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Abstract 

Proxy signature can realize that an original signer 

delegates his/her signing right to a proxy signer. Then, 

the proxy signer can sign messages on behalf of the 

original signer when he/she is absent. The identity-based 

cryptosystem can simplify the costly certificate 

management. In this paper, we demonstrate that an 

improved identity-based proxy signature scheme in the 

standard model is not secure by giving four kinds of 

attacks. An improved scheme is also proposed to 

overcome the security flaws. Our improved scheme can 

be proved secure assuming the CDH problem to be hard. 

Performance analysis shows that our improved scheme is 

practical. 

Keywords: Identity-based proxy signature, Proxy 

signature, Bilinear pairing, Standard model, 

Computational Diffie-Hellman assumption 

1 Introduction 

The identity based cryptosystem can simplify the 

costly certificate management which is considered to 

be the main drawback of the traditional public key 

cryptosystem. This cryptographic concept was first 

introduced by Shamir [1] in 1984. But an efficient 

identity-based encryption scheme was not invented 

until Boneh and Franklin [2] proposed it by using 

bilinear pairings in 2001. Since then, the identity based 

cryptosystem has become a research hotspot.  

Proxy signature is a useful tool when an original 

signer is absent. Then he/she can delegate his/her 

signing right to a proxy signer. Any verifier can be 

convinced that the signature is made by the proxy 

signer designated by the original signer. This 

cryptographic primitive was first introduced by 

Mambo et al. [3] in 1996. Proxy signature has also got 

a lot of attention since it was introduced. 

Combining the identity based cryptosystem and 

proxy signature, Zhang and Kim [4] first introduced 

the identity based proxy signature by using bilinear 

pairings in 2003, but their scheme lacked security 

proof. In 2005, Xu et al. [5] gave a formal definition 

and security model for identity-based proxy signature 

for the first time. Their security model was based on 

Boldyreva et al.’s work [6]. In 2006, Huang et al. [7] 

proposed a proxy signature scheme in the standard 

model for the first time. In the same year, Galindo et al. 

[8] gave a generic construction of identity based proxy 

signature from traditional public key based proxy 

signature and their construction suits in the standard 

model. In 2010, Cao and Cao [9] proposed a direct 

construction of identity based proxy signature in the 

standard model for the first time. But in 2013, Sun et al. 

[10] pointed out that Cao et al.’s scheme suffers from a 

malicious original signer attack and a malicious proxy 

signer attack. In the same year, Gu et al. [11] proposed 

another identity-based proxy signature scheme in the 

standard model. Unfortunately, He et al. [12] gave out 

three kinds of attacks to Gu et al.’s scheme and Hu et 

al. [13] gave out four kinds of attacks to Gu et al.’s 

scheme in 2015, respectively. Based on Gentry’s 

identity based encryption scheme [14], Hu et al. [15] 

proposed another highly efficient identity-based proxy 

signature scheme in the standard model in 2014. Based 

on Tian et al.’s strong designated verifier signature 

scheme [16], Hu et al. [17] also proposed an identity-

based proxy signature scheme in the standard model 

with tight security reduction in 2015. 

To overcome the security flaws of Gu et al.’s 

scheme [11], Hu et al. [18] proposed an improved 

scheme in 2017. They gave a security proof to their 

scheme. But unfortunately, in this paper, we point out 

that Hu et al.’s improved scheme is still insecure. We 

give four kinds of attacks to their scheme. Then we 

give further improvement to their scheme. We give 

security proof and efficiency analysis of our scheme. 

The performance evaluation shows that our scheme is 

practical. 

The rest of the paper is organized as follows. In 

Section 2, we introduce the concept of bilinear pairing, 

the complexity assumption, the formal definition and 

security model of identity-based proxy signature. In 

Section 3, we give a description of Hu et al.’s scheme. 

In Section 4, we give four kinds of attacks to Hu et 

al.’s scheme. In Section 5, we propose an improved 

scheme. In Section 6, we discuss the correctness, 
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security and efficiency of our improved scheme. In 

Section 7, we give an application example of our 

scheme. We conclude the paper in Section 8. 

2 Preliminaries 

2.1 Bilinear Pairing  

Let 
1 2
,G G  be two multiplicative cyclic groups of 

prime order q  and g  be a generator of 
1

G . The map 

1 1 2
:e G G G× →  is said to be an admissible bilinear 

pairing if the following three conditions hold. 

(1) Bilinearity: For all ,
q

a b Z∈ , 
1

,P Q G∈ , we have 

( , ) ( , )a b ab
e P Q e P Q= . 

(2) Non-degeneracy: 
2

( , ) 1
G

e g g ≠ . 

(3) Computability: For all 
1

,P Q G∈ , there exists an 

efficient algorithm to compute ( , )e P Q . 

2.2 Complexity Assumption 

Computational Diffie-Hellman (CDH) problem. 

Given 
1

, ,

a b
g g g G∈  for unknown randomly chosen 

,
q

a b Z∈ , one must compute ab
g . 

The ( , )tε − CDH assumption. No probabilistic 

polynomial time (PPT) algorithm A  running in a 

maximum time of t  with a probability of at least ε  

can solve the CDH problem in 
1

G . 

2.3 Formal Definition 

The formal definition is the same as that in Hu et 

al.’s scheme [18]. An identity-based proxy signature 

scheme consists of the following eight algorithms. 

Setup. Given a security parameter 1k , the PKG 

produces a master private key s  and the system public 

parameters Params . Params  are public to all while 

s  is kept private by the PKG. 

KeyGen. Given an identity ID  and Params , the PKG 

uses the master private key s  to produce ID ’s private 

key 
ID

SK . Then the PKG sends 
ID

SK  to the user 

secretly. Thus, the original signer’s identity and private 

key pair is ( ,

a
a ID

ID SK ) and the proxy signer’s identity 

and private key pair is ( ,

pp ID
ID SK ). 

ISign. Given a private key 
ID

SK  of identity ID , a 

message m  and Params , the signer ID  produces a 

standard signature σ . 

IVerify. Given the signer’s identity ID , the signature 

σ , the message m  and Params , the verifier verifies 

the standard signature σ  and outputs true or false. 

IDelegate. Given the private key 
a

ID
SK  of an original 

signer 
a

ID , Params  and a warrant 
w

m  (which 

includes the identities of the original signer and proxy 

signer, the types of delegated message, the delegation 

period and so on), the original signer 
a

ID  produces a 

delegation δ . Then he/she sends it to the proxy signer.  

IProxyKeyGen. Given the private key 
pID

SK  of the 

proxy signer, the warrant 
w

m , the delegation δ  and 

,Params  the proxy signer 
p

ID  produces a proxy 

signing key 
pID

PSK .  

IProxySign. Given the proxy signing key 
pID

PSK , a 

message m , a warrant 
w

m  and ,Params  the proxy 

signer 
p

ID  produces a proxy signature 
p

σ . 

IProxyVerify. Given the identities of the original 

signer 
a

ID  and proxy signer 
p

ID , the warrant 
w

m , the 

message m , the proxy signature 
p

σ  and Params , the 

verifier verifies the proxy signature 
p

σ  and outputs 

true or false.  

For consistency, we require if σ =  

( , , ),
ID

ISign SK m Params  then ( , , , )IVerify ID m Paramsσ  

true= . And if Pr ( , , , ),
pp ID w

I oxySign PSK m m Paramsσ =  

then Pr ( , , , , , )
p a p w

I oxyVerify ID ID m m Params trueσ = . 

2.4 Security Model 

Based on the security models of Boldyreva et al. [6] 

and Schuldt et al. [19], Gu et al. [11] introduced a more 

complete security model of identity-based proxy 

signature. Hu et al. [18] used the same security model 

as Gu et al. In the security model, they classified the 

proxy signature to several types. Here we must point 

out that there is a general classification of proxy 

signature in Liu et al.’s scheme [20]. Their security 

model is as follows. 

It assumes that only one user *

u  is not corrupted, 

that is, the adversary A  can get all useful information 

except the private key of *

u . There are four situations 

to be considered. 

(1) The adversary A  forges a standard signature of 
*

u .  

(2) The adversary A  does not get the proxy signing 

key of *

u  and forges a proxy signature of *

u , where *

u  

is both the original signer and the proxy signer. 

(3) The adversary A  does not get the proxy signing 

key of *

u  and forges a proxy signature of *

u , where 

i
u ( *

i
u u≠ ) is the original signer and *

u  is the proxy 

signer. 

(4) The adversary A  does not get the signing rights 

of *

u  and proxy signing key of 
i
u ( *

i
u u≠ ). He/she 

forges a proxy signature of 
i
u ( *

i
u u≠ ), where *

u  is 

the original signer and 
i
u ( *

i
u u≠ ) is the proxy signer. 

For simplicity, it assumes that user 
1

ID  is the non-

corrupted user. The security model is described as 
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follows. 

Setup: The challenger C  runs the setup algorithm to 

produce the public system parameters Params  and a 

master private key s . C  gives Params  to A  while 

keeping s  private. 

Queries. A  can make a polynomially bounded number 

of queries as follows. 

Key queries.  

