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Abstract 

Companions of moving objects are object groups that 

move together in a period of time. This paper proposes to 

instantly discover companion vehicles from a special kind 

of streaming sensor data, called Automatic Number Plate 

Recognition (ANPR) data. Compared to related 

approaches, we transform the companion discovery into a 

frequent sequence mining problem. We make several 

improvements on top of our previous work, including one 

scan and tree traversal reduction, to optimize the 

performance of our previous approach and accelerate the 

process of discovering companion vehicles. Finally, 

extensive experiments are done to show efficiency and 

effectiveness of our approach. 

Keywords: Companion vehicles, ANPR data stream, 

Moment companion, Traveling companion, 
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1 Introduction 

To monitor the running of the real world, widely 

deployed sensors today keep generating a large volume 

of streaming sensor data. Instant analyses of them can 

create lots of interesting value-added applications that 

we never imagined before. In this paper, we put our 

focus on a special kind of streaming sensor data, which 

is called Automatic Number Plate Recognition (ANPR) 

data. It is generated by the cameras deployed on roads 

through continuously taking pictures of passing 

vehicles. 

Compared with GPS (Global Positioning System) 

data, ANPR data provides another source to study the 

movement patterns of vehicles in a large city. 

Companion vehicles are a useful movement pattern, 

which means vehicles that move together in a period of 

time. Today, timely discovering companion vehicles 

over traffic data stream has gradually attracts more 

attentions of researchers [1-8]. Such ability is very 

useful in many time sensitive scenarios like solving 

crimes, detecting suspicious trackers and pursuing 

escaped criminals. For example, vehicles such as bank 

cash carriers and taxies are more exposed to criminals’ 

attentions in recent years. Criminals usually follow 

them for a while before reaching a suitable, secluded 

spot to commit a robbery. Detecting suspicious 

trackers over traffic data stream and alert the tracked 

driver in time can help to prevent such crimes. 

However, lots of researchers study on how to 

discover companion vehicles based on historical or 

real-time GPS dataset [1-8]. GPS data is generated 

from GPS devices installed on vehicles and sent back 

within a fixed frequency. Vehicles without GPS device 

or turning such devices off will not generate enough 

data to make further analyses. For example, in some 

special occasions like vehicle tracking and criminal 

escaping, suspects often turn the GPS device off or 

even remove it to avoid being captured. Obviously, 

GPS data is not a good choice to be counted on when 

meeting requirements in such occasions. 

To make useful complements to current researches, 

our previous works introduce a different kind of traffic 

big data, called as ANPR (Automatic Number Plate 

Recognition) data [9-11]. Compared with GPS data, 

ANPR data comes from Traffic Enforcement Cameras, 

which are a special kind of sensors installed at most 

road crossings in most cities in China. These cameras 

continuously take pictures of passing vehicles with 

approximate one second interval at rush hour. Vehicle 

information, e.g., plate number and passing time, is 

automatically recognized and transmitted to a data 

center of traffic management department in form of 

data stream. ANPR data provides the capacity of 

around-the-clock and wide-range monitoring of 

vehicles. Presently, the number of cameras installed in 

a big city in China exceeds 5,000 and continues to 

increase. It leads to the total number of ANPR records 
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in each day beyond 144 million. Eventually, the total 

data volume can get into multi-petabyte scale per 

annum. 

In our previous works, we have designed several 

algorithms to effectively discover companion vehicles 

on ANPR data. In [9], we borrow ideas from frequent 

itemset mining algorithm, like Apriori algorithm, to 

mine companion vehicles from historical ANPR 

dataset and apply it into a scenario of carpooling 

recommendations. Then, in [10-11], we try to discover 

companion vehicles from live ANPR data stream. To 

reach this goal, we firstly propose a concept called 

Moment Companion, which records a snapshot of 

companion vehicles for a vehicle when it passes 

through a camera. Then, we transform the discovery of 

companion vehicles into a frequent sequence mining 

problem. However, we met performance bottlenecks 

when making guarantees about the instantaneity on 

discovering companion vehicles over ANPR data 

stream. Our previous experiments show that the 

latency of our previous algorithm under some case can 

reach 1500ms and even more on real ANPR data 

stream, which is higher than the minimum value of 

time interval between two real ANPR data records (1 

second). It means there are probabilities that an 

obvious delay will be emerged with such latencies 

keeping accumulated. 

In this paper, we make lots of efforts to consummate 

our previous work [11]. We focus on how to improve 

the performance of our algorithm when handling 

ANPR data stream. The main contributions include: (1) 

Borrowing ideas from [12], we revise our window 

model to receive and handle incoming ANPR data 

stream. With this new window model, we can greatly 

decrease the times of scanning data records of our 

algorithm. And the error is guaranteed not to exceed a 

user specified parameter. (2) We create a list Vlist of 

references of nodes on IST
+ (Improved Inverse Closed 

Sequence Tree) to reduce the cost of tree traversal. 

