
An Approach to Instant Discovering Companion Vehicles from Live Streaming ANPR Data 2009

An Approach to Instant Discovering Companion Vehicles from

Live Streaming ANPR Data

Meiling Zhu1,2,3, Chen Liu2,3, Jianwu Wang4, Yanbo Han2,3*

1 School of Computer Science and Technology, Tianjin University, China
2 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,

North China University of Technology, China
3 Cloud Computing Research Center, North China University of Technology, China

4 Department of Information Systems, University of Maryland, U.S.A

meilingzhu2006@126.com, liuchen@ncut.edu.cn, jianwu@umbc.edu, hanyanbo@ncut.edu.cn

*Corresponding Author: Meiling Zhu; E-mail: meilingzhu2006@126.com

DOI: 10.3966/160792642018121907005

Abstract

Companions of moving objects are object groups that

move together in a period of time. This paper proposes to

instantly discover companion vehicles from a special kind

of streaming sensor data, called Automatic Number Plate

Recognition (ANPR) data. Compared to related

approaches, we transform the companion discovery into a

frequent sequence mining problem. We make several

improvements on top of our previous work, including one

scan and tree traversal reduction, to optimize the

performance of our previous approach and accelerate the

process of discovering companion vehicles. Finally,

extensive experiments are done to show efficiency and

effectiveness of our approach.

Keywords: Companion vehicles, ANPR data stream,

Moment companion, Traveling companion,

Frequent sequence mining

1 Introduction

To monitor the running of the real world, widely

deployed sensors today keep generating a large volume

of streaming sensor data. Instant analyses of them can

create lots of interesting value-added applications that

we never imagined before. In this paper, we put our

focus on a special kind of streaming sensor data, which

is called Automatic Number Plate Recognition (ANPR)

data. It is generated by the cameras deployed on roads

through continuously taking pictures of passing

vehicles.

Compared with GPS (Global Positioning System)

data, ANPR data provides another source to study the

movement patterns of vehicles in a large city.

Companion vehicles are a useful movement pattern,

which means vehicles that move together in a period of

time. Today, timely discovering companion vehicles

over traffic data stream has gradually attracts more

attentions of researchers [1-8]. Such ability is very

useful in many time sensitive scenarios like solving

crimes, detecting suspicious trackers and pursuing

escaped criminals. For example, vehicles such as bank

cash carriers and taxies are more exposed to criminals’

attentions in recent years. Criminals usually follow

them for a while before reaching a suitable, secluded

spot to commit a robbery. Detecting suspicious

trackers over traffic data stream and alert the tracked

driver in time can help to prevent such crimes.

However, lots of researchers study on how to

discover companion vehicles based on historical or

real-time GPS dataset [1-8]. GPS data is generated

from GPS devices installed on vehicles and sent back

within a fixed frequency. Vehicles without GPS device

or turning such devices off will not generate enough

data to make further analyses. For example, in some

special occasions like vehicle tracking and criminal

escaping, suspects often turn the GPS device off or

even remove it to avoid being captured. Obviously,

GPS data is not a good choice to be counted on when

meeting requirements in such occasions.

To make useful complements to current researches,

our previous works introduce a different kind of traffic

big data, called as ANPR (Automatic Number Plate

Recognition) data [9-11]. Compared with GPS data,

ANPR data comes from Traffic Enforcement Cameras,

which are a special kind of sensors installed at most

road crossings in most cities in China. These cameras

continuously take pictures of passing vehicles with

approximate one second interval at rush hour. Vehicle

information, e.g., plate number and passing time, is

automatically recognized and transmitted to a data

center of traffic management department in form of

data stream. ANPR data provides the capacity of

around-the-clock and wide-range monitoring of

vehicles. Presently, the number of cameras installed in

a big city in China exceeds 5,000 and continues to

increase. It leads to the total number of ANPR records

2010 Journal of Internet Technology Volume 19 (2018) No.7

in each day beyond 144 million. Eventually, the total

data volume can get into multi-petabyte scale per

annum.

In our previous works, we have designed several

algorithms to effectively discover companion vehicles

on ANPR data. In [9], we borrow ideas from frequent

itemset mining algorithm, like Apriori algorithm, to

mine companion vehicles from historical ANPR

dataset and apply it into a scenario of carpooling

recommendations. Then, in [10-11], we try to discover

companion vehicles from live ANPR data stream. To

reach this goal, we firstly propose a concept called

Moment Companion, which records a snapshot of

companion vehicles for a vehicle when it passes

through a camera. Then, we transform the discovery of

companion vehicles into a frequent sequence mining

problem. However, we met performance bottlenecks

when making guarantees about the instantaneity on

discovering companion vehicles over ANPR data

stream. Our previous experiments show that the

latency of our previous algorithm under some case can

reach 1500ms and even more on real ANPR data

stream, which is higher than the minimum value of

time interval between two real ANPR data records (1

second). It means there are probabilities that an

obvious delay will be emerged with such latencies

keeping accumulated.

In this paper, we make lots of efforts to consummate

our previous work [11]. We focus on how to improve

the performance of our algorithm when handling

ANPR data stream. The main contributions include: (1)

Borrowing ideas from [12], we revise our window

model to receive and handle incoming ANPR data

stream. With this new window model, we can greatly

decrease the times of scanning data records of our

algorithm. And the error is guaranteed not to exceed a

user specified parameter. (2) We create a list Vlist of

references of nodes on IST
+ (Improved Inverse Closed

Sequence Tree) to reduce the cost of tree traversal.

Based on Vlist, we only need to visit the nodes

containing those accompanying vehicles with the new

arriving ones instead of every node on IST+. (3) More

experiments are done to show efficiency and

effectiveness of our improved algorithms. We compare

the performance between our previous algorithm and

the improved algorithm on a real ANPR dataset and

several simulated datasets with data arrival rate 1000,

2000, to 5000 records per second. The experimental

results show that the performance of our algorithm is

improved more than 70% and 59% on the real dataset

and simulated datasets respectively.

2 Problem Analysis

Figure 1 shows the effects of our algorithm, which

tries to instantly compute companions of a given

vehicle passing through a camera. As this figure shows,

cameras are spread over road crossings. Each camera is

a source of a data stream, and continuously generates

ANPR data records.

Figure 1. The illustration of discovering traveling companions

An ANPR data record r = (c, v, t) means a vehicle v

passes through a camera c at time t. For example,

(CAM04612111, JingCN8R**, 2013-1-1 11:27:00) is a

real ANPR data record.

