Networking (SDN) is considered a

new solution in network provision for applying flexible

functionalities. The characteristics of SDN include

separated control and data planes, centralized

management, having the global view of the network, fast

adjustment, and adaptation. However, the centralized

management brings resilience issues in the control plane

of SDN, such as operation dependability, component

survival, and behavior recovery. This paper introduces a

resilience design for SDN to prevent network behavior

loss when the active controller fails. The aim of this paper

is to develop a way to improve the resilience of SDN

control message processing during the controller

switching procedure. The proposed design has been

practiced on RYU controller for verification and

evaluation. The initial performance tests show that our

work is able to increase the reliability of the controller at

the expense of lower performance.

Keywords: Software-defined networking, Controller,

Reliability, openflow, Resilience, Replication

1 Introduction

The prototype of computer networks consisted of the

telegraph lines that sent instructions to the computers.

Designated computer networks became an independent

source of connectivity [1]. With the geographic

expansion of networks, the internet was created [2].

For fulfilling connectivity requirements in a network

system, routing and switching protocols are used to

control how packets are delivered. By exchanging

control messages among linked neighbors, the network

node can learn about the adjacent status and determine

a feasible forwarding paths [3-4]. For improving

flexibility of the control, in future networks, the so

called Software-Defined Networking (SDN) [5] is

recognized as an innovative architecture [6]. The SDN

protocol is defined as an open standard, with vendor-

independence. This reduces proprietary hardware

dependence on certain manufacturers, performing

network nodes work together under open and

integrated management.

In recent years, SDN protocols, like OpenFlow [7],

have been applied on many networking fields,

including data centers, WAN communications as well

as routing exchanges. Some networking device

manufacturers also proposed their solutions [8] for

enabling SDN in their products. The significant

characteristics of SDN are its centralized control and

global view. These two characteristics bring several

advantages to network operation. For examples, the

centralized control makes service appliances to be

extended easily, and optimization mechanism like

traffic engineering algorithm can be efficiently

operated owing to the global view [5]. However, the

reliability of SDN is problematic. Since the network

nodes in SDN are not running autonomously, the

dependence on the controller increases the

vulnerability of control communication. If interruption

occurs in the control channel, the communication

between the controller and the network node breaks

down as well. The controller no longer receives the

latest network status from the nodes, neither sends new

instructions to manage them how to deliver the new

incoming traffic flows. Once the controller

malfunctions, it may cause no more request in the

control plane can be handled, leading packets of new

flows to be dropped in the data plane.

Due to the above reasons, the reliability of SDN

became a popular research topic [9-11] recently. For

achieving adequate protection, control messages in

SDN control plane should be protected and executed

correctly. When controller failure occurs, the spare

controller must take over the leadership rapidly, and

network nodes migrate their control connection to the

spare controller. During the failover procedure, the

difficulty of the procedure is to make sure that network

control actions are continuously registered. Figure 1

shows an example of the control plane events during

the controller failover. When the procedure of

controller switching starts, control messages may get

lost at this point. Before a network node notifies of the

2164 Journal of Internet Technology Volume 19 (2018) No.7

new controller instance, it keeps sending query

messages to the failed one. The un-processed control

messages in the failed controller are usually discarded.

Hence, how to prevent network behavior loss when

switching controller becomes one of research issues in

SDN reliability.

O
n

e
 o

f
S

la
v

e
s

M
a

s
te

r

Timeline
Controller

Status

Break

Point

Failure

Detection
Migration

Possible

Message Lost

Retrieve

Figure 1. An example of control plane influence

during the failover procedure

In this work, we propose a prototype solution to

make improvement on protecting control messages

execution. The solution is applicable on an SDN

network equipped with spare controllers, and it aims to

support the controller switching by keeping the

network status uninterrupted. In our reliability

development, each control message sent from the SDN

switch is replicated, and a procedure is responsible to

ensure that the message has been received by all joined

controllers. For controller failure detection, a heartbeat

immigration control is implemented, and there is also

an adjustment mechanism applied to make the

operation adaptive and efficient. When controller

failure is detected, our reliability development tries to

tag un-processed messages on spare controllers, and it

makes sure that these messages to be retrieved when

the selected spare controller takes over the control

responsibility. By doing this, we can reduce the chance

of missing control messages for the controller system

and lower down the possibility of restarting the

reactive flow rule installation on the switch, improving

the control reliability of SDN.

The remainder of this paper is organized as follows.

Section 2 has a brief review of related works. Several

fault-tolerance solutions applied for SDN controllers

are introduced. Section 3 shows our proposed method,

explaining system design and development details. The

experiments for verification and evaluation are

described in Section 4, and a little case study is also

presented. Finally, the conclusions and future work are

given in Section 5 and Section 6.

2 Background and Related Work

This section introduces the basic concepts of SDN,

and explains some aspects of reliability design as well

as implementation for improving the reliability on it.

2.1 Software-Defined Network and its

Attributes

Comparing legacy network with SDN architectures,

the most significant difference is the form of control.

The legacy network usually uses in-band control, and

network nodes negotiate with each other to determine

the forwarding rules. In contrast, the SDN uses out-of-

band control, and each network node in SDN is

basically managed by the controller. To illustrate their

differences, an architecture comparison is shown in

Figure 2. The SDN architecture [6] can be divided into

three parts: application plane, control plane and data

plane. The application plane runs as an entrance for

integrating network applications. The applications use

Northbound Application Programming Interface (API)

to send the requirements to the control plane for

changing the network behavior. The control plane is

the essence of the network operation and management.

The control logic in this plane is responsible for

receiving the requirements and turning them into

control messages for the network nodes. In data plane,

the network nodes follow the instructions and forward

the packets according to the instructions made by

controller.

