
On the Security of an Improved Identity-based Proxy Signature Scheme without Random Oracles 2057

On the Security of an Improved Identity-based Proxy Signature

Scheme without Random Oracles

Caixue Zhou, Zongmin Cui, Guangyong Gao*

School of Information Science and Technology, Jiujiang University, China

charlesjjjx@126.com, cuizm01@gmail.com, gaoguangyong@163.com

*Corresponding Author: Caixue Zhou; E-mail: charlesjjjx@126.com

DOI: 10.3966/160792642018121907009

Abstract

Proxy signature can realize that an original signer

delegates his/her signing right to a proxy signer. Then,

the proxy signer can sign messages on behalf of the

original signer when he/she is absent. The identity-based

cryptosystem can simplify the costly certificate

management. In this paper, we demonstrate that an

improved identity-based proxy signature scheme in the

standard model is not secure by giving four kinds of

attacks. An improved scheme is also proposed to

overcome the security flaws. Our improved scheme can

be proved secure assuming the CDH problem to be hard.

Performance analysis shows that our improved scheme is

practical.

Keywords: Identity-based proxy signature, Proxy

signature, Bilinear pairing, Standard model,

Computational Diffie-Hellman assumption

1 Introduction

The identity based cryptosystem can simplify the

costly certificate management which is considered to

be the main drawback of the traditional public key

cryptosystem. This cryptographic concept was first

introduced by Shamir [1] in 1984. But an efficient

identity-based encryption scheme was not invented

until Boneh and Franklin [2] proposed it by using

bilinear pairings in 2001. Since then, the identity based

cryptosystem has become a research hotspot.

Proxy signature is a useful tool when an original

signer is absent. Then he/she can delegate his/her

signing right to a proxy signer. Any verifier can be

convinced that the signature is made by the proxy

signer designated by the original signer. This

cryptographic primitive was first introduced by

Mambo et al. [3] in 1996. Proxy signature has also got

a lot of attention since it was introduced.

Combining the identity based cryptosystem and

proxy signature, Zhang and Kim [4] first introduced

the identity based proxy signature by using bilinear

pairings in 2003, but their scheme lacked security

proof. In 2005, Xu et al. [5] gave a formal definition

and security model for identity-based proxy signature

for the first time. Their security model was based on

Boldyreva et al.’s work [6]. In 2006, Huang et al. [7]

proposed a proxy signature scheme in the standard

model for the first time. In the same year, Galindo et al.

[8] gave a generic construction of identity based proxy

signature from traditional public key based proxy

signature and their construction suits in the standard

model. In 2010, Cao and Cao [9] proposed a direct

construction of identity based proxy signature in the

standard model for the first time. But in 2013, Sun et al.

[10] pointed out that Cao et al.’s scheme suffers from a

malicious original signer attack and a malicious proxy

signer attack. In the same year, Gu et al. [11] proposed

another identity-based proxy signature scheme in the

standard model. Unfortunately, He et al. [12] gave out

three kinds of attacks to Gu et al.’s scheme and Hu et

al. [13] gave out four kinds of attacks to Gu et al.’s

scheme in 2015, respectively. Based on Gentry’s

identity based encryption scheme [14], Hu et al. [15]

proposed another highly efficient identity-based proxy

signature scheme in the standard model in 2014. Based

on Tian et al.’s strong designated verifier signature

scheme [16], Hu et al. [17] also proposed an identity-

based proxy signature scheme in the standard model

with tight security reduction in 2015.

To overcome the security flaws of Gu et al.’s

scheme [11], Hu et al. [18] proposed an improved

scheme in 2017. They gave a security proof to their

scheme. But unfortunately, in this paper, we point out

that Hu et al.’s improved scheme is still insecure. We

give four kinds of attacks to their scheme. Then we

give further improvement to their scheme. We give

security proof and efficiency analysis of our scheme.

The performance evaluation shows that our scheme is

practical.

The rest of the paper is organized as follows. In

Section 2, we introduce the concept of bilinear pairing,

the complexity assumption, the formal definition and

security model of identity-based proxy signature. In

Section 3, we give a description of Hu et al.’s scheme.

In Section 4, we give four kinds of attacks to Hu et

al.’s scheme. In Section 5, we propose an improved

scheme. In Section 6, we discuss the correctness,

2058 Journal of Internet Technology Volume 19 (2018) No.7

security and efficiency of our improved scheme. In

Section 7, we give an application example of our

scheme. We conclude the paper in Section 8.

2 Preliminaries

2.1 Bilinear Pairing

Let
1 2
,G G be two multiplicative cyclic groups of

prime order q and g be a generator of
1

G . The map

1 1 2
:e G G G× → is said to be an admissible bilinear

pairing if the following three conditions hold.

(1) Bilinearity: For all ,
q

a b Z∈ ,
1

,P Q G∈ , we have

(,) (,)a b ab
e P Q e P Q= .

(2) Non-degeneracy:
2

(,) 1
G

e g g ≠ .

(3) Computability: For all
1

,P Q G∈ , there exists an

efficient algorithm to compute (,)e P Q .

2.2 Complexity Assumption

Computational Diffie-Hellman (CDH) problem.

Given
1

, ,

a b
g g g G∈ for unknown randomly chosen

,
q

a b Z∈ , one must compute ab
g .

The (,)tε − CDH assumption. No probabilistic

polynomial time (PPT) algorithm A running in a

maximum time of t with a probability of at least ε

can solve the CDH problem in
1

G .

2.3 Formal Definition

The formal definition is the same as that in Hu et

al.’s scheme [18]. An identity-based proxy signature

scheme consists of the following eight algorithms.

Setup. Given a security parameter 1k , the PKG

produces a master private key s and the system public

parameters Params . Params are public to all while

s is kept private by the PKG.

KeyGen. Given an identity ID and Params , the PKG

uses the master private key s to produce ID ’s private

key
ID

SK . Then the PKG sends
ID

SK to the user

secretly. Thus, the original signer’s identity and private

key pair is (,

a
a ID

ID SK) and the proxy signer’s identity

and private key pair is (,

pp ID
ID SK).

ISign. Given a private key
ID

SK of identity ID , a

message m and Params , the signer ID produces a

standard signature σ .

IVerify. Given the signer’s identity ID , the signature

σ , the message m and Params , the verifier verifies

the standard signature σ and outputs true or false.

IDelegate. Given the private key
a

ID
SK of an original

signer
a

ID , Params and a warrant
w

m (which

includes the identities of the original signer and proxy

signer, the types of delegated message, the delegation

period and so on), the original signer
a

ID produces a

delegation δ . Then he/she sends it to the proxy signer.

IProxyKeyGen. Given the private key
pID

SK of the

proxy signer, the warrant
w

m , the delegation δ and

,Params the proxy signer
p

ID produces a proxy

signing key
pID

PSK .

IProxySign. Given the proxy signing key
pID

PSK , a

message m , a warrant
w

m and ,Params the proxy

signer
p

ID produces a proxy signature
p

σ .

IProxyVerify. Given the identities of the original

signer
a

ID and proxy signer
p

ID , the warrant
w

m , the

message m , the proxy signature
p

σ and Params , the

verifier verifies the proxy signature
p

σ and outputs

true or false.

For consistency, we require if σ =

(, ,),
ID

ISign SK m Params then (, , ,)IVerify ID m Paramsσ

true= . And if Pr (, , ,),
pp ID w

I oxySign PSK m m Paramsσ =

then Pr (, , , , ,)
p a p w

I oxyVerify ID ID m m Params trueσ = .

2.4 Security Model

Based on the security models of Boldyreva et al. [6]

and Schuldt et al. [19], Gu et al. [11] introduced a more

complete security model of identity-based proxy

signature. Hu et al. [18] used the same security model

as Gu et al. In the security model, they classified the

proxy signature to several types. Here we must point

out that there is a general classification of proxy

signature in Liu et al.’s scheme [20]. Their security

model is as follows.

It assumes that only one user *

u is not corrupted,

that is, the adversary A can get all useful information

except the private key of *

u . There are four situations

to be considered.

(1) The adversary A forges a standard signature of
*

u .

(2) The adversary A does not get the proxy signing

key of *

u and forges a proxy signature of *

u , where *

u

is both the original signer and the proxy signer.

(3) The adversary A does not get the proxy signing

key of *

u and forges a proxy signature of *

u , where

i
u (*

i
u u≠) is the original signer and *

u is the proxy

signer.

(4) The adversary A does not get the signing rights

of *

u and proxy signing key of
i
u (*

i
u u≠). He/she

forges a proxy signature of
i
u (*

i
u u≠), where *

u is

the original signer and
i
u (*

i
u u≠) is the proxy signer.

For simplicity, it assumes that user
1

ID is the non-

corrupted user. The security model is described as

On the Security of an Improved Identity-based Proxy Signature Scheme without Random Oracles 2059

follows.

Setup: The challenger C runs the setup algorithm to

produce the public system parameters Params and a

master private key s . C gives Params to A while

keeping s private.

Queries. A can make a polynomially bounded number

of queries as follows.

Key queries.

(1) T=Type1 (key-oracle()): A requests the private

key of a user
i

ID 1i >（ ）, C produces a private key

iID
SK and returns it to A .

(2) T=Type2 (proxykey-oracle1()): A supplies an

identity
i

ID (1i ≥) and a warrant
w

m , where
i

ID

(1i ≥) is both the original signer and the proxy signer.

C produces a self-delegation proxy key
iID

PSK and

returns it to A .