Based on Vlist, we only need to visit the nodes 

containing those accompanying vehicles with the new 

arriving ones instead of every node on IST+. (3) More 

experiments are done to show efficiency and 

effectiveness of our improved algorithms. We compare 

the performance between our previous algorithm and 

the improved algorithm on a real ANPR dataset and 

several simulated datasets with data arrival rate 1000, 

2000, to 5000 records per second. The experimental 

results show that the performance of our algorithm is 

improved more than 70% and 59% on the real dataset 

and simulated datasets respectively. 

2 Problem Analysis 

Figure 1 shows the effects of our algorithm, which 

tries to instantly compute companions of a given 

vehicle passing through a camera. As this figure shows, 

cameras are spread over road crossings. Each camera is 

a source of a data stream, and continuously generates 

ANPR data records. 

 

Figure 1. The illustration of discovering traveling companions 

An ANPR data record r = (c, v, t) means a vehicle v 

passes through a camera c at time t. For example, 

(CAM04612111, JingCN8R**, 2013-1-1 11:27:00) is a 

real ANPR data record. 

We try to discover companion vehicles in 

accordance with traveling companion pattern proposed 

by Tang [7]. However, the definition is given based on 

GPS data. In [7], based on GPS data, a traveling 

companion pattern is defined as a clustering of moving 

objects traveling together within a duration no shorter 

than pre-specified value. Specifically, the authors learn 

from the classic density-based clustering [13] to group 

the moving objects in each snapshot. 

However, ANPR data is very different. Firstly, it is 

essentially discrete on location. Each ANPR data 

record is generated from a camera fixed on the road. 

The involved location information is the fixed camera 

location. Thus, all ANPR data records are distributed at 
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cameras on roads. Secondly, the generation frequency 

of ANPR data is not constant. It depends on frequency 

with which vehicles pass through a camera. And each 

camera generates one data record per second at most. 

Hence, existing methods developed such like density-

based clustering are not suitable for ANPR data. 

The concepts of Moment Companion and Traveling 

Companion have been defined in our previous works. 

Their definitions are shown as follows: 

Definition 1 (moment companion). Let Δt be the time 

threshold, a moment companion for camera c at time t2 

can be defined as: MC(c, t2, Δt) = (V, c, t1, t2), where V 

= {r.v | t1 ≤ r.t ≤ t2 ∧  t2-t1 ≤ Δt}, r = (c, v, t) is an 

ANPR data record, and |MC(c, t2, Δt)| > 1. 

Example. In Figure 1, given vehicle v1, {v2, v4, v5}, {v2, 

v5, v6} and {v2, v5, v7} are all moment companions 

when v1 passing through camera CAM07011112, 

CAM89411111 and CAM09712112 successively. 

Definition 2 (traveling companion). Given an ANPR 

data stream S = {r1, r2, …, ri, …} and three thresholds 

time threshold Δt, vehicle number threshold δveh, 

moment companion ratio threshold δmc (0<δmc<1), a 

traveling companion is a sequence of moment 

companions: <MCk, MCk-1, …, MC1>, in which: 

(1) k≥δmc*N, where k is the length of the traveling 

companion and N is the current length of S; 

(2) |MCi.V| ≥ δveh, where i = 1, 2, …, k; 

(3) ∀ i, j = 1, 2, …, k, MCi.V = MCj.V; 

(4) ∀ i = 1, 2, …, k-1, MCi+1.t1>MCi.t2+Δt. 

Example. In Figure 1, TC1 = <MC2, MC1> and TC2 = 

<MC3, MC2, MC1> are both traveling companions, 

where MC1(CAM07011112, t1, Δt) = (V, 

CAM07011112, t1), MC2(CAM89411111, t2, Δt) = (V, 

CAM89411111, t2), and MC3(CAM09712112, t3, Δt) = 

(V, CAM09712112, t3), and each moment companion 

has V = {v1, v2, v5}. 

3 Rationales of Our Algorithm 

3.1 Running Example 

Table 1 shows a simple example of an ANPR 

dataset. We divide this table into two parts. The first 

part is from column t11 to t1. It contains historical data 

records and stores them in a window. The column t12 

are data records newly arrived. We establish a 

sequence for each vehicle by its passing cameras and 

corresponding timestamp. In order to give a clear 

exposition of our algorithm, all examples below in this 

paper are based on the data scenario in Table 1 under 

Δt = 10s. 

