
YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 1993

YANG-based Data Modeling Techniques for the Content Layer of

NETCONF to Improve Query Throughput

YangMin Lee, JaeKee Lee*

Department of Computer Engineering, Dong-A University, South Korea

{yangwenry, jklee}@dau.ac.kr

*Corresponding Author: JaeKee Lee; E-mail: jklee@dau.ac.kr

DOI: 10.3966/160792642018121907004

Abstract

NETCONF was originally proposed as a protocol for

updating and managing configuration data on complex

heterogeneous network equipment that forms part of a

larger current network. There is particularly the problem

of processing efficiency in the Operation and Content

layers. Currently, NETCONF uses YANG to generate an

XML document as a data model. The unique operations

of NETCONF are used to change the configuration of the

equipment. However, when there are multiple managers,

the standard NETCONF exhibits relatively low data

modeling flexibility, and this decreases the query

processing throughput. In this paper, we propose the use

of a YANG XML document that describes a data block

generation method based on the dependencies of

equipment configuration data. The proposed technique

can be used to generate a logical structure of the

equipment configuration data, which may be stored and

grouped as a set of independent equipment data in the

physical memory. Hence, when multiple network

administrators modify different data blocks, the processes

can be performed concurrently. We performed

experiment for various factors and confirmed that our

improve NETCONF is outperform for existing method or

protocol.

Keywords: NETCONF, Management, Data modeling,

Subtree filtering

1 Introduction

The management of a modern network comprising

heterogeneous equipment is a complex task that

requires a protocol for monitoring and controlling

equipment information. The SNMP is an example of a

protocol that can be used for management, but it used

monitoring purpose only. So, it has many limitations in

functions for purpose of network management. The

installation of a modern network comprising

heterogeneous equipment units with diverse

configuration data is dispersed, and this requires a

protocol that can be used to directly change the

equipment configuration data. The protocol should also

be able to perform the task in a centralized manner and

from a remote location. To meet the requirements for

performing diverse network management functions and

achieve better network productivity, a Network

Configuration Protocol (NETCONF) standard was

enacted in 2006. In 2011, a revised version of

NETCONF with many new features was released [1].

However, additional improvement is still required

because the layers still contain inadequacies and some

parts of the operation process and data modeling

remain inefficient [2].

In this paper, we propose a technique for improving

the structure of the data generated by YANG (Yet

another Next Generation) for use as the current data

modeling language of NETCONF. The proposed

technique improves the operating efficiency of the

Operation layer. We also propose a technique for

expanding the <partial-lock> operation. An improved

data structure that enables efficient modification and

storage of the equipment configuration data provided

by the Operation layer via the Remote Procedure Call

(RPC) layer was also developed [3-4]. Lastly,

experiments were performed to evaluate the

effectiveness of a NETCONF that uses the proposed

improvements, with particular focus on the Content

layer, to which was applied a data structure that affords

efficient configuration data update [3]. The results

were compared with those of a standard NETCONF [1]

and a data-structure-based NETCONF [3], with

particular focus on the query throughput and process

delay. The NETCONF with the proposed improvements

was confirmed to be superior.

2 Related Studies

2.1 NETCONF-related Studies

Since the introduction of the NETCONF standard,

diverse studies have been conducted on the application

and use of the protocol. In [5], a NETCONF-based

network management system comprising three parts,

namely, a manager referred to as BUPT-NET, a server,

and a module group, was developed. In [6], a YANG

1994 Journal of Internet Technology Volume 19 (2018) No.7

and NETCONF-based management system was built

for network management. YANG is presently used for

many NETCONF studies [7-9]. Some previous studies

have also analyzed NETCONFs and developed a

system known as XCMS for NETCONF-compatible IP

sharing equipment [10]. [11] reports the development

of a structure for managing a network that uses

NETCONF, and also describes the structure of a

NETCONF-based network management system and its

movement elements.

Loureiro et al. [12] proposed the development of the

NETCONF agent function for link state monitoring, in

comparison with other management technologies, such

as SNMP. [13] emphasized the security and scalability

advantages of NETCONF over SNMP and

Representational State Transfer (REST), however,

there was no consideration for multiple administrators

and data modeling. [14] considers resource use of

SNMP and NETCONF protocol implemented in

embedded device. [15] compared the performance of

the NETCONF, Constrained application protocol

(CoAP), and SNMP protocols within the Fog

computing architecture. [16] and [17] compared

NETCONF with SNMP in wireless network

management scenarios. These studies did not consider

multiple managers, and in the aspect of data modeling,

utilized standard techniques using YANG. [18] used

the ProVerif cryptographic protocol verifier to analyze

the NETCONF protocol that relies on the transport

layer for authentication, and to identify the manager of

the device to be authenticated. The focus of [18] was

on NETCONF security. Wallin and Wikstrom [19]

verified that NETCONF and YANG greatly simplified

the configuration management of devices and services,

and still provided superior performance. Performance

tests were executed on a cloud that managed 2000

devices. This study does not consider special data

modeling techniques as a study on the use of YANG

and its performance and standardization.

2.2 Studies on Improvement of the Operation

Layer and the Data Modeling of the

Content Layer

Several studies have been conducted on the

improvement of NETCONF, with the major goal being

to increase the performance of each layer of the

protocol. The layers that have been most studied for

this purpose are the RPC and Operation layers [4, 10-

11]. Several studies have particularly been conducted

to improve the efficiency of the Operation layer and

reduce the overall processing delay by improving the

processing method of the RPC layer. Studies on

improving the efficiency of the Operation layer mainly

considered issues related to the memory of the network

equipment, such as the <lock> operation, and were

aimed at increasing the speed of the writing and

reading processes in the equipment memory by

modifying the operations [3, 20].

The modeling method employed in the Content layer

is an important subject because it affects the overall

performance of a NETCONF network management

system.

YANG is a data-modeling language specifically

designed for application to NETCONF [7-8]. It is the

de facto standard that is applied to the Content layer of

NETCONF. YANG uses XML to store and exchange

equipment data, and supports the interoperability of the

heterogeneous equipment that is used together with

NETCONF [7-8]. However, YANG cannot be used to

create a data-dependency model structure for multiple

users. [20] presents a technology that can be used to

lock a portion of the data store in various cases. A

partial lock mechanism affects only the configuration

data and running data store, and not the start-up data

store. Using [20], we were able to implement a new

command, namely, <partial-lock> that expanded the

capabilities of NETCONF.