(3) T=Type3 (proxykey-oracle2()): A supplies an

identity
i

ID (1i >) and a warrant
w

m , where
i

ID

(1i >) is the original signer and
1

ID the proxy signer.

C produces a proxy key
1ID

PSK and returns it to A .

(4) T=Type4 (proxykey-oracle3()): A supplies an

identity
i

ID (1i >) and a warrant
w

m , where
1

ID is the

original signer and
i

ID (1i >) the proxy signer. C

produces a proxy key
iID

PSK and returns it to A .

Signature queries.

(1) T=Type1 (sign-oracle()): A supplies an identity

i
ID (1i ≥) and a message m . C produces a standard

signature σ of
i

ID (1i ≥) and returns it to A .

(2) T=Type2 (psign-oracle1()): A supplies an

identity
i

ID (1i ≥), a warrant
w

m and a message m ,

where
i

ID (1i ≥) is both the original signer and the

proxy signer. C produces a proxy signature
p

σ and

returns it to A .

(3) T=Type3 (psign-oracle2()): A supplies an

identity
i

ID (1i >), a warrant
w

m and a message m ,

where
i

ID (1i >) is the original signer and
1

ID the

proxy signer. C produces a proxy signature
p

σ and

returns it to A .

(4) T=Type4 (psign-oracle3()): A supplies an

identity
i

ID (1i >), a warrant
w

m and a message m ,

where
1

ID is the original signer and
i

ID (1i >) the

proxy signer. C produces a proxy signature
p

σ and

returns it to A .

Forgery.

(1) T=Type1: A outputs a forged standard signature
*

σ on (* *

,ID m). If the following conditions hold, then

we say that A wins the game.

(a) * * *(, , ,)IVerify Params m ID trueσ = ;

(b) A did not make key-oracle() on *

ID ;

(c) A did not make sign-oracle() on (* *

,ID m).

(2) T=Type2: A outputs a forged self-delegation

proxy signature *

p
σ on (* * *

, ,
w

m ID m), where *

ID is

both the original signer and the proxy signer. If the

following conditions hold, then we say that A wins the

game.

(a) * * * *Pr (, , , ,)
p w

I oxyVerify Params m m ID trueσ = ;

(b) A did not make key-oracle() on *

ID ;

(c) A did not make proxykey-oracle1() on

(* *

,
w

ID m);

(d) A did not make psign-oracle1() on (* * *

, ,
w

m ID m).

(3) T=Type3: A outputs a forged proxy signature
*

p
σ on (* * *

1
, , ,

w
m ID ID m), where *

ID is the original

signer and
1

ID the proxy signer. If the following

conditions hold, then we say that A wins the game.

(a) * * * *

1
Pr (, , , , ,)

p w
I oxyVerify Params m m ID ID trueσ = ;

(b) A did not make proxykey-oracle2() on

(* *

1
, ,

w
ID ID m);

(c) A did not make psign-oracle2() on

(* * *

1
, , ,

w
m ID ID m).

(4) T=Type4: A outputs a forged proxy signature
*

p
σ on (* * *

1
, , ,

w
m ID ID m), where

1
ID is the original

signer and *

ID the proxy signer. If the following

conditions hold, then we say that A wins the game.

(a) * * * *

1
Pr (, , , , ,)

p w
I oxyVerify Params m m ID ID trueσ = ;

(b) A did not make proxykey-oracle3() on

(* *

1
, ,

w
ID ID m);

(c) A did not make psign-oracle3() on

(* * *

1
, , ,

w
m ID ID m).

We say that an adversary A can (, , ,
e s

t q qε) break

an identity-based proxy signature scheme if A makes

at most
e
q key queries and

s
q signature queries, and

runs in a maximum time t with a probability of at least

ε .

An identity-based proxy signature scheme is

(, , ,
e s

t q qε) secure if no PPT adversary can (, , ,
e s

t q qε)

break it.

3 Review of Hu et al.’s Scheme

Setup: Given a security parameter 1k , the PKG

chooses two cyclic multiplicative groups
1

G and
2

G of

prime order q , a random generator g of
1

G , a bilinear

map:
1 1 2

:e G G G× → and a hash function *:{0,1}
q

H Z→ .

The PKG randomly chooses
q

Zα ∈ and
2 0 0
, , , ,g vμ μ

1
, ,v Gϖ τ ∈ . The PKG sets

1
g g

α

= . The system public

parameters are
1 2 1 2 0 0

{ , , , , , , , , ,Params G G e g g g vµ µ=

, , , }v Hϖ τ . The system master private key is α .

KeyGen. Given an identity ID , the PKG randomly

2060 Journal of Internet Technology Volume 19 (2018) No.7

chooses
ID q
r Z∈ and computes

()

,0 2 0
() IDrH ID

ID
x g

αα

µ µ
⋅

= ⋅ ⋅

and
,1 1

.

IDr

ID
x g= The private key of user ID is

ID
sk =

,0 ,1
(,).

ID ID
x x Then the original signer

a
ID ’s private key

is ()

,0 ,1 2 0 1
(,) (() ,)ID IDa a a

a a a

r rH ID

ID ID ID
sk x x g g

α
α

µ µ
⋅

= = ⋅ ⋅ and

the proxy signer
p

ID ’s private key is
,0 ,1

(,)
p p pID ID ID

sk x x=

()

2 0 1
(() ,)

ID IDp p p
r rH ID

g g
α

α

µ µ
⋅

= ⋅ ⋅ .

ISign. Given an identity ID and a message m , the

signer randomly chooses
q

d Z∈ and computes

()

0 ,0
,

d d H m

ID
X x ϖ τ

⋅

= ⋅ ⋅
1 ,1 1

,
IDr

ID
X x g= =

2
.

d
X g=

Finally, the signature is
0 1 2

(, , ,)m X X Xσ = .

Iverify. The verifier checks whether the following

equation holds. ()

0 2 1 0 1
(,) (,) (,)H ID

e X g e g g e Xµ µ= ⋅ ⋅
()

2 2
(,) (,)H m
e X e Xϖ τ⋅ ⋅ .

IDelegate. The original signer
a

ID produces a warrant

w
m , which contains the descriptions of delegation

duration, delegation message type, the identities of

original signer and proxy signer and so on. Then he/she

randomly chooses
q

s Z∈ and computes
0
T

()

,0 0
()w

a

H m s

ID
x v v= ⋅ ⋅ ,

1 ,1 1

IDa

a

r

ID
T x g= = ,

2

s

T g= . Finally,

the delegation is
0 1 2

(, , ,)
w

m T T Tδ = .

IProxyKeyGen. The proxy signer
p

ID first checks

whether the delegation is valid by checking the

following equation.
()

0 2 1 0 1
(,) (,) (,)a

H ID

e T g e g g e Tµ µ= ⋅ ⋅
()

0 2
(,)w

H m

e v v T⋅ ⋅ . If it is not true, then he/she requests

the original signer to reproduce the delegation δ

0 1 2
(, , ,).

w
m T T T= Otherwise, he/she computes

0 ,0 0
,

pID
y x T= ⋅

1 ,1 1

IDp

p

r

ID
y x g= = ,

2 1 1

IDa
r

y T g= = ,
3 2

s

y T g= = . Finally,

the proxy key is
0 1 2 3

(, , ,)
pID

PSK y y y y= .

IProxySign. Given a message m , the proxy signer

p
ID randomly chooses

q
d Z∈ and computes

0
Y =

()

0
,

d d H m
y ϖ τ

⋅

⋅ ⋅
1 1 1

,

IDp
r

Y y g= =
2 2 1

,

IDa
r

Y y g= =

3 3

s

Y y g= = ,
4

.

d
Y g= Finally, the proxy signature is

0 1 2 3 4
(, , , , , ,)

p w
m m Y Y Y Y Yσ = .

IProxyVerify. The verifier checks whether the

following equation holds. 2

0 2 1
(,) (,)e Y g e g g=

() () ()

0 1 0 2 0 3 4
(,) (,) (,) (,)p a w

H ID H ID H m

e Y e Y e v v Y e Yμ μ μ μ ϖ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

()

4
(,)H m
e Yτ⋅ .

4 Analysis of Hu et al.’s Scheme [18]

Hu et al. [18] pointed out that Gu et al.’s scheme [11]

is insecure by demonstrating a concrete attack. In order

to overcome the security flaw, Hu et al. introduced two

public system parameters
0

µ and
0
.v The KeyGen

algorithm becomes ()

,0 2 0
() IDrH ID

ID
x g

αα

µ µ
⋅

= ⋅ ⋅ and

,1 1
IDr

ID
x g= instead of ()

,0 2
IDrH ID

ID
x g

αα

µ
⋅⋅

= ⋅ and

,1 1
IDr

ID
x g= , and the IDelegate algorithm becomes

()

0 ,0 0
()w

a

H m s

ID
T x v v= ⋅ ⋅ ,

1 ,1 1

IDa

a

r

ID
T x g= = and

2

s

T g=

instead of
()

0 ,0
w

a

H m s

ID
T x v

⋅

= ⋅ ,
1 ,1 1

IDa

a

r

ID
T x g= = and

2

s

T g= . After making these improvements, the scheme

can resist Hu et al.’s attack [18]. But unfortunately, we

find that the scheme is still insecure. In the following,

we will show four kinds of attacks to Hu et al.’s

scheme [18].