Table 1. A sample of an inverse sequence database on ANPR dataset (running example) 

 
t12= 

9:48:39 

t11= 

9:48:38 

t10= 

9:48:31 

t9= 

9:45:29 

t8= 

9:45:28

t7= 

9:45:26 

t6= 

9:40:28

t5= 

9:40:23 

t4= 

9:40:20

t3= 

9:35:06 

t2= 

9:35:03 

t1= 

9:35:00 

v1  c4   c3   c2   c1  

v2 c4   c3   c2   c1   

v3      c3   c2   c1 

v4   c6          

v5  c6   c4        

v6 c6   c4   c3   c2   

v7  c7    c5  c4   c3  

v8   c7 c5     c4 c3   

v9 c7    c5   c3     

 

3.2 Rationales 

As our previous work shows, we borrow ideas of 

frequent sequence to solve our problem. For a given 

time threshold Δt, a traveling companion represents a 

group of vehicles (V) passes each camera c in time 

interval [t-Δt, t]. It means the series of passed cameras 

is contained by the sequence of each vehicle in V in the 

sequence set like Table 1 shows. Hence, the series of 

passed cameras is a frequent sequence in the sequence 

set; V is a set of sequence id, each of which 

corresponding to a sequence containing the series of 

passed cameras. Therefore, we can discover traveling 

companions by mining frequent sequences, each 

element of which occurs in the sequence set within 

time period Δt. 

Our algorithm adopts sliding window mechanism to 

receive input ANPR data stream. To guarantee error 

not to exceed a user specified parameter ∈, the sliding 

window contains ⎡ ⎤1/∈  data records and its following 

Δt data records. We generate a new moment 

companion MC for each new arrival data record. And 

MC is compared with the IST+ by a reference list Vlist, 

which is designed for facilitating tree traversal. If the 

vehicle set involved in the moment companion is 

contained completely by a node on IST+, we increase 

its frequency by one and insert a node storing the 

moment companion into IST+. If the vehicle set is 

partly contained by a node, we split the node and its 

descendants, and increase the frequency of each split 

node. Then, we also insert a node. Additionally, if 

there is no node containing the vehicle set completely, 

we create a new node for the new moment companion 

and set the frequency to be 1. We also prune the IST+ 

by deleting nodes at window boundaries. Figure 2 

shows the framework of our algorithm. 
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Figure 2. The framework of our algorithm 

4 Traveling Companion Discovery on 

ANPR Data Stream 

4.1 IST
+

 Tree 

To record discovered traveling companions, our 

previous work proposed a new data structure, which is 

called IST+. It is a variation of the IST (Inverse Closed 

Sequence Tree) data structure which is initially 

proposed in SeqStream [14]. An IST is used to keep 

closed frequent sequential patterns in the sequence 

database of current sliding window. A node n 

(containing a data item and its frequency) of an IST 

corresponds to a sequence that starts from the root 

node to node n, and the sequence is denoted by 
n
s . The 

root node of an IST is a NULL node, which represents 

an empty sequence φ . Except for the root node, nodes 

of an IST can be divided into following three types. 

‧ c-node (closed node): If sn is a closed sequential 

pattern in D’, n is a c-node. 

‧ t-node (termination node): n is a t-node if 1) there 

exists a frequent sequence β in D’ such that β ⊐ sn 

and D’β; 2) it does not have any t-node ancestor. 

‧ i-node (intermediate node): If sn is frequent, n is 

neither a c-node nor a t-node, and n has no t-node 

ancestor, then n is an i-node. 

Based on IST, we design IST+ to represent traveling 

companions by taking the temporal constraint into 

account. Like IST, IST+ is a rooted prefix tree as well. 

Based on IST and our previous work, we give the 

formal definition of IST+. 

Definition 3 (IST
+

, improved inverse closed 

sequence tree). IST+ is a tree structure defined below. 

(1) It consists of one root labeled as “null” and a set 

of item prefix subtrees as the children of root. 

(2) Each node n in the item prefix subtree consists of 

four fields: item (n.MC, a moment companion), 

counter (n.counter, an integer), error (n.errormax, an 

integer) and node type (n.type), where item registers 

which moment companion this node represents; 

counter records the frequency of n.V since it is added 

into the tree; error determines the maximum possible 

error in n.counter; node type flags whether the 

sequence from root to this node is closed or not. 

The node type (n.type) of an IST+ node is in 

accordance with IST tree. A difference between IST+ 

and IST tree is that IST+ tree doesn’t keep any live t-

nodes. If a c-node becomes a t-node, it will be 

abandoned immediately. 

The performance bottleneck of our previous 

algorithm is the traversal cost on the IST+ when a new 

moment companion is generated. To solve this 

problem, we design a reference list of nodes on IST+ to 

facilitate tree traversal based on the following theorem 

proposed in our previous work. 