[21] and [22] proposed a YANG model for

describing sliceable transponders to provide variable

speed, code, modulation format, and monitoring

functions. This was applied in NETCONF, and

experimentally demonstrated on a test bed. [23]

introduced the YANG model for describing services in

network virtualization and explained that NETCONF

can be applied even when the network is virtualized.

These studies used the YANG model for transponder

description or service description, and were the latest

NETCONF technologies. However, they were not

modeling techniques for multiple managers and partial

locks.

[24] suggested a tree-based association rule-mining

technique that provided the necessary information to

enable a quick query and response for XML file

structures and content. However, it was not developed

for use in NETCONF. [25] has extended the extensible

access control markup language (XACML) and

implemented it in the NETCONF network

management system (BUPT-NEP) to make NETCONF

more secure. In this research, subtree filtering was used

to represent resources; however, the flexibility of

resource representation was lower than XPath. [26]

proposed Region-based Labeling (ReLab), which is a

subtree-based labeling scheme that generates labels

using depth-first traversal. However, [26] was not a

labeling technique that considered partial-locking.

2.3 Problem Definition

We analyzed several previously proposed

technologies and found that many of them were aimed

at improving the performance of NETCONF. There are

some standard modeling languages such as YANG that

are applied to the Content layer but cannot be used to

generate data that are based on the dependency of the

network equipment configuration data. We thus needed

a more flexible partial locking mechanism because

standard partial locking technology only enables the

YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 1995

locking of specific portions that is used for low-level

element in XML documents, and also has many

restrictions. We therefore determined that for more

than one network manager to efficiently perform

corrective equipment reconfiguration, the <partial-

lock> operation of the Operation layer should be

flexible and efficient [3-4].

To solve these problems, first, we need to expand

the <partial-lock> operation. Second, we needed a data

modeling technique that could be applied to the

Content layer to extend the <partial-lock> operation.

We therefore used YANG to perform the data

modeling for the network equipment. We then

modified the generated data model. In other words, we

developed a method for using a subtree technique to

create a data structure based on the dependency

information of the network equipment. The method can

be used to generate logical equipment configuration

data separate from the physical structure that can be

directly stored in the memory.

3 NETCONF Agent and Manager to

which the Improvement Technique Was

Applied

3.1 Outline of the Proposed System

In this study, the subtree-based data modeling

technique was applied to the Content layer of

NETCONF to improve the operation efficiency of the

Operation layer. We employed a structure of the

NETCONF agent and manger that uses a method for

fast updating of the proposed data modeling technique

and equipment configuration data. The agent and

manager of the NETCONF are illustrated in Figure 1

and Figure 2 to describe the positions and functions of

the proposed improvement techniques within the

NETCONF.

The NETCONF agent used in this study

incorporates features employed in previous studies on

improving the XML storage data structure for

transmission/receipt of equipment configuration

command and updating of the configuration data [4],

and rules for checking and selecting candidate

documents [3]. The details of the employed data

extraction process using VTD-XML (Virtual Token

Descriptor) and XPath, as well as the data modeling

technique used in the Content layer, are available in

[27-29]. The data modeling techniques used in this

paper are described in the last part of 3.2.1, and the

overview and application of VTD-XML are described

in the last part of 3.2.3. The operating sequence of the

agent is presented in Table 1.

Figure 1. Structural diagram of the improved

NETCONF agent

Figure 2. Structural diagram of the improved

NETCONF manager

1996 Journal of Internet Technology Volume 19 (2018) No.7

Table 1. Operation sequence of NETCONF agent

step action

1

An XML document containing an operation is

generated and sent by a manager to a queue that

stores candidate XML documents. The content of the

queue is then handed over to the module that checks

the candidate documents. (Marked ⓐ)

2

The candidate XML documents are classified into

emergency and normal documents based on the

results of a check of their priority using the rules

proposed in [3-4], within the check module (dotted

line box). (Marked ⓑ)

3

All the XML documents, both emergency and normal

(which have different processing sequences), are

expressed in a binary array using VTD-XML, and the

positions and contents of all the elements of the XML

documents are then stored. (Marked ⓒ)

4
The required data are extracted through an XPath

query using the content of the array. (Marked ⓓ)

5

An operation of the Operation Layer is performed

using the extracted information, and the result is sent

to the equipment configuration information storage

and used by the data module to model the

configuration information. This is done based on the

dependency between equipment configuration

information and their periodic communication with

each other. (Marked ⓔ)

6

The modeling of the initial configuration information

of the equipment is done using the address of the

XML element within the array generated by the

VTD-XML. The dependency between equipment

configuration information is particularly expressed

based on the relative path that can be expressed in

XPath. A table is then generated where the dependent

information is organized as one subtree.

Figure 1 illustrates the structure and process

sequence of the NETCONF agent, including the

module position. Figure 2 shows the block diagram of

the NETCONF manager developed in this study. A

multithread is used to process the queries and the

VTD-XML is employed for extraction of the required

data. The most important module of the NETCONF

manager is the NETCONF message processor. The

other modules are as follows:

• NETCONF query data creation module: This

module generates the query messages using the

information inputted through the GUI or data store,

and sends them to the XDR filter.

• NETCONF reply data processing module: This

module extracts the required data from the received

reply messages using the XML parser and stores the

reply result in the data store or hands it over to the

GUI.

The numbered continuous lines with arrows in

Figure 2 represent the process of transmitting the

request of the network manager. The dotted lines

marked with alphabets represent the process of

receiving the reply, while the lines with two-way

arrows represent the common processes. The process

of transmitting a request by a manager is presented in

Table 2, while the process by which the manager

receives the reply is presented in Table 3.

Table 2. Process of the transmission of a request in

NETCONF manager

Process of the transmission of request in NETCONF

Manager

step action

1
The manager receives data from the GUI module or

data store. (Process ①’, ①)

2

The manager generates a query message in the

NETCONF query data creation module using the

needed part of the input data. (Process ②)

3

The generated NETCONF request message is handed

over to the XDR filter through process ③ and the

coded.

4
The operation of the multi-thread generation module

is commenced. (Process ④)

5
The message is enqueued in the request message

queue through the generated thread (Process ⑤)

6

A multi-asynchronous channel is generated in the

transport protocol engine through process ⑥ for

parallel communication with the agent.

Table 3. Process of receives the reply by NETCONF

manager

Process of receives the reply by NETCONF Manager

step action

1

The manager receives data from the established

multi-channel and enqueues it in the received

message queue. (Process ⓐ)

2

While dequeuing the data in the queue, the manager

hands over the query data to the multi-thread

generation module. (Process ⓑ)

3
The decoded reply message is handed over to the

XDR filter. (Process ⓒ)

4

The XDR filter hands over the reply message th to

NETCONF message processor (process ⓓ). The

message enters the XML parser inside the message

processor.