Control Pane

Data Pane

M
a
n
a
g
e
m
e
n
t

B
a
ck
p
la
n
e

Control Plane

Data Plane

ApplicationApplication

API

SouthboundAPI

Northbound API

SDN-enabled NetworkLegacy Network

Figure 2. The comparison between the control

architectures of legacy and SDN-enabled networks [6]

By separating the control logic from the data

processing unit, SDN enables programmability on the

network. Network operators can arrange network

resources in a more flexible manner. Operations such

as packet forwarding, filtering and duplication can be

done easily through software-driven methods. For

example, OpenFlow is a practical implementation of

SDN-enabled networks in research and education [12-

13]. It provides a specific design for SDN components,

including the flow table and the control channel [14].

The flow table consists of data flow entries used for

matching and forwarding packets. When mismatch

occurs at a new arrival packet, this packet is sent to the

controller for making forwarding decisions. After the

controller decides the corresponding actions for the

Using Adaptive Message Replication on Improving Control Resilience of SDN 2165

packet, it sends the control message back to the

network node with a new flow rule for packet

transmission.

2.2 Fault-tolerance Issues in SDN

The fault-tolerance is the ability of self-adaptation to

dynamic environment conditions in the network,

including malicious attacks, operational overload and

misconfiguration [15-16]. Silva et al. [17] investigated

related problems in SDN operation. In their survey, the

problems can be categorized as follows: survivability,

traffic tolerance, disruption tolerance, dependability,

security, and performability. Survivability is the ability

to address a small number of random uncorrelated

faults. Traffic tolerance enables unusual but legitimate

traffic loads without interrupting operation. The

dependability is the measured availability of the

network. In security problem, it is related to the

protection from harmful operation that affecting the

system. The Distributed Denial of Service (DDoS) is a

kind of security threat as seen in Yan et al. [18]. In the

last, the performability is about the working efficiency

in operation.

In SDN controller reliability, based on our

observation [16-17, 19-20], there is an emerging trend

to implement the control plane in a physically

distributed but logically centralized architecture. Due

to the control plane in SDN is centralized,

implementing failover methods can make the

probability of the control decision interruption to be

minimized when control plane failure occurs. To

introduce the reliability designs applied on SDN

control framework, several typical developments for

enhancing the ability of making control decisions

without interruption are listed as follows:

2.2.1 A Replication Component for Resilient

OpenFlow-based Networking

Fonseca et al. [21] proposed a primary-backup

mechanism that manages the data structure, by relating

a MAC address with a switch port. The messenger

component provides synchronization communication

between controllers. To check the liveness of

controllers, the connected switch sends an inactive

probe periodically. When there is a fault, the switch

connects to one of the backup controllers.

2.2.2 ONOS

The ONOS [20] is an SDN control system that

integrates controller instances with database and

management service to support core network level

traffic engineering. The main design purpose of ONOS

is building a high performance SDN controller. It is

capable of tolerating the failure of a controller by

detecting the contacts with other controller instances.

The ONOS provides a cluster control integration with

distributed controller instances. However, the ONOS is

not considering the communication lost among the

switch and the controller instances natively. For the

switch, only the control message successfully received

by its primary controller will be handled.

2.2.3 RAVANA

Katta et al. proposed RAVANA [22], a fault-tolerant

control plane that guarantees controller messages to be

handled exactly once by an extended switch side

through the OpenFlow interface. The design of

RAVANA assumes that the behavior of controllers is

deterministic, and the unmodified control application

can be applied to them. It aims to replicate state-

machine with lightweight switch-side mechanism to

guarantee correctness of switch control. In their

implementation, there is a reference deployment

showing the ability of RAVANA for enabling

unmodified controller applications to be executed in a

fault-tolerant case.

2.2.4 ResilientFlow

To protect SDN-enabled networks under large-scale,

unexpected link failures, Omizo et al. proposed

ResilientFlow [23] to improve reliability for the SDN

system. They developed a module called Control

Channel Maintenance Module (CCMM) to detect

control channel failure. In ResilientFlow, all switches

of SDN have to maintain their own control channel,

and it secure the SDN control plane when control

communications between switches and controllers are

failed.

2.2.5 Scalable OpenFlow Controller Redundancy

Tackling Local and Global Recoveries

Kuroki et al. [24] proposed a mechanism to enhance

the controller redundancy in OpenFlow. In their

research, the high-availability of the OpenFlow

controller is investigated, and two actions (i.e., local

recovery and global recovery) in the fault recovery

operation are designed. The demonstration shows that

the OpenFlow switches in the failover process are

successfully achieved failover operation.

2.3 Discussion

With the rising trends of implementing cloud-based

techniques, the legacy network architecture may have

insufficient flexibility to fulfill innovative requirements.

Some non-regular network configurations are able to

be implemented for achieving alternative control.

However, even the SDN provides more software-

defined functionalities to manage the network,

improving its reliability is still a challenge. The

possible issues for developing SDN control resilience

are summarized in Table 1. The disruption tolerance is

commonly used to make improvement on weak and

2166 Journal of Internet Technology Volume 19 (2018) No.7

episodic connectivity. Its approaches include error

correction schemes, multi-path routing, flow migration,

and store carryforward schemes. Dependability ensures

the service reliability of a system. It focuses on

availability, safety, integrity, and maintainability of

services. Security deals with unauthorized access to a

network. In contrast to availability and dependability, it

deals with the information assets instead of services.

Finally, performability is the metric used to evaluate

the performance of the network. Path selection and

Quality of Service are two instances expressed in this

property. Furthermore, to provide more flexibility and

adaptation on reliability control, applying abstract

control mechanisms, like NFV [25-26], will introduce

more complicated functions as well as more non-

deterministic operation to the controller.

Table 1. Instances of reliability research in SDN control

Research issues Approachment Related discipline Remarks

Dependability
The spare components are able to take over the system

operation when hardware failure occurred. Component

Failure

Hardware Redundancy /

Placement Optimization
Survivability

The placement optimization provides flexibility and adaptation

for maintaining the spare infrastructure.

Dependability
Automation trouble shooting and examination are able to help

network operators to determinate the possible problems. Operation

Failed

Software Debugging /

Fault-tolerance

Technique Survivability
The fault-tolerance techniques are often implemented on control

plane for dependability, keeping system working consistency.