Theorem 1. Given a new data record r arriving at time 

t, database 
r

D
+  contains all newly emerging traveling 

companions related to the arrival of r, where 
r

D
+

=  

{ | , , . ., . , . ( , , ). }.r c t s t r v r v MC c t t V′ ′∃ Δ ∈ Δ  

According to the theorem, we maintain a separate 

hashmap of references to the depth-1 nodes, which is 

called Vlist. Each element in Vlist corresponds to one 

vehicle. It keeps all depth-1 nodes on IST+ which 

involves the vehicle. When a new moment companion 

occurs, our algorithm gets all depth-1 nodes containing 

any vehicle in the moment companion by Vlist. Figure 

3 presents the Vlist following our running example. 
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Figure 3. The vlist in our running example 

For each new data record, our algorithm generates a 

new moment companion MC and compares MC with 

each depth-1 node on the IST+ gained by Vlist. If a 

depth-1 node on the tree involves or partly involves the 

vehicle set in MC, we increase the counter of the 

involved vehicles by one. There are four cases of the 

comparison results. 

Case 1: MC.V = n.MC.V. In this case, we increase 

the counter by one in node n. For each descendant 

node nd of n satisfying nd.MC.V = MC.V, we also 

increase its counter by one. At the same time, we insert 

a new node n’’ between root node and n such that 

n.MC = MC and n’’.counter = n.counter, n’’.errormax = 

n. errormax. 

Case 2: MC.V ⊂  n.MC.V. In this case, we split node 

n’ from n, where n’.MC = MC. For each descendant 

node nd of n satisfying MC.V ⊂  nd.MC.V, split n’d 

from nd, where n’d.MC.V = MC.V. Then we increase 

the counter by one in each split node and insert a node 

n’’ with n’’.MC = MC between the root node and node 

n’. 

Case 3: MC.V ⊃  n.MC.V. In this case, we generate 

a moment companion MC’ from MC, where MC’.V = 

n.MC.V. Herein, we process this MC’ in the way of 

case 1. 

Case 4: |MC.V ∩  n.MC.V| ≥ δveh, |MC.V - n.MC.V| > 

0 and |n.MC.V - MC.V| > 0. In this case, we generate a 

moment companion MC’ from MC, where MC’.V = 

MC.V ∩  n.MC.V. Herein, we process this MC’ in the 

way of case 2. 

After whole traversal, if there is no depth-1 node 

involving the vehicle set of MC completely, we need 

create a new node m with m.MC = MC, m.counter = 1 

and m.errormax = wcurrent – 1. 

Furthermore, a depth-1 node may not need to be 

compared with every moment companion generated at 

same timestamp. The following theorem elaborates the 

foundation. 

Lemma 1. Any two newly emerging moment 

companions 
i

MC  and 
j

MC  at same timestamp satisfy 

that MCi.V ∩ MCj.V = ϕ. 

Theorem 2. Given a new arriving data record r, MC is 

the emerging moment companion related to data record 

r. If |n.MC.V – MC.V| <  δveh, node n needs no 

comparison with other newly emerging moment 

companions, where n.MC.V – MC.V = {v|v∈n.MC.V 
∧  v∉MC.V}. 

Proof. We prove this theorem in two cases. 

Firstly, |n.MC.V – MC.V| = 0. In this case, we get 

n.MC.V ⊆  MC.V. According to lemma 1, there is no 

any other new moment companion containing n.MC.V. 

Thus, depth-1 node n needs no comparison with other 

new moment companions. 

Secondly, 0 <  |n.MC.V – MC.V| <  δveh. In this case, 

we get MC.V ∩ n.MC.V ≠ ϕ. According to lemma 1, 

there is no any other new moment companion 

containing n.MC.V. And there either will be no any 

other new moment companion MC’ satisfying that 

MC’.V ⊉  n.MC.V ∧  |MC’.V ∩ n.MC.V| ≥ δveh, 

because MC’.V ∩ n.MC.V ⊆  n.MC.V – MC.V. Hence, 

depth-1 node n needs no comparison with other new 

moment companions in this case either. Proof is over. 

After traversing the depth-1 nodes on IST+ in the 

above cases, we need to check consistency on the 

processing results. It is because that a new moment 

companion may have same overlapped vehicle sets 

with different depth-1 nodes. Under this situation, 

more than one subtrees will be generated which keeps 

same vehicles. These subtrees save repetitive 

information. We merge them to keep the maximal one 

on the tree. 

We prune IST+ at each sliding window boundary. 

The strategy of deletion is as follows. For each node n 

on IST+, if n.counter + n.errormax ≤ wcurrent, node n 

needs to be deleted. In this paper, we adopt a lazy 

deletion strategy. It means we only prune the nodes 

which are affected by the new moment companions as 
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well as their descendants. 

4.2 Sliding Window 

Our algorithm is improved to compute traveling 

companion over ANPR data stream in one pass, 

satisfying approximation guarantee. Thus, the user has 

to specify error parameter (0,1)e∈  such that 
mc

δ∈� . 

