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Abstract 

Software-defined Networking (SDN) is considered a 

new solution in network provision for applying flexible 

functionalities. The characteristics of SDN include 

separated control and data planes, centralized 

management, having the global view of the network, fast 

adjustment, and adaptation. However, the centralized 

management brings resilience issues in the control plane 

of SDN, such as operation dependability, component 

survival, and behavior recovery. This paper introduces a 

resilience design for SDN to prevent network behavior 

loss when the active controller fails. The aim of this paper 

is to develop a way to improve the resilience of SDN 

control message processing during the controller 

switching procedure. The proposed design has been 

practiced on RYU controller for verification and 

evaluation. The initial performance tests show that our 

work is able to increase the reliability of the controller at 

the expense of lower performance. 

Keywords: Software-defined networking, Controller, 

Reliability, openflow, Resilience, Replication 

1 Introduction 

The prototype of computer networks consisted of the 

telegraph lines that sent instructions to the computers. 

Designated computer networks became an independent 

source of connectivity [1]. With the geographic 

expansion of networks, the internet was created [2]. 

For fulfilling connectivity requirements in a network 

system, routing and switching protocols are used to 

control how packets are delivered. By exchanging 

control messages among linked neighbors, the network 

node can learn about the adjacent status and determine 

a feasible forwarding paths [3-4]. For improving 

flexibility of the control, in future networks, the so 

called Software-Defined Networking (SDN) [5] is 

recognized as an innovative architecture [6]. The SDN 

protocol is defined as an open standard, with vendor-

independence. This reduces proprietary hardware 

dependence on certain manufacturers, performing 

network nodes work together under open and 

integrated management.  

In recent years, SDN protocols, like OpenFlow [7], 

have been applied on many networking fields, 

including data centers, WAN communications as well 

as routing exchanges. Some networking device 

manufacturers also proposed their solutions [8] for 

enabling SDN in their products. The significant 

characteristics of SDN are its centralized control and 

global view. These two characteristics bring several 

advantages to network operation. For examples, the 

centralized control makes service appliances to be 

extended easily, and optimization mechanism like 

traffic engineering algorithm can be efficiently 

operated owing to the global view [5]. However, the 

reliability of SDN is problematic. Since the network 

nodes in SDN are not running autonomously, the 

dependence on the controller increases the 

vulnerability of control communication. If interruption 

occurs in the control channel, the communication 

between the controller and the network node breaks 

down as well. The controller no longer receives the 

latest network status from the nodes, neither sends new 

instructions to manage them how to deliver the new 

incoming traffic flows. Once the controller 

malfunctions, it may cause no more request in the 

control plane can be handled, leading packets of new 

flows to be dropped in the data plane.  

Due to the above reasons, the reliability of SDN 

became a popular research topic [9-11] recently. For 

achieving adequate protection, control messages in 

SDN control plane should be protected and executed 

correctly. When controller failure occurs, the spare 

controller must take over the leadership rapidly, and 

network nodes migrate their control connection to the 

spare controller. During the failover procedure, the 

difficulty of the procedure is to make sure that network 

control actions are continuously registered. Figure 1 

shows an example of the control plane events during 

the controller failover. When the procedure of 

controller switching starts, control messages may get 

lost at this point. Before a network node notifies of the 
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new controller instance, it keeps sending query 

messages to the failed one. The un-processed control 

messages in the failed controller are usually discarded. 

Hence, how to prevent network behavior loss when 

switching controller becomes one of research issues in 

SDN reliability. 
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Figure 1. An example of control plane influence 

during the failover procedure 

In this work, we propose a prototype solution to 

make improvement on protecting control messages 

execution. The solution is applicable on an SDN 

network equipped with spare controllers, and it aims to 

support the controller switching by keeping the 

network status uninterrupted. In our reliability 

development, each control message sent from the SDN 

switch is replicated, and a procedure is responsible to 

ensure that the message has been received by all joined 

controllers. For controller failure detection, a heartbeat 

immigration control is implemented, and there is also 

an adjustment mechanism applied to make the 

operation adaptive and efficient. When controller 

failure is detected, our reliability development tries to 

tag un-processed messages on spare controllers, and it 

makes sure that these messages to be retrieved when 

the selected spare controller takes over the control 

responsibility. By doing this, we can reduce the chance 

of missing control messages for the controller system 

and lower down the possibility of restarting the 

reactive flow rule installation on the switch, improving 

the control reliability of SDN. 

The remainder of this paper is organized as follows. 

Section 2 has a brief review of related works. Several 

fault-tolerance solutions applied for SDN controllers 

are introduced. Section 3 shows our proposed method, 

explaining system design and development details. The 

experiments for verification and evaluation are 

described in Section 4, and a little case study is also 

presented. Finally, the conclusions and future work are 

given in Section 5 and Section 6. 