4.1 Forging a Proxy Signature 1

In the following, we will show that after getting a

valid 3T type= proxy signature, the adversary A can

change the original signer to another person and forge

another 3T type= proxy signature.

According to Hu et al.’s security model, by

maximizing the adversary’s attack abilities, it assumes

that just one user *

u is not corrupted. Let’s consider

1a
ID and

2a
ID who are corrupted by the adversary A ,

that is, the private key
1,0 1,1

(,)
a a

ID ID
x x of

1a
ID and

2,0 2,1
(,)

a a
ID ID
x x of

2a
ID are known by A .

(1) A sets
1a

ID as the original signer and *

u as the

proxy signer. A produces a warrant
w

m . A produces a

delegation
1,0 1,1 1,2

(, ,)
a a a
T T T on *

1
(, ,)

a w
ID u m .

(2) In the signature queries stage, A makes a

3T type= (psign-oracle2()) oracle query, where
1a

ID is

the original signer, *

u is the proxy signer,
w

m is the

warrant and m is the message. The challenger C

returns a proxy signature
0 1 2 3 4

{ , , , , }
p

Y Y Y Y Yσ = to A .

(3) Forgery: After getting a valid proxy signature

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = , A can forge another identity-

based proxy signature ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = as follows.

(a) A sets
2a

ID as the original signer and *

u as the

proxy signer. A produces a valid warrant '

w
m . A

produces a delegation
2,0 2,1 2,2

(, ,)
a a a
T T T on

* '

2
(, ,)

a w
ID u m .

(b) A computes ' 1

0 0 1,0 2,0
()

a a
Y Y T T

−

= ⋅ ⋅ , '

1 1
Y Y= ,

'

2 2,1a
Y T= , '

3 2,2a
Y T= , '

4 4
Y Y= .

(c) A outputs ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = as the forged

proxy signature, where
2a

ID is the original signer, *

u

is the proxy signer, '

w
m is the warrant and m is the

message.

It can be verified that ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = is a

valid proxy signature. First we have '

0
(,)e Y g =

On the Security of an Improved Identity-based Proxy Signature Scheme without Random Oracles 2061

1 1

0 1,0 2,0 0 1,0
(() ,) (,) (() ,)

a a a
e Y T T g e Y g e T g

− −

⋅ ⋅ = ⋅ ⋅

2,0
(,)

a
e T g . As

*
1()2 ()

0 2 1 0 1 0 2
(,) (,) (,) (,)a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅

() ()

0 3 4 4
(,) (,) (,)w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅

*
1()2 () '

2 1 0 1 0 2

() ' ' ()

0 3 4 4

(,) (,) (,)

(,) (,) (,()),

a

w

H IDH u

H m H m

e g g e Y e Y

e v v Y e Y e Y

μ μ μ μ

ϖ τ

= ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

1()1 1 1

1,0 2 1 0 1,1
(() ,) (,) (,)a

H ID

a a
e T g e g g e Tµ µ

− − −

= ⋅ ⋅ ⋅

() 1

0 1,2
(,)w

H m

a
e v v T

−

⋅

1() ()1 1 1

2 1 0 2 0 3
(,) (,) (,)a w

H ID H m

e g g e Y e v v Yµ µ
− − −

= ⋅ ⋅ ⋅ ⋅
'

2() ()

2,0 2 1 0 2,1 0 2,2
(,) (,) (,) (,)a w

H ID H m

a a a
e T g e g g e T e v v Tµ µ= ⋅ ⋅ ⋅ ⋅

'
2() ()' '

2 1 0 2 0 3
(,) (,) (,)a w

H ID H m

e g g e Y e v v Yµ µ= ⋅ ⋅ ⋅ ⋅ , we have
*

2()' 2 () ' '

0 2 1 0 1 0 2
(,) (,) (,) (,)a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅

'() ' ' ' ()

0 3 4 4
(,) (,) (,())w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅ , and

' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = is valid.

4.2 Forging a Proxy Signature 2

In the following, we will show that after getting a

valid standard signature, the adversary A can modify it

to a 3T type= proxy signature.

As described in Section 4.1, it assumes that user *

u

is not corrupted while user
1a

ID is by the adversary A ,

that is, the private key
1,0 1,1

(,)
a a

ID ID
x x of

1a
ID is known

by A .

(1) In the signature queries stage, A produces a

message m and makes a 1T type= (sign-oracle())

oracle query, where *

u is the signer. The challenger C

returns a standard signature
0 1 2

(, ,)X X Xσ = to A .

(2) Forgery: after getting a valid standard signature

0 1 2
(, ,)X X Xσ = of *

u , A can modify it to a proxy

signature ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = as follows.

(a) A sets
1a

ID as the original signer and *

u as the

proxy signer. A produces a warrant '

w
m . A produces a

delegation
1,0 1,1 1,2

(, ,)
a a a
T T T on * '

1
(, ,)

a w
ID u m .

(b) A computes '

0 0 1,0a
Y X T= ⋅ , '

1 1
Y X= , '

2 1,1a
Y T= ,

'

3 1,2a
Y T= , '

4 2
Y X= .

(c) A outputs ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = as the forged

proxy signature, where
1a

ID is the original signer, *

u

is the proxy signer, '

w
m is the warrant and m is the

message.

It can be verified that ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = is a

valid proxy signature. First we have '

0
(,)e Y g =

0 1,0 0 1,0
(,) (,) (,)

a a
e X T g e X g e T g⋅ = ⋅ . As

*() ()

0 2 1 0 1 2 2
(,) (,) (,) (,) (,)H u H m
e X g e g g e X e X e Xμ μ ϖ τ= ⋅ ⋅ ⋅ ⋅ =

*() ' ' ' ()

2 1 0 1 4 4
(,) (,) (,) (,())H u H m
e g g e Y e Y e Yμ μ ϖ τ⋅ ⋅ ⋅ ⋅ ,

1() ()

1,0 2 1 0 1,1 0 1,2
(,) (,) (,) (,)a w

H ID H m

a a a
e T g e g g e T e v v Tµ µ= ⋅ ⋅ ⋅ ⋅ =

1() ()' '

2 1 0 2 0 3
(,) (,) (,)a w

H ID H m

e g g e Y e v v Yµ µ⋅ ⋅ ⋅ ⋅ , we have
*

1()' 2 () ' '

0 2 1 0 1 0 2
(,) (,) (,) (,)a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅

'() ' ' ' ()

0 3 4 4
(,) (,) (,())w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅ , and

' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = is valid.

4.3 Forging a Standard Signature

In the following, we will show that after getting a

valid 3T type= proxy signature, the adversary A can

modify it to a standard signature.

As described in Section 4.1, it assumes that user *

u

is not corrupted while user
1a

ID is by the adversary A ,

that is, the private key
1,0 1,1

(,)
a a

ID ID
x x of

1a
ID is known

by A .

(1) A sets
1a

ID as the original signer and *

u as the

proxy signer. A produces a warrant
w

m . A produces a

delegation
1,0 1,1 1,2

(, ,)
a a a
T T T on *

1
(, ,)

a w
ID u m .

(2) In the signature queries stage, A makes a

3T type= (psign-oracle2()) oracle query, where
1a

ID is

the original signer, *

u is the proxy signer,
w

m is the

warrant and m is the message. The challenger C

returns a proxy signature
0 1 2 3 4

{ , , , , }
p

Y Y Y Y Yσ = to A .

(3) Forgery: After getting a valid proxy signature

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = , A can modify it to a standard

signature ' ' ' '

0 1 2
{ , , }X X Xσ = as follows.

(a) A computes ' 1

0 0 1,0
()

a
X Y T

−

= ⋅ , '

1 1
X Y= , '

2 4
X Y= .

(b) A outputs ' ' ' '

0 1 2
{ , , }X X Xσ = as the forged

standard signature, where *

u is the signer and m is the

message.

It can be verified that ' ' ' '

0 1 2
{ , , }X X Xσ = is a valid

standard signature. First we have '

0
(,)e X g =

1 1

0 1,0 0 1,0
(() ,) (,) (() ,)

a a
e Y T g e Y g e T g

− −

⋅ = ⋅ . As

*
1()2 ()

0 2 1 0 1 0 2
(,) (,) (,) (,)a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅

() ()

0 3 4 4
(,) (,) (,)w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅

*
1()2 () '

2 1 0 1 0 2
(,) (,) (,)a

H IDH u
e g g e X e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅

() ' ' ()

0 3 2 2
(,) (,) (,())w

H m H m
e v v Y e X e Xϖ τ⋅ ⋅ ⋅ ⋅ ,

1()1 1 1

1,0 2 1 0 1,1
(() ,) (,) (,)a

H ID

a a
e T g e g g e Tµ µ

− − −

= ⋅ ⋅

() 1

0 1,2
(,)w

H m

a
e v v T

−

⋅ ⋅

1() ()1 1 1

2 1 0 2 0 3
(,) (,) (,)a w

H ID H m

e g g e Y e v v Yµ µ
− − −

= ⋅ ⋅ ⋅ ⋅ ,

we have
*' () ' '

0 2 1 0 1 2
(,) (,) (,) (,)H u
e X g e g g e X e Xμ μ ϖ= ⋅ ⋅ ⋅ ,

' ()

2
(,())H m
e Xτ⋅ and ' ' ' '

0 1 2
{ , , }X X Xσ = is valid.