Incoming ANPR data stream is received by the sliding 

window presented below. Denote N as the current 

length of incoming ANPR data stream. Let ⎡ ⎤1 1/w = ∈ , 

and the timestamp of the num*w1th (num = 0, 1, …) 

data record as t. Each sliding window contains w1 data 

records and data records in the following time scope 

[ , ]t t t+ Δ . Denote the window size as w. And set the 

sliding distance to be 
1

w . Each sliding window is 

labeled with a window id, which starts from 1. The 

current window id is denoted as wcurrent such that 

⎡ ⎤/ 1/current
w N= ⎡ ⎤∈⎢ ⎥ . The overlapped portion between 

two adjacent windows in this paper is much smaller 

than that in our previous work, since the sliding 

distance is set to be 1 second in our previous work. It 

indicates that our new sliding window model saves 

space by avoiding storing repetitive data. Figure 4 

illustrates the sliding window model used in this paper. 

Finally, the improved algorithm outputs the 

traveling companions with no less than (δmc- ∈ )*N 

moment companions. In fact, counter in a node refers 

to the frequency of vehicle set n.MC.V since it is added 

into the tree. It is an approximate value. We denote its 

true frequency in the whole ANPR data stream seen so 

far by ftrue. We guarantee the accuracy of our algorithm 

according to a classic frequent item mining algorithm 

on stream, which is called Lossy Counting [12]. 

 

Figure 4. Sliding window model (N is the current length of incoming ANPR data stream) 

Theorem 3. For any node n on IST+, we have that 

n.counter ≤ ftrue ≤ n.counter + N∈ . 

Proof. Firstly, according to the sliding window model, 

whenever deletions occur, wcurrent ≤ N∈ . 

Secondly, whenever a node n gets deleted, ftrue 

≤wcurrent. We prove it by induction. Base case: wcurrent = 

1. A node will be deleted only if n.counter = 1. In this 

case, ftrue = 1. Obviously, ftrue ≤wcurrent. Induction step: 

Assume that ftrue ≤wcurrent holds under wcurrent = k-1. 

Considering a node m which is deleted under wcurrent = k, 

the vehicle set m.MC.V is added into the IST+ in the 

window with id m.errormax +1. Some nodes for the 

vehicle set may be deleted at the boundary of window 

m.errormax (i.e., window m.errormax gets full). By the 

induction, when this deletion occurred, the true 

frequency of the vehicle set is no more than m.errormax. 

Furthermore, m.counter is the true frequency of the 

vehicle set since it was added into the tree. Therefore, 

the true frequency of this vehicle set on the whole 

input stream is at most m.counter + m.errormax. 

Combined with the deletion strategy counter + errormax 

≤ wcurrent, we get that ftrue ≤wcurrent. 

Thirdly, if a vehicle set does not appear in the IST+, 

then ftrue ≤ N∈ . 

Based on the above, for any node n on IST+, we 

have that n.counter ≤ ftrue ≤n.counter + N∈ . 

If n.errormax = 0, then n.counter = ftrue. Otherwise, 

the vehicle set may be deleted in the first n.errormax 

windows. Because the true frequency of the vehicle set 

when the last deletion happened, is at most n.errormax. 

Therefore, ftrue ≤m.counter + m.errormax. Since 

m.errormax ≤ wcurrent – 1 ≤ N∈ , we conclude that 

n.counter ≤ ftrue ≤n.counter + N∈ . Proof is over. 

The above theorem indicates that our algorithm will 

output no false negatives. The vehicle set in each 

traveling companion will have true frequency at least 

(δmc-∈)*N in whole ANPR data stream. 

5 Experiment 

5.1 Experiment Setup 

Parameters. We do experiments to measure the effects 

and efficiency of our algorithm. Our algorithm 

involves several key parameters Δt, δveh, δms and ∈ . 

They should be preassigned before running the 

algorithm. Generally, δveh is set to 2 as a companion 

should contain at least two vehicles. And ∈ is set to be 

ten percent of δms. The values of the rest two 

parameters depend on our experiences from our 

previous work. Table 2 lists the values of each 

parameter selected in our experiments. 
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Table 2. Parameter settings 

Parameter Explanation Value 

Δt Temporal Constraint on Moment Companion; Δt = 20s, 40s, …, 180s; 

δveh Vehicle Number Threshold on Traveling Companion; δveh = 2; 

δmc Moment Companion Ratio Threshold on Traveling Companion δmc = 0.002‰, 0.003‰,…, 0.01‰; 

 

Baselines. To verify the effects of our algorithm, we 

compare our algorithm with three state of the art 

algorithms on discovering flock/convoy pattern [1-5], 

swarm pattern [6] and traveling companion pattern [7]. 