5

The NETCONF message processor extracts the

required data through the XML parser and proceeds

to process ⓔ whereby it records the data in the

configuration storage file.

6

The NETCONF message processor outputs the data

through process ⓕ to the NETCONF reply data

processing module, and then to the GUI application

through process ⓖ, or the CLI through process ⓖ’.

YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 1997

3.2 Improvement of the Operation Efficiency

of the Operation Layer

3.2.1 Expanded Partial Locking Technique for

Improvement of the <partial-lock> Operation

The previous NETCONF standard (RFC 4741, 2006)

uses a global lock to avoid inconsistency among

memories when multiple managers access the same

memory concurrently. As noted in a related work, the

2011 NETCONF standards include <partial-lock> and

enable the simultaneous operation of multiple

managers. However, there are some limitations [20].

For example, although partial memory locking is

possible, the hardware-centric <partial-lock> operation

including the global lock is still inefficient. In other

words, to increase the speed of changing the equipment

configuration and the productivity of the network

managers, an expanded operation that locks only a

specific part of the data store is required. In the present

study, the equipment configuration data dependency

verification technique was employed [3]. This

technique divides the equipment configuration data

into groups in advance of storing them, and does the

storing in a classified manner.

Figure 3 illustrates the concept of a <partial-lock>

operation that partially locks the data store. If there is

interdependency among the equipment configuration

data, the storage would be modeled as a subtree.

Another subtree may recursively exist in the model

subtree. Each shaded rectangle in Figure 3 represents a

group of equipment configuration data classified in

advance of storage. This structure enables the

application of the <partial-lock> operation to a subtree.

This method is different from that used by nodes for

classification, and partial locking of XML elements is

only achieved using the XPath expressions described in

[1, 20].

Figure 3. Concept of the <partial-lock> operation for

the partial locking of the data store and grouping based

on their interdependency

The method used by XPath to identify other nodes

apart from the current one is based on the respective

locations of the two nodes. Both the relationship

between the nodes and their attribute values can be

used for data grouping, as was done in the present

study for detailed inspection [3-4].

The methods used in previous studies are described

here in more detail. The equipment configuration data

in the network equipment memory is organized in the

form shown at the top of Figure 3. The information is

intricately entangled; however, it can be classified into

groups based on equipment configuration data that is

interdependent or related to each other as shown at the

bottom of Figure 3. This is done by labeling and

subtree-based storing for the XML document element.

A grouped data set can be considered as a subtree. If

the data are connected vertically in a certain direction

and are interdependent, the top node of a vertical data

group would be the root of the subtree.

In more detail, the leftmost dotted line box in Figure

3 corresponds to the subtree represented by the root

node, r1, in Figure 4. The middle dotted line box

corresponds to r2, and the right dotted line box

corresponds to the subtree, r3. Node n1 in subtree r1 is

an ancestor of n2 and n3, and is uniquely identified in

the entire data. Moreover, the root nodes, r1, r2, and r3

of each subtree, are uniquely identified, and each is

independent. Here, when accessing interface1, and

changing ip4-address or macaddr included in the same

subtree, interface1 is entirely locked. However, if the

manager accesses the system to modify the information

related to ‘name’ or ‘subnet’, it does not lock the

subtree that includes interface1. Instead, it locks the

labeled range based on r2 or r3 (subnet) of the below

subtree. That is, it is possible to lock both r2 and r3

based on r1, or lock them on the basis of each root.

Figure 4. Data modeling based on their interdependency

3.2.2 Improved Equipment Configuration Data

Update Using Additional Data Structure

If multiple operations simultaneously approach the

same memory at the same time, an efficiency problem

1998 Journal of Internet Technology Volume 19 (2018) No.7

may arise. This problem was solved in the present

study by filtering. For this purpose, the candidate

check module was used in such a way that only

adequate candidate documents were left after filtering

multiple XML documents that contained equipment

configuration update information [3-4]. The candidate

documents are processed by the agent of the equipment,

and a number of candidate documents equal to the

number of network managers can be generated and

maintained within the limits of the memory.

Furthermore, for efficient update of candidate XML

documents for the running-config, a rule was

developed to give priority to each network manager in

accordance with its rating and authority, as reflected in

the query packet. In addition, in the data structure used

to process and efficiently handle candidate XML

documents, there is an agent XML candidate document

queue that exclusively receives queries from the

manager, separate from the queue of notifications

(reply and feedback). Separate lists of queues that

handle emergency documents and queues that handle

normal documents are also allocated in accordance

with the candidate document processing rules.

Figure 5 illustrates the handling of the candidate

XML documents around rectangles (i) and (j)

(broken/dotted lines) in Figure 1. The candidate

documents that pass through the candidate check

module can then update the running-config of the

equipment. For efficiency, the equipment configuration

update documents may be arranged in accordance with

their urgency as indicated by the XML document list.

This is done by creating an emergency XML queue

separate from the XML document list. The feedback

queue below the XML candidate document queue is

used to send quick replies to the network manager.

Figure 5. Operation process of the candidate check

module and the improved data store structure

3.2.3 Proposed Data Modeling Technique of the

Content Layer

Subtree-based XPath data storage method. The

parsing of XML documents and extracting or storing of

the required data are the most time consuming

operations of a NETCONF. Parsing and a technique for

extracting and storing the necessary information are

required to process the XML document as shown in

Figure 6. This involves a request for the performance

of a <get-config> operation, and the name, IP address,

MAC address, and other information are structurally

inserted into the <interface> element. Furthermore, the

<interface> element is presented twice, although with

different attribute values. The data dependency is as

discussed in subsection 3.2.1. The equipment

configuration data is stored in the form of a subtree

using a subtree-based XPath process, by which the data

in Figure 6 is converted to the form shown in Figure 7.

Figure 6. XML query document

Figure 7. Labeling of XML document tree

The latest technique for storing XML data is known

as XML node labeling. In applying this technique, the

first interface in Figure 6 can be expressed as (2:52, 2)

using a label like that in Figure 7. The first two

numbers separated by a colon in the node labels

represent the range (start : end), while the third number

indicates the depth of the node in the tree. The parts

surrounded by the free-hand lines are respectively the

YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 1999

subtrees of the XML tree, and each subtree can be

stored as a storage unit.