(1) T=Type1 (key-oracle()): A requests the private 

key of a user 
i

ID 1i >（ ）, C  produces a private key 

iID
SK  and returns it to A . 

(2) T=Type2 (proxykey-oracle1()): A  supplies an 

identity 
i

ID  ( 1i ≥ ) and a warrant 
w

m , where 
i

ID  

( 1i ≥ ) is both the original signer and the proxy signer. 

C  produces a self-delegation proxy key 
iID

PSK  and 

returns it to A . 

(3) T=Type3 (proxykey-oracle2()): A  supplies an 

identity 
i

ID  ( 1i > ) and a warrant 
w

m , where 
i

ID  

( 1i > ) is the original signer and 
1

ID  the proxy signer. 

C  produces a proxy key 
1ID

PSK  and returns it to A . 

(4) T=Type4 (proxykey-oracle3()): A  supplies an 

identity 
i

ID  ( 1i > ) and a warrant 
w

m , where 
1

ID  is the 

original signer and 
i

ID  ( 1i > ) the proxy signer. C  

produces a proxy key 
iID

PSK  and returns it to A . 

Signature queries. 

(1) T=Type1 (sign-oracle()): A  supplies an identity 

i
ID  ( 1i ≥ ) and a message m . C  produces a standard 

signature σ  of 
i

ID  ( 1i ≥ ) and returns it to A . 

(2) T=Type2 (psign-oracle1()): A  supplies an 

identity 
i

ID  ( 1i ≥ ), a warrant 
w

m  and a message m , 

where 
i

ID  ( 1i ≥ ) is both the original signer and the 

proxy signer. C  produces a proxy signature 
p

σ  and 

returns it to A . 

(3) T=Type3 (psign-oracle2()): A  supplies an 

identity 
i

ID  ( 1i > ), a warrant 
w

m  and a message m , 

where 
i

ID  ( 1i > ) is the original signer and 
1

ID  the 

proxy signer. C  produces a proxy signature 
p

σ  and 

returns it to A . 

(4) T=Type4 (psign-oracle3()): A  supplies an 

identity 
i

ID  ( 1i > ), a warrant 
w

m  and a message m , 

where 
1

ID  is the original signer and 
i

ID  ( 1i > ) the 

proxy signer. C  produces a proxy signature 
p

σ  and 

returns it to A . 

Forgery. 

(1) T=Type1: A  outputs a forged standard signature 
*

σ  on ( * *

,ID m ). If the following conditions hold, then 

we say that A  wins the game. 

(a) * * *( , , , )IVerify Params m ID trueσ = ; 

(b) A  did not make key-oracle() on *

ID ; 

(c) A  did not make sign-oracle() on ( * *

,ID m ). 

(2) T=Type2: A  outputs a forged self-delegation 

proxy signature *

p
σ  on ( * * *

, ,
w

m ID m ), where *

ID  is 

both the original signer and the proxy signer. If the 

following conditions hold, then we say that A  wins the 

game. 

(a) * * * *Pr ( , , , , )
p w

I oxyVerify Params m m ID trueσ = ; 

(b) A  did not make key-oracle() on *

ID ; 

(c) A  did not make proxykey-oracle1() on 

( * *

,
w

ID m ); 

(d) A  did not make psign-oracle1() on ( * * *

, ,
w

m ID m ). 

(3) T=Type3: A  outputs a forged proxy signature 
*

p
σ  on ( * * *

1
, , ,

w
m ID ID m ), where *

ID  is the original 

signer and 
1

ID  the proxy signer. If the following 

conditions hold, then we say that A  wins the game. 

(a) * * * *

1
Pr ( , , , , , )

p w
I oxyVerify Params m m ID ID trueσ = ; 

(b) A  did not make proxykey-oracle2() on 

( * *

1
, ,

w
ID ID m ); 

(c) A  did not make psign-oracle2() on 

( * * *

1
, , ,

w
m ID ID m ). 

(4) T=Type4: A  outputs a forged proxy signature 
*

p
σ  on ( * * *

1
, , ,

w
m ID ID m ), where 

1
ID  is the original 

signer and *

ID  the proxy signer. If the following 

conditions hold, then we say that A  wins the game. 

(a) * * * *

1
Pr ( , , , , , )

p w
I oxyVerify Params m m ID ID trueσ = ; 

(b) A  did not make proxykey-oracle3() on 

( * *

1
, ,

w
ID ID m ); 

(c) A  did not make psign-oracle3() on 

( * * *

1
, , ,

w
m ID ID m ). 

We say that an adversary A  can ( , , ,
e s

t q qε ) break 

an identity-based proxy signature scheme if A  makes 

at most 
e
q  key queries and 

s
q  signature queries, and 

runs in a maximum time t  with a probability of at least 

ε . 

An identity-based proxy signature scheme is 

( , , ,
e s

t q qε ) secure if no PPT adversary can ( , , ,
e s

t q qε ) 

break it. 

3 Review of Hu et al.’s Scheme 

Setup: Given a security parameter 1k , the PKG 

chooses two cyclic multiplicative groups 
1

G  and 
2

G  of 

prime order q , a random generator g  of 
1

G , a bilinear 

map: 
1 1 2

:e G G G× →  and a hash function *:{0,1}
q

H Z→ . 

The PKG randomly chooses 
q

Zα ∈  and 
2 0 0
, , , ,g vμ μ  

1
, ,v Gϖ τ ∈ . The PKG sets 

1
g g

α

= . The system public 

parameters are 
1 2 1 2 0 0

{ , , , , , , , , ,Params G G e g g g vµ µ=  

, , , }v Hϖ τ . The system master private key is α . 

KeyGen. Given an identity ID , the PKG randomly 
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chooses 
ID q
r Z∈  and computes 

( )

,0 2 0
( ) IDrH ID

ID
x g

αα

µ µ
⋅

= ⋅ ⋅  

and 
,1 1

.

IDr

ID
x g=  The private key of user ID  is 

ID
sk =  

,0 ,1
( , ).

ID ID
x x  Then the original signer 

a
ID ’s private key 

is ( )

,0 ,1 2 0 1
( , ) ( ( ) , )ID IDa a a

a a a

r rH ID

ID ID ID
sk x x g g

α
α

µ µ
⋅

= = ⋅ ⋅  and 

the proxy signer 
p

ID ’s private key is 
,0 ,1

( , )
p p pID ID ID

sk x x=  

( )

2 0 1
( ( ) , )

ID IDp p p
r rH ID

g g
α

α

µ µ
⋅

= ⋅ ⋅ . 

ISign. Given an identity ID  and a message m , the 

signer randomly chooses 
q

d Z∈  and computes 

( )

0 ,0
,

d d H m

ID
X x ϖ τ

⋅

= ⋅ ⋅  
1 ,1 1

,
IDr

ID
X x g= =  

2
.

d
X g=  

Finally, the signature is 
0 1 2

( , , , )m X X Xσ = . 

Iverify. The verifier checks whether the following 

equation holds. ( )

0 2 1 0 1
( , ) ( , ) ( , )H ID

e X g e g g e Xµ µ= ⋅ ⋅  
( )

2 2
( , ) ( , )H m
e X e Xϖ τ⋅ ⋅ . 

IDelegate. The original signer 
a

ID  produces a warrant 

w
m , which contains the descriptions of delegation 

duration, delegation message type, the identities of 

original signer and proxy signer and so on. Then he/she 

randomly chooses 
q

s Z∈  and computes 
0
T  

( )

,0 0
( )w

a

H m s

ID
x v v= ⋅ ⋅ , 

1 ,1 1

IDa

a

r

ID
T x g= = , 

2

s

T g= . Finally, 

the delegation is 
0 1 2

( , , , )
w

m T T Tδ = . 

IProxyKeyGen. The proxy signer 
p

ID  first checks 

whether the delegation is valid by checking the 

following equation. 
( )

0 2 1 0 1
( , ) ( , ) ( , )a

H ID

e T g e g g e Tµ µ= ⋅ ⋅  
( )

0 2
( , )w

H m

e v v T⋅ ⋅ . If it is not true, then he/she requests 

the original signer to reproduce the delegation δ  

0 1 2
( , , , ).

w
m T T T= Otherwise, he/she computes 

0 ,0 0
,

pID
y x T= ⋅  

1 ,1 1

IDp

p

r

ID
y x g= = , 

2 1 1

IDa
r

y T g= = , 
3 2

s

y T g= = . Finally, 

the proxy key is 
0 1 2 3

( , , , )
pID

PSK y y y y= . 

IProxySign. Given a message m , the proxy signer 

p
ID  randomly chooses 

q
d Z∈  and computes 

0
Y =  

( )

0
,

d d H m
y ϖ τ

⋅

⋅ ⋅  
1 1 1

,

IDp
r

Y y g= =  
2 2 1

,

IDa
r

Y y g= =  

3 3

s

Y y g= = , 
4

.

d
Y g=  Finally, the proxy signature is 

0 1 2 3 4
( , , , , , , )

p w
m m Y Y Y Y Yσ = . 