Authors proposed two algorithms to discover traveling 

companions, which generate same results according to 

their experiments [7]. We select the first one in our 

experiment. On the other hand, we compare our 

algorithm with our previous algorithm in [11] to verify 

the improvement on performance. 

Datasets. The following experiments use a real ANPR 

dataset in Beijing, China. The dataset contains vehicle 

information from 2012-11-02 00:00:00 to 2012-11-08 

23:59:59. Totally 1040 cameras and 30,518,191 ANPR 

data records are involved. We have a camera location 

dataset which records the latitude and longitude of 

each camera involved in our ANPR dataset. Besides, to 

verify the ability of handling high speed data stream, 

we simulate five ANPR datasets with data arrival of 

1000, 2000, …, 5000 records per second based on the 

real dataset. We simulate each dataset as a stream. The 

time interval between two adjacent data records is in 

accordance with real intervals when they were shot by 

cameras. 

Environments. The experiments are done on a PC 

with four Intel Core i5-2400 CPUs 3.10G Hz and 4.00 

GB RAM. The operating system is Windows 7 

Ultimate. All the algorithms are implemented in Java 

with JDK 1.8.0. 

5.2 Effectiveness 

In this part, we firstly evaluate the effects of our 

algorithm. To evaluate the effects of our algorithm, we 

run the baseline methods on 7 days of ANPR datasets 

integrated with the camera location dataset. According 

to baseline methods, we set the distance threshold to be 

300 meters. On the other hand, we input the unchanged 

ANPR datasets into CompanionMiner algorithm with 

Δt = 60s, δms = 0.002‰, and δveh = 2. Experimental 

results are shown in Figure 5. 

 

Figure 5. Comparison of effects among different methods 

As Figure 5 shows, flock/convoy algorithm 

discovered the least patterns; Swarm algorithm find a 

little more results than TraCom algorithm; our 

algorithm found the most results. We firstly analyze 

the results to conclude that each pattern discovered by 

any baseline method is contained by our algorithm. 

There can be more than one camera at each road 

crossing to monitor vehicles from different directions. 

Cameras at same road crossing locate closely to be 

grouped together by baseline methods. Thus, baseline 

methods can detect vehicles that pass different cameras 

at same road crossing at the same time frequently. That 

is the reason that each baseline method can detect 

patterns over ANPR dataset. However, the detected 

patterns are equal to the patterns with Δt = 0s under our 

algorithm, which reduce the number of companion 

vehicles significantly. Secondly, although the numbers 

of detected patterns by swarm algorithm is more than 

that of TraCom algorithm, each pattern reported by 

swarm algorithm is contained by the results of TraCom. 

The reason is that swarm algorithm adopts distance 

based clustering method and TraCom algorithm 

utilizes density connected clustering method. The 

former method will depart two cameras if their 

distance is larger than pre-specified value. But the 

latter one may group them together if there exists 

another camera c and the distance between any camera 

and the camera c is less than pre-specified value. On 

top of this difference, a group of companion vehicles 

discovered by TraCom may be divided by swarm 
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algorithm. 

5.3 Efficiency 

We further verify our algorithm’s performance in 

two ways in this section. We give the following 

definition. 

Definition 4 (average latency). Let 
i
t  is the time our 

algorithm consumes to discover traveling companions 

for the ith input data record. Assume that N is the 

current length of the ANPR data stream, the average 

latency of our algorithm can be defined as latt =  

/ .
i i
t N∑  

Firstly, we compare the performance of our 

algorithm with our previous work [11] under different 

values of Δt through the following experiments. 

Actually, we also do experiments to verify the 

performance under different δms values. However, the 

experiment results show that δms doesn’t have obvious 

impacts on performance. We run our algorithm 20 

times for different Δt with δms = 0.001‰. Each 

execution lasts for 2 hours from 8:00:00 to 10:00:00 on 

each day to continuously receive arriving ANPR data 

records and instantly output companion results under 

different values of Δt. For each execution, we will 

compute the latency value based on Definition 4. 

Finally, the average latency values are shown in Figure 

6. 

 

Figure 6. Average latency under different Δt between CompanionMiner and our previous algorithm (δmc = 0.001‰) 

Secondly, we compare the efficiency of 

CompanionMiner algorithm with our previous work in 

[11] under different data arrival rate. We simulate five 

ANPR datasets with data arrival rate of 1000, 2000, …, 

5000 records per second. Each dataset spans two hours. 

We run CompanionMiner algorithm and our previous 

algorithm on each simulated dataset with Δt = 60s, δms 

= 0.001‰ and compute the average latency. The 

experiment results are presented in Figure 7. 

 

Figure 7. Average latency under data arrival rate between CompanionMiner and our previous algorithm 

Figure 6 shows the average latency of our previous 

work increases exponentially from Δt = 20s to 180s. 