2062 Journal of Internet Technology Volume 19 (2018) No.7

4.4 Proxy Key Exposure Attack

As noted in scheme [19], proxy key is often used in

a hostile environment like mobile agent. Compromised

proxy key must not leak information about the long-

term private key. In scheme [19], Schuldt et al.

introduced the proxy key exposure attack. In Hu et al.’s

security model, they also considered this type of attack,

that is, an attacker can get the proxy-key oracle service.

In the following, we will show that after getting a valid

3T type= proxy key, the adversary A can compute

the private key of the proxy signer.

As described in Section 4.1, it assumes that user *

u

is not corrupted while user
1a

ID is by the adversary A ,

that is, the private key
1,0 1,1

(,)
a a

ID ID
x x of

1a
ID is known

by A .

(1) A sets
1a

ID as the original signer and *

u as the

proxy signer. A produces a valid warrant
w

m . A

produces a delegation
1,0 1,1 1,2

(, ,)
a a a
T T T on *

1
(, ,)

a w
ID u m .

(2) In the key queries stage, the adversary A makes

a 3T type= (proxykey-oracle2()) oracle query. The

challenger C returns the proxy key

* 0 1 2 3
(, , ,)

u

PSK y y y y= of user *

u .

(3) Now, the adversary A can compute

*

1

0 1,0,0
()

a
u

x y T
−

= ⋅ ,
* 1,1u

x y= . Thus, the adversary A

can get the private key
* * *

,0 ,1
(,)

u u u

sk x x= of the proxy

signer *

u .

5 An Improved Scheme

Why Hu et al.’s improved scheme is not secure?

Intuitively, let us see the IProxySign algorithm.
() ()

0 0 ,0 0p

d d H m d d H m

ID
Y y x Tϖ τ ϖ τ

⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅ ⋅ , where the

0
T part is independent of other parameters. Thus a

malicious original signer who knows the
0
T can

remove it from
0
Y by multiplying 1

0
()T

− to get a

standard signature of
p

ID . Second, if he/she get a

standard signature of
p

ID , he/she can also multiply
0
T

to get a proxy signature. Third, from
0
Y , if he/she

substitutes
0
T with '

0
T , he/she can forge a proxy

signature where the original signer is '

a
ID .

In addition, the proxy key in Hu et al.’s scheme is

0 ,0 0pID
y x T= ⋅ . Thus, a malicious original signer can

remove
0
T by multiplying 1

0
()T

− to get the private key

of
p

ID . This kind of attack is named as the proxy key

exposure attack, which is introduced by Schuldt et al.

[19].

Our improvements are mainly focused on the hash

function. In the KeyGen algorithm, we use
,0

(,)
ID

H ID x

instead of ()H ID . In the ISign algorithm, we use

0 1
(, ,)H m X X instead of ()H m . In the IDelegate

algorithm, we use
0 1

(, ,)
w

H m T T instead of ()
w

H m . In

the IProxyKeyGen algorithm, we add a random

number *

q
t Z∈ . In the IProxySign algorithm, we use

0 1 2 3 4
(, , , , , ,)

w
H m m y y y y y instead of ()H m . After

making these changes, our improved scheme can resist

Hu et al’s attack [18] and our attacks.

Setup. Given a security parameter 1k , the PKG

chooses two cyclic multiplicative groups
1

G and
2

G of

prime order q , a random generator g of
1

G , a bilinear

map:
1 1 2

:e G G G× → and a hash function * *:{0,1}
q

H Z→ .

The PKG randomly chooses *

q
Zα∈ and

*

2 0 1
, , , ,g v Gμ μ τ∈ .

The PKG sets
1
g g

α

= . The system public parameters

are
1 2 1 2 0

{ , , , , , , , , , , }.Params G G e g g g v Hμ μ τ= The

system master private key is α .

KeyGen. Given an identity ID , the PKG randomly

chooses *

ID q
r Z∈ and computes

,0 1
IDr

ID
x g= and

,0(,)

,1 2 0
()ID ID

H ID x r

ID
x g

αα

µ µ
⋅

= ⋅ ⋅ . The private key of user

ID is
,0 ,1

(,)
ID ID ID

sk x x= . Then the original signer

a
ID ’s private key is

,0 ,1
(,)

a a a
ID ID ID

sk x x= =

,0(,)

1 2 0
(, ())ID a ID IDa a a

r H ID x r

g g
α

α

µ µ
⋅

⋅ ⋅ and the proxy signer

p
ID ’s private key is

,0 ,1
(,)

p p pID ID ID
sk x x= =

,0(,)

1 2 0
(, ())

ID p ID IDp p p
r H ID x r

g g
α

α

µ µ
⋅

⋅ ⋅ .

ISign. Given an identity ID and a message m , the

signer randomly chooses *

q
d Z∈ and computes

0 ,0 1
,

IDr

ID
X x g= =

1
,

d
X g= 0 1(, ,)

2 ,1
.

d H m X X

ID
X x τ

⋅

= ⋅

Finally, the signature is
0 1 2

(, , ,)m X X Xσ = .

Iverify. The verifier checks whether the following

equation holds. 0(,)

2 2 1 0 0
(,) (,) (,)

H ID X

e X g e g g e Xµ µ= ⋅ ⋅

0 1(, ,)

1
(,)

H m X X

e Xτ⋅ .

IDelegate. The original signer
a

ID produces a warrant

w
m , which contains the descriptions of delegation

duration, delegation message type, the identities of

original signer and proxy signer and so on. Then he/she

randomly chooses *

q
s Z∈ and computes

0 ,0 1
,

IDa

a

r

ID
T x g= =

1

s

T g= , 0 1(, ,)

2 ,1
w

a

H m T T s

ID
T x v

⋅

= ⋅ . Finally, the delegation

is
0 1 2

(, , ,)
w

m T T Tδ = .

IProxyKeyGen. The proxy signer
p

ID first checks

whether the delegation is valid by checking the

following equation. 0(,)

2 2 1 0 0
(,) (,) (,)a

H ID T

e T g e g g e Tµ µ= ⋅ ⋅

0 1(, ,)

1
(,)w

H m T T

e v T⋅ . If it is not true, then he/she requests

the original signer to reproduce the delegation

0 1 2
(, , ,).

w
m T T Tδ = Otherwise, he/she randomly chooses

*

q
t Z∈ and computes

0 ,0 1
,

IDp

p

r

ID
y x g= =

1 0 1
,

IDa
r

y T g= =

On the Security of an Improved Identity-based Proxy Signature Scheme without Random Oracles 2063

2 1
,

s

y T g= =
3

,

t

y g=
4
y =

0 1 2 3(, , , ,)

,1 2
w

p

H m y y y y t

ID
x v T

⋅

⋅ ⋅ .

Finally, the proxy key is
0 1 2 3 4

(, , , ,)
pID

PSK y y y y y= .

IProxySign. Given a message m , the proxy signer

p
ID randomly chooses *

q
d Z∈ and computes

0 0 1
,

IDp
r

Y y g= =
1 1 1

IDa
r

Y y g= = ,
2 2
Y y= ,

3 3
Y y= ,

4

d
Y g= , 0 1 2 3 4(, , , , , ,)

5 4
w

d H m m Y Y Y Y Y
Y y τ

⋅

= ⋅ . Finally, the proxy

signature is
0 1 2 3 4 5

(, , , , , , ,)
p w

m m Y Y Y Y Y Yσ = .

IProxyVerify. The verifier checks whether the following

equation holds. 0(,)2

5 2 1 0 0
(,) (,) (,)pH ID Y

e Y g e g g e Yµ µ= ⋅ ⋅

1 0 1 2 3 1 2(,) (, , , ,) (, ,)

0 1 3 2
(,) (,) (,)a w w

H ID Y H m Y Y Y Y H m Y Y

e Y e v Y e v Yµ µ⋅ ⋅ ⋅ ⋅

0 1 2 3 4(, , , , , ,)

4
(,)w

H m m Y Y Y Y Y

e Yτ⋅ .

6 Analysis of the Improved Scheme

6.1 Correctness

0 1 2 3 4(, , , , , ,)

5 4
(,) (,)w

d H m m Y Y Y Y Y
e Y g e y gτ

⋅

= ⋅

0 1 2 3 0 1 2 3 4(, , , ,) (, , , , , ,)

,1 2 4
(,) (,)w w

p

H m y y y y t H m m Y Y Y Y Y

ID
e x v T g e Yτ

⋅

= ⋅ ⋅ ⋅

0 1 2 3(, , , ,)

,1 2
(,) (,) (,)w

p

H m y y y y t

ID
e x g e v g e T g

⋅

= ⋅ ⋅

 0 1 2 3 4(, , , , , ,)

4
(,)w

H m m Y Y Y Y Y

e Yτ⋅

0 1 2 3 0 1(, , , ,) (, ,)

,1 ,1
(,) (,) (,)w w

p a

H m y y y y t H m T T s

ID ID
e x g e v g e x v g

⋅ ⋅

= ⋅ ⋅ ⋅

 0 1 2 3 4(, , , , , ,)

4
(,)w

H m m Y Y Y Y Y

e Yτ⋅

0 0 1 2 3
(,) (, , , ,)

2 1 0 0
(,) (,) (,)p w

H ID Y H m y y y y t
e g g e Y e v gµ µ

⋅

= ⋅ ⋅ ⋅

 0 1 0 1 2 3 4(, ,) (, , , , , ,)

,1 4
(,) (,)w w

a

H m T T s H m m Y Y Y Y Y

ID
e x v g e Yτ

⋅

⋅ ⋅ ⋅

0 1
(,) (,)2

2 1 0 0 0 1
(,) (,) (,)p a

H ID Y H ID Y

e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅

0 1 2 3 0 1(, , , ,) (, ,)

3 2
(,) (,)w w

H m y y y y H m T T
e v Y e v Y⋅ ⋅

 0 1 2 3 4(, , , , , ,)

4
(,)w

H m m Y Y Y Y Y

e Yτ⋅

0 1
(,) (,)2

2 1 0 0 0 1
(,) (,) (,)p a

H ID Y H ID Y

e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅

 0 1 2 3 1 2(, , , ,) (, ,)

3 2
(,) (,)w w

H m Y Y Y Y H m Y Y

e v Y e v Y⋅ ⋅

 0 1 2 3 4(, , , , , ,)

4
(,)w

H m m Y Y Y Y Y

e Yτ⋅

6.2 Unforgeability

Theorem 1. Our improved scheme is (, , ,)
e s

t q qε −

secure, assuming that the ' '(,)tε − CDH assumption

holds in
1
,G where

'

3 ,qε ε= '

exp
((11 15)

e mul
t t O q t t= + ⋅ ⋅ + ⋅

exp
(4 5))

s mul
q t t+ ⋅ ⋅ + ⋅ , and

e
q ,

s
q ,

exp
t and

mul
t are the

maximal number of private key queries, signature

queries, the time required for an exponentiation and an

multiplication in
1

G , respectively.