IProxyVerify. The verifier checks whether the 

following equation holds. 2

0 2 1
( , ) ( , )e Y g e g g=  

( ) ( ) ( )

0 1 0 2 0 3 4
( , ) ( , ) ( , ) ( , )p a w

H ID H ID H m

e Y e Y e v v Y e Yμ μ μ μ ϖ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

( )

4
( , )H m
e Yτ⋅ . 

4 Analysis of Hu et al.’s Scheme [18] 

Hu et al. [18] pointed out that Gu et al.’s scheme [11] 

is insecure by demonstrating a concrete attack. In order 

to overcome the security flaw, Hu et al. introduced two 

public system parameters 
0

µ  and 
0
.v  The KeyGen 

algorithm becomes ( )

,0 2 0
( ) IDrH ID

ID
x g

αα

µ µ
⋅

= ⋅ ⋅  and 

,1 1
IDr

ID
x g=  instead of ( )

,0 2
IDrH ID

ID
x g

αα

µ
⋅⋅

= ⋅  and 

,1 1
IDr

ID
x g= , and the IDelegate algorithm becomes 

( )

0 ,0 0
( )w

a

H m s

ID
T x v v= ⋅ ⋅ , 

1 ,1 1

IDa

a

r

ID
T x g= =  and 

2

s

T g=  

instead of 
( )

0 ,0
w

a

H m s

ID
T x v

⋅

= ⋅ , 
1 ,1 1

IDa

a

r

ID
T x g= =  and 

2

s

T g= . After making these improvements, the scheme 

can resist Hu et al.’s attack [18]. But unfortunately, we 

find that the scheme is still insecure. In the following, 

we will show four kinds of attacks to Hu et al.’s 

scheme [18]. 

4.1 Forging a Proxy Signature 1  

In the following, we will show that after getting a 

valid 3T type=  proxy signature, the adversary A  can 

change the original signer to another person and forge 

another 3T type=  proxy signature. 

According to Hu et al.’s security model, by 

maximizing the adversary’s attack abilities, it assumes 

that just one user *

u  is not corrupted. Let’s consider 

1a
ID  and 

2a
ID  who are corrupted by the adversary A , 

that is, the private key 
1,0 1,1

( , )
a a

ID ID
x x  of 

1a
ID  and 

2,0 2,1
( , )

a a
ID ID
x x  of 

2a
ID  are known by A .  

(1) A  sets 
1a

ID  as the original signer and *

u  as the 

proxy signer. A  produces a warrant 
w

m . A  produces a 

delegation 
1,0 1,1 1,2

( , , )
a a a
T T T  on *

1
( , , )

a w
ID u m . 

(2) In the signature queries stage, A  makes a 

3T type= (psign-oracle2()) oracle query, where 
1a

ID  is 

the original signer, *

u  is the proxy signer, 
w

m  is the 

warrant and m  is the message. The challenger C  

returns a proxy signature 
0 1 2 3 4

{ , , , , }
p

Y Y Y Y Yσ =  to A . 

(3) Forgery: After getting a valid proxy signature 

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = , A  can forge another identity-

based proxy signature ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  as follows.  

(a) A  sets 
2a

ID  as the original signer and *

u  as the 

proxy signer. A  produces a valid warrant '

w
m . A  

produces a delegation 
2,0 2,1 2,2

( , , )
a a a
T T T  on 

* '

2
( , , )

a w
ID u m . 

(b) A  computes ' 1

0 0 1,0 2,0
( )

a a
Y Y T T

−

= ⋅ ⋅ , '

1 1
Y Y= , 

'

2 2,1a
Y T= , '

3 2,2a
Y T= , '

4 4
Y Y= . 

(c) A  outputs ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  as the forged 

proxy signature, where 
2a

ID  is the original signer, *

u  

is the proxy signer, '

w
m  is the warrant and m  is the 

message.  

It can be verified that ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  is a 

valid proxy signature. First we have '

0
( , )e Y g =  
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1 1

0 1,0 2,0 0 1,0
( ( ) , ) ( , ) (( ) , )

a a a
e Y T T g e Y g e T g

− −

⋅ ⋅ = ⋅ ⋅

2,0
( , )

a
e T g . As  

*
1( )2 ( )

0 2 1 0 1 0 2
( , ) ( , ) ( , ) ( , )a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅  

( ) ( )

0 3 4 4
( , ) ( , ) ( , )w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅  

*
1( )2 ( ) '

2 1 0 1 0 2

( ) ' ' ( )

0 3 4 4

( , ) ( , ) ( , )

( , ) ( , ) ( ,( ) ),

a

w

H IDH u

H m H m

e g g e Y e Y

e v v Y e Y e Y

μ μ μ μ

ϖ τ

= ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 

1( )1 1 1

1,0 2 1 0 1,1
(( ) , ) ( , ) ( , )a

H ID

a a
e T g e g g e Tµ µ

− − −

= ⋅ ⋅ ⋅

 
( ) 1

0 1,2
( , )w

H m

a
e v v T

−

⋅  

1( ) ( )1 1 1

2 1 0 2 0 3
( , ) ( , ) ( , )a w

H ID H m

e g g e Y e v v Yµ µ
− − −

= ⋅ ⋅ ⋅ ⋅  
'

2( ) ( )

2,0 2 1 0 2,1 0 2,2
( , ) ( , ) ( , ) ( , )a w

H ID H m

a a a
e T g e g g e T e v v Tµ µ= ⋅ ⋅ ⋅ ⋅  

'
2( ) ( )' '

2 1 0 2 0 3
( , ) ( , ) ( , )a w

H ID H m

e g g e Y e v v Yµ µ= ⋅ ⋅ ⋅ ⋅ , we have  
*

2( )' 2 ( ) ' '

0 2 1 0 1 0 2
( , ) ( , ) ( , ) ( , )a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅  

'( ) ' ' ' ( )

0 3 4 4
( , ) ( , ) ( ,( ) )w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅ , and  

' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  is valid. 

4.2 Forging a Proxy Signature 2  

In the following, we will show that after getting a 

valid standard signature, the adversary A  can modify it 

to a 3T type=  proxy signature. 

As described in Section 4.1, it assumes that user *

u  

is not corrupted while user 
1a

ID  is by the adversary A , 

that is, the private key 
1,0 1,1

( , )
a a

ID ID
x x  of 

1a
ID  is known 

by A .  

(1) In the signature queries stage, A  produces a 

message m  and makes a 1T type= (sign-oracle()) 

oracle query, where *

u  is the signer. The challenger C  

returns a standard signature 
0 1 2

( , , )X X Xσ =  to A . 

(2) Forgery: after getting a valid standard signature 

0 1 2
( , , )X X Xσ =  of *

u , A  can modify it to a proxy 

signature ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  as follows.  

(a) A  sets 
1a

ID  as the original signer and *

u  as the 

proxy signer. A  produces a warrant '

w
m . A  produces a 

delegation 
1,0 1,1 1,2

( , , )
a a a
T T T  on * '

1
( , , )

a w
ID u m . 

(b) A  computes '

0 0 1,0a
Y X T= ⋅ , '

1 1
Y X= , '

2 1,1a
Y T= , 

'

3 1,2a
Y T= , '

4 2
Y X= . 

(c) A  outputs ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  as the forged 

proxy signature, where 
1a

ID  is the original signer, *

u  

is the proxy signer, '

w
m  is the warrant and m  is the 

message.  

It can be verified that ' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  is a 

valid proxy signature. First we have '

0
( , )e Y g =  

0 1,0 0 1,0
( , ) ( , ) ( , )

a a
e X T g e X g e T g⋅ = ⋅ . As 

*( ) ( )

0 2 1 0 1 2 2
( , ) ( , ) ( , ) ( , ) ( , )H u H m
e X g e g g e X e X e Xμ μ ϖ τ= ⋅ ⋅ ⋅ ⋅ =  

*( ) ' ' ' ( )

2 1 0 1 4 4
( , ) ( , ) ( , ) ( ,( ) )H u H m
e g g e Y e Y e Yμ μ ϖ τ⋅ ⋅ ⋅ ⋅ ,  

1( ) ( )

1,0 2 1 0 1,1 0 1,2
( , ) ( , ) ( , ) ( , )a w

H ID H m

a a a
e T g e g g e T e v v Tµ µ= ⋅ ⋅ ⋅ ⋅ =  

1( ) ( )' '

2 1 0 2 0 3
( , ) ( , ) ( , )a w

H ID H m

e g g e Y e v v Yµ µ⋅ ⋅ ⋅ ⋅ , we have  
*

1( )' 2 ( ) ' '

0 2 1 0 1 0 2
( , ) ( , ) ( , ) ( , )a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅  

'( ) ' ' ' ( )

0 3 4 4
( , ) ( , ) ( ,( ) )w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅ , and  

' ' ' ' ' '

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ =  is valid. 

4.3 Forging a Standard Signature  

In the following, we will show that after getting a 

valid 3T type=  proxy signature, the adversary A  can 

modify it to a standard signature. 

As described in Section 4.1, it assumes that user *

u  

is not corrupted while user 
1a

ID  is by the adversary A , 

that is, the private key 
1,0 1,1

( , )
a a

ID ID
x x  of 

1a
ID  is known 

by A .  