When Δt ≤ 100s, the average latency is less than 1000 

ms. The minimum value of time interval between two 

ANPR data records is 1 second. It means our previous 

algorithm can instantly discover companions with Δt ≤ 

100s when vehicles passing through camera. However, 

when Δt > 100s, the latency increases sharply. On the 

other hand, CompanionMiner algorithm in this paper 

shows stable average latency with the growth of Δt. 

When Δt reaches 180s, the average latency of our 

algorithm in this paper is around 348.68 ms, which is 
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still lower than 1 second. On the other hand, as Figure 

7 shows, the latency of each algorithm increases 

exponentially. However, the previous algorithm has a 

greater curve than the improved one. 

Based on the experiments in our previous work, 

large Δt will generate more traveling companions. 

Therefore, the experiment results verify that, 

CompanionMiner algorithm improves the performance 

on handling data stream with larger traveling 

companion patterns and higher data arrival rate. 

Specifically, the performance of CompanionMiner 

algorithm on the real dataset is improved more than 

70% and less than 93%. The percentage increases with 

the growth of Δt. At the same time, the performance on 

simulated datasets is improved from 59% to 94%. The 

percentage firstly increases till data arrival rate reaches 

3000 records per second and then falls down. It is 

because that our previous algorithm can only keep 

running for the 29 minutes and 26 minutes input data 

with data arrival of 4000 and 5000 respectively. The 

average latency under these two cases is less than the 

truth, which reduce the percentage. 

6 Related Works 

6.1 Companion Pattern Discovery 

Many researchers have put their interests on 

companion pattern study. They proposed various 

definitions of companion patterns and mining 

algorithms under different cases. In chronological 

order, typical work includes flock, convoy, swarm, 

traveling companion, platoon and so on. flock is a 

group of moving objects moving in a disc of a fixed 

size for k consecutive timestamps [1-3]. convoy is an 

extension of flock, where spatial clustering is based on 

density [4-5]. swarm is proposed to enable the 

discovery of interesting moving object clusters with 

relaxed temporal constraint [6]. traveling companion 

has same constraints with swarm [7]. If a group of 

vehicles is a flock pattern, it must be a convey pattern. 

Furthermore, it is a swarm pattern. Besides, a new type 

of patterns, platoon, is proposed to describe object 

clusters that stay together for time segments, each with 

some minimum consecutive duration of time [8]. Table 

3 compares the above companion patterns with the one 

in this paper. 

Table 3. Comparison of several companion vehicles discovery methods 

Pattern Temporal Constraint Spatial Constraint Dataset Solution 

flock [1] consecutive disc GPS matrix analysis 

flock [2] consecutive disc GPS weighted directed graph 

flock [3] consecutive disc GPS clustering and intersection 

convoy [4] consecutive density reachable GPS trajectory similarity 

convoy [5] consecutive density reachable GPS trajectory similarity 

swarm [6] not consecutive density reachable GPS frequent item mining 

traveling companion [7] not consecutive density reachable GPS clustering and intersection 

platoon [8] 
consecutive/non 

consecutive 
density reachable GPS 

frequent item mining and 

frequent sequence mining 

traveling companion  

(in this paper) 
time threshold tΔ  not consecutive cameras ANPR 

frequent sequence mining with 

temporal constraint 

 

Some researchers focus on moving cluster discovery 

[15-18]. Their goal is to find clusters of objects with 

similar moving patterns or behaviors. Kalnis et al. 

proposed the first study to automatic extract moving 

clusters from large spatial datasets [15]. Li et al. 

clustered the moving objects by micro clustering [16]. 

Both current and near future positions of moving 

objects are considered during clustering. Kriegel et al. 

clustered the moving objects by fuzzy distance 

functions [17]. Jensen et al. discovered moving object 

clusters incrementally within a period of time [18]. 

More recently, researchers begin to pay attention to 

large scale trajectory. Zheng et al. developed a set of 

techniques to improve the performance of discovering 

gathering patterns over static large scale trajectory 

databases [19]. Zhang et al. proposed a gathering 

retrieving algorithm to retrieve gathering pattern by 

searching a spatio temporal graph composed of the 

moving object clusters [20]. Yoo et al. tried to leverage 

the MapReduce framework to achieve higher spatial 

data processing efficiency. It also proposed a partition 

strategy to avoid spatial relationships missing [21]. 

However, most of the studies above are designed to 

work on static datasets on 2D Euclidean space. They 

cannot effectively handle streaming data. In recent 

years, more and more studies began to process traffic 

data stream. Besides the framework to incrementally 

discover travelling companion among streaming 

trajectories proposed by Tang et al. [7], Yu et al. 

studied on a density based clustering algorithm for 

trajectory data stream and tried to discover trajectory 

clusters in real time [22]. Dow et al. designed and 

implemented a moving context-aware and location-

based paratransit system for providing services 

according to user’s demands and expectations [23]. 