We try to discover companion vehicles in

accordance with traveling companion pattern proposed

by Tang [7]. However, the definition is given based on

GPS data. In [7], based on GPS data, a traveling

companion pattern is defined as a clustering of moving

objects traveling together within a duration no shorter

than pre-specified value. Specifically, the authors learn

from the classic density-based clustering [13] to group

the moving objects in each snapshot.

However, ANPR data is very different. Firstly, it is

essentially discrete on location. Each ANPR data

record is generated from a camera fixed on the road.

The involved location information is the fixed camera

location. Thus, all ANPR data records are distributed at

An Approach to Instant Discovering Companion Vehicles from Live Streaming ANPR Data 2011

cameras on roads. Secondly, the generation frequency

of ANPR data is not constant. It depends on frequency

with which vehicles pass through a camera. And each

camera generates one data record per second at most.

Hence, existing methods developed such like density-

based clustering are not suitable for ANPR data.

The concepts of Moment Companion and Traveling

Companion have been defined in our previous works.

Their definitions are shown as follows:

Definition 1 (moment companion). Let Δt be the time

threshold, a moment companion for camera c at time t2

can be defined as: MC(c, t2, Δt) = (V, c, t1, t2), where V

= {r.v | t1 ≤ r.t ≤ t2 ∧ t2-t1 ≤ Δt}, r = (c, v, t) is an

ANPR data record, and |MC(c, t2, Δt)| > 1.

Example. In Figure 1, given vehicle v1, {v2, v4, v5}, {v2,

v5, v6} and {v2, v5, v7} are all moment companions

when v1 passing through camera CAM07011112,

CAM89411111 and CAM09712112 successively.

Definition 2 (traveling companion). Given an ANPR

data stream S = {r1, r2, …, ri, …} and three thresholds

time threshold Δt, vehicle number threshold δveh,

moment companion ratio threshold δmc (0<δmc<1), a

traveling companion is a sequence of moment

companions: <MCk, MCk-1, …, MC1>, in which:

(1) k≥δmc*N, where k is the length of the traveling

companion and N is the current length of S;

(2) |MCi.V| ≥ δveh, where i = 1, 2, …, k;

(3) ∀ i, j = 1, 2, …, k, MCi.V = MCj.V;

(4) ∀ i = 1, 2, …, k-1, MCi+1.t1>MCi.t2+Δt.

Example. In Figure 1, TC1 = <MC2, MC1> and TC2 =

<MC3, MC2, MC1> are both traveling companions,

where MC1(CAM07011112, t1, Δt) = (V,

CAM07011112, t1), MC2(CAM89411111, t2, Δt) = (V,

CAM89411111, t2), and MC3(CAM09712112, t3, Δt) =

(V, CAM09712112, t3), and each moment companion

has V = {v1, v2, v5}.

3 Rationales of Our Algorithm

3.1 Running Example

Table 1 shows a simple example of an ANPR

dataset. We divide this table into two parts. The first

part is from column t11 to t1. It contains historical data

records and stores them in a window. The column t12

are data records newly arrived. We establish a

sequence for each vehicle by its passing cameras and

corresponding timestamp. In order to give a clear

exposition of our algorithm, all examples below in this

paper are based on the data scenario in Table 1 under

Δt = 10s.

Table 1. A sample of an inverse sequence database on ANPR dataset (running example)

t12=

9:48:39

t11=

9:48:38

t10=

9:48:31

t9=

9:45:29

t8=

9:45:28

t7=

9:45:26

t6=

9:40:28

t5=

9:40:23

t4=

9:40:20

t3=

9:35:06

t2=

9:35:03

t1=

9:35:00

v1 c4 c3 c2 c1

v2 c4 c3 c2 c1

v3 c3 c2 c1

v4 c6

v5 c6 c4

v6 c6 c4 c3 c2

v7 c7 c5 c4 c3

v8 c7 c5 c4 c3

v9 c7 c5 c3

3.2 Rationales

As our previous work shows, we borrow ideas of

frequent sequence to solve our problem. For a given

time threshold Δt, a traveling companion represents a

group of vehicles (V) passes each camera c in time

interval [t-Δt, t]. It means the series of passed cameras

is contained by the sequence of each vehicle in V in the

sequence set like Table 1 shows. Hence, the series of

passed cameras is a frequent sequence in the sequence

set; V is a set of sequence id, each of which

corresponding to a sequence containing the series of

passed cameras. Therefore, we can discover traveling

companions by mining frequent sequences, each

element of which occurs in the sequence set within

time period Δt.

Our algorithm adopts sliding window mechanism to

receive input ANPR data stream. To guarantee error

not to exceed a user specified parameter ∈, the sliding

window contains ⎡ ⎤1/∈ data records and its following

Δt data records. We generate a new moment

companion MC for each new arrival data record. And

MC is compared with the IST+ by a reference list Vlist,

which is designed for facilitating tree traversal. If the

vehicle set involved in the moment companion is

contained completely by a node on IST+, we increase

its frequency by one and insert a node storing the

moment companion into IST+. If the vehicle set is

partly contained by a node, we split the node and its

descendants, and increase the frequency of each split

node. Then, we also insert a node. Additionally, if

there is no node containing the vehicle set completely,

we create a new node for the new moment companion

and set the frequency to be 1. We also prune the IST+

by deleting nodes at window boundaries. Figure 2

shows the framework of our algorithm.

2012 Journal of Internet Technology Volume 19 (2018) No.7

Figure 2. The framework of our algorithm

4 Traveling Companion Discovery on

ANPR Data Stream

4.1 IST
+

 Tree

To record discovered traveling companions, our

previous work proposed a new data structure, which is

called IST+. It is a variation of the IST (Inverse Closed

Sequence Tree) data structure which is initially

proposed in SeqStream [14]. An IST is used to keep

closed frequent sequential patterns in the sequence

database of current sliding window. A node n

(containing a data item and its frequency) of an IST

corresponds to a sequence that starts from the root

node to node n, and the sequence is denoted by
n
s . The

root node of an IST is a NULL node, which represents

an empty sequence φ . Except for the root node, nodes

of an IST can be divided into following three types.

‧ c-node (closed node): If sn is a closed sequential

pattern in D’, n is a c-node.

‧ t-node (termination node): n is a t-node if 1) there

exists a frequent sequence β in D’ such that β ⊐ sn

and D’β; 2) it does not have any t-node ancestor.