The task of storing XML data in subtrees and, to

skip depending on the form of the XPath query, the

parsing used to extract the internal data of the subtrees,

an XML fragmentation schema is required. Such a path

fragmentation schema can be generated from the tree in

Figure 7 and expressed as an XPFS tree, as shown in

Figure 8. The number beside each node (prefixed with

#) is the path ID of the node, N, which is allocated

based on the type of the path from the root. Table 4

describes the storage of the equipment configuration

data, including the XPFS subtree information in Figure

8 and the labeling information in Figure 7. In the

present study, the interdependency between the

configuration data and the subtree-based storage

method was taken into consideration at the time when

the equipment configuration data was created or stored

for the first time using the XML subtree-based storage

method [3, 27].

Figure 8. XPFS (XML path fragmentation schema)

tree of the document tree in “Figire 6”

Table 4. Storage based on the subtree

no name
path
ID

begin end value

(1) data #1 1 50 <data> $$ </data>

(2) interface #2 2 25 <interface
xmlns=“urn:ietf.params:sml:”>

(3) name #4 7 10 <name> eth1 </name>

(4) subnet #7 19 24 <subnet> <name> eth1.1 </name>
<subnet>

(5) interface #2 26 49 <interface xmlns=“urn:ieft:params:
xml:ns.yang:ieth-interfaces2”>
 <ipv4-address>192.158.5.20
 </<ipv4-address>
 <macaddr> kk:ll:mm:nn:oo:pp
 </macaddr> $$
</interface>

(6) name #4 31 34 <name> eth2 </name>

(7) subnet #7 43 48 <subnet> <name> eth2.1 </name>
<subnet>

The safety of subtree-based XPath processing. In

this section, we present the basis for the structural join

of each subtree to show the safety of the subtree-based

storage method shown in Figure 7, Figure 8, and Table

4 [27].

The path type of the XML document D can be

defined as a sequence of element tags/attribute names.

This corresponds to the path of D in the XPFS tree. If

there are two path types, one path type can be a prefix

of another path type. For example, in Figure 8, path

type ‘/data/interface’ is a prefix, as in path type

‘/data/interface/name’ and ‘/data/interface/subnet/name’.

For XML node n in XML document D, P (n) represents

the path type from the root of D to n. For example, in

Figure 7, P (interface1) = /data/interface. For XML

node n, range (n) represents the range (begin: end).

Assuming that range(t) represents range(r) for the

stored subtree t, whose root node is r, then with a

subtree-based XML storage of XML document D

derived by the XPFS tree, with the basic XML

fragmentation rules, we get the following rules [27].

-Rule 1-

For two XML nodes n1 and n2, belonging to subtrees

t1 and t2 of XML document D, stored in a subtree-

based storage derived by the XPFS tree of D, n1 is an

ancestor of n2 if the following two conditions are

satisfied.

(1) range (t1) contains or equals range (t2)

(2) P (n1) is a prefix of P (n2)

Proof for Rule 1 is omitted in this paper. More

importantly, according to Rule 1, the independent

subtrees may be separated from each other and locked.

It is also possible to concurrently lock the descendant

subtree linked to the ancestor subtree by a structural

join. This denotes that the subtree-based storage

method excludes the risk of multiple managers

accessing data at the same time and can be used safely.

Data modeling with integrated data storage using

XPath processing and the dependency of the

equipment configuration data. If the subtree XML

data storage method is integrated with the data

modeling of the dependency of the equipment

configuration data, the data used to model the network

equipment configuration data may be considered as a

block. When an interface task or a task related to a

subnet on the interface is to be performed using a

NETCONF, the XPath query with the specific

command expressed in an XML document may be in

the form of either of the following XPath expressions:

/data/interface[@xmlns=“urn:ietf:params:xml:ns:yang:

ietf-interfaces1”]//name (1)

/data/interface[@xmlns=“urn:ietf:params:xml:ns:yang:

ietf-interfaces2”]//name (2)

Let us consider the case in which change the name

of a specific interface and the interface name of a

subnet for the relative address expressions (1) and (2),

2000 Journal of Internet Technology Volume 19 (2018) No.7

or retrieve it from the equipment configuration data

and return it. If the data modeling is done using the

XML storage structure proposed in this paper, a logical

data structure of the form shown in Figure 9 would be

generated for such a query.

Figure 9. Structure of stored data for NETCONF query

For Query (1), the network equipment memory can

be approached using the subtree in rectangle ① in

Figure 9 as a data block, in which case the target of the

approach would be the subtree root. Similarly, for

Query (2), the subtree in rectangle ② with the same

structure but a different storage range (label) can be

considered as a data block. Accordingly, the interface

names of the two queries and the name of the interface

that uses the subnet can be searched for, with the

memory of the subtree unit locked when two or more

managers approach the same equipment.

Another sample query is that for the returning of all

the names of the equipment interfaces, in which case

the data can be extracted using the dotted line rectangle

ⓐ . That is, if the subtree-based equipment

configuration storage technique is used, the data block

should be created based on the equipment

configuration data dependency. It is therefore possible

to extend the standard <partial-lock> operation [20].

This enables multiple managers to concurrently access

each square to process the configuration setup. In the

event of two or more managers approaching an

equipment unit at the same time, a partial <lock>

operation would be performed to separately lock each

rectangle.

The memory construction state for Query 1 can be

expressed in detail as shown in Figure 10.

The free-hand lines between the physical and logical

parts of the figure represent the pointer connections

between the actual and logical memories. In the

execution of Query 1, the network equipment memory

is approached through rectangle ① in Figure 10. When

using Table 4, which gives the modeling result, Query

Figure 10. Relation between XML document structure

and physical memory for NETCONF query

1 is processed with only the white part of rectangular

① locked. The shaded Box ② inside box ① is

independently maintained as another subtree. That is,

even if box ① is locked, box ② may still be

approached. This is because the logical and physical

parts of the data structure are entirely separated. Hence,

what is shown in Figure 10 is the conceptual data

grouping indicated in Figure 3 and Figure 4 and is

implemented in the actual memory. With the memory

organized in this manner, when the physical part is

abstracted from the viewpoint of the network manager,

the equipment configuration can be organized such that

only the subtree storage structure of the XML

document would be seen. Moreover, it would be

possible to execute partial <lock> operations.

Data Extraction Using VTD-XML and XPath.

VTD-XML is a parsing technology that operates in a

non-extractive manner. In this paper, an expanded

VTD-XML was also used to process XPath queries.

Non-extraction denotes that parsing of the entire

subtree is not required to extract its internal elements.