2 Background and Related Work 

This section introduces the basic concepts of SDN, 

and explains some aspects of reliability design as well 

as implementation for improving the reliability on it. 

2.1 Software-Defined Network and its 

Attributes 

Comparing legacy network with SDN architectures, 

the most significant difference is the form of control. 

The legacy network usually uses in-band control, and 

network nodes negotiate with each other to determine 

the forwarding rules. In contrast, the SDN uses out-of-

band control, and each network node in SDN is 

basically managed by the controller. To illustrate their 

differences, an architecture comparison is shown in 

Figure 2. The SDN architecture [6] can be divided into 

three parts: application plane, control plane and data 

plane. The application plane runs as an entrance for 

integrating network applications. The applications use 

Northbound Application Programming Interface (API) 

to send the requirements to the control plane for 

changing the network behavior. The control plane is 

the essence of the network operation and management. 

The control logic in this plane is responsible for 

receiving the requirements and turning them into 

control messages for the network nodes. In data plane, 

the network nodes follow the instructions and forward 

the packets according to the instructions made by 

controller.  
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Figure 2. The comparison between the control 

architectures of legacy and SDN-enabled networks [6] 

By separating the control logic from the data 

processing unit, SDN enables programmability on the 

network. Network operators can arrange network 

resources in a more flexible manner. Operations such 

as packet forwarding, filtering and duplication can be 

done easily through software-driven methods. For 

example, OpenFlow is a practical implementation of 

SDN-enabled networks in research and education [12-

13]. It provides a specific design for SDN components, 

including the flow table and the control channel [14]. 

The flow table consists of data flow entries used for 

matching and forwarding packets. When mismatch 

occurs at a new arrival packet, this packet is sent to the 

controller for making forwarding decisions. After the 

controller decides the corresponding actions for the 
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packet, it sends the control message back to the 

network node with a new flow rule for packet 

transmission. 

2.2 Fault-tolerance Issues in SDN 

The fault-tolerance is the ability of self-adaptation to 

dynamic environment conditions in the network, 

including malicious attacks, operational overload and 

misconfiguration [15-16]. Silva et al. [17] investigated 

related problems in SDN operation. In their survey, the 

problems can be categorized as follows: survivability, 

traffic tolerance, disruption tolerance, dependability, 

security, and performability. Survivability is the ability 

to address a small number of random uncorrelated 

faults. Traffic tolerance enables unusual but legitimate 

traffic loads without interrupting operation. The 

dependability is the measured availability of the 

network. In security problem, it is related to the 

protection from harmful operation that affecting the 

system. The Distributed Denial of Service (DDoS) is a 

kind of security threat as seen in Yan et al. [18]. In the 

last, the performability is about the working efficiency 

in operation. 

In SDN controller reliability, based on our 

observation [16-17, 19-20], there is an emerging trend 

to implement the control plane in a physically 

distributed but logically centralized architecture. Due 

to the control plane in SDN is centralized, 

implementing failover methods can make the 

probability of the control decision interruption to be 

minimized when control plane failure occurs. To 

introduce the reliability designs applied on SDN 

control framework, several typical developments for 

enhancing the ability of making control decisions 

without interruption are listed as follows: 

2.2.1 A Replication Component for Resilient 

OpenFlow-based Networking 

Fonseca et al. [21] proposed a primary-backup 

mechanism that manages the data structure, by relating 

a MAC address with a switch port. The messenger 

component provides synchronization communication 

between controllers. To check the liveness of 

controllers, the connected switch sends an inactive 

probe periodically. When there is a fault, the switch 

connects to one of the backup controllers. 

2.2.2 ONOS 

The ONOS [20] is an SDN control system that 

integrates controller instances with database and 

management service to support core network level 

traffic engineering. The main design purpose of ONOS 

is building a high performance SDN controller. It is 

capable of tolerating the failure of a controller by 

detecting the contacts with other controller instances. 

The ONOS provides a cluster control integration with 

distributed controller instances. However, the ONOS is 

not considering the communication lost among the 

switch and the controller instances natively. For the 

switch, only the control message successfully received 

by its primary controller will be handled. 

2.2.3 RAVANA 

Katta et al. proposed RAVANA [22], a fault-tolerant 

control plane that guarantees controller messages to be 

handled exactly once by an extended switch side 

through the OpenFlow interface. The design of 

RAVANA assumes that the behavior of controllers is 

deterministic, and the unmodified control application 

can be applied to them. It aims to replicate state-

machine with lightweight switch-side mechanism to 

guarantee correctness of switch control. In their 

implementation, there is a reference deployment 

showing the ability of RAVANA for enabling 

unmodified controller applications to be executed in a 

fault-tolerant case. 