‧ i-node (intermediate node): If sn is frequent, n is

neither a c-node nor a t-node, and n has no t-node

ancestor, then n is an i-node.

Based on IST, we design IST+ to represent traveling

companions by taking the temporal constraint into

account. Like IST, IST+ is a rooted prefix tree as well.

Based on IST and our previous work, we give the

formal definition of IST+.

Definition 3 (IST
+

, improved inverse closed

sequence tree). IST+ is a tree structure defined below.

(1) It consists of one root labeled as “null” and a set

of item prefix subtrees as the children of root.

(2) Each node n in the item prefix subtree consists of

four fields: item (n.MC, a moment companion),

counter (n.counter, an integer), error (n.errormax, an

integer) and node type (n.type), where item registers

which moment companion this node represents;

counter records the frequency of n.V since it is added

into the tree; error determines the maximum possible

error in n.counter; node type flags whether the

sequence from root to this node is closed or not.

The node type (n.type) of an IST+ node is in

accordance with IST tree. A difference between IST+

and IST tree is that IST+ tree doesn’t keep any live t-

nodes. If a c-node becomes a t-node, it will be

abandoned immediately.

The performance bottleneck of our previous

algorithm is the traversal cost on the IST+ when a new

moment companion is generated. To solve this

problem, we design a reference list of nodes on IST+ to

facilitate tree traversal based on the following theorem

proposed in our previous work.

Theorem 1. Given a new data record r arriving at time

t, database
r

D
+ contains all newly emerging traveling

companions related to the arrival of r, where
r

D
+

=

{ | , , . ., . , . (, ,). }.r c t s t r v r v MC c t t V′ ′∃ Δ ∈ Δ

According to the theorem, we maintain a separate

hashmap of references to the depth-1 nodes, which is

called Vlist. Each element in Vlist corresponds to one

vehicle. It keeps all depth-1 nodes on IST+ which

involves the vehicle. When a new moment companion

occurs, our algorithm gets all depth-1 nodes containing

any vehicle in the moment companion by Vlist. Figure

3 presents the Vlist following our running example.

An Approach to Instant Discovering Companion Vehicles from Live Streaming ANPR Data 2013

Figure 3. The vlist in our running example

For each new data record, our algorithm generates a

new moment companion MC and compares MC with

each depth-1 node on the IST+ gained by Vlist. If a

depth-1 node on the tree involves or partly involves the

vehicle set in MC, we increase the counter of the

involved vehicles by one. There are four cases of the

comparison results.

Case 1: MC.V = n.MC.V. In this case, we increase

the counter by one in node n. For each descendant

node nd of n satisfying nd.MC.V = MC.V, we also

increase its counter by one. At the same time, we insert

a new node n’’ between root node and n such that

n.MC = MC and n’’.counter = n.counter, n’’.errormax =

n. errormax.

Case 2: MC.V ⊂ n.MC.V. In this case, we split node

n’ from n, where n’.MC = MC. For each descendant

node nd of n satisfying MC.V ⊂ nd.MC.V, split n’d

from nd, where n’d.MC.V = MC.V. Then we increase

the counter by one in each split node and insert a node

n’’ with n’’.MC = MC between the root node and node

n’.

Case 3: MC.V ⊃ n.MC.V. In this case, we generate

a moment companion MC’ from MC, where MC’.V =

n.MC.V. Herein, we process this MC’ in the way of

case 1.

Case 4: |MC.V ∩ n.MC.V| ≥ δveh, |MC.V - n.MC.V| >

0 and |n.MC.V - MC.V| > 0. In this case, we generate a

moment companion MC’ from MC, where MC’.V =

MC.V ∩ n.MC.V. Herein, we process this MC’ in the

way of case 2.

After whole traversal, if there is no depth-1 node

involving the vehicle set of MC completely, we need

create a new node m with m.MC = MC, m.counter = 1

and m.errormax = wcurrent – 1.

Furthermore, a depth-1 node may not need to be

compared with every moment companion generated at

same timestamp. The following theorem elaborates the

foundation.

Lemma 1. Any two newly emerging moment

companions
i

MC and
j

MC at same timestamp satisfy

that MCi.V ∩ MCj.V = ϕ.

Theorem 2. Given a new arriving data record r, MC is

the emerging moment companion related to data record

r. If |n.MC.V – MC.V| < δveh, node n needs no

comparison with other newly emerging moment

companions, where n.MC.V – MC.V = {v|v∈n.MC.V
∧ v∉MC.V}.

Proof. We prove this theorem in two cases.

Firstly, |n.MC.V – MC.V| = 0. In this case, we get

n.MC.V ⊆ MC.V. According to lemma 1, there is no

any other new moment companion containing n.MC.V.

Thus, depth-1 node n needs no comparison with other

new moment companions.

Secondly, 0 < |n.MC.V – MC.V| < δveh. In this case,

we get MC.V ∩ n.MC.V ≠ ϕ. According to lemma 1,

there is no any other new moment companion

containing n.MC.V. And there either will be no any

other new moment companion MC’ satisfying that

MC’.V ⊉ n.MC.V ∧ |MC’.V ∩ n.MC.V| ≥ δveh,

because MC’.V ∩ n.MC.V ⊆ n.MC.V – MC.V. Hence,

depth-1 node n needs no comparison with other new

moment companions in this case either. Proof is over.

After traversing the depth-1 nodes on IST+ in the

above cases, we need to check consistency on the

processing results. It is because that a new moment

companion may have same overlapped vehicle sets

with different depth-1 nodes. Under this situation,

more than one subtrees will be generated which keeps

same vehicles. These subtrees save repetitive

information. We merge them to keep the maximal one

on the tree.

We prune IST+ at each sliding window boundary.

The strategy of deletion is as follows. For each node n

on IST+, if n.counter + n.errormax ≤ wcurrent, node n

needs to be deleted. In this paper, we adopt a lazy

deletion strategy. It means we only prune the nodes

which are affected by the new moment companions as

2014 Journal of Internet Technology Volume 19 (2018) No.7

well as their descendants.

4.2 Sliding Window

Our algorithm is improved to compute traveling

companion over ANPR data stream in one pass,

satisfying approximation guarantee. Thus, the user has

to specify error parameter (0,1)e∈ such that
mc

δ∈� .