Disruption

Tolerance

The link redundancy, path selection, load balancing, QoS and

other policy-based management are the issues for implementing

traffic engineering.
Optimization Traffic Engineering

Performability

The improvement on packet processing makes better

performance and quality on packet transmission with high

availability.

Dependability
The probe detection provides network state in a given instant for

checking property.
Measurement Monitoring

Traffic Tolerance
The traffic stats are able to use for anomaly detection in

management.

Security

Securing the connection between the controller and switch can

compromise the integrity and confidentiality of the control

communication. Security
Packet Deception /

Traffic Log Analysis

Traffic Tolerance
Mitigating the threats such as DDoS attack and ping of death are

necessary for network protection.

In most cases, implementing control resilience in the

control plane increases reliability, however, system

performance is a trade off [19]. Applying data

synchronization on control logic is common used in

distributed controller designs like ONOS. In this way,

the performance of the control plane depends largely

on the performance of the data synchronization. The

data structure and the type of the stored data influence

the speed of writing and reading the data correctly.

Therefore, in order to increase the performance of

controller synchronization, ONOS has changed the

data structure. A different approach is to replicate and

examine control messages [27]. The typical design in

this way is to use a state-machine like RAVANA.

However, its replication might not be able to guarantee

deterministic outcome if there are numerous policy-

control modules built in controller. On the other hand,

the ResilientFlow is focusing on switching the control

communication from the failed controller to the spare

one and keeping network traffic forwarding well, not to

make examination on possible missing messages

during the controller handover. Moreover, considering

the spare controller changes its role from slave to

active for taking network control [24], the network

behavior is not synchronized in local recovery. The

new active controller may have no information of

legacy network behavior (e.g., flow and port

information). The chance that causes inconsistency in

this way is greater than our development. Furthermore,

in global recovery, even the role management server is

able to keep copies of control information, the amount

of updating data (like flow entry) in recovery

procedure makes influence on mean time to recovery.

Therefore, based on above aspects, instead of a

replicated state-machine, we would like to opt for

primary-backup replication in the control plane and

develop soft-warized methods to make examination on

control messages for improving SDN reliability.

3 System Design

To explain our resilience design built to improve

SDN control reliability, in this section, we introduce

the basic idea and mechanism design first. The system

architecture, development and implementation are also

described to let readers realize our idea and practice.

Using Adaptive Message Replication on Improving Control Resilience of SDN 2167

3.1 Basic Idea

To determine the possible ways of making reliability

improvement in the SDN control plane, the

investigation of component operation is necessary. In

SDN, the control communication between components

(e.g., switch and controller) follows the client-server

model [5]. For example, when a new arrival packet is

mismatched on the flow table, the switch sends

variation (i.e., PACKET_IN message) to the controller.

After that, the controller tells the switch how to deal

with this packet. Furthermore, when any flow rule is

expired or the port status turns down, the

corresponding messages (i.e., FLOW_REMOVED and

PORT_STATUS) are sent by switch or controller to

make the notification.

For illustrating the above operation, we roughly

organize the switch-controller interaction as a chain,

shown in Figure 3, and the failure probability on each

step is also included. In this figure, the meaning of

each element are listed as the following:

A Triggering Event (switch)

B Query (switch to controller)

C Making Decision (controller)

D Rule Update (controller to switch)

Fq The probability that query fails for one controller Nctr

The number of available controllers for switch Fq.all

The probability that query fails for all controllers Fctr

The probability that decision making causes

failure on the controller

Fctr.r The probability that failure causes decision

making retry on the controller

Fctr.t The probability that failure causes switch-and-

controller interaction do termination

A

B

C

D

Fq.all

1 - Fq.all

Fctr.r

1 - Fctr.r

Fctr.t

Figure 3. The transition diagram of control

communication among SDN components

In the initial status, a detected event triggers the

switch to make contact with the controller for asking

how to deal with the situation. On the next status, the

switch tries to send a query message to the controller

for finding out the solution for the corresponding event.

When there are multiple controllers (1 < Nctr) connected

to the switch, the switch will ask each controller

according to query priority (like master and slave

controller configuration of OpenFlow switch). If all

controllers fail on the attempt, the query is terminated,

and the status returns to the beginning. The probability

of this situation (Fq.all) is formulated in equation (1).

 Fq.all = (Fq) Nctr (1)

After the controller receives a query message, it is

responsible for telling the switch how to deal with the

event. In decision making step, there is a chance (Fctr.r)

which the controller retry to make decision when the

fault in the controller is recoverable. While if the un-

recoverable fault or control message lost happens, the

switch-and-controller interaction will be terminated

Fctr.t. The overall failure chances (Fctr) in this step can

be calculated by equation (2).

 Fctr = Fctr.r + Fctr.t (2)

The last step in the operation is rule update. In this

part, the controller sends instructions to let the switch

realize how to deal with the packet. No matter whether

the update action succeeds or fails, the status returns to

the initial one in the end. Eventually, when update

action is failed, the above process will start over again

later owing to the event triggers query operation again.

To enhance the reliability of the controller, it is a

common way to add many controllers into the control

plane, and setup switches to link with these controllers.

For instance, OpenFlow switch is able to setup one

master controller and several salve controllers in

operation. Once the master controller has no response

in a period of time, the switch starts to query the

secondary controller (role change procedure). This way

is able to reduce the chance of failure (Fq.all) happening

in query step. Furthermore, in decision making step,

implementing controller collaboration to secure the

control logic is also available to reduce the chance of

decision failure (Fctr.r). However, as mentioned in

previous section, there is a probability that some

reasons cause decision making failed. For one, the

synchronization may not perfectly replicate all query

messages due to the timing gap. For another, when

controller switching, the migration time (even it is a

very short time) may lead control logic malfunctioned

temporarily. Moreover, to reach graceful handover, it

is necessary to examine the un-processing control

messages for avoiding control message lost. Therefore,

we propose a reliable design to get query messages

from the switch and supervise the decision making in

multiple controller environment. When controller

failover happens, our reliability development makes

handover controller process the replication control

messages, reducing the chance (Fctr.t) of switch-and-

controller interaction.