2.2.4 ResilientFlow 

To protect SDN-enabled networks under large-scale, 

unexpected link failures, Omizo et al. proposed 

ResilientFlow [23] to improve reliability for the SDN 

system. They developed a module called Control 

Channel Maintenance Module (CCMM) to detect 

control channel failure. In ResilientFlow, all switches 

of SDN have to maintain their own control channel, 

and it secure the SDN control plane when control 

communications between switches and controllers are 

failed. 

2.2.5 Scalable OpenFlow Controller Redundancy 

Tackling Local and Global Recoveries 

Kuroki et al. [24] proposed a mechanism to enhance 

the controller redundancy in OpenFlow. In their 

research, the high-availability of the OpenFlow 

controller is investigated, and two actions (i.e., local 

recovery and global recovery) in the fault recovery 

operation are designed. The demonstration shows that 

the OpenFlow switches in the failover process are 

successfully achieved failover operation. 

2.3 Discussion 

With the rising trends of implementing cloud-based 

techniques, the legacy network architecture may have 

insufficient flexibility to fulfill innovative requirements. 

Some non-regular network configurations are able to 

be implemented for achieving alternative control. 

However, even the SDN provides more software-

defined functionalities to manage the network, 

improving its reliability is still a challenge. The 

possible issues for developing SDN control resilience 

are summarized in Table 1. The disruption tolerance is 

commonly used to make improvement on weak and 
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episodic connectivity. Its approaches include error 

correction schemes, multi-path routing, flow migration, 

and store carryforward schemes. Dependability ensures 

the service reliability of a system. It focuses on 

availability, safety, integrity, and maintainability of 

services. Security deals with unauthorized access to a 

network. In contrast to availability and dependability, it 

deals with the information assets instead of services. 

Finally, performability is the metric used to evaluate 

the performance of the network. Path selection and 

Quality of Service are two instances expressed in this 

property. Furthermore, to provide more flexibility and 

adaptation on reliability control, applying abstract 

control mechanisms, like NFV [25-26], will introduce 

more complicated functions as well as more non-

deterministic operation to the controller. 

Table 1. Instances of reliability research in SDN control 

Research issues Approachment Related discipline Remarks 

Dependability 
The spare components are able to take over the system 

operation when hardware failure occurred. Component 

Failure 

Hardware Redundancy /

Placement Optimization 
Survivability 

The placement optimization provides flexibility and adaptation 

for maintaining the spare infrastructure. 

Dependability 
Automation trouble shooting and examination are able to help 

network operators to determinate the possible problems. Operation 

Failed 

Software Debugging / 

Fault-tolerance 

Technique Survivability 
The fault-tolerance techniques are often implemented on control 

plane for dependability, keeping system working consistency. 

Disruption 

Tolerance 

The link redundancy, path selection, load balancing, QoS and 

other policy-based management are the issues for implementing 

traffic engineering. 
Optimization Traffic Engineering 

Performability 

The improvement on packet processing makes better 

performance and quality on packet transmission with high 

availability. 

Dependability 
The probe detection provides network state in a given instant for 

checking property. 
Measurement Monitoring 

Traffic Tolerance
The traffic stats are able to use for anomaly detection in 

management. 

Security 

Securing the connection between the controller and switch can 

compromise the integrity and confidentiality of the control 

communication. Security 
Packet Deception / 

Traffic Log Analysis

Traffic Tolerance
Mitigating the threats such as DDoS attack and ping of death are 

necessary for network protection. 

 

In most cases, implementing control resilience in the 

control plane increases reliability, however, system 

performance is a trade off [19]. Applying data 

synchronization on control logic is common used in 

distributed controller designs like ONOS. In this way, 

the performance of the control plane depends largely 

on the performance of the data synchronization. The 

data structure and the type of the stored data influence 

the speed of writing and reading the data correctly. 

Therefore, in order to increase the performance of 

controller synchronization, ONOS has changed the 

data structure. A different approach is to replicate and 

examine control messages [27]. The typical design in 

this way is to use a state-machine like RAVANA. 

However, its replication might not be able to guarantee 

deterministic outcome if there are numerous policy-

control modules built in controller. On the other hand, 

the ResilientFlow is focusing on switching the control 

communication from the failed controller to the spare 

one and keeping network traffic forwarding well, not to 

make examination on possible missing messages 

during the controller handover. Moreover, considering 

the spare controller changes its role from slave to 

active for taking network control [24], the network 

behavior is not synchronized in local recovery. The 

new active controller may have no information of 

legacy network behavior (e.g., flow and port 

information). The chance that causes inconsistency in 

this way is greater than our development. Furthermore, 

in global recovery, even the role management server is 

able to keep copies of control information, the amount 

of updating data (like flow entry) in recovery 

procedure makes influence on mean time to recovery. 