Incoming ANPR data stream is received by the sliding

window presented below. Denote N as the current

length of incoming ANPR data stream. Let ⎡ ⎤1 1/w = ∈ ,

and the timestamp of the num*w1th (num = 0, 1, …)

data record as t. Each sliding window contains w1 data

records and data records in the following time scope

[,]t t t+ Δ . Denote the window size as w. And set the

sliding distance to be
1

w . Each sliding window is

labeled with a window id, which starts from 1. The

current window id is denoted as wcurrent such that

⎡ ⎤/ 1/current
w N= ⎡ ⎤∈⎢ ⎥ . The overlapped portion between

two adjacent windows in this paper is much smaller

than that in our previous work, since the sliding

distance is set to be 1 second in our previous work. It

indicates that our new sliding window model saves

space by avoiding storing repetitive data. Figure 4

illustrates the sliding window model used in this paper.

Finally, the improved algorithm outputs the

traveling companions with no less than (δmc- ∈)*N

moment companions. In fact, counter in a node refers

to the frequency of vehicle set n.MC.V since it is added

into the tree. It is an approximate value. We denote its

true frequency in the whole ANPR data stream seen so

far by ftrue. We guarantee the accuracy of our algorithm

according to a classic frequent item mining algorithm

on stream, which is called Lossy Counting [12].

Figure 4. Sliding window model (N is the current length of incoming ANPR data stream)

Theorem 3. For any node n on IST+, we have that

n.counter ≤ ftrue ≤ n.counter + N∈ .

Proof. Firstly, according to the sliding window model,

whenever deletions occur, wcurrent ≤ N∈ .

Secondly, whenever a node n gets deleted, ftrue

≤wcurrent. We prove it by induction. Base case: wcurrent =

1. A node will be deleted only if n.counter = 1. In this

case, ftrue = 1. Obviously, ftrue ≤wcurrent. Induction step:

Assume that ftrue ≤wcurrent holds under wcurrent = k-1.

Considering a node m which is deleted under wcurrent = k,

the vehicle set m.MC.V is added into the IST+ in the

window with id m.errormax +1. Some nodes for the

vehicle set may be deleted at the boundary of window

m.errormax (i.e., window m.errormax gets full). By the

induction, when this deletion occurred, the true

frequency of the vehicle set is no more than m.errormax.

Furthermore, m.counter is the true frequency of the

vehicle set since it was added into the tree. Therefore,

the true frequency of this vehicle set on the whole

input stream is at most m.counter + m.errormax.

Combined with the deletion strategy counter + errormax

≤ wcurrent, we get that ftrue ≤wcurrent.

Thirdly, if a vehicle set does not appear in the IST+,

then ftrue ≤ N∈ .

Based on the above, for any node n on IST+, we

have that n.counter ≤ ftrue ≤n.counter + N∈ .

If n.errormax = 0, then n.counter = ftrue. Otherwise,

the vehicle set may be deleted in the first n.errormax

windows. Because the true frequency of the vehicle set

when the last deletion happened, is at most n.errormax.

Therefore, ftrue ≤m.counter + m.errormax. Since

m.errormax ≤ wcurrent – 1 ≤ N∈ , we conclude that

n.counter ≤ ftrue ≤n.counter + N∈ . Proof is over.

The above theorem indicates that our algorithm will

output no false negatives. The vehicle set in each

traveling companion will have true frequency at least

(δmc-∈)*N in whole ANPR data stream.

5 Experiment

5.1 Experiment Setup

Parameters. We do experiments to measure the effects

and efficiency of our algorithm. Our algorithm

involves several key parameters Δt, δveh, δms and ∈ .

They should be preassigned before running the

algorithm. Generally, δveh is set to 2 as a companion

should contain at least two vehicles. And ∈ is set to be

ten percent of δms. The values of the rest two

parameters depend on our experiences from our

previous work. Table 2 lists the values of each

parameter selected in our experiments.

An Approach to Instant Discovering Companion Vehicles from Live Streaming ANPR Data 2015

Table 2. Parameter settings

Parameter Explanation Value

Δt Temporal Constraint on Moment Companion; Δt = 20s, 40s, …, 180s;

δveh Vehicle Number Threshold on Traveling Companion; δveh = 2;

δmc Moment Companion Ratio Threshold on Traveling Companion δmc = 0.002‰, 0.003‰,…, 0.01‰;

Baselines. To verify the effects of our algorithm, we

compare our algorithm with three state of the art

algorithms on discovering flock/convoy pattern [1-5],

swarm pattern [6] and traveling companion pattern [7].

Authors proposed two algorithms to discover traveling

companions, which generate same results according to

their experiments [7]. We select the first one in our

experiment. On the other hand, we compare our

algorithm with our previous algorithm in [11] to verify

the improvement on performance.

Datasets. The following experiments use a real ANPR

dataset in Beijing, China. The dataset contains vehicle

information from 2012-11-02 00:00:00 to 2012-11-08

23:59:59. Totally 1040 cameras and 30,518,191 ANPR

data records are involved. We have a camera location

dataset which records the latitude and longitude of

each camera involved in our ANPR dataset. Besides, to

verify the ability of handling high speed data stream,

we simulate five ANPR datasets with data arrival of

1000, 2000, …, 5000 records per second based on the

real dataset. We simulate each dataset as a stream. The

time interval between two adjacent data records is in

accordance with real intervals when they were shot by

cameras.

Environments. The experiments are done on a PC

with four Intel Core i5-2400 CPUs 3.10G Hz and 4.00

GB RAM. The operating system is Windows 7

Ultimate. All the algorithms are implemented in Java

with JDK 1.8.0.

5.2 Effectiveness

In this part, we firstly evaluate the effects of our

algorithm. To evaluate the effects of our algorithm, we

run the baseline methods on 7 days of ANPR datasets

integrated with the camera location dataset. According

to baseline methods, we set the distance threshold to be

300 meters. On the other hand, we input the unchanged

ANPR datasets into CompanionMiner algorithm with

Δt = 60s, δms = 0.002‰, and δveh = 2. Experimental

results are shown in Figure 5.

Figure 5. Comparison of effects among different methods

As Figure 5 shows, flock/convoy algorithm

discovered the least patterns; Swarm algorithm find a

little more results than TraCom algorithm; our

algorithm found the most results. We firstly analyze

the results to conclude that each pattern discovered by

any baseline method is contained by our algorithm.

There can be more than one camera at each road

crossing to monitor vehicles from different directions.