3.2 Mechanism Design

In development, our key point is to preserve the

changes made by executed SDN control messages

2168 Journal of Internet Technology Volume 19 (2018) No.7

continuously. When controller switching happens, the

last known operation on the broken controller is

expected to be handled by the handover controller. For

achieving this, we proposed a mechanism with four

functionalities to enhance the control reliability.

3.2.1 Replication Model

There are two typical replication schemes as

described: passive and active [27]. Active replication is

used in a state-machine. It requires all non-faulty

components to receive commands in the same order.

On the other hand, passive replication designates a unit

to be the primary handler, and it is responsible for

sending replication to the others. Since SDN operation

relies on the control communication heavily, using

active way may cause more loading on the controller

then passive one. Therefore, in replication model, we

choose to use passive way in our design, duplicating

the control messages and sending them to spare

controllers. For each spare controller, it keeps receive

the resilience message while skip make decision for

them.

3.2.2 Control Message Examination

The biggest difficulty to enhance controller

reliability is to preserve the status of the network from

time to time. Therefore, we have to supervise the

progress of decision making. For ordinary spare

controllers, to determine which replication message has

been processed by active controller is necessary.

Therefore, we would like to make active controller

send pointer for notifying progress status in message

examination.

3.2.3 State Recovery

When failure occurs, two aspects of controller fault-

tolerance are required. One is to transform control

authorization from the failed controller to a functional

one. In this part, the performance heavily depends on

the controller framework and hardware, and its

improvement is out of the scope of our work. Another

aspect is to retrieve controller operation as quick as

possible since control messages are time-sensitive. For

this aspect, according to the preserved pointer

information, the handover controller is able to start

decision making at the last known un-processing

message, and the network is expected to keep its status

continuous.

3.2.4 Extensibility for Development

Owing to one of characteristic in SDN is its

separated control plane and data plane, the failover

mechanism should be able to operate without hardware

dependence on specific manufacture devices. In

ideology, the reliability design should have open and

extendable architecture for inserting further

development modules. Owing to Ryu [28] and

OpenvSwitch (OVS) [29] are two common OpenFlow-

compatible solutions for satisfying above points in

academic use. Our work in this paper is based on them

to make system development and implementation.

3.3 System Architecture

In our design, four new modules are added to the

Ryu controller, which are called: Switch Manager,

Request Buffer, Inter-Controller Communication, and

Failure Detection module. According to the

controller’s roles in OpenFlow protocol, the Active

(i.e., master controller) and Standby (i.e., slave

controller) modules may have different tasks and

actions. The designed controller architecture is shown

in Figure 4, and the details of each modules are

described below:

Switch Manager

Module

R
e

q
u

e
st

 B
u

ff
e

r

Failure Detection

Module

Inter Controller Communication

Module

Original Controller

Modules

OpenFlow Message Handler

SDN Control Plane

C
o

n
tr

o
ll
e

r
C

o
m

m
u

n
ic

a
ti

o
n

 C
h

a
n

n
e

ls

Figure 4. The architecture of designed modules in the

controller

3.3.1 Switch Manager Module

The Switch Manager module is making contacts

with SDN switches. After the switch establishes a

control tunnel with the controller, the switch exchanges

the Hello Message first, and the controller sends a

Switch Feature Request and a Port Description

Message to acquire feature and port information from

the switch. Afterwards, the Switch Manager module

makes negotiation with each switch according to the

role of the controller. The Set-Asynchronous function

lets all controllers receive every control message. It

enables the switch to duplicate outgoing control

messages, and send them to both the Active and

Standby Controllers.

3.3.2 Request Buffer

Considering the performance requirement for

duplicating control messages, we made a modification

on OpenvSwitch to make request copies to all

controllers. These messages are received by the

OpenFlow Message Handler first. The Request Buffer

module provides a buffering space for the system. For

Using Adaptive Message Replication on Improving Control Resilience of SDN 2169

the Active Controller, the request will be processed; for

the Standby controller, the received control messages

will be preserved here, waiting for the examination

process.

3.3.3 Inter-Controller Communication Module

The Inter-Controller Communication module (ICC

module) is responsible for coordinating the process of

exchanging messages between the Active Controller

and Standby Controllers. The controllers use their ICC

modules to negotiate the asynchronous examination

procedure. Due to network transmission, there is

timing difference between the messages received by

different controllers. When a control message is stored

in the Request Buffer of the Active Controller, the ICC

module reads it, and then the ICC module sends its

content with identification information to the Standby

Controller. The Standby Controller then searches its

Request Buffer and examines the content. After that,

the Standby Controller responds to the message with a

confirmation. For cost-efficiency, we added a batch

support function to the ICC module. It allows operators

to setup a batch size during message forwarding. The

batch process is shown in Figure 5. By doing so, the

transmission frequency of the ICC module can be

lowered when there are many incoming messages.

Unfortunately, this function reduces control resilience

in the system. For achieving a graceful protection, we

recommend to let the ICC module forward any

incoming message as soon as possible after

examination.

Control

Message
Processing MSG

ICC module

ICC module
Control

Message
Processing MSG

ICC module

Standby ControllerActive Controller

Control

Message
Examining MSG

Examining MSG

ICC module

ICC module

Processing MSG

ICC module

ICC module
Control

Message
Processing MSG

ICC module

ICC module

Examining MSG

ICC module

B
a

tc
h

 S

iz
e

Figure 5. The batch process between the Active and

Standby Controllers

3.3.4 Failure Detection Module

For detecting the liveliness of the controller, this

module is designed to carry out heartbeat detection. In

operation, the Active Controller periodically sends a

heartbeat message to advertise its liveliness to the

Standby Controller. Since the Ryu controller does not

support real time processing, the clock synchronization

problem might cause inaccurate heartbeat advertising.