Proof. Our proof is similar to that of Hu et al.’s

scheme [18]. Let A be an (, , ,)
e s

t q qε − adversary

attacking our improved scheme. From this adversary,

we will construct an algorithm C that solves the CDH

problem with a probability of at least '

ε and in the

time of at most '

t , contradicting the ' '(,)tε − CDH

assumption.

C is given
1

(, ,)a b
g g g G∈ for randomly chosen

*

,
q

a b Z∈ . C does not know the values of a and b ,

and is asked to compute ab
g . To utilize the adversary

A , C simulates all the oracles defined in Definition 1

to provide responses to A ’s queries.

Setup. C randomly chooses two cyclic groups
1

G and

2
G of prime order q , a random generator g of

1
G , a

bilinear map
1 1 2

:e G G G× → and a hash function
* *:{0,1}

q
H Z→ . He/she sets

1

a

g g= and
2

b
g g= .

He/she randomly chooses *

, , ,
q

Zγ η λ θ ∈ and sets

2
g g

γ
µ = ⋅ , v g

η
= ,

2
g g

λ
τ = ⋅ and

0
.g

θ
µ = C outputs

the public parameters
1 2 1 2

{ , , , , , ,Params G G e g g g=

0
, , , , }v Hμ μ τ . The system master private key is a ,

which is not known to C .

We assume that user 1 is a non-corrupted user and

1
ID is his/her identity. C first computes the private

key of
1

ID . C randomly chooses
1

*

ID q
r Z∈ and

computes 1

1

1

,0 1
,

IDr

ID
x g g

γ−

= ⋅ 1 ,01

1

(1 (,))

,1 1

IDH ID x

ID
x g

θ γ− + ⋅

= ⋅

1 ,01 1 1
(,)

0

ID ID IDr r H ID x

µ µ
⋅

⋅ . Then, the private key of
1

ID is

1 1 1,0 ,1
(,)

ID ID ID
sk x x= , which is a valid private key

because

'

1 1 1 1

1

11 1

,0 1 1 1 1

ID ID ID IDr r a a r a r

ID
x g g g g g g

γγ γ ⋅ −

− −

= ⋅ = ⋅ = = ,

1 ,0 1 ,01 1 1 1

1

(1 (,)) (,)

,1 1 0

ID ID ID IDH ID x r r H ID x

ID
x g

θ γ
µ µ

− + ⋅ ⋅

= ⋅ ⋅

1 ,0 1 ,01 1 1 1

(,) (,)1

2 2 1 1 0

ID ID ID IDH ID x r r H ID xa a
g g g g

θ γγ
µ µ

− ⋅ ⋅

− −

= ⋅ ⋅ ⋅ ⋅ ⋅
1 ,0 1 ,01 1 1 1

(,) (,)

2 2 1 0
() ID ID ID IDH ID x r r H ID xa a

g g g g
θ γγ γ

µ µ
− ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅

1 ,0 1 ,01 1 1 1
(,) (,)

2 2 0 0
() ID ID ID IDH ID x a r r H ID xa a

g g g
γγ γ

µ µ µ
− ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅

1 ,0 1 ,01 1 1 1
(,) (,)

2 0 0

ID ID ID IDH ID x a r r H ID xa a
g

γγ
µ µ µ µ

− ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅

1 ,01 1 1
(1) (1) (,)

2 0

ID ID IDa r a a r a H ID xa
g

γ γ

µ µ
⋅ − ⋅ − ⋅

= ⋅ ⋅

1 ,01 1
(,) (1)

2 0
()ID IDH ID x a r aa

g
γ

µ µ
⋅ −

= ⋅ ⋅
'

1 ,01 1
(,)

2 0
()ID IDH ID x a ra

g µ µ
⋅

= ⋅ ⋅ , where
1 1

'

1
ID ID
r r a γ= − .

C keeps
1 1 1,0 ,1

(,)
ID ID ID

sk x x= private.

Queries. A can adaptively make a polynomially

bounded number of queries as follows.

Key queries.

(1) 1:T type= A requests the private key of
i

ID

(1i >). A supplies an identity
i

ID (1i >). C produces

i
ID ’s private key as described above, that is, C

randomly chooses *

iID q
r Z∈ and computes 1

,0 1
,

IDi

i

r

ID
x g g

γ−

= ⋅

,0 ,0(1 (,)) (,)

,1 1 0
.

i ID ID ID i IDi i i i

i

H ID x r r H ID x

ID
x g

θ γ
µ µ

− + ⋅ ⋅

= ⋅ ⋅ Then, the

private key of
i

ID is
,0 ,1

(,)
i i iID ID ID

sk x x= . C returns it

to A .

2064 Journal of Internet Technology Volume 19 (2018) No.7

(2) 2 :T type= A requests the proxy key of
i

ID

(1i ≥), where
i

ID (1i ≥) is both the original signer

and the proxy signer. A supplies an identity
i

ID (1i ≥)

and a warrant
w

m . C produces the self-delegation

proxy key as normal because C can get the private

keys of all users.

(3) 3:T type= A requests the proxy key of
1

ID ,

where
i

ID (1i >) is the original signer and
1

ID the

proxy signer. A supplies an identity
i

ID (1i >) and a

warrant
w

m . C produces the proxy key as normal

because C can get the private keys of
i

ID (1i >) and

1
ID .

(4) 4 :T type= A requests the proxy key of
i

ID

(1i >), where
1

ID is the original signer and
i

ID (1i >)

the proxy signer. A supplies an identity
i

ID (1i >)

and a warrant
w

m . C produces the proxy key as

normal because C can get the private keys of
i

ID

(1i >) and
1

ID .

Signature queries.

(1) 1:T type= A requests a standard signature of

i
ID (1i ≥). A supplies an identity

i
ID (1i ≥) and a

message m . C produces the standard signature as

normal because C can get the private keys of
i

ID

(1i ≥).

(2) 2 :T type= A requests a self-delegation proxy

signature of
i

ID (1i ≥), where
i

ID (1i ≥) is both the

original signer and the proxy signer. A supplies an

identity
i

ID (1i ≥), a warrant
w

m and a message m .

C produces the self-delegation proxy signature as

normal because C can get the private keys of all users.

(3) 3:T type= A requests a proxy signature of
1

ID ,

where
i

ID (1i >) is the original signer and
1

ID the

proxy signer. A supplies an identity
i

ID (1i >), a

warrant
w

m and a message m . C produces the proxy

signature as normal because C can get the private

keys of
i

ID (1i >) and
1

ID .

(4) 4 :T type= A requests a proxy signature of
i

ID

(1i >), where
1

ID is the original signer and
i

ID (1i >)

the proxy signer. A supplies an identity
i

ID (1i >), a

warrant
w

m and a message m . C produces the proxy

signature as normal because C can get the private

keys of
i

ID (1i >) and
1

ID .

Forgery. At last, A decides to put an end to the

queries stage and outputs a forgery.