(1) A  sets 
1a

ID  as the original signer and *

u  as the 

proxy signer. A  produces a warrant 
w

m . A  produces a 

delegation 
1,0 1,1 1,2

( , , )
a a a
T T T  on *

1
( , , )

a w
ID u m . 

(2) In the signature queries stage, A  makes a 

3T type= (psign-oracle2()) oracle query, where 
1a

ID  is 

the original signer, *

u  is the proxy signer, 
w

m  is the 

warrant and m  is the message. The challenger C  

returns a proxy signature 
0 1 2 3 4

{ , , , , }
p

Y Y Y Y Yσ =  to A . 

(3) Forgery: After getting a valid proxy signature 

0 1 2 3 4
{ , , , , }

p
Y Y Y Y Yσ = , A  can modify it to a standard 

signature ' ' ' '

0 1 2
{ , , }X X Xσ =  as follows.  

(a) A  computes ' 1

0 0 1,0
( )

a
X Y T

−

= ⋅ , '

1 1
X Y= , '

2 4
X Y= . 

(b) A  outputs ' ' ' '

0 1 2
{ , , }X X Xσ =  as the forged 

standard signature, where *

u  is the signer and m  is the 

message.  

It can be verified that ' ' ' '

0 1 2
{ , , }X X Xσ =  is a valid 

standard signature. First we have '

0
( , )e X g =  

1 1

0 1,0 0 1,0
( ( ) , ) ( , ) (( ) , )

a a
e Y T g e Y g e T g

− −

⋅ = ⋅ . As 

*
1( )2 ( )

0 2 1 0 1 0 2
( , ) ( , ) ( , ) ( , )a

H IDH u
e Y g e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅ ⋅  

( ) ( )

0 3 4 4
( , ) ( , ) ( , )w

H m H m
e v v Y e Y e Yϖ τ⋅ ⋅ ⋅  

*
1( )2 ( ) '

2 1 0 1 0 2
( , ) ( , ) ( , )a

H IDH u
e g g e X e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅  

( ) ' ' ( )

0 3 2 2
( , ) ( , ) ( ,( ) )w

H m H m
e v v Y e X e Xϖ τ⋅ ⋅ ⋅ ⋅ , 

1( )1 1 1

1,0 2 1 0 1,1
(( ) , ) ( , ) ( , )a

H ID

a a
e T g e g g e Tµ µ

− − −

= ⋅ ⋅

 
( ) 1

0 1,2
( , )w

H m

a
e v v T

−

⋅ ⋅  

1( ) ( )1 1 1

2 1 0 2 0 3
( , ) ( , ) ( , )a w

H ID H m

e g g e Y e v v Yµ µ
− − −

= ⋅ ⋅ ⋅ ⋅ ,  

we have 
*' ( ) ' '

0 2 1 0 1 2
( , ) ( , ) ( , ) ( , )H u
e X g e g g e X e Xμ μ ϖ= ⋅ ⋅ ⋅ , 

' ( )

2
( ,( ) )H m
e Xτ⋅  and ' ' ' '

0 1 2
{ , , }X X Xσ =  is valid. 
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4.4 Proxy Key Exposure Attack 

As noted in scheme [19], proxy key is often used in 

a hostile environment like mobile agent. Compromised 

proxy key must not leak information about the long-

term private key. In scheme [19], Schuldt et al. 

introduced the proxy key exposure attack. In Hu et al.’s 

security model, they also considered this type of attack, 

that is, an attacker can get the proxy-key oracle service. 

In the following, we will show that after getting a valid 

3T type=  proxy key, the adversary A  can compute 

the private key of the proxy signer. 

As described in Section 4.1, it assumes that user *

u  

is not corrupted while user 
1a

ID  is by the adversary A , 

that is, the private key 
1,0 1,1

( , )
a a

ID ID
x x  of 

1a
ID  is known 

by A .  

(1) A  sets 
1a

ID  as the original signer and *

u  as the 

proxy signer. A  produces a valid warrant 
w

m . A  

produces a delegation 
1,0 1,1 1,2

( , , )
a a a
T T T  on *

1
( , , )

a w
ID u m . 

(2) In the key queries stage, the adversary A  makes 

a 3T type= (proxykey-oracle2()) oracle query. The 

challenger C  returns the proxy key 

* 0 1 2 3
( , , , )

u

PSK y y y y=  of user *

u . 

(3) Now, the adversary A  can compute 

*

1

0 1,0,0
( )

a
u

x y T
−

= ⋅ , 
* 1,1u

x y= . Thus, the adversary A  

can get the private key 
* * *

,0 ,1
( , )

u u u

sk x x=  of the proxy 

signer *

u . 

5 An Improved Scheme 

Why Hu et al.’s improved scheme is not secure? 

Intuitively, let us see the IProxySign algorithm. 
( ) ( )

0 0 ,0 0p

d d H m d d H m

ID
Y y x Tϖ τ ϖ τ

⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅ ⋅ , where the 

0
T  part is independent of other parameters. Thus a 

malicious original signer who knows the 
0
T  can 

remove it from 
0
Y  by multiplying 1

0
( )T

−  to get a 

standard signature of 
p

ID . Second, if he/she get a 

standard signature of 
p

ID , he/she can also multiply 
0
T  

to get a proxy signature. Third, from 
0
Y , if he/she 

substitutes 
0
T  with '

0
T , he/she can forge a proxy 

signature where the original signer is '

a
ID . 

In addition, the proxy key in Hu et al.’s scheme is 

0 ,0 0pID
y x T= ⋅ . Thus, a malicious original signer can 

remove 
0
T  by multiplying 1

0
( )T

−  to get the private key 

of 
p

ID . This kind of attack is named as the proxy key 

exposure attack, which is introduced by Schuldt et al. 

[19].  

Our improvements are mainly focused on the hash 

function. In the KeyGen algorithm, we use 
,0

( , )
ID

H ID x  

instead of ( )H ID . In the ISign algorithm, we use 

0 1
( , , )H m X X  instead of ( )H m . In the IDelegate 

algorithm, we use 
0 1

( , , )
w

H m T T  instead of ( )
w

H m . In 

the IProxyKeyGen algorithm, we add a random 

number *

q
t Z∈ . In the IProxySign algorithm, we use 

0 1 2 3 4
( , , , , , , )

w
H m m y y y y y  instead of ( )H m . After 

making these changes, our improved scheme can resist 

Hu et al’s attack [18] and our attacks. 

Setup. Given a security parameter 1k , the PKG 

chooses two cyclic multiplicative groups 
1

G  and 
2

G  of 

prime order q , a random generator g  of 
1

G , a bilinear 

map: 
1 1 2

:e G G G× →  and a hash function * *:{0,1}
q

H Z→ . 

The PKG randomly chooses *

q
Zα∈  and 

*

2 0 1
, , , ,g v Gμ μ τ∈ . 

The PKG sets 
1
g g

α

= . The system public parameters 

are 
1 2 1 2 0

{ , , , , , , , , , , }.Params G G e g g g v Hμ μ τ=  The 

system master private key is α . 

KeyGen. Given an identity ID , the PKG randomly 

chooses *

ID q
r Z∈  and computes 

,0 1
IDr

ID
x g=  and 

,0( , )

,1 2 0
( )ID ID

H ID x r

ID
x g

αα

µ µ
⋅

= ⋅ ⋅ . The private key of user 

ID  is 
,0 ,1

( , )
ID ID ID

sk x x= . Then the original signer 

a
ID ’s private key is 

,0 ,1
( , )

a a a
ID ID ID

sk x x= =  

,0( , )

1 2 0
( , ( ) )ID a ID IDa a a

r H ID x r

g g
α

α

µ µ
⋅

⋅ ⋅  and the proxy signer 

p
ID ’s private key is 

,0 ,1
( , )

p p pID ID ID
sk x x= =  

,0( , )

1 2 0
( , ( ) )

ID p ID IDp p p
r H ID x r

g g
α

α

µ µ
⋅

⋅ ⋅ . 

ISign. Given an identity ID  and a message m , the 

signer randomly chooses *

q
d Z∈  and computes 

0 ,0 1
,

IDr

ID
X x g= =  

1
,

d
X g=  0 1( , , )

2 ,1
.

d H m X X

ID
X x τ

⋅

= ⋅  

Finally, the signature is 
0 1 2

( , , , )m X X Xσ = . 

Iverify. The verifier checks whether the following 

equation holds. 0( , )

2 2 1 0 0
( , ) ( , ) ( , )

H ID X

e X g e g g e Xµ µ= ⋅ ⋅  

0 1( , , )

1
( , )

H m X X

e Xτ⋅ . 

IDelegate. The original signer 
a

ID  produces a warrant 

w
m , which contains the descriptions of delegation 

duration, delegation message type, the identities of 

original signer and proxy signer and so on. Then he/she 

randomly chooses *

q
s Z∈  and computes 

0 ,0 1
,

IDa

a

r

ID
T x g= =  

1

s

T g= , 0 1( , , )

2 ,1
w

a

H m T T s

ID
T x v

⋅

= ⋅ . Finally, the delegation 

is 
0 1 2

( , , , )
w

m T T Tδ = . 