Therefore, based on above aspects, instead of a 

replicated state-machine, we would like to opt for 

primary-backup replication in the control plane and 

develop soft-warized methods to make examination on 

control messages for improving SDN reliability. 

3 System Design 

To explain our resilience design built to improve 

SDN control reliability, in this section, we introduce 

the basic idea and mechanism design first. The system 

architecture, development and implementation are also 

described to let readers realize our idea and practice. 
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3.1 Basic Idea 

To determine the possible ways of making reliability 

improvement in the SDN control plane, the 

investigation of component operation is necessary. In 

SDN, the control communication between components 

(e.g., switch and controller) follows the client-server 

model [5]. For example, when a new arrival packet is 

mismatched on the flow table, the switch sends 

variation (i.e., PACKET_IN message) to the controller. 

After that, the controller tells the switch how to deal 

with this packet. Furthermore, when any flow rule is 

expired or the port status turns down, the 

corresponding messages (i.e., FLOW_REMOVED and 

PORT_STATUS) are sent by switch or controller to 

make the notification. 

For illustrating the above operation, we roughly 

organize the switch-controller interaction as a chain, 

shown in Figure 3, and the failure probability on each 

step is also included. In this figure, the meaning of 

each element are listed as the following:  

A Triggering Event (switch) 

B Query (switch to controller) 

C Making Decision (controller) 

D Rule Update (controller to switch) 

Fq The probability that query fails for one controller Nctr 

The number of available controllers for switch Fq.all 

The probability that query fails for all controllers Fctr 

The probability that decision making causes 

failure on the controller 

Fctr.r The probability that failure causes decision 

making retry on the controller 

Fctr.t The probability that failure causes switch-and-

controller interaction do termination 

A

B

C

D

Fq.all

1 - Fq.all

Fctr.r

1 - Fctr.r

Fctr.t

 

Figure 3. The transition diagram of control 

communication among SDN components 

In the initial status, a detected event triggers the 

switch to make contact with the controller for asking 

how to deal with the situation. On the next status, the 

switch tries to send a query message to the controller 

for finding out the solution for the corresponding event. 

When there are multiple controllers (1 < Nctr) connected 

to the switch, the switch will ask each controller 

according to query priority (like master and slave 

controller configuration of OpenFlow switch). If all 

controllers fail on the attempt, the query is terminated, 

and the status returns to the beginning. The probability 

of this situation (Fq.all) is formulated in equation (1). 

 Fq.all = (Fq) Nctr (1) 

After the controller receives a query message, it is 

responsible for telling the switch how to deal with the 

event. In decision making step, there is a chance (Fctr.r) 

which the controller retry to make decision when the 

fault in the controller is recoverable. While if the un-

recoverable fault or control message lost happens, the 

switch-and-controller interaction will be terminated 

Fctr.t. The overall failure chances (Fctr) in this step can 

be calculated by equation (2). 

 Fctr = Fctr.r + Fctr.t (2) 

The last step in the operation is rule update. In this 

part, the controller sends instructions to let the switch 

realize how to deal with the packet. No matter whether 

the update action succeeds or fails, the status returns to 

the initial one in the end. Eventually, when update 

action is failed, the above process will start over again 

later owing to the event triggers query operation again. 

To enhance the reliability of the controller, it is a 

common way to add many controllers into the control 

plane, and setup switches to link with these controllers. 

For instance, OpenFlow switch is able to setup one 

master controller and several salve controllers in 

operation. Once the master controller has no response 

in a period of time, the switch starts to query the 

secondary controller (role change procedure). This way 

is able to reduce the chance of failure (Fq.all) happening 

in query step. Furthermore, in decision making step, 

implementing controller collaboration to secure the 

control logic is also available to reduce the chance of 

decision failure (Fctr.r). However, as mentioned in 

previous section, there is a probability that some 

reasons cause decision making failed. For one, the 

synchronization may not perfectly replicate all query 

messages due to the timing gap. For another, when 

controller switching, the migration time (even it is a 

very short time) may lead control logic malfunctioned 

temporarily. Moreover, to reach graceful handover, it 

is necessary to examine the un-processing control 

messages for avoiding control message lost. Therefore, 

we propose a reliable design to get query messages 

from the switch and supervise the decision making in 

multiple controller environment. When controller 

failover happens, our reliability development makes 

handover controller process the replication control 

messages, reducing the chance (Fctr.t) of switch-and-

controller interaction.  

