
S
3
: Size-aware Sequential Scheduling to Meet Deadlines in Data Center Networks 1961

S3: Size-aware Sequential Scheduling to Meet Deadlines in

Data Center Networks

Chang Ruan1, Jianxin Wang1, Jiawei Huang1, Yi Pan2, Naixue Xiong3*

1 School of Information Science and Engineering, Central South University, China
2 Department of Computer Science, Georgia State University, USA

3 School of Computer Science, Colorado Technical University, USA

{ruanchang, jxwang, jiaweihuang}@csu.edu.cn, yipan@gsu.edu, nxiong@coloradotech.edu

*Corresponding Author: Jianxin Wang; E-mail: jxwang@csu.edu.cn

DOI: 10.3966/160792642018121907001

Abstract

In modern Data Center Network (DCN), there exist

various on-line interactive application services, such as

web search, social networking and online transaction

processing. An urgent demand for these on-line

interactive applications is low deadline miss ratio.

Though the flows with small or tiny size are

overwhelming for most data center applications, previous

deadline-aware transport protocols have no consideration

for protection of these flows, with the inevitable result

that few large flows occupy too much network service

time and many small flows could not meet their deadlines.

Therefore, the deadline miss ratio may be improved

further if the flow sizes are considered by transport

protocols. In this paper, we first analyze the distribution

of the flow size according to the real DCN traffic trace.

Then, based on the analysis, we propose a preemptive

distribution flow scheduling protocol, Size-aware

Sequential Scheduling (S
3
), which schedules flows such

that they can send data at their maximal sending rates and

finish as quickly as possible. More importantly, different

from the previous transport protocol studies, S
3

sequentially adjusts the flow scheduling order with the

consideration of both the flow size and the flow deadline,

which can help more small flows meet their deadlines.

The at-scale simulations and a real flow distribution

based test results show that S
3
 significantly reduces the

deadline miss ratio and obtains lower flow completion

time compared to the recent protocols PDQ and D
3
. In

addition, S
3
 is resilient to packet loss, and schedules

flows with only the same time complexity as PDQ.

Keywords: Transport control protocol, Data center

network, Deadline, Flow completion time

1 Introduction

Nowadays, many data centers are constructed and

deployed to provide various on-line interactive

application services, such as web search, social

networking and online transaction processing [1].

These application services have soft-real-time nature

and needs to respond in a timely fashion. The high

response latency of these services degrades the user

experience and consequently reduces the revenue of

operators of data centers. For example, Amazon found

that every extra 100ms latency is equivalent to a 1%

loss in business revenue [2]. Hence it is important to

guarantee low latency for the on-line interactive

application services.

Unfortunately, the underlying transport protocol

deployed in many today’s data centers is traditional

Transport Control Protocol (TCP), which aims to

maximize throughput over the unreliable networks like

Internet, inclining to enlarge the latency by filling up

the switch buffer. Consequently, TCP performs poorly

in data center networks (DCNs). For instance, in the

popular application services such as MapReduce [3],

the many-to-one communication pattern causes TCP

flows to suffer from timeout or even the Incast

throughput collapse problem [4], which greatly

degrades the latency performances of application

services.

Recent research focuses on designing novel

transport control protocols to address the problem of

latency performance with TCP [5-14]. Especially, the

proposed protocols operate under soft-real-time

constraints (e.g., 300ms latency) which imply

deadlines for network communi- cation within the on-

line applications. D3 [5] and D2TCP [6] exploit the

explicit deadline information to allocate bandwidth for

each flow in their protocol designs. They all try to help

more flows to meet their deadlines since the less flows

miss their deadlines, the better the response results of

online application services are. To help more flows

meet their deadlines, some other deadline-aware

protocols are proposed to mimic various scheduling

principles [9-11]. For example, PDQ [10] uses Earliest

Deadline First (EDF) discipline to meet the deadline

requirements. The smaller deadline a flow has, the

earlier it sends data. When flows have the same

deadline, PDQ uses Shortest Job First (SJF) discipline,

1962 Journal of Internet Technology Volume 19 (2018) No.7

that is, a flow with the smallest size will send data

firstly.