IProxyKeyGen. The proxy signer 
p

ID  first checks 

whether the delegation is valid by checking the 

following equation. 0( , )

2 2 1 0 0
( , ) ( , ) ( , )a

H ID T

e T g e g g e Tµ µ= ⋅ ⋅  

0 1( , , )

1
( , )w

H m T T

e v T⋅ . If it is not true, then he/she requests 

the original signer to reproduce the delegation 

0 1 2
( , , , ).

w
m T T Tδ =  Otherwise, he/she randomly chooses 

*

q
t Z∈  and computes 

0 ,0 1
,

IDp

p

r

ID
y x g= =  

1 0 1
,

IDa
r

y T g= =  
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2 1
,

s

y T g= =  
3

,

t

y g=  
4
y =

0 1 2 3( , , , , )

,1 2
w

p

H m y y y y t

ID
x v T

⋅

⋅ ⋅ . 

Finally, the proxy key is 
0 1 2 3 4

( , , , , )
pID

PSK y y y y y= . 

IProxySign. Given a message m , the proxy signer 

p
ID  randomly chooses *

q
d Z∈  and computes 

0 0 1
,

IDp
r

Y y g= =  
1 1 1

IDa
r

Y y g= = , 
2 2
Y y= , 

3 3
Y y= , 

4

d
Y g= , 0 1 2 3 4( , , , , , , )

5 4
w

d H m m Y Y Y Y Y
Y y τ

⋅

= ⋅ . Finally, the proxy 

signature is 
0 1 2 3 4 5

( , , , , , , , )
p w

m m Y Y Y Y Y Yσ = . 

IProxyVerify. The verifier checks whether the following 

equation holds. 0( , )2

5 2 1 0 0
( , ) ( , ) ( , )pH ID Y

e Y g e g g e Yµ µ= ⋅ ⋅  

1 0 1 2 3 1 2( , ) ( , , , , ) ( , , )

0 1 3 2
( , ) ( , ) ( , )a w w

H ID Y H m Y Y Y Y H m Y Y

e Y e v Y e v Yµ µ⋅ ⋅ ⋅ ⋅

0 1 2 3 4( , , , , , , )

4
( , )w

H m m Y Y Y Y Y

e Yτ⋅ . 

6 Analysis of the Improved Scheme 

6.1 Correctness 

0 1 2 3 4( , , , , , , )

5 4
( , ) ( , )w

d H m m Y Y Y Y Y
e Y g e y gτ

⋅

= ⋅  

0 1 2 3 0 1 2 3 4( , , , , ) ( , , , , , , )

,1 2 4
( , ) ( , )w w

p

H m y y y y t H m m Y Y Y Y Y

ID
e x v T g e Yτ

⋅

= ⋅ ⋅ ⋅  

0 1 2 3( , , , , )

,1 2
( , ) ( , ) ( , )w

p

H m y y y y t

ID
e x g e v g e T g

⋅

= ⋅ ⋅  

   0 1 2 3 4( , , , , , , )

4
( , )w

H m m Y Y Y Y Y

e Yτ⋅  

0 1 2 3 0 1( , , , , ) ( , , )

,1 ,1
( , ) ( , ) ( , )w w

p a

H m y y y y t H m T T s

ID ID
e x g e v g e x v g

⋅ ⋅

= ⋅ ⋅ ⋅  

  0 1 2 3 4( , , , , , , )

4
( , )w

H m m Y Y Y Y Y

e Yτ⋅  

0 0 1 2 3
( , ) ( , , , , )

2 1 0 0
( , ) ( , ) ( , )p w

H ID Y H m y y y y t
e g g e Y e v gµ µ

⋅

= ⋅ ⋅ ⋅  

   0 1 0 1 2 3 4( , , ) ( , , , , , , )

,1 4
( , ) ( , )w w

a

H m T T s H m m Y Y Y Y Y

ID
e x v g e Yτ

⋅

⋅ ⋅ ⋅  

0 1
( , ) ( , )2

2 1 0 0 0 1
( , ) ( , ) ( , )p a

H ID Y H ID Y

e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅  

   
0 1 2 3 0 1( , , , , ) ( , , )

3 2
( , ) ( , )w w

H m y y y y H m T T
e v Y e v Y⋅ ⋅  

   0 1 2 3 4( , , , , , , )

4
( , )w

H m m Y Y Y Y Y

e Yτ⋅  

0 1
( , ) ( , )2

2 1 0 0 0 1
( , ) ( , ) ( , )p a

H ID Y H ID Y

e g g e Y e Yµ µ µ µ= ⋅ ⋅ ⋅ ⋅  

   0 1 2 3 1 2( , , , , ) ( , , )

3 2
( , ) ( , )w w

H m Y Y Y Y H m Y Y

e v Y e v Y⋅ ⋅  

   0 1 2 3 4( , , , , , , )

4
( , )w

H m m Y Y Y Y Y

e Yτ⋅  

6.2 Unforgeability 

Theorem 1. Our improved scheme is ( , , , )
e s

t q qε −  

secure, assuming that the ' '( , )tε − CDH assumption 

holds in 
1
,G  where 

'

3 ,qε ε=  '

exp
( (11 15 )

e mul
t t O q t t= + ⋅ ⋅ + ⋅  

exp
(4 5 ))

s mul
q t t+ ⋅ ⋅ + ⋅ , and 

e
q , 

s
q , 

exp
t  and 

mul
t  are the 

maximal number of private key queries, signature 

queries, the time required for an exponentiation and an 

multiplication in 
1

G , respectively. 

Proof. Our proof is similar to that of Hu et al.’s 

scheme [18]. Let A  be an ( , , , )
e s

t q qε − adversary 

attacking our improved scheme. From this adversary, 

we will construct an algorithm C  that solves the CDH 

problem with a probability of at least '

ε  and in the 

time of at most '

t , contradicting the ' '( , )tε − CDH 

assumption.  

C  is given 
1

( , , )a b
g g g G∈  for randomly chosen 

*

,
q

a b Z∈ . C  does not know the values of a  and b , 

and is asked to compute ab
g . To utilize the adversary 

A , C  simulates all the oracles defined in Definition 1 

to provide responses to A ’s queries.  

Setup. C  randomly chooses two cyclic groups 
1

G  and 

2
G  of prime order q , a random generator g  of 

1
G , a 

bilinear map 
1 1 2

:e G G G× →  and a hash function 
* *:{0,1}

q
H Z→ . He/she sets 

1

a

g g=  and 
2

b
g g= . 

He/she randomly chooses *

, , ,
q

Zγ η λ θ ∈  and sets 

2
g g

γ
µ = ⋅ , v g

η
= , 

2
g g

λ
τ = ⋅  and 

0
.g

θ
µ =  C  outputs 

the public parameters 
1 2 1 2

{ , , , , , ,Params G G e g g g=  

0
, , , , }v Hμ μ τ . The system master private key is a , 

which is not known to C . 

We assume that user 1 is a non-corrupted user and 

1
ID  is his/her identity. C  first computes the private 

key of 
1

ID . C  randomly chooses 
1

*

ID q
r Z∈  and 

computes 1

1

1

,0 1
,

IDr

ID
x g g

γ−

= ⋅  1 ,01

1

(1 ( , ) )

,1 1

IDH ID x

ID
x g

θ γ− + ⋅

= ⋅  

1 ,01 1 1
( , )

0

ID ID IDr r H ID x

µ µ
⋅

⋅ . Then, the private key of 
1

ID  is 

1 1 1,0 ,1
( , )

ID ID ID
sk x x= , which is a valid private key 

because  

'

1 1 1 1

1

11 1

,0 1 1 1 1

ID ID ID IDr r a a r a r

ID
x g g g g g g

γγ γ ⋅ −

− −

= ⋅ = ⋅ = = , 

1 ,0 1 ,01 1 1 1

1

(1 ( , ) ) ( , )

,1 1 0

ID ID ID IDH ID x r r H ID x

ID
x g

θ γ
µ µ

− + ⋅ ⋅

= ⋅ ⋅

 
1 ,0 1 ,01 1 1 1

( , ) ( , )1

2 2 1 1 0

ID ID ID IDH ID x r r H ID xa a
g g g g

θ γγ
µ µ

− ⋅ ⋅

− −

= ⋅ ⋅ ⋅ ⋅ ⋅  
1 ,0 1 ,01 1 1 1

( , ) ( , )

2 2 1 0
( ) ID ID ID IDH ID x r r H ID xa a

g g g g
θ γγ γ

µ µ
− ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅  

1 ,0 1 ,01 1 1 1
( , ) ( , )

2 2 0 0
( ) ID ID ID IDH ID x a r r H ID xa a

g g g
γγ γ

µ µ µ
− ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅ ⋅  

1 ,0 1 ,01 1 1 1
( , ) ( , )

2 0 0

ID ID ID IDH ID x a r r H ID xa a
g

γγ
µ µ µ µ

− ⋅ ⋅

−

= ⋅ ⋅ ⋅ ⋅  

1 ,01 1 1
( 1 ) ( 1 ) ( , )

2 0

ID ID IDa r a a r a H ID xa
g

γ γ

µ µ
⋅ − ⋅ − ⋅

= ⋅ ⋅  

1 ,01 1
( , ) ( 1 )

2 0
( )ID IDH ID x a r aa

g
γ

µ µ
⋅ −

= ⋅ ⋅  
'

1 ,01 1
( , )

2 0
( )ID IDH ID x a ra

g µ µ
⋅

= ⋅ ⋅ , where 
1 1

'

1
ID ID
r r a γ= − . 

C  keeps 
1 1 1,0 ,1

( , )
ID ID ID

sk x x=  private.  