3.2 Mechanism Design 

In development, our key point is to preserve the 

changes made by executed SDN control messages 
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continuously. When controller switching happens, the 

last known operation on the broken controller is 

expected to be handled by the handover controller. For 

achieving this, we proposed a mechanism with four 

functionalities to enhance the control reliability. 

3.2.1 Replication Model 

There are two typical replication schemes as 

described: passive and active [27]. Active replication is 

used in a state-machine. It requires all non-faulty 

components to receive commands in the same order. 

On the other hand, passive replication designates a unit 

to be the primary handler, and it is responsible for 

sending replication to the others. Since SDN operation 

relies on the control communication heavily, using 

active way may cause more loading on the controller 

then passive one. Therefore, in replication model, we 

choose to use passive way in our design, duplicating 

the control messages and sending them to spare 

controllers. For each spare controller, it keeps receive 

the resilience message while skip make decision for 

them. 

3.2.2 Control Message Examination 

The biggest difficulty to enhance controller 

reliability is to preserve the status of the network from 

time to time. Therefore, we have to supervise the 

progress of decision making. For ordinary spare 

controllers, to determine which replication message has 

been processed by active controller is necessary. 

Therefore, we would like to make active controller 

send pointer for notifying progress status in message 

examination. 

3.2.3 State Recovery 

When failure occurs, two aspects of controller fault- 

tolerance are required. One is to transform control 

authorization from the failed controller to a functional 

one. In this part, the performance heavily depends on 

the controller framework and hardware, and its 

improvement is out of the scope of our work. Another 

aspect is to retrieve controller operation as quick as 

possible since control messages are time-sensitive. For 

this aspect, according to the preserved pointer 

information, the handover controller is able to start 

decision making at the last known un-processing 

message, and the network is expected to keep its status 

continuous. 

3.2.4 Extensibility for Development 

Owing to one of characteristic in SDN is its 

separated control plane and data plane, the failover 

mechanism should be able to operate without hardware 

dependence on specific manufacture devices. In 

ideology, the reliability design should have open and 

extendable architecture for inserting further 

development modules. Owing to Ryu [28] and 

OpenvSwitch (OVS) [29] are two common OpenFlow-

compatible solutions for satisfying above points in 

academic use. Our work in this paper is based on them 

to make system development and implementation. 

3.3 System Architecture 

In our design, four new modules are added to the 

Ryu controller, which are called: Switch Manager, 

Request Buffer, Inter-Controller Communication, and 

Failure Detection module. According to the 

controller’s roles in OpenFlow protocol, the Active 

(i.e., master controller) and Standby (i.e., slave 

controller) modules may have different tasks and 

actions. The designed controller architecture is shown 

in Figure 4, and the details of each modules are 

described below:  
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Figure 4. The architecture of designed modules in the 

controller 

3.3.1 Switch Manager Module 

The Switch Manager module is making contacts 

with SDN switches. After the switch establishes a 

control tunnel with the controller, the switch exchanges 

the Hello Message first, and the controller sends a 

Switch Feature Request and a Port Description 

Message to acquire feature and port information from 

the switch. Afterwards, the Switch Manager module 

makes negotiation with each switch according to the 

role of the controller. The Set-Asynchronous function 

lets all controllers receive every control message. It 

enables the switch to duplicate outgoing control 

messages, and send them to both the Active and 

Standby Controllers. 

3.3.2 Request Buffer 

Considering the performance requirement for 

duplicating control messages, we made a modification 

on OpenvSwitch to make request copies to all 

controllers. These messages are received by the 

OpenFlow Message Handler first. The Request Buffer 

module provides a buffering space for the system. For 
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the Active Controller, the request will be processed; for 

the Standby controller, the received control messages 

will be preserved here, waiting for the examination 

process. 

3.3.3 Inter-Controller Communication Module 

The Inter-Controller Communication module (ICC 

module) is responsible for coordinating the process of 

exchanging messages between the Active Controller 

and Standby Controllers. The controllers use their ICC 

modules to negotiate the asynchronous examination 

procedure. Due to network transmission, there is 

timing difference between the messages received by 

different controllers. When a control message is stored 

in the Request Buffer of the Active Controller, the ICC 

module reads it, and then the ICC module sends its 

content with identification information to the Standby 

Controller. The Standby Controller then searches its 

Request Buffer and examines the content. After that, 

the Standby Controller responds to the message with a 

confirmation. For cost-efficiency, we added a batch 

support function to the ICC module. It allows operators 

to setup a batch size during message forwarding. The 

batch process is shown in Figure 5. By doing so, the 

transmission frequency of the ICC module can be 

lowered when there are many incoming messages. 