These approaches could alleviate the impact of

latency problem greatly and still suffer from their

respective drawbacks. In particular, when the

aggregate rate demand of the deadline-aware flows

exceeds the link capacity, PDQ may not help the

maximum number of flows to meet their respective

deadlines. Other deadline-aware transport control

protocols still use Fair Sharing or First In First Out

(FIFO) scheduling discipline, which could degrade the

latency performance of large number of small flows.

As a result, the number of flows meeting deadlines is

reduced much.

In this paper, we propose a flow scheduling protocol

called Size-aware Sequential Scheduling (S3) to meet

deadlines for as many flows as possible. S3 adopts

preemptive distributed flow scheduling to finish flows

quickly. The key point is that by considering both flow

sizes and flow deadlines, small flows can preempt

large flows. Therefore, S3 prevents large flows from

occupying too much service time of small flows. The

results of performance evaluation show that S3

outperforms D3, TCP and PDQ in terms of deadline

miss ratio.

2 Related Work

Many transport protocols have been proposed to

reduce the latency and meet deadlines for flows in

DCNs. In this section, we boardly classify those

protocols into three categories. They approximate

different, scheduling disciplines, which are

summerized in Table 1. In the following, the details of

these protocols are illustrated.

Table 1. Transport protocols for reducing the latency

in DCNs

Category Examples
Scheduling

discipline

Fair sharing

protocols
DCTCP [12] PS

D3 [5], D2TCP [6],

MCP [16]

FIFO

L2DCT [11] LAS

Deadline-aware

protocols

PDQ [10] EDF

pFabric [9] SRPT Size-aware

protocols PASE [18] SJF

2.1 Fair Sharing Protocols

As a pioneer of enhanced TCP protocol in DCNs,

Data Center TCP (DCTCP) [12] uses Explicit

Congestion Notification (ECN) marks for measuring

the extent of congestion, and adjusts its sending rate to

alleviate congestion. With the accurate congestion

information according to ECN marks, DCTCP can

control the queue around a small value well and reduce

the flow completion time. However, DCTCP is a

deadline-unaware protocol and approximates to Fair

Sharing or Processor Sharing (PS) [15] discipline,

which is known to be far from maximizing the number

of deadline-meeting flows. When flows have their

respective deadline requirements, DCTCP has no

corresponding mechanisms to change the sending rates

of these flows according to their deadlines.

2.2 Deadline-aware Protocols

D3 [5] is the first deadline- aware transport control

protocol, which employs explicit rate control with the

aid of switches. Although D3 significantly enhances the

deadline-meeting ratio in comparison with DCTCP, it

does not employ any flow scheduling strategy but

allocates rates to flows by their arriving orders. This

means that the scheduling discipline of D3
 is FIFO.

Consequently, the flows with lax deadlines coming

earlier occupy the bottleneck bandwidth, while some

urgent flows arriving later may miss their deadlines.

Based on DCTCP, Balajee Vamanan et al. propose

D2TCP [6], which elegantly regulates the congestion

window size according to the extent of congestion and

the flow deadlines. When the congestion occurs, the

far-deadline flows release some bandwidth to the near-

deadline ones. Unfortunately, D2TCP only modifies the

congestion control algorithm at the sender side without

any enhancement of the flow scheduling scheme, thus

faces the same problem of D3
 as illustrated above.

The recent proposed transport protocol L2DCT [11]

mimics the Least Attained Service (LAS) scheduling at

senders in a distributed way. According to the bytes a

flow has sent, L2DCT distinguishes the large and small

flows. When flows suffer the congestion, the rate of

small flows are decreased less than large flows. In this

way, more small flows can meet their deadlines.

Nevertheless, the large and small flows still compete

for the bottleneck link, meaning that the number of

deadline-meeting flows with L2DCT can be improved

further.

MCP (Minimal-impact Congestion control Protocol)

[16] derives optimal source rates by solving a

stochastic packet delay minimization with constraints

on completing within deadlines. Apart from finishing

the deadline flows, MCP minimizes the flow

completion time of non-deadline flows. Although the

design of MCP has the solid theory basis, the

scheduling discipline of MCP is same to D3.

Unlike the previous protocols, PDQ [10] is a

preemp- tive flow scheduling protocol which sends

flows based on flow priorities. The flow priority is

determined on switches according to the EDF

discipline, that is, a flow with smaller deadline has

higher priority. Unless flows have the same deadline,

the flow with the smaller size has higher priority (SJF).