Queries. A  can adaptively make a polynomially 

bounded number of queries as follows.  

Key queries. 

(1) 1:T type=  A  requests the private key of 
i

ID  

( 1i > ). A  supplies an identity 
i

ID  ( 1i > ). C  produces 

i
ID ’s private key as described above, that is, C  

randomly chooses *

iID q
r Z∈  and computes 1

,0 1
,

IDi

i

r

ID
x g g

γ−

= ⋅  

,0 ,0(1 ( , ) ) ( , )

,1 1 0
.

i ID ID ID i IDi i i i

i

H ID x r r H ID x

ID
x g

θ γ
µ µ

− + ⋅ ⋅

= ⋅ ⋅  Then, the 

private key of 
i

ID  is 
,0 ,1

( , )
i i iID ID ID

sk x x= . C  returns it 

to A .  
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(2) 2 :T type=  A  requests the proxy key of 
i

ID  

( 1i ≥ ), where 
i

ID  ( 1i ≥ ) is both the original signer 

and the proxy signer. A  supplies an identity 
i

ID  ( 1i ≥ ) 

and a warrant 
w

m . C  produces the self-delegation 

proxy key as normal because C  can get the private 

keys of all users. 

(3) 3:T type=  A  requests the proxy key of 
1

ID , 

where 
i

ID  ( 1i > ) is the original signer and 
1

ID  the 

proxy signer. A  supplies an identity 
i

ID  ( 1i > ) and a 

warrant 
w

m . C  produces the proxy key as normal 

because C  can get the private keys of 
i

ID  ( 1i > ) and 

1
ID . 

(4) 4 :T type=  A  requests the proxy key of 
i

ID  

( 1i > ), where 
1

ID  is the original signer and 
i

ID  ( 1i > ) 

the proxy signer. A  supplies an identity 
i

ID  ( 1i > ) 

and a warrant 
w

m . C  produces the proxy key as 

normal because C  can get the private keys of 
i

ID  

( 1i > ) and 
1

ID . 

Signature queries. 

(1) 1:T type=  A  requests a standard signature of 

i
ID  ( 1i ≥ ). A  supplies an identity 

i
ID  ( 1i ≥ ) and a 

message m . C  produces the standard signature as 

normal because C  can get the private keys of 
i

ID  

( 1i ≥ ). 

(2) 2 :T type=  A  requests a self-delegation proxy 

signature of 
i

ID  ( 1i ≥ ), where 
i

ID  ( 1i ≥ ) is both the 

original signer and the proxy signer. A  supplies an 

identity 
i

ID  ( 1i ≥ ), a warrant 
w

m  and a message m . 

C  produces the self-delegation proxy signature as 

normal because C  can get the private keys of all users. 

(3) 3:T type=  A  requests a proxy signature of 
1

ID , 

where 
i

ID  ( 1i > ) is the original signer and 
1

ID  the 

proxy signer. A  supplies an identity 
i

ID  ( 1i > ), a 

warrant 
w

m  and a message m . C  produces the proxy 

signature as normal because C  can get the private 

keys of 
i

ID  ( 1i > ) and 
1

ID . 

(4) 4 :T type=  A  requests a proxy signature of 
i

ID  

( 1i > ), where 
1

ID  is the original signer and 
i

ID  ( 1i > ) 

the proxy signer. A  supplies an identity 
i

ID  ( 1i > ), a 

warrant 
w

m  and a message m . C  produces the proxy 

signature as normal because C  can get the private 

keys of 
i

ID  ( 1i > ) and 
1

ID . 

Forgery. At last, A  decides to put an end to the 

queries stage and outputs a forgery. 

(1) 1:T type=  A  outputs a forged standard 

signature * * * * *

0 1 2
( , , , )m X X Xσ =  of *

.ID . If 
*

ID
a rγ⋅ ⋅ +  

* * * *

0 1
( , , ) 0mod ,d H m X X qλ ⋅ ⋅ ≠  then C  aborts; otherwise, 

C  can compute  

* * * * *
0 0 1

*

2

( , ) ( , , )* * *

0 0 1
( ) ( )

H ID X H m X X

X

X X X
θ ⋅

⋅ ⋅

 

* * * *
0 1

*

* * * * *
0 0 1

( , , )

,1

( , ) ( , , )* * *

0 0 1
( ) ( )

d H m X X

ID

H ID X H m X X

x

X X X
θ

τ
⋅

⋅

⋅

=

⋅ ⋅

 

*
* * * ** *,0 0 1

* * * * *
0 0 1

( , )
( , , )

2 0

( , ) ( , , )* * *

0 0 1

( )

( ) ( )

ID ID

H ID x a r
d H m X Xa

H ID X H m X X

g

X X X
θ

μ μ τ
⋅

⋅

⋅

⋅ ⋅ ⋅

=

⋅ ⋅

 

* * * * * *
*

0 0 1

* * * * *
0 0 1

( , ) ( , , )

2 2 2

( , ) ( , , )* * *

0 0 1

( ) ( )

( ) ( )

ID
a r

H ID X d H m X Xa

H ID X H m X X

g g g g g g

X X X

θγ λ

θ

⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅ ⋅

=

⋅ ⋅

 

2

a ab
g g= =  

(2) 2 :T type=  A  outputs a forged self-delegation 

proxy signature * * * * * * * * *

0 1 2 3 4 5
( , , , , , , , )

p w
m m Y Y Y Y Y Yσ =  of 

*

ID . If 
*

* * * * * * * *

0 1 2 3 4
2 ( , , , , , , )

wID
a r d H m m Y Y Y Y Yγ λ⋅ ⋅ ⋅ + ⋅ ⋅  

0modq≠ , then C  aborts; otherwise, C  can compute  

* * * * * * * * * *
0 1 2 0 1 2 3

*

5

2 ( , ) ( , , ) ( , , , , )* 2 * * *

0 0 2 3
( ) ( ) ( ) ( )w w

H ID Y H m Y Y H m Y Y Y Y

Y

Y Y Y Y
θ η η⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

* * * * * * *
0 1 2 3 4( , , , , , , )*

4

1

( ) w
H m m Y Y Y Y Y

Y

⋅  

* * * * * * * *
0 1 2 3 4

* * * * * * * * * *
0 1 2 0 1 2 3

( , , , , , , )*

4

2 ( , ) ( , , ) ( , , , , )* 2 * * *

0 0 2 3
( ) ( ) ( ) ( )

w

w w

d H m m Y Y Y Y Y

H ID Y H m Y Y H m Y Y Y Y

y

Y Y Y Y
θ η η

τ
⋅

⋅ ⋅ ⋅ ⋅

⋅

=

⋅ ⋅ ⋅

 

   
* * * * * * *

0 1 2 3 4( , , , , , , )*

4

1

( ) w
H m m Y Y Y Y Y

Y

⋅  

* * * * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

*

* * * * * * * * * *
0 1 2 0 1 2 3

( , , , , ) ( , , , , , , )*

2,1

2 ( , ) ( , , ) ( , , , , )* 2 * * *

0 0 2 3
( ) ( ) ( ) ( )

w w

w w

H m y y y y t d H m m Y Y Y Y Y

ID

H ID Y H m Y Y H m Y Y Y Y

x v T

Y Y Y Y
θ η η

τ
⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

 

   
* * * * * * *

0 1 2 3 4( , , , , , , )*

4

1

( ) w
H m m Y Y Y Y Y

Y

⋅  

*
* * * * * * * * * ** *,0 0 1 2 3 0 1

* * * * * * * * * *
0 1 2 0 1 2 3

( , ) 2 ( , , , , ) ( , , )2

2 0

2 ( , ) ( , , ) ( , , , , )* 2 * * *

0 0 2 3

( )

( ) ( ) ( ) ( )

ID w wID

w w

H ID x a r H m y y y y t H m T T sa

H ID Y H m Y Y H m Y Y Y Y

g v v

Y Y Y Y
θ η η

µ µ
⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

 

   

* * * * * * * *
0 1 2 3 4

* * * * * * *
0 1 2 3 4

( , , , , , , )

( , , , , , , )*

4
( )

w

w

d H m m Y Y Y Y Y

H m m Y Y Y Y Y
Y

τ
⋅

⋅  

*
* * * * * ** *,0 0 1 2 3

* * * * * * * * * *
0 1 2 0 1 2 3

( , ) 2 ( , , , , )2

2 2

2 ( , ) ( , , ) ( , , , , )* 2 * * *

0 0 2 3

( )

( ) ( ) ( ) ( )

ID wID

w w

H ID x a r H m y y y y ta

H ID Y H m Y Y H m Y Y Y Y

g g g g g

Y Y Y Y

θ
ηγ

θ η η

⋅

⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

 