Cameras at same road crossing locate closely to be

grouped together by baseline methods. Thus, baseline

methods can detect vehicles that pass different cameras

at same road crossing at the same time frequently. That

is the reason that each baseline method can detect

patterns over ANPR dataset. However, the detected

patterns are equal to the patterns with Δt = 0s under our

algorithm, which reduce the number of companion

vehicles significantly. Secondly, although the numbers

of detected patterns by swarm algorithm is more than

that of TraCom algorithm, each pattern reported by

swarm algorithm is contained by the results of TraCom.

The reason is that swarm algorithm adopts distance

based clustering method and TraCom algorithm

utilizes density connected clustering method. The

former method will depart two cameras if their

distance is larger than pre-specified value. But the

latter one may group them together if there exists

another camera c and the distance between any camera

and the camera c is less than pre-specified value. On

top of this difference, a group of companion vehicles

discovered by TraCom may be divided by swarm

2016 Journal of Internet Technology Volume 19 (2018) No.7

algorithm.

5.3 Efficiency

We further verify our algorithm’s performance in

two ways in this section. We give the following

definition.

Definition 4 (average latency). Let
i
t is the time our

algorithm consumes to discover traveling companions

for the ith input data record. Assume that N is the

current length of the ANPR data stream, the average

latency of our algorithm can be defined as latt =

/ .
i i
t N∑

Firstly, we compare the performance of our

algorithm with our previous work [11] under different

values of Δt through the following experiments.

Actually, we also do experiments to verify the

performance under different δms values. However, the

experiment results show that δms doesn’t have obvious

impacts on performance. We run our algorithm 20

times for different Δt with δms = 0.001‰. Each

execution lasts for 2 hours from 8:00:00 to 10:00:00 on

each day to continuously receive arriving ANPR data

records and instantly output companion results under

different values of Δt. For each execution, we will

compute the latency value based on Definition 4.

Finally, the average latency values are shown in Figure

6.

Figure 6. Average latency under different Δt between CompanionMiner and our previous algorithm (δmc = 0.001‰)

Secondly, we compare the efficiency of

CompanionMiner algorithm with our previous work in

[11] under different data arrival rate. We simulate five

ANPR datasets with data arrival rate of 1000, 2000, …,

5000 records per second. Each dataset spans two hours.

We run CompanionMiner algorithm and our previous

algorithm on each simulated dataset with Δt = 60s, δms

= 0.001‰ and compute the average latency. The

experiment results are presented in Figure 7.

Figure 7. Average latency under data arrival rate between CompanionMiner and our previous algorithm

Figure 6 shows the average latency of our previous

work increases exponentially from Δt = 20s to 180s.

When Δt ≤ 100s, the average latency is less than 1000

ms. The minimum value of time interval between two

ANPR data records is 1 second. It means our previous

algorithm can instantly discover companions with Δt ≤

100s when vehicles passing through camera. However,

when Δt > 100s, the latency increases sharply. On the

other hand, CompanionMiner algorithm in this paper

shows stable average latency with the growth of Δt.

When Δt reaches 180s, the average latency of our

algorithm in this paper is around 348.68 ms, which is

An Approach to Instant Discovering Companion Vehicles from Live Streaming ANPR Data 2017

still lower than 1 second. On the other hand, as Figure

7 shows, the latency of each algorithm increases

exponentially. However, the previous algorithm has a

greater curve than the improved one.

Based on the experiments in our previous work,

large Δt will generate more traveling companions.

Therefore, the experiment results verify that,

CompanionMiner algorithm improves the performance

on handling data stream with larger traveling

companion patterns and higher data arrival rate.

Specifically, the performance of CompanionMiner

algorithm on the real dataset is improved more than

70% and less than 93%. The percentage increases with

the growth of Δt. At the same time, the performance on

simulated datasets is improved from 59% to 94%. The

percentage firstly increases till data arrival rate reaches

3000 records per second and then falls down. It is

because that our previous algorithm can only keep

running for the 29 minutes and 26 minutes input data

with data arrival of 4000 and 5000 respectively. The

average latency under these two cases is less than the

truth, which reduce the percentage.

6 Related Works

6.1 Companion Pattern Discovery

Many researchers have put their interests on

companion pattern study. They proposed various

definitions of companion patterns and mining

algorithms under different cases. In chronological

order, typical work includes flock, convoy, swarm,

traveling companion, platoon and so on. flock is a

group of moving objects moving in a disc of a fixed

size for k consecutive timestamps [1-3]. convoy is an

extension of flock, where spatial clustering is based on

density [4-5]. swarm is proposed to enable the

discovery of interesting moving object clusters with

relaxed temporal constraint [6]. traveling companion

has same constraints with swarm [7]. If a group of

vehicles is a flock pattern, it must be a convey pattern.

Furthermore, it is a swarm pattern. Besides, a new type

of patterns, platoon, is proposed to describe object

clusters that stay together for time segments, each with

some minimum consecutive duration of time [8]. Table

3 compares the above companion patterns with the one

in this paper.

Table 3. Comparison of several companion vehicles discovery methods

Pattern Temporal Constraint Spatial Constraint Dataset Solution

flock [1] consecutive disc GPS matrix analysis

flock [2] consecutive disc GPS weighted directed graph

flock [3] consecutive disc GPS clustering and intersection

convoy [4] consecutive density reachable GPS trajectory similarity

convoy [5] consecutive density reachable GPS trajectory similarity

swarm [6] not consecutive density reachable GPS frequent item mining

traveling companion [7] not consecutive density reachable GPS clustering and intersection

platoon [8]
consecutive/non

consecutive
density reachable GPS

frequent item mining and

frequent sequence mining

traveling companion

(in this paper)
time threshold tΔ not consecutive cameras ANPR

frequent sequence mining with

temporal constraint

Some researchers focus on moving cluster discovery

[15-18]. Their goal is to find clusters of objects with

similar moving patterns or behaviors. Kalnis et al.

proposed the first study to automatic extract moving

clusters from large spatial datasets [15]. Li et al.

clustered the moving objects by micro clustering [16].

Both current and near future positions of moving

objects are considered during clustering. Kriegel et al.

clustered the moving objects by fuzzy distance

functions [17]. Jensen et al. discovered moving object

clusters incrementally within a period of time [18].