In this case, an XML document is stored in the

memory in a binary form, and the positions of the

document elements are analyzed in a byte array to

record the information. This is different from the

method in which an object is generated within the

memory by extracting the document parts, such as the

Document Object Model (DOM). When VTD-XML is

used, the XML documents can be quickly analyzed and

processed [28]. In addition, when XPath processing

uses only VTD-XML to extract the required data, the

expression flexibility of XPath is maintained. This is,

however, accompanied by the disadvantage of XPath

being slower than other general subtree methods,

although compensation could be made for this. We

extract useful data in the form of an integrated XML

YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 2001

document. With VTD-XML and XPath, applications

can bind only relevant data items, avoiding the creation

of useless objects. Because XPath can be applied to a

parsed tree of XML, VTD-XML is used to create a

tree-like table. Therefore, VTD-XML is suitable for the

generation of a data structure of the type in Table 4, in

which the root is within the tree structure [28-31].

In this paper, we use an open-source VTD-XML

Java API, which consists of VTDGen (VTD generator),

VTDNav (VTD explorer), and the AutoPilot Class. To

use extended VTD-XML and XPath, we must include

the ‘com.ximpleware.extended’ package.

4 Experimental Implementation Results

and Performance Comparison

4.1 Experimental Environment

Experiments were performed to assess the

performance of the NETCONF agent and manager

using the proposed improvement techniques. All the

improvement techniques applied to each layer of the

NETCONF were modules prepared in C language and

were implemented inside the agent and manager. The

experiments were performed using a virtual switch

because of the difficulty of implementing changes

inside the agent in an actual network unit. The

dependency of equipment configuration data was then

modeled from the binary array. The experimental

environments are shown in Table 5.

Table 5. Specifications of experimental environment

Category Name

Operation System Windows 7/64 bit

Development

Language
Java, C

Date Modeling

Language
YANG

RAM 8G Byte

CPU Inter® core i7-3770

Software
Yenca, Cisco Nexus 1000V,

Extended VTD-XML

Compared Factors

VTD-XML vs DOM: Throughput

Speed, Memory Consumption

Subtree-based vs Node-based: XPath

Processing

Time (Query), Space Requirement

Performed Operation

<edit-config> for interface

configuration change with XML

form

Network Composition

10 virtual switch (support

NETCONF)

10 Host (for MAanager)

Platform JVM 64 bit

Compared Protocol

Standard NETCONF (RFC 6241),

data-structure-based NETCONF ([3]

based on RFC 6241)

Experiments are divided into two categories. The

first category is an experiment on the processing

performance of the method applied to the improved

NETCONF. Here, we compared the throughput speed

and memory consumption while using VTD-XML and

DOM. Moreover, we compared the processing time

and space requirements of XPath processing using

subtree-based storage with that of node-based storage.

The second category is the comparisons between the

improved NETCONF and data-structure-based

NETCONF, and standard NETCONF. The comparison

factors are query throughput and query processing

delay. The improved NETCONF additionally uses a

subtree-based storage technique according to VTD-

XML, and an equipment data dependency compared

with data-structure-based NETCONF [3], which is our

previous study.

4.2 VTD-XML vs DOM

Five representative test data were used for the

analysis (see Figure 11). In this experiment, we

measured the performance of VTD-based parsing, in

terms of both parsing throughput and memory

consumption. The parsing throughput was used to

measure the speed (amount of documents parsed per

unit time (MB), MB/S). The memory consumption was

measured as a ratio, which was total memory

usage/original file size.

Figure 11. Throughput comparisons for VTD and

DOM model

4.2.1 Throughput

As can be seen in Figure 11, when parsing small

XML documents, it is far better to use the DOM,

which quickly converts XML documents into a tree

structure. However, VTD is relatively stable in terms

of processing speed, regardless of the XML file size.

The superiority of the VTD parsing model is that it

shows almost similar processing speeds when the

document size increases. On the other hand, the DOM

model cannot handle file sizes over 5.78 MB because

the DOM process structure consumes a large amount

of memory.

2002 Journal of Internet Technology Volume 19 (2018) No.7

4.2.2 Memory Consumption

Figure 12 shows that the memory usage of the VTD-

XML parsing model matches the official specification.

The memory usage ratio is close to the stable range

(1.2~1.4) as the document size increases and is not

affected by the document complexity (depth, schema).

Therefore, when compared with the DOM model, it

can be seen that VTD has stable throughput and

relatively low memory consumption.

Figure 12. Memory consumption of the VTD model

4.3 Subtree-based vs. Node-based

In order to show the superiority of the subtree-based

XML storage performance, we compared it with the

node-based XML storage method. For the experiment,

node-based XML storage, XPath processing

(Process/Node) subtree based XML storage, and XPath

processing (Process/Subtree) were constructed. In the

Process/Node, each node is stored as a table record in

the NODE, while in the Process/Subtree, each subtree

is stored as a record in the SUBTREE table. The XPath

expressions used are shown in Table 6.

Table 6. Query (XPath Expression)

Query XPath Expressions

Query 1
/data/interface[@xmlns]/protocol

[@type]/ip4-address

Query 2
/data/interface[@xmlns]//subnet[number]

/name[@type]/protocol[/source/running]

Query 3 /data/validate/source/candidate

4.3.1 XPath Query Processing Time

For all XPath expressions in Table 6, the query

performance of Process/Subtree was compared with the

performance of Process/Node. The configuration2.xml

file was used. We experimented, respectively, with

setting the final result XML node of all queries as a

descendant of the subtree root, and setting the final

result XML node as the root of the subtree for all

queries. In many cases, the network equipment

configuration data could be retrieved or the necessary

data modified, if we knew the root information of the

subtree. Moreover, the performance of the Process/

Subtree depends on whether the inside of the subtree

should be parsed.

The left side of Table 7 indicates the processing

speed when the query result consists of the child for

subtree root. The right side shows the processing speed

when the query result is made the root of the subtree.

The Process/Subtree takes a longer time than the

Process/Node owing to the parsing overhead, as shown

on the left side of Table 7. However, Process/Subtree

outperforms Process/Node, as shown on the right side

of Table 7. There are several reasons for this result, but

the biggest is that the size of the table NODE is much

larger than the SUBTREE. Therefore, the time it takes

to retrieve the node list for a twig node in the

Process/Node is much longer than the time it takes to

retrieve the subtree list for a twig node in the

Process/Subtree.