   

* * * * * * * * * * * *
0 1 0 1 2 3 4

* * * * * * *
0 1 2 3 4

( , , ) ( , , , , , , )

2

( , , , , , , )*

4

( )

( )

w w

w

H m T T s d H m m Y Y Y Y Y

H m m Y Y Y Y Y

g g g

Y

η λ⋅ ⋅ ⋅

⋅ ⋅

⋅  

* * * * * * * *
*

0 0 1 2 3

* * * * * * * * * *
0 1 2 0 1 2 3

2( , ) ( , , , , )2

2 2

2 ( , ) ( , , ) ( , , , , )* 2 * * *

0 0 2 3

( )

( ) ( ) ( ) ( )

wID

w w

a r
H ID Y H m Y Y Y Y ta

H ID Y H m Y Y H m Y Y Y Y

g g g g g

Y Y Y Y

θ ηγ

θ η η

⋅ ⋅

⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅

 

   

* * * * * * * * * * * *
1 2 0 1 2 3 4

* * * * * * *
0 1 2 3 4

( , , ) ( , , , , , , )

2 22

2( , , , , , , )*

4

( )
,

( )

w w

w

H m Y Y s d H m m Y Y Y Y Y

a ab

H m m Y Y Y Y Y

g g g
g g

Y

η λ⋅ ⋅ ⋅

⋅

⋅ ⋅

⋅ = =  

from which C  can compute ab
g .  

(3) 3:T type=  A  outputs a forged proxy signature 
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* * * * * * * * *

0 1 2 3 4 5
( , , , , , , , )

p w
m m Y Y Y Y Y Yσ = , where *

i
ID  ( 1i > ) 

is the original signer and 
1

ID is the proxy signer. If 

*
1

* * * * * * * *

0 1 2 3 4
( , , , , , , ) 0

i
ID wID

a r a r d H m m Y Y Y Y Yγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ≠

modq , then C  aborts; otherwise, C  can compute  

* * * * * *
1 0 1 1 2

*

5

( , ) ( , ) ( , , )* * * * *

0 0 1 1 2
( ) ( ) ( )i wH ID Y H ID Y H m Y Y

Y

Y Y Y Y Y
θ θ η⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

 

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4( , , , , ) ( , , , , , , )* *

3 4

1

( ) ( )w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

 

* * * * * * * *
0 1 2 3 4

* * * * * *
1 0 1 1 2

( , , , , , , )*

4

( , ) ( , ) ( , , )* * * * *

0 0 1 1 2
( ) ( ) ( )

w

i w

d H m m Y Y Y Y Y

H ID Y H ID Y H m Y Y

y

Y Y Y Y Y
θ θ η

τ
⋅

⋅ ⋅ ⋅

⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4( , , , , ) ( , , , , , , )* *

3 4

1

( ) ( )w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

 

* * * * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

1

* * * * * *
1 0 1 1 2

( , , , , ) ( , , , , , , )*

,1 2

( , ) ( , ) ( , , )* * * * *

0 0 1 1 2
( ) ( ) ( )

w w

i w

H m y y y y t d H m m Y Y Y Y Y

ID

H ID Y H ID Y H m Y Y

x v T

Y Y Y Y Y
θ θ η

τ
⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4( , , , , ) ( , , , , , , )* *

3 4

1

( ) ( )w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

 

* * * * * *
1 ,0 0 1 2 31 1

* * * * * *
1 0 1 1 2

( , ) ( , , , , )

2 0

( , ) ( , ) ( , , )* * * * *

0 0 1 1 2

( )

( ) ( ) ( )

ID ID w

i w

H ID x a r H m y y y y ta

H ID Y H ID Y H m Y Y

g v

Y Y Y Y Y
θ θ η

μ μ
⋅

⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * * * * * * * * * * **
*,0 0 1 0 1 2 3 4

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

( , ) ( , , ) ( , , , , , , )

2 0

( , , , , ) ( , , , , , , )* *

3 4

( )

( ) ( )

i ID IDi i w w

w w

a r
H ID x H m T T s d H m m Y Y Y Y Ya

H m Y Y Y Y H m m Y Y Y Y Y

g v

Y Y
η

μ μ τ
⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

 

* * * * * *
1 ,0 0 1 2 31 1

* * * * * *
1 0 1 1 2

( , ) ( , , , , )

2 2

( , ) ( , ) ( , , )* * * * *

0 0 1 1 2

( )

( ) ( ) ( )

ID ID w

i w

H ID x a r H m y y y y ta

H ID Y H ID Y H m Y Y

g g g g g

Y Y Y Y Y

θ ηγ

θ θ η

⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * * **
*,0 0 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

( , ) ( , , )

2 2

( , , , , ) ( , , , , , , )* *

3 4

( )

( ) ( )

i ID IDi i w

w w

a r
H ID x H m T T sa

H m Y Y Y Y H m m Y Y Y Y Y

g g g g g

Y Y

θ ηγ

η

⋅

⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

 

   

* * * * * * * *
0 1 2 3 4( , , , , , , )

2
( ) w

d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅  

* * * * * * *
1 0 0 1 2 31

* * * * * *
1 0 1 1 2

( , ) ( , , , , )

2 2

( , ) ( , ) ( , , )* * * * *

0 0 1 1 2

( )

( ) ( ) ( )

ID w

i w

a rH ID Y H m Y Y Y Y ta

H ID Y H ID Y H m Y Y

g g g g g

Y Y Y Y Y

θ ηγ

θ θ η

⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * * * **
1 1 2

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

( , ) ( , , )

2 2

( , , , , ) ( , , , , , , )* *

3 4

( )

( ) ( )

IDi i w

w w

a r
H ID Y H m Y Y sa

H m Y Y Y Y H m m Y Y Y Y Y

g g g g g

Y Y

θ ηγ

η

⋅

⋅ ⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

 

   

* * * * * * * *
0 1 2 3 4( , , , , , , )

2
( ) w

d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅  

2 2

2

a ab
g g

⋅

= = , from which C  can compute ab
g .  

(4) 4 :T type=  A  outputs a forged proxy signature 
* * * * * * * * *

0 1 2 3 4 5
( , , , , , , , )

p w
m m Y Y Y Y Y Yσ = , where 

1
ID  is the 

original signer and *

i
ID  ( 1i > ) is the proxy signer. If 

*
1

* * * * * * * *

0 1 2 3 4
( , , , , , , )

i
ID wID

a r a r d H m m Y Y Y Y Yγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

0≠  modq , then C  aborts; otherwise, C  can compute  

* * * * **
0 1 21 1

*

5

( , ) ( , , )( , )* * * * *

0 0 1 1 2
( ) ( ) ( )i wH ID Y H m Y YH ID Y

Y

Y Y Y Y Y
θ ηθ⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

 

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4( , , , , ) ( , , , , , , )* *

3 4

1

( ) ( )w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

 

* * * * * * * *
0 1 2 3 4

* * * * **
0 1 21 1

( , , , , , , )*

4

( , ) ( , , )( , )* * * * *

0 0 1 1 2
( ) ( ) ( )

w

i w

d H m m Y Y Y Y Y

H ID Y H m Y YH ID Y

y

Y Y Y Y Y
θ ηθ

τ
⋅

⋅ ⋅⋅

⋅

=

⋅ ⋅ ⋅ ⋅

 

   
* * * * * * * * * * * *

0 1 2 3 0 1 2 3 4( , , , , ) ( , , , , , , )* *

3 4

1

( ) ( )w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

 

* * * * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

*

* * * * **
0 1 21 1

( , , , , ) ( , , , , , , )*

2,1

( , ) ( , , )( , )* * * * *

0 0 1 1 2
( ) ( ) ( )

w w

i

i w

H m y y y y t d H m m Y Y Y Y Y

ID

H ID Y H m Y YH ID Y

x v T

Y Y Y Y Y
θ ηθ

τ
⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   
* * * * * * * * * * * *

0 1 2 3 0 1 2 3 4( , , , , ) ( , , , , , , )* *

3 4

1

( ) ( )w w
H m Y Y Y Y H m m Y Y Y Y Y

Y Y
η ⋅

⋅

⋅

 

* * * * * * **
*,0 0 1 2 3

* * * * **
0 1 21 1

( , ) ( , , , , )

2 0

( , ) ( , , )( , )* * * * *

0 0 1 1 2

( )

( ) ( ) ( )

i ID IDi i w

i w

a rH ID x H m y y y y ta

H ID Y H m Y YH ID Y

g v

Y Y Y Y Y
θ ηθ

µ µ
⋅

⋅

⋅ ⋅⋅

⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * * * * * * * * * *
1 ,0 0 1 0 1 2 3 41 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

( , ) ( , , ) ( , , , , , , )

2 0

( , , , , ) ( , , , , , , )* *

3 4

( )

( ) ( )

ID ID w w

w w

H ID x a r H m T T s d H m m Y Y Y Y Ya

H m Y Y Y Y H m m Y Y Y Y Y

g v

Y Y
η

μ μ τ
⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

 

* * * * * * **
*,0 0 1 2 3

* * * * **
0 1 21 1

( , ) ( , , , , )