(1) 1:T type= A outputs a forged standard

signature * * * * *

0 1 2
(, , ,)m X X Xσ = of *

.ID . If
*

ID
a rγ⋅ ⋅ +

* * * *

0 1
(, ,) 0mod ,d H m X X qλ ⋅ ⋅ ≠ then C aborts; otherwise,

C can compute

* * * * *
0 0 1

*

2

(,) (, ,)* * *

0 0 1
() ()

H ID X H m X X

X

X X X
θ ⋅

⋅ ⋅

* * * *
0 1

*

* * * * *
0 0 1

(, ,)

,1

(,) (, ,)* * *

0 0 1
() ()

d H m X X

ID

H ID X H m X X

x

X X X
θ

τ
⋅

⋅

⋅

=

⋅ ⋅

*
* * * ** *,0 0 1

* * * * *
0 0 1

(,)
(, ,)

2 0

(,) (, ,)* * *

0 0 1

()

() ()

ID ID

H ID x a r
d H m X Xa

H ID X H m X X

g

X X X
θ

μ μ τ
⋅

⋅

⋅

⋅ ⋅ ⋅

=

⋅ ⋅

* * * * * *
*

0 0 1

* * * * *
0 0 1

(,) (, ,)

2 2 2

(,) (, ,)* * *

0 0 1

() ()

() ()

ID
a r

H ID X d H m X Xa

H ID X H m X X

g g g g g g

X X X

θγ λ

θ

⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅ ⋅

=

⋅ ⋅

2

a ab
g g= =

(2) 2 :T type= A outputs a forged self-delegation

proxy signature * * * * * * * * *

0 1 2 3 4 5
(, , , , , , ,)

p w
m m Y Y Y Y Y Yσ = of

*

ID . If
*

* * * * * * * *

0 1 2 3 4
2 (, , , , , ,)

wID
a r d H m m Y Y Y Y Yγ λ⋅ ⋅ ⋅ + ⋅ ⋅

0modq≠ , then C aborts; otherwise, C can compute

* * * * * * * * * *
0 1 2 0 1 2 3

*

5

2 (,) (, ,) (, , , ,)* 2 * * *

0 0 2 3
() () () ()w w

H ID Y H m Y Y H m Y Y Y Y

Y

Y Y Y Y
θ η η⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

* * * * * * *
0 1 2 3 4(, , , , , ,)*

4

1

() w
H m m Y Y Y Y Y

Y

⋅

* * * * * * * *
0 1 2 3 4

* * * * * * * * * *
0 1 2 0 1 2 3

(, , , , , ,)*

4

2 (,) (, ,) (, , , ,)* 2 * * *

0 0 2 3
() () () ()

w

w w

d H m m Y Y Y Y Y

H ID Y H m Y Y H m Y Y Y Y

y

Y Y Y Y
θ η η

τ
⋅

⋅ ⋅ ⋅ ⋅

⋅

=

⋅ ⋅ ⋅

* * * * * * *

0 1 2 3 4(, , , , , ,)*

4

1

() w
H m m Y Y Y Y Y

Y

⋅

* * * * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

*

* * * * * * * * * *
0 1 2 0 1 2 3

(, , , ,) (, , , , , ,)*

2,1

2 (,) (, ,) (, , , ,)* 2 * * *

0 0 2 3
() () () ()

w w

w w

H m y y y y t d H m m Y Y Y Y Y

ID

H ID Y H m Y Y H m Y Y Y Y

x v T

Y Y Y Y
θ η η

τ
⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

* * * * * * *

0 1 2 3 4(, , , , , ,)*

4

1

() w
H m m Y Y Y Y Y

Y

⋅

*
* * * * * * * * * ** *,0 0 1 2 3 0 1

* * * * * * * * * *
0 1 2 0 1 2 3

(,) 2 (, , , ,) (, ,)2

2 0

2 (,) (, ,) (, , , ,)* 2 * * *

0 0 2 3

()

() () () ()

ID w wID

w w

H ID x a r H m y y y y t H m T T sa

H ID Y H m Y Y H m Y Y Y Y

g v v

Y Y Y Y
θ η η

µ µ
⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

* * * * * * * *
0 1 2 3 4

* * * * * * *
0 1 2 3 4

(, , , , , ,)

(, , , , , ,)*

4
()

w

w

d H m m Y Y Y Y Y

H m m Y Y Y Y Y
Y

τ
⋅

⋅

*
* * * * * ** *,0 0 1 2 3

* * * * * * * * * *
0 1 2 0 1 2 3

(,) 2 (, , , ,)2

2 2

2 (,) (, ,) (, , , ,)* 2 * * *

0 0 2 3

()

() () () ()

ID wID

w w

H ID x a r H m y y y y ta

H ID Y H m Y Y H m Y Y Y Y

g g g g g

Y Y Y Y

θ
ηγ

θ η η

⋅

⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

* * * * * * * * * * * *
0 1 0 1 2 3 4

* * * * * * *
0 1 2 3 4

(, ,) (, , , , , ,)

2

(, , , , , ,)*

4

()

()

w w

w

H m T T s d H m m Y Y Y Y Y

H m m Y Y Y Y Y

g g g

Y

η λ⋅ ⋅ ⋅

⋅ ⋅

⋅

* * * * * * * *
*

0 0 1 2 3

* * * * * * * * * *
0 1 2 0 1 2 3

2(,) (, , , ,)2

2 2

2 (,) (, ,) (, , , ,)* 2 * * *

0 0 2 3

()

() () () ()

wID

w w

a r
H ID Y H m Y Y Y Y ta

H ID Y H m Y Y H m Y Y Y Y

g g g g g

Y Y Y Y

θ ηγ

θ η η

⋅ ⋅

⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

* * * * * * * * * * * *
1 2 0 1 2 3 4

* * * * * * *
0 1 2 3 4

(, ,) (, , , , , ,)

2 22

2(, , , , , ,)*

4

()
,

()

w w

w

H m Y Y s d H m m Y Y Y Y Y

a ab

H m m Y Y Y Y Y

g g g
g g

Y

η λ⋅ ⋅ ⋅

⋅

⋅ ⋅

⋅ = =

from which C can compute ab
g .

(3) 3:T type= A outputs a forged proxy signature

On the Security of an Improved Identity-based Proxy Signature Scheme without Random Oracles 2065

* * * * * * * * *

0 1 2 3 4 5
(, , , , , , ,)

p w
m m Y Y Y Y Y Yσ = , where *

i
ID (1i >)

is the original signer and
1

ID is the proxy signer. If

*
1

* * * * * * * *

0 1 2 3 4
(, , , , , ,) 0

i
ID wID

a r a r d H m m Y Y Y Y Yγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ≠

modq , then C aborts; otherwise, C can compute

* * * * * *
1 0 1 1 2

*

5

(,) (,) (, ,)* * * * *

0 0 1 1 2
() () ()i wH ID Y H ID Y H m Y Y

Y

Y Y Y Y Y
θ θ η⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4(, , , ,) (, , , , , ,)* *

3 4

1

() ()w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

* * * * * * * *
0 1 2 3 4

* * * * * *
1 0 1 1 2

(, , , , , ,)*

4

(,) (,) (, ,)* * * * *

0 0 1 1 2
() () ()

w

i w

d H m m Y Y Y Y Y

H ID Y H ID Y H m Y Y

y

Y Y Y Y Y
θ θ η

τ
⋅

⋅ ⋅ ⋅

⋅

=

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4(, , , ,) (, , , , , ,)* *

3 4

1

() ()w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

* * * * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

1

* * * * * *
1 0 1 1 2

(, , , ,) (, , , , , ,)*

,1 2

(,) (,) (, ,)* * * * *

0 0 1 1 2
() () ()

w w

i w

H m y y y y t d H m m Y Y Y Y Y

ID

H ID Y H ID Y H m Y Y

x v T

Y Y Y Y Y
θ θ η

τ
⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4(, , , ,) (, , , , , ,)* *

3 4

1

() ()w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

* * * * * *
1 ,0 0 1 2 31 1

* * * * * *
1 0 1 1 2

(,) (, , , ,)

2 0

(,) (,) (, ,)* * * * *

0 0 1 1 2

()

() () ()

ID ID w

i w

H ID x a r H m y y y y ta

H ID Y H ID Y H m Y Y

g v

Y Y Y Y Y
θ θ η

μ μ
⋅

⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * * **
*,0 0 1 0 1 2 3 4

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

(,) (, ,) (, , , , , ,)

2 0

(, , , ,) (, , , , , ,)* *

3 4

()

() ()

i ID IDi i w w

w w

a r
H ID x H m T T s d H m m Y Y Y Y Ya

H m Y Y Y Y H m m Y Y Y Y Y

g v

Y Y
η

μ μ τ
⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

* * * * * *
1 ,0 0 1 2 31 1

* * * * * *
1 0 1 1 2

(,) (, , , ,)

2 2

(,) (,) (, ,)* * * * *

0 0 1 1 2

()

() () ()

ID ID w

i w

H ID x a r H m y y y y ta

H ID Y H ID Y H m Y Y

g g g g g

Y Y Y Y Y

θ ηγ

θ θ η

⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * * **
*,0 0 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

(,) (, ,)

2 2

(, , , ,) (, , , , , ,)* *

3 4

()

() ()

i ID IDi i w

w w

a r
H ID x H m T T sa

H m Y Y Y Y H m m Y Y Y Y Y

g g g g g

Y Y

θ ηγ

η

⋅

⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

* * * * * * * *
0 1 2 3 4(, , , , , ,)

2
() w

d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅

* * * * * * *
1 0 0 1 2 31

* * * * * *
1 0 1 1 2

(,) (, , , ,)

2 2

(,) (,) (, ,)* * * * *

0 0 1 1 2

()

() () ()

ID w

i w

a rH ID Y H m Y Y Y Y ta

H ID Y H ID Y H m Y Y

g g g g g

Y Y Y Y Y

θ ηγ

θ θ η

⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * * * **
1 1 2

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

(,) (, ,)

2 2

(, , , ,) (, , , , , ,)* *

3 4

()

() ()

IDi i w

w w

a r
H ID Y H m Y Y sa

H m Y Y Y Y H m m Y Y Y Y Y

g g g g g

Y Y

θ ηγ

η

⋅

⋅ ⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

* * * * * * * *
0 1 2 3 4(, , , , , ,)

2
() w

d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅

2 2

2

a ab
g g

⋅

= = , from which C can compute ab
g .