Unfortunately, this function reduces control resilience 

in the system. For achieving a graceful protection, we 

recommend to let the ICC module forward any 

incoming message as soon as possible after 

examination.  
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Figure 5. The batch process between the Active and 

Standby Controllers 

3.3.4 Failure Detection Module 

For detecting the liveliness of the controller, this 

module is designed to carry out heartbeat detection. In 

operation, the Active Controller periodically sends a 

heartbeat message to advertise its liveliness to the 

Standby Controller. Since the Ryu controller does not 

support real time processing, the clock synchronization 

problem might cause inaccurate heartbeat advertising. 

For overcoming this problem, the Failure Detection 

module in the Standby Controller is designed to update 

the timestamp token by averaging the elapsed time 

between two received heartbeat messages. For 

operating heartbeat mechanism adaptively, we put the 

average delay [30] concept into the heartbeat 

diagnostic. The heartbeat development is shown as 

Algorithm 1 and Algorithm 2. Since the Ryu controller 

is an event-triggered architecture natively, the 

developed heartbeat reaction can be activated by 

corresponding event. Considering the time variation, 

the expected timestamp of next received heartbeat on 

Standby Controller will be adjusted alternatively. 

When the Standby Controller does not receive 

heartbeat from the Active Controller in expected time, 

it will mark up this event and keep waiting for the next 

expected heartbeat. Once the Standby Controller 

misses two consecutive heartbeats, it suspects the 

Active Controller failed, and activates controller 

failover operation. 

  1: Event_init //Receiving an event during initialization

  2: Event_timeout //Receiving an event when timeout

  3: sendHeartbeat ( ) //The function used to send the heartbeat message

  4: Lsc //The list of Standby Controller

  5: Tinit //The default waiting time for sending next heartbeat 

      message (the suggestion value is ≤ 1 second)

  6: startTimer ( ) //The function used to setup the heartbeat timer for

      triggering Event_timeout

  7: 

  8: procedure NEWEVENT(Event_init || Event_timeout)

  9: sendHeartbeat(Lsc)

10: startTimer(Tinit )

Algorithm 1 Heartbeat – Active Controller

 

  1: Event_init //Receiving an event during initialization

  2: Event_heartbeat //Receiving an event when heartbeat coming

  3: Event_timeout //Receiving an event when timeout

  4: Tinit //The default waiting time for sending next heartbeat message 

      (it should be setup as same as the vaule on Active Controller)

  5: Tlast //The arrival timestamp of last heartbeat

  6: Tcurrent //The current timestamp

  7: Texpect //The expected timestamp of next heartbeat

  8: update Timestamp() //The function used to return timestamp for 

      updating Tcurrent 

  9: startTimer() //The function used to setup the heartbeat timer for 

      triggering Event_timeout

 10: dirtybit //The control flag used to mark the heartbeat missing

 11: triggerHandover() //The function used to trigger controller handover

 12:

 13: procedure NEWEvent(Event_init)

 14: Tcurrent = updateTimestamp()

 15: Texpect  = Tcurrent + Tinit 

 16: Tlast = Tcurrent 

 17: startTimer(Texpect)

 18: procedure NEWEvent(Event_heartbeat)

 19: Tcurrent = updateTimestamp()

 20: Texpect  = TCurrent  + (( TCurrent  - Tlast ) + (Texpect -  Tlast)) / 2

 21: Tlast = Tcurrent 

 22: if (dirtybit) then

 23:      dirtybit = false

 24: startTimer(Texpect)

 25: procedure NEWEvent(Event_timeout)

 26: if (dirtybit) then

 27:      triggerHandover()

 28:      break

 29: else

 30:      dirtybit = true

 31:      Tcurrent  = updateTimestamp()

 32:      Texpect  = Tcurrent  + (Tcurrent - Tlast )

 33:      startTimer(Texpect)

Algorithm 2 Heartbeat – Standby Controller
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3.4 Control Message Examination 

Because of the network translation latency, the 

information delivery has timing difference. For failover 

control communication, our design replaced a small 

part of the data structure in OpenFlow protocol. In 

regular control communications, the Transition ID is a 

field in OpenFlow protocol [32] that is originally used 

for a controller-to-Switch response message attached to 

the corresponding request message. Moreover, the 

controller uses the Transition ID to identify the 

response of each Controller-to-switch message to avoid 

an unexpected order in command execution. In our 

development, the Transition ID has been re-organized 

by attaching a serial number to each OpenFlow control 

packets, letting controllers identify the order of 

received control messages timely. On the other hand, 

supervising all control messages will achieve a 

complete protection, while it costs much more 

resources and degrades the system performance. 

Focusing on the control messages which changed the 

network status is a cost-efficient way for balancing 

system overhead and availability. It is optional to 

replicate non-essential messages (like Hello Message) 

in the control plane. Accoring to above reasons, we 

suggest to track following events mainly: flow 

modification, port status change, and topology change. 