For overcoming this problem, the Failure Detection

module in the Standby Controller is designed to update

the timestamp token by averaging the elapsed time

between two received heartbeat messages. For

operating heartbeat mechanism adaptively, we put the

average delay [30] concept into the heartbeat

diagnostic. The heartbeat development is shown as

Algorithm 1 and Algorithm 2. Since the Ryu controller

is an event-triggered architecture natively, the

developed heartbeat reaction can be activated by

corresponding event. Considering the time variation,

the expected timestamp of next received heartbeat on

Standby Controller will be adjusted alternatively.

When the Standby Controller does not receive

heartbeat from the Active Controller in expected time,

it will mark up this event and keep waiting for the next

expected heartbeat. Once the Standby Controller

misses two consecutive heartbeats, it suspects the

Active Controller failed, and activates controller

failover operation.

 1: Event_init //Receiving an event during initialization

 2: Event_timeout //Receiving an event when timeout

 3: sendHeartbeat () //The function used to send the heartbeat message

 4: Lsc //The list of Standby Controller

 5: Tinit //The default waiting time for sending next heartbeat

 message (the suggestion value is ≤ 1 second)

 6: startTimer () //The function used to setup the heartbeat timer for

 triggering Event_timeout

 7:

 8: procedure NEWEVENT(Event_init || Event_timeout)

 9: sendHeartbeat(Lsc)

10: startTimer(Tinit)

Algorithm 1 Heartbeat – Active Controller

 1: Event_init //Receiving an event during initialization

 2: Event_heartbeat //Receiving an event when heartbeat coming

 3: Event_timeout //Receiving an event when timeout

 4: Tinit //The default waiting time for sending next heartbeat message

 (it should be setup as same as the vaule on Active Controller)

 5: Tlast //The arrival timestamp of last heartbeat

 6: Tcurrent //The current timestamp

 7: Texpect //The expected timestamp of next heartbeat

 8: update Timestamp() //The function used to return timestamp for

 updating Tcurrent

 9: startTimer() //The function used to setup the heartbeat timer for

 triggering Event_timeout

 10: dirtybit //The control flag used to mark the heartbeat missing

 11: triggerHandover() //The function used to trigger controller handover

 12:

 13: procedure NEWEvent(Event_init)

 14: Tcurrent = updateTimestamp()

 15: Texpect = Tcurrent + Tinit

 16: Tlast = Tcurrent

 17: startTimer(Texpect)

 18: procedure NEWEvent(Event_heartbeat)

 19: Tcurrent = updateTimestamp()

 20: Texpect = TCurrent + ((TCurrent - Tlast) + (Texpect - Tlast)) / 2

 21: Tlast = Tcurrent

 22: if (dirtybit) then

 23: dirtybit = false

 24: startTimer(Texpect)

 25: procedure NEWEvent(Event_timeout)

 26: if (dirtybit) then

 27: triggerHandover()

 28: break

 29: else

 30: dirtybit = true

 31: Tcurrent = updateTimestamp()

 32: Texpect = Tcurrent + (Tcurrent - Tlast)

 33: startTimer(Texpect)

Algorithm 2 Heartbeat – Standby Controller

2170 Journal of Internet Technology Volume 19 (2018) No.7

3.4 Control Message Examination

Because of the network translation latency, the

information delivery has timing difference. For failover

control communication, our design replaced a small

part of the data structure in OpenFlow protocol. In

regular control communications, the Transition ID is a

field in OpenFlow protocol [32] that is originally used

for a controller-to-Switch response message attached to

the corresponding request message. Moreover, the

controller uses the Transition ID to identify the

response of each Controller-to-switch message to avoid

an unexpected order in command execution. In our

development, the Transition ID has been re-organized

by attaching a serial number to each OpenFlow control

packets, letting controllers identify the order of

received control messages timely. On the other hand,

supervising all control messages will achieve a

complete protection, while it costs much more

resources and degrades the system performance.

Focusing on the control messages which changed the

network status is a cost-efficient way for balancing

system overhead and availability. It is optional to

replicate non-essential messages (like Hello Message)

in the control plane. Accoring to above reasons, we

suggest to track following events mainly: flow

modification, port status change, and topology change.

The details of corresponding control messages are

listed in Table 2.

Table 2. The selected control messages for control plane resilience

Type Control Function Important Arguments Event Remarks

Flow flow_removed
cookie, table_

id, match
flow modification

A flow is removed (owing to expiration or

instruction).

addPortState
dpid, openflow_

msg_raw
port status change An available port is added on the switch.

removePortState dpid, port number port status change A port is removed on the switch. Port

modifyPortState
dpid, openflow_

msg_rawr
port status change

The port status has been changed (owing

to exception or instruction).

set_downPortDataState dpid, port number port status change A port is set to down on the switch.

del_portPortDataState dpid, port number port status change The port data has been removed.
Port Status

lldp_receivedPortDataState dpid, port number topology change
The port status has been updated by Link

Layer Discovery Protocol [31].

4 Initial Performance Evaluation

For experiment, we setup an SDN environment for

emulating the developed system. Since the work

proposed in this paper is still a work-in-progress

development. Initially, there are two controllers

deployed in the test environment for proof-of-concept,

one is assigned to Active Controller, and the other one

is assigned to Standby Controller. There are three

groups of hardware used for experiment: low-end,

normal, and high-end. In low-end group, the

controller hardware is using Axiomtek NA343R with

Intel N3160 CPU to emulate embedded environment;

in normal group, the hardware is using PC with Intel

G2020 CPU to emulate general environment; in high-

end group, we select HP DL360 Gen9 (type 755258-

B21) server with Intel E5-2620 CPU to emulate

powerful node in data-center environment for

evaluation. By doing this, we are able to compare the

performance results of different hardware capacities.

Furthermore, the controller development is based on

RYU (version 3.22) software. The deployed

OpenFlow-enabled switch is using Caswell CAR3000

equipped with Intel E5300 CPU, and Intel 82574L

network adapter, running OpenvSwitch software

(version 2.3.1 on Ubuntu 14.04 operating system) for

supporting SDN control. Besides, two end-hosts

equipped with ThinkPad x201i (type 3626-NU4) are

used to support all the experiments in our evaluation.