Table 7. Query Processing Time (ms)

Result: inside the

subtree
Result: root the subtree

Query Process/

Node

(ms)

Process/

Subtree

(ms)

Process/

Node

(ms)

Process/

Subtree

(ms)

Query 1 48.62 82.08 49.23 18.17

Query 2 182.78 273.92 183.11 21.96

Query 3 59.52 62.48 59.45 24.58

4.3.2 Space Requirement

As mentioned in the previous experiment, subtree-

based XML storage is much smaller than node-based

storage. In the first experiment, if the size of

configuration2.xml is 985 KB, the NODE table stores

about 20,000 records, and the SUBTREE table stores

about 4,700 records. NODE and SUBTREE take up

approximately 0.98 MB and 0.51 MB of space in the

database table, saving space if we use subtree-based

XML storage. An XPFS tree is essentially required in

the Process/Subtree, however, it is optional in the

Process/Node [27]. Therefore, the XPFS tree sizes

were measured for the five configuration files used in

our experiment. Table 8 shows that the space required

for the XPFS tree is a negligible rate, compared to

these five XML document sizes.

Table 8. Space overhead rate for XPFS

Size of Configuration file

(KB): Sc

Size of XPFS Tree

(KB): STtc

(Sc/ST)*100

(%)

47 33.37 7.1

985 46.3 4.7

5,781 62.8 0.11

18,972 65.5 0.03

40,521 65.5 0.01

YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 2003

4.4 Comparison of NETCONF Protocols

4.4.1 Comparison of Query Throughputs

There are two experimental methods for evaluating

the query throughput with changing equipment

configuration data:

The first method involves the measurement of the

ratio of the number of queries actually processed to the

varying total number of queries. The variation of the

total number of queries induces the NETCONF manger

to change or read the equipment configuration data

provided by the agent. As the number of queries was

increased from 100 to 1,000 in the present study, the

number of received command execution success

messages (OK messages) was measured.

In the second experimental method, the number of

received command execution success messages is

measured with increasing number of managers from 1

to 10 for a fixed number of queries per manager. The

query types used in the present study were <get-

config> and <edit-config>.

Figure 13 shows the results of the first experiment.

The improved NETCONF had a processing success

rate of no less than 93%, even when the number of

queries reached 1,000. The average query throughput

was 97 %. By comparison, the successful throughputs

of the NETCONF with data structure [3] and the

standard NETCONF [1] began to decrease when the

number of queries reached 700, the values being 93 %

and 86% respectively. Data-structure-based NETCONF

has a structure that can efficiently process concurrent

query transactions and use multiple XML documents.

However, data-structure-based NETCONF uses a

standard YANG-generated data model, and does not

use subtree-based storage. Thus, it is slow to access

certain data and has an insufficient partial lock function

based on data dependency. This causes a decrease of

query throughput.

Figure 13. Throughput with respect to number of

queries

In the case of the standard NETCONF, the

probability of the discarding of XML documents that

were handed over via queries was relatively high

because of the absence of a data structure that enabled

smooth processing of XML queries. In addition, if a

specific manager does not complete a transaction, all

the queries of the other managers would be discarded,

even if they are operating in <partial-lock> mode [20].

In the second experiment, the priorities of the

managers were introduced and each manager was set to

generate 10 queries. Because the queries were

processed in an XML document, there were also

priorities among them. Two particular managers had

relatively high priorities compared to the other eight. In

addition, among queries of the same priority rating,

one that arrived earlier was accorded higher priority.

The experimental parameters are given in Table 9.

Because no document was discarded by any of the

three types of NETCONFs when the number of

managers was 1, as shown in Figure 14, the

throughputs were all 100%. However, beginning at

when two managers were used, the throughput of the

standard NETCONF fell below 100% for packets to

which priorities were attached.

Table 9. Throughput experimental parameters

Basis parameter Considered value

Number of Query Increased 100 to 1000

Number of Document per

Client
10

Size of one XML Dcoument Below 3K byter

Existence of Priority

between Client
Exist (for Increasing Client)

CPU usage rate
Below 17% (All kind of

NETCONF are same)

Figure 14. Throughput with respect to the number of

managers

Standard NETCONF and data-structure-based

NETCONF may appear to be operated in the <partial-

lock> mode, but are actually operated in the full lock

mode by high-priority managers. According to the

rules suggested in [20], if a manager with a higher

priority performs a memory lock or global lock

function, <partial-lock> would fail.

2004 Journal of Internet Technology Volume 19 (2018) No.7

In the case of the improved NETCONF, some of the

queries were not processed, with some occasionally

discarded, when the number of managers reached 7.

However, the throughputs of all the three types of

NETCONFs did not significantly decrease until the

number of managers was 10. The trivial reduction at

this point was because the number of queries that could

actually be processed was only 100. If the number of

managers increases, the proposed NETCONF creates a

data structure for partial locking. Because it uses a

labeling by equipment data dependency, subtree-based

storage method, and VTD-XML, it is obvious that the

partial locking function would be available for such

situations where multiple managers exist and the query

speed is increased.

4.4.2 Comparison of Query Processing Delay

The query processing delay, which changes the

equipment configuration data, can be measured by two

methods. The changing factor in the experiment is the

same as in 4.4.1.

The processing delay is determined by the time

between then a query is sent by the manager and when

the reply for its successful processing by the agent is

received. There are two important parameters that

should be noted in the results of an experiment to

evaluate the query processing delay. The first is the

XPath delay, which is the time required to process the

XPath expression of the equipment configuration data

stored in the form of an XML document. The other is

how fast an update can be performed after a query to

change the configuration of the network equipment is

received when there are more than two managers. In

the case of the improved NETCONF, the equipment

configuration data is stored as indicated in Table 4,

with an XML document expressed in the form of an

address. In addition, it includes a queue and list data

structure, which may comprise two or more candidate

XML documents, and corrects the equipment

configuration data in parallel as need arises. This

experiment was performed under the condition wherein

the initial configuration data was generated inside the

existing network equipment without provision for the

time required to create the initial data structure given in

Table 4. The experimental parameters are presented in

Table 10.

In the case of the experiments performed using

increasing number of queries, for queries less than 100,

the results presented is the value obtained by

multiplying the average delay for a single query by the

number of queries. As shown in Figure 15, for up to

200 queries, the improved NETCONF, the NETCONF

with data structure [3], and the standard NETCONF [1]

consumed a little more time than that obtained by

multiplying 20ms (the single query delay [29]) by the

number of queries. That is, the actual delay was a little

more than 20ms × N, where N is the number of queries.