(4) 4 :T type= A outputs a forged proxy signature
* * * * * * * * *

0 1 2 3 4 5
(, , , , , , ,)

p w
m m Y Y Y Y Y Yσ = , where

1
ID is the

original signer and *

i
ID (1i >) is the proxy signer. If

*
1

* * * * * * * *

0 1 2 3 4
(, , , , , ,)

i
ID wID

a r a r d H m m Y Y Y Y Yγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

0≠ modq , then C aborts; otherwise, C can compute

* * * * **
0 1 21 1

*

5

(,) (, ,)(,)* * * * *

0 0 1 1 2
() () ()i wH ID Y H m Y YH ID Y

Y

Y Y Y Y Y
θ ηθ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4(, , , ,) (, , , , , ,)* *

3 4

1

() ()w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

* * * * * * * *
0 1 2 3 4

* * * * **
0 1 21 1

(, , , , , ,)*

4

(,) (, ,)(,)* * * * *

0 0 1 1 2
() () ()

w

i w

d H m m Y Y Y Y Y

H ID Y H m Y YH ID Y

y

Y Y Y Y Y
θ ηθ

τ
⋅

⋅ ⋅⋅

⋅

=

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * *

0 1 2 3 0 1 2 3 4(, , , ,) (, , , , , ,)* *

3 4

1

() ()w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

* * * * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

*

* * * * **
0 1 21 1

(, , , ,) (, , , , , ,)*

2,1

(,) (, ,)(,)* * * * *

0 0 1 1 2
() () ()

w w

i

i w

H m y y y y t d H m m Y Y Y Y Y

ID

H ID Y H m Y YH ID Y

x v T

Y Y Y Y Y
θ ηθ

τ
⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * *

0 1 2 3 0 1 2 3 4(, , , ,) (, , , , , ,)* *

3 4

1

() ()w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

* * * * * * **
*,0 0 1 2 3

* * * * **
0 1 21 1

(,) (, , , ,)

2 0

(,) (, ,)(,)* * * * *

0 0 1 1 2

()

() () ()

i ID IDi i w

i w

a rH ID x H m y y y y ta

H ID Y H m Y YH ID Y

g v

Y Y Y Y Y
θ ηθ

µ µ
⋅

⋅

⋅ ⋅⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * * * * * * * * * *
1 ,0 0 1 0 1 2 3 41 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

(,) (, ,) (, , , , , ,)

2 0

(, , , ,) (, , , , , ,)* *

3 4

()

() ()

ID ID w w

w w

H ID x a r H m T T s d H m m Y Y Y Y Ya

H m Y Y Y Y H m m Y Y Y Y Y

g v

Y Y
η

μ μ τ
⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

* * * * * * **
*,0 0 1 2 3

* * * * **
0 1 21 1

(,) (, , , ,)

2 2

(,) (, ,)(,)* * * * *

0 0 1 1 2

()

() () ()

i ID IDi i w

i w

a rH ID x H m y y y y ta

H ID Y H m Y YH ID Y

g g g g g

Y Y Y Y Y

θ ηγ

θ ηθ

⋅

⋅

⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * *
1 ,0 0 11 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

(,) (, ,)

2 2

(, , , ,) (, , , , , ,)* *

3 4

()

() ()

ID ID w

w w

H ID x a r H m T T sa

H m Y Y Y Y H m m Y Y Y Y Y

g g g g g

Y Y

θ ηγ

η

⋅ ⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

* * * * * * * *

0 1 2 3 4(, , , , , ,)

2
() w

d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅

* * * * * * * **
0 0 1 2 3

* * * * **
0 1 21 1

(,) (, , , ,)

2 2

(,) (, ,)(,)* * * * *

0 0 1 1 2

()

() () ()

IDi i w

i w

a r
H ID Y H m Y Y Y Y ta

H ID Y H m Y YH ID Y

g g g g g

Y Y Y Y Y

θ ηγ

θ ηθ

⋅

⋅ ⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

* * * **
1 21 1 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

(, ,)(,)

2 2

(, , , ,) (, , , , , ,)* *

3 4

()

() ()

ID w

w w

a r H m Y Y sH ID Ya

H m Y Y Y Y H m m Y Y Y Y Y

g g g g g

Y Y

ηθγ

η

⋅

⋅ ⋅⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

* * * * * * * *

0 1 2 3 4(, , , , , ,)

2
() w

d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅
2 2

2

a ab
g g

⋅

= = , from which C can compute ab
g .

Now we assess the probability of success. In the

forgery stage, it must have
*

*

ID
a r dγ λ⋅ ⋅ + ⋅

* * *

0 1
(, ,) 0modH m X X q⋅ = for 1,T type= or

*
2

ID
a rγ⋅ ⋅ ⋅ +

* * * * * * * *

0 1 2 3 4
(, , , , , ,) 0mod

w
d H m m Y Y Y Y Y qλ ⋅ ⋅ = for 2,T type=

or
*

1

* * * * * * * *

0 1 2 3 4
(, , , , , ,)

i
ID wID

a r a r d H m m Y Y Y Y Yγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

0modq= for 3,T type= or
*

1

*

i
ID ID

a r a r dγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅

* * * * * * *

0 1 2 3 4
(, , , , , ,) 0mod

w
H m m Y Y Y Y Y q⋅ = for 4T type= .

The equations are the same for 3T type= and

4T type= . The probability of the above four equations

holding is all 1 q . Thus, the total probability is 3 qε .

The time complexity of C depends on the

exponentiations and multiplications needed in all above

queries. The key queries need 11
mul
t computations and

15
exp
t computations. The signature queries need 4

mul
t

computations and 5
exp
t computations.

2066 Journal of Internet Technology Volume 19 (2018) No.7

6.3 Efficiency

We compare our scheme in terms of computational

costs and communicational overheads with other

identity-based proxy signature schemes, which include

Gu et al.’s scheme [11] and Hu et al.’s scheme [17-18]

in the standard model, Shim’s scheme [21] and Wu et

al.’s scheme [22] in the random oracle model. The

comparisons are listed in Table 1 and Table 2. We use

1
e and P to denote a scalar multiplication (or an

exponentiation) computation on
1

G and a pairing

computation, respectively. Other computations are

ignored here as they are not time consuming.
1

| |G ,

| |
w

m , | |q and | |m denote the bit length of an element

on
1

G , a warrant, the order of
1

G and a message,

respectively. “S” and “Rom” denote the standard

model and the random oracle model, respectively. The

pairing computations that can be precomputed are not

included in Table 1. According to scheme [23], a

pairing computation is almost 20 times that of a scalar

multiplication computation on
1

G , so we mainly focus

on the pairing computations. From Table 1, we can see

that the differences between computation costs in all

stages except the proxy verification are one or two
1
e

operations, so we can conclude that the computation

costs in these stages are very close. In the proxy

verification stage, schemes [17] and [21] are the most

efficient ones as they only need three pairings. Scheme

[18] and ours are the least efficient ones as they need

six pairings. From Table 1, we can also conclude that

we can make efficient schemes in the random oracle

model. Of course, we can also make efficient schemes

in the standard model like scheme [17], but the cost is

the longer public parameters in the setup stage. Scheme

[17] needs n+3 public parameters in the setup stage. In

practice, n should be at least 160. Therefore, scheme

[17] will need more storage space. Based on the 80-bit

security level, | |q =160 and
1

| |G =1024. It will need

extra storage space of 160k bits. From Table 2, we can

see that schemes [21] and [22] have the shortest length

in all aspects. Therefore, schemes in the random oracle

model are more communicationally efficient than those

in the standard model. Scheme [17] has the shortest

length in the standard model. Also based on the 80-bit

security level, our scheme is 2752 bits longer than

scheme [17] in the proxy signature stage. In general,

our scheme increases some computational costs and

communicational overheads, but they are still within

the acceptable range. Regarding the resistance to proxy

key exposure attack, schemes [11, 18, 21] all compute

an independent proxy key like ours. But if the proxy

key is exposed, the original signer can compute the

private key of the proxy signer in all these schemes.

About schemes [17, 22], as they do not consider the

proxy key exposure attack, they are insecure under this

attack.

Table 1. Computational cost and security comparisons with other schemes

Schemes Delegate
Delegate

verify

ProxyKey

Gen

Proxy

sign

Proxy

verify

Public

Parameter
Model Security

Gu et al. [11] 2
1
e 2

1
e +3 P 0 3

1
e 4

1
e +5 P 7 S Insecure

Hu et al. [17] 2
1
e

1
e +3 P 0 2

1
e 2

1
e +3 P n+3 S Secure

Hu et al. [18] 3
1
e 2

1
e +3 P 0 3

1
e 4

1
e +6 P 9 S Insecure

Shim [21] 3
1
e

1
e +3 P

1
e 3

1
e 3

1
e +3 P 3 Rom Secure

Wu et al. [22] 2
1
e 3 P 0 2

1
e 5 P 2 Rom Secure

Ours 2
1
e 2

1
e +3 P 2

1
e 2

1
e 5

1
e +6 P 7 S Secure

Note. n denotes the bit length of an identity.