4.1 Throughput

As discussed in the previous section, only those

control messages which affect network behavior are

recommended to be supervised. Therefore, the first

experiment is to evaluate the system performance for

processing control messages in limited time. A

message generation mechanism is deployed to

constantly trigger switch-controller communications in

this experiment. When the Active Controller receives

the supervised message, it will start the replication

process for this message. There is a calculator

deployed to monitor the process of control messages.

The throughput value is defined as the amount of

successfully updated flow rules in the flow table of

controller. In experiment, we evaluate the throughput

without examination first (i.e., none of the controller

messages are supervised). In the next step, we adjust

the ratio of supervised messages (i.e., FLOW_

REMOVED) versus non-supervised messages for

emulating the throughput employing examination. As

the result, the number of processed control messages

reduced according to the message ratio. The

comparison is shown in Figure 6(a), Figure 6(c) and

Figure 6(e). When all messages in the control plane are

supervised, it can be found that the degradation of

Using Adaptive Message Replication on Improving Control Resilience of SDN 2171

throughput of normal group is about 62 percent in

average. In our investigation, it is the message

identification actions drags the performance. In our

future work, we plan to improve the ICC module for

achieving better throughput.

(a) Throughput (low-end hardware group) (b) Latency (low-end hardware group)

(c) Throughput (normal hardware group) (d) Latency (normal hardware group)

(e) Throughput (high-end hardware group) (f) Latency (high-end hardware group)

Figure 6. The testing results of throughput and latency experiments

4.2 Responding Time

The time used for updating the switch is an

important index for evaluating SDN controller

performance. By observing the responding time, we

can realize the latency while waiting for instruction

from the switch. We use the same experiment

environment as previously. When the Active Controller

receives a control message sent by the switch, it starts

the examination process for supervised messages.

Afterwards, the Active Controller sends a reply

message to the switch to complete the controller action.

In this experiment, the responding time is measured by

the SDN switch. The latency is defined as the time

difference between the switch sending and receiving

control messages for each new query. The ratio of

supervised messages is adjusted in a similar manner as

previously. The experiment has been repeated multiple

2172 Journal of Internet Technology Volume 19 (2018) No.7

times, and the measurements for average latency and

degradation are shown in Figure 6(b), Figure 6(d), and

Figure 6(f).

4.3 Performance Comparison

To optimize the controller operation, we also adjust

the heartbeat interval time and batch size in exploration.

According to our investigation, it is the state

synchronization action makes influence on controller

overhead in our development mainly. In throughput

increment experiment, we have tried to enlarge the

batch size in message examination. Figure 7 shows the

experiment results of different supervised message

ratio in three hardware groups. Based on our

observation, there is always a trade-off between

performance and reliability in controller operation. To

have the complete control message supervision, the

cost will lower down the system throughput. In our

opinion, supervising more types of control messages

gains more overheads in message examination.

Determining which control messages is involved in

protection is important to make the balance.

Figure 7. The testing results of batch size adjustment

For appraising the performance in normal network

operation, we decided to use benchmark tools for

verification. The Cbench [33] is a famous controller

benchmark tool of OFLOPS project [34-35] built for

OpenFlow component evaluation. The KC-cbench [36]

is an extended version of Cbench. We modified its

source code to match our testing requirements. We

compared our development (normal hardware group)

with the classic Ryu controller and another Python-

based, single-thread SDN controller (i.e., POX [37])

for comparison with a fair base-line. The results of

each measurement (indexed by minimum, maximum,

and average) is illustrated in Figure 8. In this figure,

the POX controller shows a better throughput with the

other two controllers. In our opinion, it is owing to that

the POX’s framework is lightweight. The controller

operation takes less workload in the POX. While the

Ryu-based controllers run more functions with event-

based control mechanism in operation. For the results

of our development and original Ryu controller, the

throughput of our development had 60 percent

degradation approximately. The reason is that our

development requires more process time to handle the

control communication for message examination.

Compared with other two controllers, our development

had lower performance, while it can reduce the chance

of switch-and-controller interaction become

termination and make the reliability of SDN controller

be improved.

Figure 8. The benchmark results made by KC-cbench

4.4 Use Case Evaluation

For further evaluation, we added more OpenvSwitch

to setup an environment for emulating a failover case,

Figure 9. In this scenario, Host A operates as a packet

generator to keep sending packets to Host B. The

packets sent from Host A are forwarded through

Switch 1, 2, and 4 originally. For the experiment, we

cut off the link between Switch 1 and Switch 2, and

also made the Active Controller offline after Switch 1

and Switch 2 sent out the PORT_DOWN STATUS

messages. Since the switches were not able to get any

instruction from the Active Controller, they were

directed to ask a Standby Controller how to forward

new arrival packets. At the same time, the modules on

the Standby Controller started to take over control

responsibility. In this experiment, we measured the

time interval between controller failure and recovery.

The interruption in the data plane transmission lasted

less than two seconds in average. In this use case

evaluation, the time interval between controller failure

and recovery may be too long for the data plane

interruption. After the interpretation, we find out that

the reason is probably caused by the controller role

change procedure. When the controller system notes

the Active Controller is failed, the switches have to

start to make the role change, and the Standby

Controller turns to be the new Active Controller for all

switches. During the changing action, the new arrival

packet in data plane may be influenced. While this part

is out of the scope of our development. If the switch

side is able to speed up the time for controller role

change as well as supporting buffering action, the

interruption time may be able to reduce.

Using Adaptive Message Replication on Improving Control Resilience of SDN 2173

Host A
Switch 4

 Switch 2

Switch 1

Control Plane

Switch 3

1

2

Host B

Control

Message

Active Controller

(offline)

Port Down

Standby Controller

Figure 9. The use case environment built for

evaluation

5 Conclusions

To make improvement on the reliability of SDN

control plane, this paper introduces a prototype design

by using control message replication and examination

for enhancing the control resilience of SDN. The

developed method is able to be implemented on plural

SDN controllers for preventing the behavior lost when

controller failure is occurred. According to our

evaluation, the throughput of our development is about

60 percent of the original controller, while the

degradation makes the network behavior be protected

by the replication operation. By doing this, the selected

control messages are well examined to make sure the

SDN network keeps its constancy during the controller

failover.