More recently, researchers begin to pay attention to

large scale trajectory. Zheng et al. developed a set of

techniques to improve the performance of discovering

gathering patterns over static large scale trajectory

databases [19]. Zhang et al. proposed a gathering

retrieving algorithm to retrieve gathering pattern by

searching a spatio temporal graph composed of the

moving object clusters [20]. Yoo et al. tried to leverage

the MapReduce framework to achieve higher spatial

data processing efficiency. It also proposed a partition

strategy to avoid spatial relationships missing [21].

However, most of the studies above are designed to

work on static datasets on 2D Euclidean space. They

cannot effectively handle streaming data. In recent

years, more and more studies began to process traffic

data stream. Besides the framework to incrementally

discover travelling companion among streaming

trajectories proposed by Tang et al. [7], Yu et al.

studied on a density based clustering algorithm for

trajectory data stream and tried to discover trajectory

clusters in real time [22]. Dow et al. designed and

implemented a moving context-aware and location-

based paratransit system for providing services

according to user’s demands and expectations [23].

They captured and analysed user’s moving activities by

using the built-in accelerometer of a smart device to

provide real-time services. All these related work

2018 Journal of Internet Technology Volume 19 (2018) No.7

aimed at processing GPS data stream and provide some

foundations for our study.

6.2 Frequent Sequence Mining

Mining frequent sequences from databases is one the

classic topic in data mining and has been well studied.

Previous studies about mining frequent sequences can

be classified into two categories, including Apriori

based algorithms and projection based pattern growth

algorithms [24]. Typical work of the former category

includes AprioriAll [25], AprioriSome [25], GSP [26],

SPADE [27], SPAM [28] and so on. The shortage of

Apriori based algorithms is to generate large scale of

candidate subsequences. Typical work of projection

based pattern growth algorithms includes FreeSpan

[29], PrefixSpan [30], CloSpan [31], BIDE [32] and so

on. Projection based pattern growth algorithms employ

the divide and conquer strategy to construct projection

database and greatly reduce the efforts of candidate

subsequence generation. Otherwise, some researchers

have put their interests on mining frequent sequence

with constraints. Pinto et al. defined the concept of

multi-dimensional sequential pattern, and proposed an

algorithm to discover them [33]. Different from

traditional sequence pattern, this pattern contains

several attributes as well as a sequence. Pei et al.

summarized the constraints in frequent sequence

mining, including item constraint, length constraint,

super pattern constraint, aggregate constraint, regular

expression constraint, duration constraint and gap

constraint [34]. However neither of the constraints

discussed the temporal constraint in this paper. Chueh

went into more details on mining frequent sequence

with time intervals between every pair of successive

itemsets, which is the so called gap constraint [35].

To improve the efficiency, some researchers

parallelized these mining algorithms. Demiriz

proposed a parallel sequence mining algorithm,

webSPADE, to analyze the click streams found in site

web logs [36]. Guralnik et al. studied a variety of

distributed memory parallel algorithms which is able to

minimize the overheads [37]. Ma et al. proposed a

distributed memory parallel algorithm to mine closed

frequent sequences [38]. Each processor mined local

closed frequent sequences independently which

significantly reduced communication time cost. Qiao et

al. proposed a trajectory patterns mining algorithm

with three optimization techniques, including prefix

projection, parallel formulation, and candidate pruning

[39]. Yu et al. parallelized BIDE algorithm by

MapReduce framework [40]. Kessl proposed an

algorithm for mining frequent sequences by static load

balancing based on probabilistic model [41].

Besides, mining frequent patterns over data streams

has also attracted much attention. Some methods are

proposed to compute the exact results of recent

frequent patterns over data streams [14, 42-46]. Chang

et al. proposed SeqStream algorithm to mine closed

frequent sequence in a sliding window for arriving data

records [14]. The algorithm transformed original data

sequence database into inverse sequence database to

facilitate the removal of expired data. And it utilized a

core data structure, called IST, to keep closed

sequential patterns in the inverse sequence database of

current sliding window. Besides it, IncSpan [42] is

proposed to discover frequent sequences on data

stream, by using semi frequent nodes in a prefix tree.

By a tree structure, MILE [43] utilizes the knowledge

of existing frequent sequences to avoid redundant data

scanning and learns from the prior knowledge of the

data distribution in data stream to enhance the

efficiency. IncSPAM [44] utilizes a tree structure PS-

tree in which the algorithm needs only one scan at each

timestamp. CISpan [45] builds a tree upon both the

new data and the previously affected data, and then

merges it with the previous tree together to build a new

tree for the updated data. StreamCloSeq [46] also saves

discovered frequent sequences in a tree structure. To

improve the performance, it prunes the unpromising

search spaces by the information of the previous

sliding window and filter out the non-closed prefixes.

The typical methods mentioned above lay

foundation of our research. However, neither of them

takes the temporal constraint in our paper into

consideration. Hence, we learn from these typical

methods and our previous work, and design an

algorithm to mine closed frequent sequences with

temporal constraint. We optimize the algorithm

according to the features of input data stream. In the

future, we plan to parallelize it to enhance the

performance.

7 Conclusion

In this paper, we improved our previous work to

further discover companion vehicles over a special

kind of streaming sensor data in one pass, which is

called ANPR data. Experimental results show that,

over real ANPR data stream, our algorithm can achieve

much lower latency. However, our algorithm still

cannot handle high speed input data stream. When data

arrival comes to 4000 records per second, the latency

reaches 2 seconds, which is more than the minimum

value of time interval between two ANPR data records

(1 second). In the future, we plan to parallelize our

algorithm to further enhance the performance.

Acknowledgements

Funding: This work was supported by National

Natural Science Foundation of China (Grant No.

61672042), “Models and Methodology of Data

Services Facilitating Dynamic Correlation of Big

Stream Data;” The Program for Youth Backbone

Individual, supported by Beijing Municipal Party

An Approach to Instant Discovering Companion Vehicles from Live Streaming ANPR Data 2019

Committee Organization Department, “Research of

Instant Fusion of Multi-Source and Large-scale Sensor

Data;” Training Plan of Top Young Talent in North

China University of Technology, “An Incremental

Approach to Instant Discovery of Data Correlations

among Multi-Source and Large-scale Sensor Data.”

References

[1] P. Laube, S. Imfeld, Analyzing Relative Motion Within

Groups of Trackable Moving Point Objects, Proceedings of

the 2nd International Conference on Geographic Information

Science (GIScience), Boulder, CO, 2002, pp. 132-144.