They captured and analysed user’s moving activities by 

using the built-in accelerometer of a smart device to 

provide real-time services. All these related work 
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aimed at processing GPS data stream and provide some 

foundations for our study. 

6.2 Frequent Sequence Mining 

Mining frequent sequences from databases is one the 

classic topic in data mining and has been well studied. 

Previous studies about mining frequent sequences can 

be classified into two categories, including Apriori 

based algorithms and projection based pattern growth 

algorithms [24]. Typical work of the former category 

includes AprioriAll [25], AprioriSome [25], GSP [26], 

SPADE [27], SPAM [28] and so on. The shortage of 

Apriori based algorithms is to generate large scale of 

candidate subsequences. Typical work of projection 

based pattern growth algorithms includes FreeSpan 

[29], PrefixSpan [30], CloSpan [31], BIDE [32] and so 

on. Projection based pattern growth algorithms employ 

the divide and conquer strategy to construct projection 

database and greatly reduce the efforts of candidate 

subsequence generation. Otherwise, some researchers 

have put their interests on mining frequent sequence 

with constraints. Pinto et al. defined the concept of 

multi-dimensional sequential pattern, and proposed an 

algorithm to discover them [33]. Different from 

traditional sequence pattern, this pattern contains 

several attributes as well as a sequence. Pei et al. 

summarized the constraints in frequent sequence 

mining, including item constraint, length constraint, 

super pattern constraint, aggregate constraint, regular 

expression constraint, duration constraint and gap 

constraint [34]. However neither of the constraints 

discussed the temporal constraint in this paper. Chueh 

went into more details on mining frequent sequence 

with time intervals between every pair of successive 

itemsets, which is the so called gap constraint [35]. 

To improve the efficiency, some researchers 

parallelized these mining algorithms. Demiriz 

proposed a parallel sequence mining algorithm, 

webSPADE, to analyze the click streams found in site 

web logs [36]. Guralnik et al. studied a variety of 

distributed memory parallel algorithms which is able to 

minimize the overheads [37]. Ma et al. proposed a 

distributed memory parallel algorithm to mine closed 

frequent sequences [38]. Each processor mined local 

closed frequent sequences independently which 

significantly reduced communication time cost. Qiao et 

al. proposed a trajectory patterns mining algorithm 

with three optimization techniques, including prefix 

projection, parallel formulation, and candidate pruning 

[39]. Yu et al. parallelized BIDE algorithm by 

MapReduce framework [40]. Kessl proposed an 

algorithm for mining frequent sequences by static load 

balancing based on probabilistic model [41]. 

Besides, mining frequent patterns over data streams 

has also attracted much attention. Some methods are 

proposed to compute the exact results of recent 

frequent patterns over data streams [14, 42-46]. Chang 

et al. proposed SeqStream algorithm to mine closed 

frequent sequence in a sliding window for arriving data 

records [14]. The algorithm transformed original data 

sequence database into inverse sequence database to 

facilitate the removal of expired data. And it utilized a 

core data structure, called IST, to keep closed 

sequential patterns in the inverse sequence database of 

current sliding window. Besides it, IncSpan [42] is 

proposed to discover frequent sequences on data 

stream, by using semi frequent nodes in a prefix tree. 

By a tree structure, MILE [43] utilizes the knowledge 

of existing frequent sequences to avoid redundant data 

scanning and learns from the prior knowledge of the 

data distribution in data stream to enhance the 

efficiency. IncSPAM [44] utilizes a tree structure PS-

tree in which the algorithm needs only one scan at each 

timestamp. CISpan [45] builds a tree upon both the 

new data and the previously affected data, and then 

merges it with the previous tree together to build a new 

tree for the updated data. StreamCloSeq [46] also saves 

discovered frequent sequences in a tree structure. To 

improve the performance, it prunes the unpromising 

search spaces by the information of the previous 

sliding window and filter out the non-closed prefixes. 

The typical methods mentioned above lay 

foundation of our research. However, neither of them 

takes the temporal constraint in our paper into 

consideration. Hence, we learn from these typical 

methods and our previous work, and design an 

algorithm to mine closed frequent sequences with 

temporal constraint. We optimize the algorithm 

according to the features of input data stream. In the 

future, we plan to parallelize it to enhance the 

performance. 

7 Conclusion 

In this paper, we improved our previous work to 

further discover companion vehicles over a special 

kind of streaming sensor data in one pass, which is 

called ANPR data. Experimental results show that, 

over real ANPR data stream, our algorithm can achieve 

much lower latency. However, our algorithm still 

cannot handle high speed input data stream. When data 

arrival comes to 4000 records per second, the latency 

reaches 2 seconds, which is more than the minimum 

value of time interval between two ANPR data records 

(1 second). In the future, we plan to parallelize our 

algorithm to further enhance the performance.  
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