6 Future Work

In the practical issues, due to the implementation of

fault-tolerance in data center often exploits distributed

controller like ONOS, the current prototyping system

has to be enhanced with for fulfilling such scenarios.

When multiple controllers are deployed in the system,

implicit the selection of new leader, controllability

switching and status synchronization are becoming

more complicated, and more practical issues are

expected to be investigated. Nevertheless, we are

conducting additional evaluation and improvement on

system performance, such as adding more Standby

Controllers, testing system on datacenter-like networks,

and hacking controller framework to speedup reaction

time in our SDN testbed [38]. Moreover, we also plan

to practice our design on the multi-thread and cluster

SDN controller solutions (e.g., NOX-MT [39] and

OpenDaylight [40]), trying to verify the operation

scenario and evaluating the performance. We will have

further exploration and evaluation in our future work

for research completeness.

Acknowledgements

The authors would like to thank the anonymous

reviewers for their helpful and constructive comments.

This work was supported in part by the Ministry of

Science and Technology of Taiwan, under contracts

No. 104-2221-E-492-002-MY2, 105-2218-E-001-001,

and 106-2221-E-006-025. Authors are also grateful to

the National Center for High-Performance Computing,

TWAREN NOC, and OF@TEIN+ community (Asi@

Connect-17-094) for their help.

References

[1] R. M. Metcalfe, D. R. Boggs, Ethernet: Distributed Packet

Switching for Local Computer Networks, Communications of

the ACM, Vol. 19, No. 7, pp. 395-404, July, 1976.

[2] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L.

Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts, S. Wolf, A

Brief History of the Internet, ACM SIGCOMM Computer

Communication Review, Vol. 39, No. 5, pp. 22-31, October,

2009.

[3] R. Kanagavelu, B. S. Lee, R. F. Miguel, L. Nguyen, L. N.

Mingjie, Software Defined Network Based Adaptive Routing

for Data Replication in Data Centers, IEEE International

Conference on Networks, Singapore, 2013, pp. 1-6.

[4] W.-Y. Huang, J.-W. Hu, S.-C. Lin, T.-L. Liu, P.-W. Tsai, C.-

S. Yang, F.-I. Yeh, J.-H. Chen, J. Mambretti, Design and

Implementation of Automatic Network Topology Discovery

System for International Multi-domain Future Internet

Testbed, Journal of Internet Technology, Vol. 14, No. 2, pp.

181-188, March, 2013.

[5] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,

T. Turletti, A Survey of Software-Defined Networking: Past,

Present, and Future of Programmable Networks, IEEE

Communications Surveys & Tutorials, Vol. 16, No. 3, pp.

1617-1634, February, 2014.

[6] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, and Steve Uhlig,

Software-defined Networking: A Comprehensive Survey,

Proceedings of the IEEE, Vol. 103, No. 1, pp. 14-76,

December, 2015.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, J. Turner, OpenFlow:

Enabling Innovation in Campus Networks, ACM SIGCOMM

Computer Communication Review, Vol. 38, No. 2, pp. 69-74,

April, 2008.

[8] M. A. Fera, S. M. Shalinie, A Survey on Foundation for

Future Generation Internet through Network Virtualization,

Proceedings of the International Conference on Advanced

Computing, Chennai, India, 2014, pp. 172-177.

[9] F. J. Ros, P. M. Ruiz, Five Nines of Southbound Reliability in

Software-defined Networks, Proceedings of the Workshop on

Hot Topics in Software Defined Networking, Chicago, IL,

2014, pp. 31-36.

[10] A. Xie, X. Wang, W. Wang, S. Lu, Designing a Disaster-

resilient Network with Software Defined Networking,

Proceedings of the IEEE International Symposium of Quality

of Service, Hong Kong, China, 2014, pp. 135-140.

2174 Journal of Internet Technology Volume 19 (2018) No.7

[11] F.-H. Tseng, K.-D. Chang, S.-C. Liao, H.-C. Chao, V. C. M.

Leung, sPing: A User-centred Debugging Mechanism for

Software Defined Networks, IET Networks, Vol. 6, No. 2, pp.

39-46, March, 2017.

[12] A. Lara, A. Kolasani, B. Ramamurthy, Network Innovation

Using OpenFlow: A Survey, Communications Surveys &

Tutorials, IEEE, Vol. 16, No. 1, pp. 493-512, First Quarter,

2014.

[13] M.-Y. Luo, J. Chen, J. Mambretti, S.-W. Lin, F. Yeh, P.-W.

Tsai, C.-S. Yang, Network Virtualization Implementation

over Global Research Production Networks, Journal of

Internet Technology, Vol. 14, No. 7, pp. 1061-1072,

December, 2013.

[14] Software-Defined Networking (SDN) Definition, 2017,

https://www.opennetworking.org/sdn-definition/.

[15] D. Kreutz, F. M. V. Ramos, P. Verissimo, Towards Secure

and Dependable Software-defined Networks, Proceedings of

the Workshop on Hot Topics in Software Defined Networking,

Hong Kong, China, 2013, pp. 55-60.

[16] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J.

P. Rohrer, M. Schöller, P. Smith, Resilience and Survivability

in Communication Networks: Strategies, Principles, and

Survey of Disciplines, Computer Networks, Vol. 54, No. 8, pp.

1245-1265, June, 2010.

[17] A. S. da Silva, P. Smith, A. Mauthe, A. Schaeffer-Filho,

Resilience Support in Software-defined Networking: A

Survey, Computer Networks, Vol. 92, No. 1, pp. 189-207,

December, 2015.