Table 10. Delay experimental parameters

Basis parameter Considered value

Process Delay per

<edit-config>

Average: about 21

millisecond

(for 3K byte XML)

Process Delay per

<get-config>

Average: about 23

millisecond

(for 3K byte XML)

Number of Query Increased 100 to 1000

Number of Agent
Increased 1 to 10, 1

(for Increasing Query)

Number of Document per

Manager
10

Size of one XML Document Below 3K byte

Existence of Priority

between Manager

Exist

(for Increasing Manager)

CPU usage rate
Below 17% (All kind of

NETCONF are same)

The delay of the standard NETCONF began to increase

significantly when the number of queries reached 300,

and again when the number reached 600. The delay of

the NETCONF with data structure began to differ from

that of the improved NETCONF when the number of

queries reached 500. In the case of the improved

NETCONF, the processing required only 24ms, even

when the number of queries reached 1,000. This is

almost the same as the single query delay and was

enabled by the fact that when using the improved

NETCONF, dependent data could be directly found by

checking up to the root of the subtree when

approaching the equipment configuration data. In

addition, the subtree enabled rapid partial lock. The

cause of the longer delay times of data-structure-based

and standard NETCONFs is much similar to that

discussed in Section 4.4.1.

Figure 15. Process delay with respect to the number of

queries

In the second experiment, the delay was measured

for increasing number of managers with varying

priorities, each of which generated 10 queries. Figure

16 compares the results for the different NETCONFs.

YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 2005

Because the improved NETCONF could have two or

more candidate configuration XML documents and

could parallel change the equipment configuration data

with respect to the condition of the memory approach,

its response time was shorter than that of the standard

NETCONF, in which one manager had to wait until the

memory approach of other manager had been

completed. Although the XML document processing

efficiency of the NETCONF with data structure was

also high, its speed was slower than that of the

improved NETCONF because of the incapability of

parallel processing.

Figure 16. Process delay with respect to the number of

managers

5 Conclusion and Future Study

The NETCONF standard was introduced to meet the

management requirements of modern networks and

increase the productivity of the network management.

Although it has been a long time since the first

NETCONF standard was announced, and some

corrections and enhancements have been introduced

along the way, there is still much more to be improved

in the protocol.

We propose three methods to overcome the

shortcomings of NETCONF.

The first method uses VTD-XML, which does not

parse the entire tree in order to process XML

documents containing configuration data at a high

speed. This method can process XML documents of a

much larger size and handle more than 5 MB of data

using much less memory as compared to the DOM

model.

The second method proposed is the use of subtree-

based XPath data storage for fast processing and

stability of XPath queries. In this method, it is not

necessary to parse redundant data, and all data in the

tree can be accessed by referencing the root

information. Compared to the node-based processing

method, the speed of retrieving the data within the tree

is relatively slow using this method. However, we have

experimentally confirmed that the results of the query

are retrieved much faster than in case of the node-

based method in case of the subtree root. Moreover, the

memory overhead is much lower than in case of node-

based processing.

Finally, we propose a data modeling method for the

Content layer of NETCONF and an efficient data

storage technique for improving the efficiency of the

Operation layer. The proposed methods involve a

modification of the model structure generated using the

YANG XML data model to take the data dependencies

of the utilized equipment into account.

The improvement of the Operation layer efficiency

was particularly accomplished by enhancing the data

modeling of the Content layer. The modeling technique

of equipment configuration data and grouping method

employed in the Content layer were developed to

enable interlocking with the Operation layer. In

addition, the efficiency of the expanded <partial-lock>

operation in the Operation layer was improved by a

data grouping procedure based on the interdependency

of the equipment configuration data. Furthermore, a

data structure that enables more efficient processing of

XML queries, even when two or more managers are

present, was proposed.

To quantitatively verify the performance of the

proposed methods, the query throughputs and query

processing delays of the improved NETCONF, the

data-structure-based NETCONF [3], and the standard

NETCONF [1] were compared.

We have confirmed that the improved NETCONF

performs better than the other protocols by using

efficient YANG-based data modeling when there are

multiple network managers and by applying a dual

queue data structure for simultaneous transaction

processing. The throughput is the best among the three

protocols for an increasing number of queries and an

increasing number of managers. The processing delay

was also found to be the lowest among the three

protocols because of reasons similar to those for the

best throughput. Thus, the experimental results indicate

that the improved NETCONF can increase the

productivity of network management and the

processing efficiency.

Further study using more elaborate experiments and

considering more parameters is required. Additional

research is also required for finding the most

appropriate form for constructing equipment

configuration data in a subtree form.

Finally, it is necessary to compare the proposed

method with other NETCONF improvement models

and apply our proposed improved NETCONF in a

practical network environment.

Acknowledgments

This work was supported by the Dong-A University

research fund.

2006 Journal of Internet Technology Volume 19 (2018) No.7

References

[1] R. Enns, M. Bjorlund, J. Schoenwaelder, A. Bierman,

Network Configuration Protocol (NETCONF), RFC 6241,

June, 2011.

[2] J. Yu, I. A. Ajarmeh, An Empirical Study of the NETCONF

Protocol, 2010 Sixth International Conference on Networking

and Services, Cancun, Mexico, 2010, pp. 253-258.

[3] Y. M. Lee, J. K. Lee, Improving and Optimizing the

Operation Layer Algorithm of NETCONF Protocol, 2014

28th International Conference on Advanced Information

Networking and Applications Workshops, Victoria, Canada,

2014, pp. 449-455.

[4] Y. M. Lee, M. Y. Cha, J. K. Lee, Development of Update

Methods for Configuration Data of NETCONF Protocol

Considering Multiple Network Administrators, Journal of

Internet Computing and Services, Vol. 14, No. 5, pp. 27-38,

October, 2013.

[5] H. Ji, B. Zhang, G. Li, X. Gao, Y. Li, Challenges to the New

Network Management Protocol: NETCONF, 2009 First

International Workshop on Education Technology and

Computer Science, Wuhan, Hubei, China, 2009, pp. 832-836.

[6] J. Schonwalder, M. Bjorklund, P. Shafer, Network

Configuration Management Using NETCONF and YANG,

IEEE Communications Magazine, Vol. 48, No. 9, pp. 166-

173, September, 2010.

[7] M. Bjorklund, YANG: A Data Modeling Language for the

Network Configuration Protocol, RFC 6020, October, 2010.

[8] M. Scott, M. Bjorklund, YANG Module for NETCONF

Monitoring, RFC 6022, October, 2010.

[9] J. Akhtar, YANG Modeling of Network Elements for the

Management and Monitoring of Elastic Optical Networks,

2015 IEEE International Conference on Telecommunications

and Photonics, Dhaka, Bangladesh, 2015, pp. 1-5.