Table 2. Length comparison with other schemes

Schemes Private key Delegation Proxy signature
Against the proxy key

exposure attack

Gu et al. [11] 2
1

| |G 3
1

| |G + | |
w

m 5
1

| |G + | |
w

m + | |m No

Hu et al. [17] 1
| |G + | |q 2

1
| |G + | |q 3

1
| |G +2 | |q + | |

w
m + | |m No

Hu et al. [18] 2
1

| |G 3
1

| |G + | |
w

m 5
1

| |G + | |
w

m + | |m No

Shim [21] 1
| |G 2

1
| |G + | |

w
m 3

1
| |G + | |

w
m + | |m No

Wu et al. [22] 1
| |G 2

1
| |G + | |

w
m 3

1
| |G + | |

w
m + | |m No

Ours 2
1

| |G 3
1

| |G + | |
w

m 6
1

| |G + | |
w

m + | |m Yes

On the Security of an Improved Identity-based Proxy Signature Scheme without Random Oracles 2067

7 Application

Mobile agent is a movable intelligent software

program. It can implement a series of tasks according

to the needs of users. Let’s suppose a mobile agent

who books flight tickets for a user in the Internet. In

order to achieve unforgeability, the mobile agent must

use a signature scheme. The Internet is an open

environment overrun by hackers and viruses. If we use

the user’s long-term private key for signature operation,

it has the risk of being exposed. A better strategy is to

use a proxy signature. The user delegates his/her

signing right to the mobile agent. Then the mobile

agent acts as a proxy signer to sign messages on behalf

of the user. The proxy private key is stored in the

mobile agent instead of the long-term private key of

the user. Even if the proxy private key in the mobile

agent is exposed, it should not leak any information

about the long-term private key. As our scheme is

secure against proxy key exposure attack, it can be

deployed in this scenario.

8 Conclusion

In this paper, we show that Hu et al.’s identity based

proxy signature scheme in the standard model is

insecure. We give four concrete kinds of attacks to

their scheme. Then, we propose an improved scheme.

We analysis the reasons why their scheme is insecure

and the design principles of our improved scheme. We

prove ours to be secure under the CDH assumption. At

last, we evaluate the efficiency of our improved

scheme, which shows that it is practical. The future

work is to design identity-based proxy signature

schemes which can resist the quantum attacks, such as

schemes based on multivariate public key

cryptography or lattice problems.

Acknowledgments

We would like to present our thanks to Ms. Yan Di,

who checked our manuscript. This work is supported

by the National Natural Science Foundation of China

[Grant Nos. 61462048, 61362032, 61662039 and

61562047] and the Natural Science Foundation of

Jiangxi Province, China (Grant No. 20151BAB207003

and 20161BAB202036).

References

[1] A. Shamir, Identity-based Cryptosystems and Signature

Schemes, Advances in Cryptology-CRYPTO 1984, Santa

Barbara, CA, 1984, pp. 47-53.

[2] D. Boneh, M. Franklin, Identity based Encryption from the

Weil Pairing, Advances in Cryptology- CRYPTO 2001, Santa

Barbara, CA, 2001, pp. 213-229.

[3] M. Mambo, K. Usuda, E. Okamoto, Proxy Signatures for

Delegating Signing Operation, Proceedings of the 3rd ACM

Conference on Computer and Communications Security, New

Delhi, India, 1996, pp. 48-57.

[4] F. Zhang, K. Kim, Efficient Id-based Blind Signature and

Proxy Signature from Bilinear Pairings, Information Security

and Privacy, 8th Australasian Conference, ACISP 2003,

Wollongong, Australia, 2003, pp. 312-323.

[5] J. Xu, Z. Zhang, D. Feng, ID-Based Proxy Signature using

Bilinear Pairings, Parallel and Distributed Processing and

Applications - ISPA 2005 Workshops, Nanjing, China, 2005,

pp. 359-367.

[6] A. Boldyreva, A. Palacio, B. Warinschi, Secure Proxy

Signature Schemes for Delegation of Signing Rights, Journal

of Cryptology, Vol. 25, No. 1, pp. 57-115, January, 2012.

[7] X. Y. Huang, W. Susilo, Y. Mu, W. Wu, Proxy Signature

Without Random Oracles, Mobile Ad-hoc and Sensor

Networks, Second International Conference, MSN 2006,

Hong Kong, China, 2006, pp. 473-484.

[8] D. Galindo, J. Herranz, E. Kiltz, On the Generic Construction

of Identity-based Signatures with Additional Properties,

Advances in Cryptology-ASIACRYPT 2006, Shanghai, China,

2006, pp. 178-193.

[9] F. Cao, Z. Cao, An Identity based Proxy Signature Scheme

Secure in the Standard Model, 2010 IEEE International

Conference on Granular Computing, GrC 2010, San Jose,

CA, 2010, pp. 67-72.

[10] Y. Sun, Y. Yu, X. S. Zhang, J. W. Chai, On the Security of

An Identity-based Proxy Signature Scheme in the Standard

Model, IEICE Transactions on Fundamentals of Electronics

Communications and Computer Sciences, Vol. E96-A, No. 3,

pp. 721-723, March, 2013.

[11] K. Gu, W. Jia, C. Jiang, Efficient Identity-based Proxy

Signature in the Standard Model, Computer Journal, Vol. 58,

No. 4, pp. 792-807, April, 2015.

[12] D. B. He, M. W. Zhang, B. W. Xu, Insecurity of an Efficient

Identity-based Proxy Signature in the Standard Model,

Computer Journal, Vol. 58, No. 10, pp. 2507-2508, October,

2015.

[13] X. M. Hu, Y. C. Yang, J. Wang, H. J. Xu, W. N. Tan,

Security Analysis of an Efficient Identity-based Proxy

Signature in the Standard Model, IEICE Transactions on

Fundamentals of Electronics Communications and Computer

Sciences, Vol. E98-A, No. 2, pp. 758-761, February, 2015.

[14] C. Gentry, Practical Identity-based Encryption Without

Random Oracles, Advances in Cryptology-EUROCRYPT

2006, St. Petersburg, Russia, 2006, pp. 445-464.

[15] X. M. Hu, Y. C. Yang, Y. Liu, J. Wang, X. H. Xiong, A

Highly Efficient and Identity-based Proxy Signature Scheme

without Random Oracle, 2014 2nd International Conference

on Information Technology and Electronic Commerce

(ICITEC 2014), Dalian, China, 2014, pp 204-207.

[16] H. B. Tian, Z. T. Jiang, Y. Liu, B. D. Wei, A Systematic

Method to Design Strong Designated Verifier Signature

without Random Oracles, Cluster Computing-the Journal of

2068 Journal of Internet Technology Volume 19 (2018) No.7

Networks Software Tools and Applications, Vol. 16, No. 4, pp.

817-827, December, 2013.

[17] X. M. Hu, H. Lu, H. J. Xu, J. Wang, Y. C. Yang, An Efficient

Identity-based Proxy Signature Scheme in the Standard

Model with Tight Reduction, International Joint

Conference – CISIS’15, 8th International Conference on

Computational Intelligence in Security for Information

Systems, Burgos, Spain, 2015, pp. 309-319.

[18] X. M. Hu, J. Wang, H. J. Xu, Y. C. Yang, X. L. Xu, An

Improved Efficient Identity-based Proxy Signature in the

Standard Model, International Journal of Computer

Mathematics, Vol. 94, No. 1, pp. 22-38, 2017.

[19] J. C. N. Schuldt, K. Matsuura, K. G. Paterson, Proxy

Signatures Secure Against Proxy Key Exposure, 11th

International Workshop on Practice and Theory in Public-

Key Cryptography, Barcelona, Spain, 2008, pp. 141-161.

[20] J. H. Liu, Q. H. Wu, J. W. Liu, T. Shang, Identity-based

Proxy Multi-signature Applicable to Secure E-transaction

Delegations, High Technology Lettere, Vol. 22, No. 2, pp.

199-206, June, 2016.

[21] K. A. Shim, An Identity-based Proxy Signature Scheme from

Pairings, Information and Communications Security, 8th

International Conference, ICICS 2006, Raleigh, NC, 2006, pp.

60-71.

[22] W. Wu, Y. Mu, W. Susilo, J. Seberry, X. Y. Huang, Identity-

based Proxy Signature from Pairings, Autonomic and Trusted

Computing, 4th International Conference, ATC 2007, Hong

Kong, China, 2007, pp. 22-31.

[23] L. Chen, Z. Cheng, N. P. Smart, Identity-based Key

Agreement Protocols from Pairings, International Journal

Information Security, Vol. 6, No. 4, pp. 213-241, July, 2007.

Biographies

Caixue Zhou received the B.S. in

Computer Science Department from

Fudan University in 1988, Shanghai,

China and the M.S. in Space College

of Beijing University of Aeronautics

and Astronautics in 1991, Beijing,

China. Currently he is an associate

professor with the School of Information Science and

Technology, Jiujiang University, Jiujiang, China and a

supervisor of postgraduate with the School of

Information Technology, Jiangxi University of Finance

and Economics, Nanchang, China. He is Member of

the CCF (China Computer Federation) and Member of

CACR (Chinese Association for Cryptologic Research).

His research interests include applied cryptography and

security of computer networks.

Zongmin Cui received the B.E degree

from Southeast University in 2002

and the M.S. degree from HuaZhong

University of Science and Technology

in 2006. He received the Ph.D. Degree

from Huazhong University of Science

and Technology in 2014. He is

currently an associate professor with the School of

Information Science and Technology, Jiujiang

University, Jiujiang, China. His research interests

include cloud security, authorization update, key

management, access control, and publish/subscribe

system.

Guangyong Gao received the Ph.D.

Degree from Nanjing University of

Posts and Telecommunications,

Nanjing, China, in 2012. Currently he

is an associate professor with the

School of Information Science and

Technology, Jiujiang University,

Jiujiang, China. His research interests include

Multimedia Information Security, Digital Image

Processing and Computer Networks Security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