[18] Q. Yan, F. R. Yu, Q. Gong, J. Li, Software-defined

Networking (SDN) and Distributed Denial of Service (DDoS)

Attacks in Cloud Computing Environments: A Survey, Some

Research Issues, and Challenges, IEEE Communications

Surveys & Tutorials, Vol. 18, No. 1, pp. 602-622, First

Quarter, 2016.

[19] J. Li, J. Hyun, J.-H. Yoo, S. Baik, J. W. K. Hong, Scalable

Failover Method for Data Center Networks Using OpenFlow,

Proceedings of the IEEE Network Operations and Management

Symposium, Krakow, Poland, 2014, pp. 1-6.

[20] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T.

Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, G.

Parulkar, ONOS: Towards an Open, Distributed SDN OS,

Proceedings of the Workshop on Hot Topics in Software

Defined Networking, Chicago, IL, 2014, pp. 1-6.

[21] P. Fonseca, R. Bennesby, E. Mota, A. Passito, A Replication

Component for Resilient OpenFlow-based Networking,

Proceedings of the IEEE Network Operations and

Management Symposium, Maui, HI, 2012, pp. 933-939.

[22] N. Katta, H. Zhang, M. Freedman, J. Rexford, Ravana:

Controller Fault-tolerance in Software-defined Networking,

Proceedings of the ACM SIGCOMM Symposium on Software

Defined Networking Research, Santa Clara, CA, 2015, pp. 1-

12.

[23] T. Watanabe, T. Omizo, T. Akiyama, K. Iida, ResilientFlow:

Deployments of Distributed Control Channel Maintenance

Modules to Recover SDN from Unexpected Failures, IEICE

Transactions on Communications, Vol. 99, No. 5, pp. 1041-

1053, May, 2016.

[24] K. Kuroki, N. Matsumoto, M. Hayashi, Scalable OpenFlow

Controller Redundancy Tackling Local and Global

Recoveries, Proceedings of the International Conference on

Advances in Future Internet, Barcelona, Spain, 2013, pp. 61-

66.

[25] B. Han, V. Gopalakrishnan, L. Ji, S. Lee, Network Function

Virtualization: Challenges and Opportunities for Innovations,

IEEE Communications Magazine, Vol. 53, No. 2, pp. 90-97,

February, 2015.

[26] A. Nakao, Software-defined Data Plane Enhancing SDN and

NFV, IEICE Transactions on Communications, Vol. 98, No.

1, pp. 12-19, January, 2015.

[27] P. Fonseca, R. Bennesby, E. Mota, A. Passito, Resilience of

SDNs Based on Active and Passive Replication Mechanisms,

Proceedings of the IEEE Global Communications Conference,

Atlanta, GA, 2013, pp. 2188-2193.

[28] Ryu, https://osrg.github.io/ryu/.

[29] Open vSwitch, http://openvswitch.org/.

[30] R. Guerraoui, L. Rodrigues, Introduction to Distributed

Algorithms, Springer, 2004.

[31] P. Congdon, B. Lane, IEEE Standard 802.1AB - Station and

Media Access Control Connectivity Discovery, http://www.

ieee802. org/1/pages/802.1ab.html.

[32] OpenFlow specification version 1.3.0, wire protocol 0x04,

https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.

3.0.pdf.

[33] Cbench, https://github.com/mininet/oflops/tree/master/cbench.

[34] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, A. W. Moore,

OFLOPS: An Open Framework for OpenFlow Switch

Evaluation, Proceedings of the International Conference on

Passive and Active Network Measurement, Vienna, Austria,

2012, pp. 85-95.

[35] OFLOPS: OpenFlow Operations Per Second, https://github.

com/andi-bigswitch/oflops.

[36] KulCloud cbench, https://kulcloud.wordpress.com/tag/cbench.

[37] POX, https://github.com/noxrepo/pox.

[38] P.-W. Tsai, P.-W. Cheng, H.-Y. Chou, M.-Y. Luo, C.-S.

Yang, Toward Inter-Connection on OpenFlow Research

Networks, Proceedings of the 36th Asia-Pacific Advanced

Network, Daejeon, Korea, 2013, pp. 9-16.

[39] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, R.

Sherwood, On Controller Performance in Software-defined

Networks, Proceedings of the USENIX Workshop on Hot

Topics in Management of Internet, Cloud, and Enterprise

Networks and Services, San Jose, CA, 2012, pp. 1-6.

[40] OpenDaylight, https://www.opendaylight.org/.

Using Adaptive Message Replication on Improving Control Resilience of SDN 2175

Biographies

Pang-Wei Tsai received the B.S.

degree in Electrical Engineering, and

the M.S. as well as Ph.D. degrees in

Computer and Communication

Engineering from National Cheng

Kung University. His research

interests include software-defined networking, cloud

computing, network management, CPS security, and

network testbed. Currently, he is working in Delta

Research Center, Delta Electronics, Inc.

Wai-Hong Fong received the B.S.

degree in Electrical Engineering and

the M.S. degree in Computer and

Communication Engineering from

National Cheng Kung University. He

studied OpenFlow network, fault

tolerance and embedded system during his academic

career, and now works for Synology, Inc.

Wu-Hsien Chang received the B.S.

degree in Computer Science and

Information Engineering from

National Chung Cheng University,

and the M.S. degree in Computer and

Communication Engineering from

National Cheng Kung University. His research

interests include software-defined networking and

network testbed, and he is currently working in

Telecommunication Laboratories, Chunghwa Telecom

Co., Ltd.

Chu-Sing Yang is a Professor of

Electrical Engineering in the Institute

of Computer and Communication

Engineering at National Cheng Kung

University (NCKU). He joined the

faculty of the Department of

Electrical Engineering at National

Sun Yat-Sen University (NSYSU) in 1988. He was the

chair of the Department of Computer Science and

Engineering from August 1995 to July 1999, and the

director of the Computer Center from 1998 to 2002. He

joined the faculty of the Department of Electrical

Engineering at NCKU in 2006. His research interests

include software-defined networking, network

management, cloud computing, and cyber-security.

2176 Journal of Internet Technology Volume 19 (2018) No.7