Flows with high priorities send data with the link rate

and can preempt flows with lower priorities. Besides,

S
3
: Size-aware Sequential Scheduling to Meet Deadlines in Data Center Networks 1963

when PDQ anticipates that a flow cannot finish its

sending before its deadline, it terminates the flow to

save the bottleneck link bandwidth for other flows.

However, when the bottleneck link are overloaded,

EDF may degrade the deadline miss ratio [17].

Furthermore, for the flows with different deadlines, it

is very possible that large flows are scheduled earlier

due to their smaller deadlines. In this case, even a few

of large flows may block a great quantity of small

flows, which can result in high deadline miss ratio.

2.3 Size-aware Protocols

pFabric [9] decouples flow scheduling from rate

control. The switch determines the flow scheduling

order according to the remaining flow size. The flow

with the least remaining size is scheduled first

(Shortest Remaining Processing Time, SRPT).

Congestion control is simplified at sources which send

flows at line rate at the beginning and throttle rate only

under persistent packet loss. pFabric minimizes the

average flow completion time, but its aggressive

congestion control manner results in lots of packet loss.

PASE [18] synthesizes existing transport protocols

strategies to reduce the average flow completion time

and meet the flow deadlines. In its arbitration strategy,

PASE determine the flow priorities according to the

flow size (SJF), while our work explores the method to

schedule flows using both the flow sizes and deadlines.

3 Background and Motivation

3.1 Flow Information

Flow deadline. In most enterprises, the latency

requirements of online interactive application services

have been specified by SLAs (Service Level

Agreements) [19-20]. To prevent the SLA from being

violated, working processes in these applications are

assigned deadlines, usually on the order of 10-100ms.

For these online interactive application services, the

number of flows meeting their deadlines is a key

performance metric since it relates with the response

quality. For example, in the web search application

using the partition-aggregate structure, more indexing

results can improve the accuracy of query responses

[6].

Flow size. For many on-line interactive application

services, the flows size initiated by working processes

can be known in advance. For example, in web search,

the size of query flows is fixed (1.6KB), and the size of

the corresponding response flows is 1.6-2KB [12]. In

cloud storage system, each Server Request Unit (SRU)

stripped on a server is constant, e.g., 64KB or 128KB

[21]. The same holds for application services like key-

value store and data processing [10].

Next, we give a comprehensive analysis of traffic

trace from a real DCN to illustrate the characteristic of

the flow size distribution. The data trace is collected

from a real university campus data center [22]. The

2.1G trace records traffic data of more than 300,000

flows for at least 10 days. Figure 1(a) presents the

cumulative distribution function (CDF) for different

flow sizes. The probability of the flow size less than

10KB approximates 0.8, while the probability of that

between 10KB and 100KB is about 0.2. In Figure 1(b),

we list the percentage results in 5 seconds and 60

seconds drawn randomly from the trace. The

percentages of the number of flows below 10K are

about 96.7% in 5 seconds and about 90.9% in 60

seconds. As shown in Figure 1(b), the percentages of

flow size is the ratio of the sum of the flow sizes in

corresponding interval to the sum of all flow sizes, We

can find that the prercentages of flow sizes below 10K

are only 65% and 40.7% in 5 seconds and 60 seconds,

respectively. It is clear that the number of small flows

are in the majority, but their total sizes are small. It

should be noted that the similar result is also given

from the typical applications in DCN. For example, the

Web Searching traffic involves at least 80% flows with

the data size below 10KB, while this proportion is

higher than 96% in the Data Mining traffic [23].

(a) The CDF of the number of flows

(b) The percentage of flow sizes and number of

flows in 5s and 60s

Figure 1. Flow size and the number of flows

distribution in a real data center

3.2 Size-aware Scheduling

Based on the flow size distribution, there comes a

problem that, if a few large flows occupy too much

network resources, large number of small flows may be

1964 Journal of Internet Technology Volume 19 (2018) No.7

blocked and can not finish their sending before

deadlines. Unfortunately, the problem is ignored by

most of scheduling disciplines. Next, by a simple

example, we compare three disciplines which are PS

scheduling discipline approximated by TCP or DCTCP,

FIFO used by D3 and EDF adopted by PDQ. We use

application throughput, the percentage of flows

meeting their deadlines, as the performance metric.