The details of corresponding control messages are 

listed in Table 2.  

Table 2. The selected control messages for control plane resilience 

Type Control Function Important Arguments Event Remarks 

Flow flow_removed 
cookie, table_ 

id, match 
flow modification 

A flow is removed (owing to expiration or 

instruction). 

addPortState 
dpid, openflow_ 

msg_raw 
port status change An available port is added on the switch. 

removePortState dpid, port number port status change A port is removed on the switch. Port 

modifyPortState 
dpid, openflow_ 

msg_rawr 
port status change 

The port status has been changed (owing 

to exception or instruction). 

set_downPortDataState dpid, port number port status change A port is set to down on the switch. 

del_portPortDataState dpid, port number port status change The port data has been removed. 
Port Status 

lldp_receivedPortDataState dpid, port number topology change
The port status has been updated by Link 

Layer Discovery Protocol [31]. 

 

4 Initial Performance Evaluation 

For experiment, we setup an SDN environment for 

emulating the developed system. Since the work 

proposed in this paper is still a work-in-progress 

development. Initially, there are two controllers 

deployed in the test environment for proof-of-concept, 

one is assigned to Active Controller, and the other one 

is assigned to Standby Controller. There are three 

groups of hardware used for experiment: low-end, 

normal, and high-end. In low-end group, the 

controller hardware is using Axiomtek NA343R with 

Intel N3160 CPU to emulate embedded environment; 

in normal group, the hardware is using PC with Intel 

G2020 CPU to emulate general environment; in high-

end group, we select HP DL360 Gen9 (type 755258-

B21) server with Intel E5-2620 CPU to emulate 

powerful node in data-center environment for 

evaluation. By doing this, we are able to compare the 

performance results of different hardware capacities. 

Furthermore, the controller development is based on 

RYU (version 3.22) software. The deployed 

OpenFlow-enabled switch is using Caswell CAR3000 

equipped with Intel E5300 CPU, and Intel 82574L 

network adapter, running OpenvSwitch software 

(version 2.3.1 on Ubuntu 14.04 operating system) for 

supporting SDN control. Besides, two end-hosts 

equipped with ThinkPad x201i (type 3626-NU4) are 

used to support all the experiments in our evaluation. 

4.1 Throughput 

As discussed in the previous section, only those 

control messages which affect network behavior are 

recommended to be supervised. Therefore, the first 

experiment is to evaluate the system performance for 

processing control messages in limited time. A 

message generation mechanism is deployed to 

constantly trigger switch-controller communications in 

this experiment. When the Active Controller receives 

the supervised message, it will start the replication 

process for this message. There is a calculator 

deployed to monitor the process of control messages. 

The throughput value is defined as the amount of 

successfully updated flow rules in the flow table of 

controller. In experiment, we evaluate the throughput 

without examination first (i.e., none of the controller 

messages are supervised). In the next step, we adjust 

the ratio of supervised messages (i.e., FLOW_ 

REMOVED) versus non-supervised messages for 

emulating the throughput employing examination. As 

the result, the number of processed control messages 

reduced according to the message ratio. The 

comparison is shown in Figure 6(a), Figure 6(c) and 

Figure 6(e). When all messages in the control plane are 

supervised, it can be found that the degradation of 
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throughput of normal group is about 62 percent in 

average. In our investigation, it is the message 

identification actions drags the performance. In our 

future work, we plan to improve the ICC module for 

achieving better throughput. 

 

  

(a) Throughput (low-end hardware group) (b) Latency (low-end hardware group) 

  

(c) Throughput (normal hardware group)  (d) Latency (normal hardware group) 

  

(e) Throughput (high-end hardware group) (f) Latency (high-end hardware group) 

Figure 6. The testing results of throughput and latency experiments 

4.2 Responding Time 

The time used for updating the switch is an 

important index for evaluating SDN controller 

performance. By observing the responding time, we 

can realize the latency while waiting for instruction 

from the switch. We use the same experiment 

environment as previously. When the Active Controller 

receives a control message sent by the switch, it starts 

the examination process for supervised messages. 

Afterwards, the Active Controller sends a reply 

message to the switch to complete the controller action. 

In this experiment, the responding time is measured by 

the SDN switch. The latency is defined as the time 

difference between the switch sending and receiving 

control messages for each new query. The ratio of 

supervised messages is adjusted in a similar manner as 

previously. The experiment has been repeated multiple 
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times, and the measurements for average latency and 

degradation are shown in Figure 6(b), Figure 6(d), and 

Figure 6(f).  

4.3 Performance Comparison 

To optimize the controller operation, we also adjust 

the heartbeat interval time and batch size in exploration. 