2 2

( , ) ( , , )( , )* * * * *

0 0 1 1 2

( )

( ) ( ) ( )

i ID IDi i w

i w

a rH ID x H m y y y y ta

H ID Y H m Y YH ID Y

g g g g g

Y Y Y Y Y

θ ηγ

θ ηθ

⋅

⋅

⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * *
1 ,0 0 11 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

( , ) ( , , )

2 2

( , , , , ) ( , , , , , , )* *

3 4

( )

( ) ( )

ID ID w

w w

H ID x a r H m T T sa

H m Y Y Y Y H m m Y Y Y Y Y

g g g g g

Y Y

θ ηγ

η

⋅ ⋅

⋅ ⋅

⋅

⋅ ⋅ ⋅ ⋅

⋅

⋅

 

   
* * * * * * * *

0 1 2 3 4( , , , , , , )

2
( ) w

d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅  

* * * * * * * **
0 0 1 2 3

* * * * **
0 1 21 1

( , ) ( , , , , )

2 2

( , ) ( , , )( , )* * * * *

0 0 1 1 2

( )

( ) ( ) ( )

IDi i w

i w

a r
H ID Y H m Y Y Y Y ta

H ID Y H m Y YH ID Y

g g g g g

Y Y Y Y Y

θ ηγ

θ ηθ

⋅

⋅ ⋅ ⋅

⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

 

   

* * * **
1 21 1 1

* * * * * * * * * * * *
0 1 2 3 0 1 2 3 4

( , , )( , )

2 2

( , , , , ) ( , , , , , , )* *

3 4

( )
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2
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d H m m Y Y Y Y Y
g g

λ ⋅

⋅ ⋅  
2 2

2

a ab
g g

⋅

= = , from which C  can compute ab
g .  

Now we assess the probability of success. In the 

forgery stage, it must have 
*

*

ID
a r dγ λ⋅ ⋅ + ⋅  

* * *

0 1
( , , ) 0modH m X X q⋅ = for 1,T type=  or 

*
2

ID
a rγ⋅ ⋅ ⋅ +  

* * * * * * * *

0 1 2 3 4
( , , , , , , ) 0mod

w
d H m m Y Y Y Y Y qλ ⋅ ⋅ =  for 2,T type=  

or 
*

1

* * * * * * * *

0 1 2 3 4
( , , , , , , )

i
ID wID

a r a r d H m m Y Y Y Y Yγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅  

0modq=  for 3,T type=  or 
*

1

*

i
ID ID

a r a r dγ γ λ⋅ ⋅ + ⋅ ⋅ + ⋅  

* * * * * * *

0 1 2 3 4
( , , , , , , ) 0mod

w
H m m Y Y Y Y Y q⋅ =  for 4T type= . 

The equations are the same for 3T type=  and 

4T type= . The probability of the above four equations 

holding is all 1 q . Thus, the total probability is 3 qε . 

The time complexity of C  depends on the 

exponentiations and multiplications needed in all above 

queries. The key queries need 11 
mul
t  computations and 

15 
exp
t  computations. The signature queries need 4 

mul
t  

computations and 5 
exp
t  computations. 
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6.3 Efficiency 

We compare our scheme in terms of computational 

costs and communicational overheads with other 

identity-based proxy signature schemes, which include 

Gu et al.’s scheme [11] and Hu et al.’s scheme [17-18] 

in the standard model, Shim’s scheme [21] and Wu et 

al.’s scheme [22] in the random oracle model. The 

comparisons are listed in Table 1 and Table 2. We use 

1
e  and P  to denote a scalar multiplication (or an 

exponentiation) computation on 
1

G  and a pairing 

computation, respectively. Other computations are 

ignored here as they are not time consuming. 
1

| |G , 

| |
w

m , | |q and | |m denote the bit length of an element 

on 
1

G , a warrant, the order of 
1

G  and a message, 

respectively. “S” and “Rom” denote the standard 

model and the random oracle model, respectively. The 

pairing computations that can be precomputed are not 

included in Table 1. According to scheme [23], a 

pairing computation is almost 20 times that of a scalar 

multiplication computation on 
1

G , so we mainly focus 

on the pairing computations. From Table 1, we can see 

that the differences between computation costs in all 

stages except the proxy verification are one or two 
1
e  

operations, so we can conclude that the computation 

costs in these stages are very close. In the proxy 

verification stage, schemes [17] and [21] are the most 

efficient ones as they only need three pairings. Scheme 

[18] and ours are the least efficient ones as they need 

six pairings. From Table 1, we can also conclude that 

we can make efficient schemes in the random oracle 

model. Of course, we can also make efficient schemes 

in the standard model like scheme [17], but the cost is 

the longer public parameters in the setup stage. Scheme 

[17] needs n+3 public parameters in the setup stage. In 

practice, n should be at least 160. Therefore, scheme 

[17] will need more storage space. Based on the 80-bit 

security level, | |q =160 and 
1

| |G =1024. It will need 

extra storage space of 160k bits. From Table 2, we can 

see that schemes [21] and [22] have the shortest length 

in all aspects. Therefore, schemes in the random oracle 

model are more communicationally efficient than those 

in the standard model. Scheme [17] has the shortest 

length in the standard model. Also based on the 80-bit 

security level, our scheme is 2752 bits longer than 

scheme [17] in the proxy signature stage. In general, 

our scheme increases some computational costs and 

communicational overheads, but they are still within 

the acceptable range. Regarding the resistance to proxy 

key exposure attack, schemes [11, 18, 21] all compute 

an independent proxy key like ours. But if the proxy 

key is exposed, the original signer can compute the 

private key of the proxy signer in all these schemes. 

About schemes [17, 22], as they do not consider the 

proxy key exposure attack, they are insecure under this 

attack.  

Table 1. Computational cost and security comparisons with other schemes 

Schemes Delegate 
Delegate 

verify 

ProxyKey 

Gen 

Proxy

sign 

Proxy 

verify 

Public 

Parameter 
Model Security 

Gu et al. [11] 2
1
e  2

1
e +3 P  0 3

1
e  4

1
e +5 P  7 S Insecure 

Hu et al. [17] 2
1
e  

1
e +3 P  0 2

1
e  2

1
e +3 P  n+3 S Secure 

Hu et al. [18] 3
1
e  2

1
e +3 P  0 3

1
e  4

1
e +6 P  9 S Insecure 

Shim [21] 3
1
e  

1
e +3 P  

1
e  3

1
e  3

1
e +3 P  3 Rom Secure 

Wu et al. [22] 2
1
e  3 P  0 2

1
e  5 P  2 Rom Secure 

Ours 2
1
e  2

1
e +3 P  2

1
e  2

1
e  5

1
e +6 P  7 S Secure 

Note. n denotes the bit length of an identity. 

Table 2. Length comparison with other schemes 

Schemes Private key Delegation Proxy signature 
Against the proxy key 

exposure attack 

Gu et al. [11] 2
1

| |G  3
1

| |G + | |
w

m  5
1

| |G + | |
w

m + | |m  No 

Hu et al. [17] 1
| |G + | |q  2

1
| |G + | |q  3

1
| |G +2 | |q + | |

w
m + | |m  No 

Hu et al. [18] 2
1

| |G  3
1

| |G + | |
w

m  5
1

| |G + | |
w

m + | |m  No 

Shim [21] 1
| |G  2

1
| |G + | |

w
m  3

1
| |G + | |

w
m + | |m  No 

Wu et al. [22] 1
| |G  2

1
| |G + | |

w
m  3

1
| |G + | |

w
m + | |m  No 

Ours 2
1

| |G  3
1

| |G + | |
w

m  6
1

| |G + | |
w

m + | |m  Yes 
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7 Application 

Mobile agent is a movable intelligent software 

program. It can implement a series of tasks according 

to the needs of users. Let’s suppose a mobile agent 

who books flight tickets for a user in the Internet. In 

order to achieve unforgeability, the mobile agent must 

use a signature scheme. The Internet is an open 

environment overrun by hackers and viruses. If we use 

the user’s long-term private key for signature operation, 

it has the risk of being exposed. A better strategy is to 

use a proxy signature. The user delegates his/her 

signing right to the mobile agent. Then the mobile 

agent acts as a proxy signer to sign messages on behalf 

of the user. The proxy private key is stored in the 

mobile agent instead of the long-term private key of 

the user. Even if the proxy private key in the mobile 

agent is exposed, it should not leak any information 

about the long-term private key. As our scheme is 

secure against proxy key exposure attack, it can be 

deployed in this scenario. 

8 Conclusion 

In this paper, we show that Hu et al.’s identity based 

proxy signature scheme in the standard model is 

insecure. We give four concrete kinds of attacks to 

their scheme. Then, we propose an improved scheme. 

We analysis the reasons why their scheme is insecure 

and the design principles of our improved scheme. We 

prove ours to be secure under the CDH assumption. At 

last, we evaluate the efficiency of our improved 

scheme, which shows that it is practical. The future 

work is to design identity-based proxy signature 

schemes which can resist the quantum attacks, such as 

schemes based on multivariate public key 

cryptography or lattice problems. 
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