[10] M. S. Lee, S. M. Yoo, H. T. Ju, J. W. Hong, Performance

Improvement of Systems and Network Configuration

Management Based on NETCONF, The Journal of Korean

Institute of Communications and Information Sciences, Vol.

33, No. 9B, pp. 786-794, September, 2008.

[11] Y. Chang, D. Xiao, H. Xu, L. Chen, Design and

Implementation of NETCONF-based Network Management

System, 2008 Second International Conference on Future

Generation Communication and Networking, Hainan Island,

China, 2008, pp. 256-259.

[12] D. Loureiro, P. Gonçalves, A. Nogueira, NETCONF Agent

for Link State Monitoring, 2012 IEEE International

Conference on Communications, Ottawa, ON, Canada, 2012,

pp. 6565-6569.

[13] P. R. da P. F. Santos, R. P. Esteves, L. Z. Granville,

Evaluating SNMP, NETCONF, and RESTful Web Services

for Router Virtualization Management, 2015 IFIP/IEEE

International Symposium on Integrated Network Management,

Ottawa, ON, Canada, 2015, pp. 122-130.

[14] A. Sehgal, V. Perelman, S. Kuryla, J. Schonwalder,

Management of Resource Constrained Devices in the Internet

of Things, IEEE Communications Magazine, Vol. 50, No. 12,

pp. 144-149, December, 2012.

[15] M. Slabicki, K. Grochla, Performance Evaluation of CoAP,

SNMP and NETCONF Protocols in Fog Computing

Architecture, 2016 IEEE/ IFIP Network Operations and

Management Symposium, Istanbul, Turkey, 2016, pp. 1315-

1319.

[16] M. Słabicki, K. Grochla, Performance Evaluation of SNMP,

NETCONF and CWMP Management Protocols in Wireless

Network, 4th International Conference on Electronics,

Communications and Networks, Beijing, China, 2014, pp.

377-382.

[17] M. Slabicki, K. Grochla, Influence of the Management

Protocols on the LTE Self-configuration Procedures’

Performance, 30th International Sympos- iumon Information

Sciences and Systems, London, UK, 2015, pp. 439-446.

[18] F. Izadi, H. S. Shahhoseini, Automated Formal Analysis of

NETCONF Protocol for Authentication Properties, IEEE

Conference 6th International Symposium on Telecommunications,

Tehran, Iran, 2012, pp. 1055-1059.

[19] S. Wallin, C. Wikstrom, Automating Network and Service

Configuration Using NETCONF and YANG, 25th

International Conference on Large Installation System

Administration, Boston, MA, 2011, pp. 22-35.

[20] B. Lengyel, M. Bjorklund, Partial Lock Remote Procedure

Call (RPC) for NETCONF, RFC 5717, December, 2009.

[21] M. Dallaglio, N. Sambo, F. Cugini, P. Castoldi, Management

of Sliceable Transponder with NETCONF and YANG, 2016

International Conference on Optical Network Design and

Modeling, Cartagena, Spain, 2016, pp. 1-6.

[22] M. Dallaglio, N. Sambo, J. Akhtar, F. Cugini, P. Castoldi,

YANG Model and NETCONF Protocol for Control and

Management of Elastic Optical Networks, 2016 Optical Fiber

Communications Conference and Exhibition, Anaheim, CA,

2016, pp. 1-3.

[23] S. Mehraghdam, H. Karl, Placement of Services with Flexible

Structures Specified by a YANG Data Model, 2016 IEEE

NetSoft Conference and Workshops, Seoul, South Korea,

2016, pp. 184-192.

[24] J. G. Cho, A Extracting Information of Tree-Based

Association Rules from XML Documents, The Journal of

Korean Institute of Information Technology, Vol. 12, No. 11,

pp. 173-180, November, 2014.

[25] J. Wang, B. Zhang, G. Li, Y. Li, X. Gao, Improvement of

XACML Access Control Mechanism Based on NETCONF

Subtree Filtering RPC, 2nd IEEE International Conference

on Network Infrastructure and Digital Content, Beijing,

China, 2010, pp. 1000-1004.

[26] S. Subramaniam, S. C. Haw, L.-K. Soon, ReLab: A Subtree

based Labeling Scheme for Efficient XML Query Processing,

2014 IEEE 2nd International Symposium on Telecommunication

Technologies, Langkawi, Malaysia, 2014, pp. 121-125.

[27] K. H. Shin, H. C. Kang, Subtree-based XML Storage and

XPath Processing, KSII Transactions on Internet and

Information Systems, Vol. 4, No. 5, pp. 877-895, October,

2010.

[28] C. Subhashini, A. Arya, A Framework for Extracting

YANG-based Data Modeling Techniques for the Content Layer of NETCONF to Improve Query Throughput 2007

Information from Web Using VTD-XML’s XPath,

International Journal on Computer Science and Engineering,

Vol. 4, No. 3, pp. 463-468, March, 2012.

[29] Y. Gao, B. Zhang, G. Li, Y. Li, X. Gao, The Comparison and

Analysis of Tree Data Model and Table-like Data Model

based on NETCONF, 2010 2nd International Asia Conference

on Informatics in Control, Automation and Robotics, Wuhan,

China, 2010, pp. 75-78.

[30] P. R. K. S. Bhama, R. Senthilkumar, P. Varshinee, XQUICK:

An Efficient Path-Based XML Storage Scheme for Fast

Query Processing and Update, Journal of Internet Technology,

Vol. 18, No. 2, pp. 261-270, March, 2017.

[31] J. T. Chen, S. R. Tsai, A Content-Based Event Brokering

System Embedding Lively Contents in XML Objects using

Publish/Subscribe Communication Scheme, Journal of

Internet Technology, Vol. 11, No. 2, pp. 227-236, March,

2010.

Biographies

YangMin Lee received the B.S., M.S.

and Ph.D. degrees in computer

engineering from Dong-A University,

Busan, Korea, in 2000, 2002, and

2006 respectively. Since 2015, he has

been an assistant professor at Dong-A

University. His major research

interests include ad hoc network, IoT, network

management protocol, and software defined network.

JaeKee Lee received M.S. degree in

electronic computing from Yeungnam

University in 1983. And he received

Ph.D. degrees in electronic

information engineering from

University of Tokyo, Japan, in 1990.

Since 1990, he has been a professor at

Dept. of computer engineering in Dong-A University.

His major research interests network management, IoT.

2008 Journal of Internet Technology Volume 19 (2018) No.7