[2] J. Gudmundsson, M. Van Kreveld, Computing Longest

Duration Flocks in Trajectory Data, Proceedings of the 14th

Annual ACM International Symposium on Advances in

Geographic Information Systems (ACM GIS), Arlington, VA,

2006, pp. 35-42.

[3] M. R. Vieira, P. Bakalov, V. J. Tsotras, On-Line Discovery of

Flock Patterns in Spatio-Temporal Data, Proceedings of the

17th ACM International Symposium on Advances in

Geographic Information Systems (ACM SIGSPATIAL GIS),

Seattle, Washington, 2009, pp. 286-295.

[4] H. Jeung, H. T. Shen, X. Zhou, Convoy Queries in Spatio-

Temporal Databases, Proceedings of the IEEE 24th

International Conference on Data Engineering (ICDE),

Cancun, Mexico, 2008, pp. 1457-1459.

[5] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, H. T. Shen,

Discovery of Convoys in Trajectory Databases, Proceedings

of the VLDB Endowment, Vol. 1, No. 1, pp. 1068-1080,

August, 2008.

[6] Z. Li, B. Ding, J. Han, R. Kays, Swarm: Mining Relaxed

Temporal Moving Object Clusters, Proceedings of the VLDB

Endowment, Vol. 3, No. 1, pp. 723-734, September, 2010.

[7] L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C. C. Hung,

W. C. Peng, On Discovery of Traveling Companions from

Streaming Trajectories, Proceedings of the IEEE 28th

International Conference on Data Engineering (ICDE),

Washington, DC, 2012, pp. 186-197.

[8] Y. Li, J. Bailey, L. Kulik, Efficient Mining of Platoon

Patterns in Trajectory Databases, Data and Knowledge

Engineering, Vol. 100, pp. 167-187, November, 2015.

[9] Y. Han, G. Wang, J. Yu, C. Liu, Z. Zhang, M. Zhu, A

Service-Based Approach to Traffic Sensor Data Integration

and Analysis to Support Community-Wide Green Commute

in China, IEEE Transactions on Intelligent Transportation

Systems, Vol. 17, No. 9, pp. 2648-2657, September, 2016.

[10] M. Zhu, C. Liu, J. Wang, X. Wang, Y. Han, A Service-

friendly Approach to Discover Traveling Companions Based

on ANPR Data Stream, Proceedings of IEEE International

Conference on Services Computing (SCC), San Francisco, CA,

2016, pp. 171-178.

[11] C. Liu, X. Wang, M. Zhu, Y. Han, Discovering Companion

Vehicles from Live Streaming Traffic Data, Proceedings of

18th Asia-Pacific Web Conference (APWeb), Suzhou, China,

2016, pp. 116-128.

[12] G. S. Manku, R. Motwani, Approximate Frequency Counts

over Data Streams, Proceedings of the VLDB Endowment,

Vol. 5, No. 12, pp. 1699-1699, August, 2012.

[13] M. Ester, H. P. Kriegel, J. Sander, X. Xu, A Density-based

Algorithm for Discovering Clusters in Large Spatial

Databases with Noise, Proceedings of the 2nd International

Conference on Knowledge Discovery and Data Mining

(KDD), Portland, OR, 1996, pp. 226-231.

[14] L. Chang, T. Wang, D. Yang, H. Luan, Seqstream: Mining

Closed Sequential Patterns over Stream Sliding Windows,

Proceedings of 8th IEEE International Conference on Data

Mining (ICDM), Pisa, Italy, 2008, pp. 83-92.

[15] P. Kalnis, N. Mamoulis, S. Bakiras, On Discovering Moving

Clusters in Spatio-Temporal Data, Proceedings of 9th

International Symposium on Spatial and Temporal Databases

(SSTD), Angra dos Reis, Brazil, 2005, pp. 364-381.

[16] Y. Li, J. Han, J. Yang, Clustering Moving Objects,

Proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(KDD), Seattle, Washington, 2004, pp. 617-622.

[17] H. P. Kriegel, M. Pfeifle, Density-Based Clustering of

Uncertain Data, Proceedings of 11th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining (KDD), Chicago, IL, 2005, pp. 672-677.

[18] C. S. Jensen, D. Lin, B. C. Ooi, Continuous Clustering of

Moving Objects, IEEE Transactions on Knowledge and Data

Engineering, Vol. 19, No. 9, pp. 1161-1174, September, 2007.

[19] K. Zheng, Y. Zheng, N. J. Yuan, S. Shang, X. Zhou, Online

Discovery of Gathering Patterns from Trajectories, IEEE

Transactions on Knowledge and Data Engineering, Vol. 26,

No. 8, pp. 1974-1988, August, 2014.

[20] J. Zhang, J. Li, S. Wang, Z. Liu, Q. Yuan, F. Yang, On

Retrieving Moving Objects Gathering Patterns from

Trajectory Data via Spatio-Temporal Graph, Proceedings of

the IEEE International Congress on Big Data (BigData

Congress), Anchorage, AK, 2014, pp. 390-397.

[21] J. S. Yoo, D. Boulware, D. Kimmey, A Parallel Spatial Co-

Location Mining Algorithm Based on Mapreduce,

Proceedings of the IEEE International Congress on Big Data

(BigData Congress), Anchorage, AK, 2014, pp. 25-31.

[22] Y. Yu, Q. Wang, X. Wang, H. Wang, J. He, Online

Clustering for Trajectory Data Stream of Moving Objects,

Computer Science and Information Systems, Vol. 10, No. 3,

pp. 1293-1317, June, 2013.

[23] C. R. Dow, P. Y. Lai, J. H. Ye, A Moving Context-aware and

Location-based Paratransit System, International Journal of

Internet Protocol Technology, Vol. 9, No. 1, pp. 34-43,

January, 2015.

[24] C. H. Mooney, J. F. Roddick, Sequential Pattern Mining:

Approaches and Algorithms, ACM Computing Surveys, Vol.

45, No. 2, pp. 94-111, February, 2013.

[25] R. Agrawal, R. Srikant, Mining Sequential Patterns,

Proceedings of the 1995 IEEE 11th International Conference

on Data Engineering (ICDE), Taipei, Taiwan, 1995, pp. 3-14.

[26] R. Srikant, R. Agrawal, Mining Sequential Patterns:

Generalizations and Performance Improvements, Proceedings

2020 Journal of Internet Technology Volume 19 (2018) No.7

of 5th International Conference on Extending Data Base

Technology (EDBT), Avignon, France, 1996, pp. 3-17.