According to our investigation, it is the state 

synchronization action makes influence on controller 

overhead in our development mainly. In throughput 

increment experiment, we have tried to enlarge the 

batch size in message examination. Figure 7 shows the 

experiment results of different supervised message 

ratio in three hardware groups. Based on our 

observation, there is always a trade-off between 

performance and reliability in controller operation. To 

have the complete control message supervision, the 

cost will lower down the system throughput. In our 

opinion, supervising more types of control messages 

gains more overheads in message examination. 

Determining which control messages is involved in 

protection is important to make the balance. 

 

Figure 7. The testing results of batch size adjustment 

For appraising the performance in normal network 

operation, we decided to use benchmark tools for 

verification. The Cbench [33] is a famous controller 

benchmark tool of OFLOPS project [34-35] built for 

OpenFlow component evaluation. The KC-cbench [36] 

is an extended version of Cbench. We modified its 

source code to match our testing requirements. We 

compared our development (normal hardware group) 

with the classic Ryu controller and another Python-

based, single-thread SDN controller (i.e., POX [37]) 

for comparison with a fair base-line. The results of 

each measurement (indexed by minimum, maximum, 

and average) is illustrated in Figure 8. In this figure, 

the POX controller shows a better throughput with the 

other two controllers. In our opinion, it is owing to that 

the POX’s framework is lightweight. The controller 

operation takes less workload in the POX. While the 

Ryu-based controllers run more functions with event-

based control mechanism in operation. For the results 

of our development and original Ryu controller, the 

throughput of our development had 60 percent 

degradation approximately. The reason is that our 

development requires more process time to handle the 

control communication for message examination. 

Compared with other two controllers, our development 

had lower performance, while it can reduce the chance 

of switch-and-controller interaction become 

termination and make the reliability of SDN controller 

be improved.  

 

Figure 8. The benchmark results made by KC-cbench 

4.4 Use Case Evaluation 

For further evaluation, we added more OpenvSwitch 

to setup an environment for emulating a failover case, 

Figure 9. In this scenario, Host A operates as a packet 

generator to keep sending packets to Host B. The 

packets sent from Host A are forwarded through 

Switch 1, 2, and 4 originally. For the experiment, we 

cut off the link between Switch 1 and Switch 2, and 

also made the Active Controller offline after Switch 1 

and Switch 2 sent out the PORT_DOWN STATUS 

messages. Since the switches were not able to get any 

instruction from the Active Controller, they were 

directed to ask a Standby Controller how to forward 

new arrival packets. At the same time, the modules on 

the Standby Controller started to take over control 

responsibility. In this experiment, we measured the 

time interval between controller failure and recovery. 

The interruption in the data plane transmission lasted 

less than two seconds in average. In this use case 

evaluation, the time interval between controller failure 

and recovery may be too long for the data plane 

interruption. After the interpretation, we find out that 

the reason is probably caused by the controller role 

change procedure. When the controller system notes 

the Active Controller is failed, the switches have to 

start to make the role change, and the Standby 

Controller turns to be the new Active Controller for all 

switches. During the changing action, the new arrival 

packet in data plane may be influenced. While this part 

is out of the scope of our development. If the switch 

side is able to speed up the time for controller role 

change as well as supporting buffering action, the 

interruption time may be able to reduce. 
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Figure 9. The use case environment built for 

evaluation 

5 Conclusions 

To make improvement on the reliability of SDN 

control plane, this paper introduces a prototype design 

by using control message replication and examination 

for enhancing the control resilience of SDN. The 

developed method is able to be implemented on plural 

SDN controllers for preventing the behavior lost when 

controller failure is occurred. According to our 

evaluation, the throughput of our development is about 

60 percent of the original controller, while the 

degradation makes the network behavior be protected 

by the replication operation. By doing this, the selected 

control messages are well examined to make sure the 

SDN network keeps its constancy during the controller 

failover. 

6 Future Work 

In the practical issues, due to the implementation of 

fault-tolerance in data center often exploits distributed 

controller like ONOS, the current prototyping system 

has to be enhanced with for fulfilling such scenarios. 

When multiple controllers are deployed in the system, 

implicit the selection of new leader, controllability 

switching and status synchronization are becoming 

more complicated, and more practical issues are 

expected to be investigated. Nevertheless, we are 

conducting additional evaluation and improvement on 

system performance, such as adding more Standby 

Controllers, testing system on datacenter-like networks, 

and hacking controller framework to speedup reaction 

time in our SDN testbed [38]. Moreover, we also plan 

to practice our design on the multi-thread and cluster 

SDN controller solutions (e.g., NOX-MT [39] and 

OpenDaylight [40]), trying to verify the operation 

scenario and evaluating the performance. We will have 

further exploration and evaluation in our future work 

for research completeness. 
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