[27] M. J. Zaki, SPADE: An Efficient Algorithm for Mining

Frequent Sequences, Machine Learning, Vol. 42, No. 1/2, pp.

31-60, January, 2001.

[28] J. Ayres, J. Flannick, J. Gehrke, T. Yiu, Sequential Pattern

Mining Using a Bitmap Representation, Proceedings of the

8th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), Edmonton, Alberta,

Canada, 2002, pp. 429-435.

[29] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. C.

Hsu, Freespan: Frequent Pattern-Projected Sequential Pattern

Mining, Proceedings of the 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(KDD), Boston, MA, 2000, pp. 355-359.

[30] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,

M. C. Hsu, Prefixspan: Mining Sequential Patterns Efficiently

by Prefix-Projected Pattern Growth, Proceedings of the IEEE

17th International Conference on Data Engineering (ICDE),

Heidelberg, Germany, 2001, pp. 215-224.

[31] X. Yan, J. Han, R. Afshar, Clospan: Mining Closed

Sequential Patterns in Large Datasets, Proceedings of the 3th

SIAM International Conference on Data Mining (SDM), San

Francisco, CA, 2003, pp. 166-177.

[32] J. Wang, J. Han, C. Li, Frequent Closed Sequence Mining

without Candidate Maintenance, IEEE Transactions on

Knowledge and Data Engineering, Vol. 19, No. 8, pp. 1042-

1056, August, 2007.

[33] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, U. Dayal, Multi-

Dimensional Sequential Pattern Mining, Proceedings of 10th

International Conference on Information and Knowledge

Management (CIMK), Atlanta, GA, 2001, pp. 81-88.

[34] J. Pei, J. Han, W. Wang, Constraint-based Sequential Pattern

Mining: The Pattern-growth Methods, Journal of Intelligent

Information Systems, Vol. 28, No. 2, pp. 133-160, April, 2007.

[35] H. E. Chueh, Mining Target-Oriented Sequential Patterns

with Time-Intervals, International Journal of Computer

Science & Information Technology, Vol. 2, No. 4, pp. 113-

123, August, 2010.

[36] A. Demiriz, webSPADE: A Parallel Sequence Mining

Algorithm to Analyze Web Log Data, Proceedings of IEEE

International Conference on Data Mining (ICDM), Maebashi,

Japan, 2002, pp. 755-758.

[37] V. Guralnik, G. Karypis, Parallel Tree-projection-based

Sequence Mining Algorithms, Parallel Computing, Vol. 30,

No. 4, pp. 443-472, April, 2004.

[38] C. Ma, Q. Li, Parallel Algorithm for Mining Frequent Closed

Sequences, Proceedings of International Workshop on

Autonomous Intelligent Systems: Agents and Data Mining

(AIS-ADM), Petersburg, Russia, 2005, pp. 184-192.

[39] S. Qiao, C. Tang, S. Dai, M. Zhu, J. Peng, H. Li, Y. Ku,

Partspan: Parallel Sequence Mining of Trajectory Patterns,

Proceedings of 5th International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD), Jinan, Shandong,

China, 2008, pp. 363-367.

[40] D. Yu, W. Wu, S. Zheng, Z. Zhu, BIDE-based Parallel

Mining of Frequent Closed Sequences with Mapreduce,

Proceedings of 12th International Conference on Algorithms

and Architectures for Parallel Processing (ICA3PP),

Fukuoka, Japan, 2012, pp. 177-186.

[41] R. Kessl, Probabilistic Static Load-balancing of Parallel

Mining of Frequent Sequences, IEEE Transactions on

Knowledge and Data Engineering, Vol. 28, No. 5, pp. 1299-

1311, May, 2016.

[42] H. Cheng, X. Yan, J. Han, Incspan: Incremental Mining of

Sequential Patterns in Large Database, Proceedings of the

10th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), Seattle, Washington,

2004, pp. 527-532.

[43] G. Chen, X. Wu, X. Zhu, Sequential Pattern Mining in

Multiple Streams, Proceedings of the IEEE 5th International

Conference on Data Mining (ICDM), Houston, TX, 2005, pp.

585-588.

[44] C. C. Ho, H. F. Li, F. F. Kuo, S. Y. Lee, Incremental Mining

of Sequential Patterns over A Stream Sliding Window,

Workshops Proceedings of the IEEE 6th International

Conference on Data Mining (ICDM - Workshops), Hong

Kong, China, 2006, pp. 677-681.

[45] D. Yuan, K. Lee, H. Cheng, G. Krishna, Z. Li, X. Ma, Y.

Zhou, J. Han, CISpan: Comprehensive Incremental Mining

Algorithms of Closed Sequential Patterns for Multi-Versional

Software Mining, Proceedings of the 8th SIAM International

Conference on Data Mining (SDM), Atlanta, GA, 2008, pp.

84-95.

[46] C. Gao, J. Wang, Q. Yang, Efficient Mining of Closed

Sequential Patterns on Stream Sliding Window, Proceedings

of the IEEE 11th International Conference on Data Mining

(ICDM), Vancouver, BC, Canada, 2011, pp. 1044-1049.

Biographies

Meiling Zhu is currently a Ph.D.

candidate at the School of Compute

Science and Technology of Tianjin

University, China. Her research

interests include Services Computing,

Streaming Data Integration and

Analysis.

Chen Liu received his Ph.D. degree

in computer science and technology

from the Chinese Academy of

Sciences in 2007. Now, he is an

Associate Professor at Research

Center for Cloud Computing in North

China University of Technology. His

research interests include data integration, service

modeling, service composition, and so on.

An Approach to Instant Discovering Companion Vehicles from Live Streaming ANPR Data 2021

Jianwu Wang got his Ph.D. degree

from Institute of Computing

Technology, Chinese Academy of

Sciences in 2007. He works at

University of Maryland, U.S. His

research interests include Big Data,

Scientific Workflow, Distributed

Computing, Service-Oriented Computing, End-User

Programming. He has published 50 papers with more

than 400 citations.

Yanbo Han holds a Ph.D. in

computing science from the Technical

University of Berlin in German. He is

also the director of Beijing Key

Laboratory on Integration and

Analysis of Large-scale Streaming

Data. His research interests include

streaming data processing, cloud computing,

dependable distributed systems, business process

collaboration and management.

2022 Journal of Internet Technology Volume 19 (2018) No.7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