Consider the scenario that there are three flows A, B

and C through the same bottleneck link. For simplicity,

we assume that one unit size needs one unit time to

transmit. As shown in Table 2, the flow sizes of three

flows are 3, 4, and 6, and the corresponding deadlines

are 7, 8 and 6, respectively. When a flow can not finish

sending before its deadline, it will be terminated to free

its occupied network resources.

Table 2. Flow sizes and deadlines of A, B, C

Flow Size Deadline

A 3 7

B 4 8

C 6 6

As shown in Figure 2(a), if PS scheduling discipline

is adopted, all three flows share the bottleneck link

fairly. After 8 units time, flow C only sends 2 units,

flow A sends 2.5 units and flow B sends 3.5 units.

Obviously, all flows miss their deadlines. In Figure

2(b), the flows are scheduled in FIFO discipline. We

assume that flows arrive in the order C→B→A. In this

case, only C accomplishes its transmission before its

deadline. Figure 2(c) demonstrates the situation of

EDF discipline. According to EDF discipline, C sends

earlier than A or B since its deadline is smaller than A

or B. Obviously, both A and B miss their deadline

requirements. For PS, FIFO and EDF, the application

throughputs are 0, 1/3 and 1/3, respectively. The reason

of low efficiency is that the large flow C sends firstly

and occupies too much service time. Consequently, the

small flow A and B are not able to meet their deadlines.

However, as shown in Figure 2(d), if A preempts C,

while B is scheduled at time 3, only C will miss its

deadline. In this case, the application throughput, i.e.,

the ratio of the number of flows meeting their

deadlines to the total number of flows, is increased to

2/3. Based on the observation of the above scheduling

example, it is obvious that the application throughput

could be improved if the large flow is prevented from

occupying too much service time.

Our observation of the empirical data and the

example leads us to conclude that (i) the number of

small flows is much larger than that of larger flows in

most of applications, and (ii) the number of flows

meeting deadlines can be improved if we schedule the

small flows first rather than larger flows. These

conclusions motivate us to investigate a novel

scheduling algorithm using both the flow size and flow

deadline information.

(a) PS (b) FIFO

(c) EDF (d) Ideal

Figure 2. Flow scheduling example

4 Protocol Design

4.1 S
3
 Overview

S3 is a flow scheduling protocol, which aims to

maximize the number of flows meeting their deadlines.

S3 works in the distribute manner that can achieve

scalability and avoid the single point failure occurring

in the centralized manner.

Figure 3 provides the overview of S3. First, the

application exposes the flow size and flow deadline to

S3 transport layer. Then the sender adds a scheduling

header carrying the flow information to the SYN

packet. According to the flow information in the SYN

packet, the switch determines the sending order of each

flow. The flow will be paused by switch if it is not

scheduled to send data. After receiving the SYN packet,

the receiver copies all information in the scheduling

header into the ACK packet. Finally, when the ACK

packet arrives, the feedback information is used to

determine whether the sender is paused. If it is not

paused, the sender will send data packets with the link

rate. Otherwise, it will send probe packets until it is not

paused by switches or misses its deadline.

Figure 3. Overview of S3

S
3
: Size-aware Sequential Scheduling to Meet Deadlines in Data Center Networks 1965

4.2 S
3
 Sender and Receiver

Similar to PDQ, S3 is deployed on the switch, sender

and receiver sides. The details are as follows.

Sender. For S3
 sender, it sends a SYN packet for flow

initialization. Whenever a packet departs, the sender

attaches a scheduling header to the packet, containing

its current sending rate Ri, the ID of the switch (if any)

Si, the flow deadline Di, the inter-probing time Pi, and

the measured Round Trip Time (RTT) RTTi. The

current sending rate Ri is initialized to the link rate, and

Si, Pi and RTTi are zero. When an ACK packet arrives,

the sender updates these variables based on the

feedback. If Si is not zero, it means that the sender is

paused by a switch in the network. Then, the sender

will send a probe packet every Pi to obtain the sending

information from switches.

For flows which can not finish before their deadlines

even if they are not paused by switches, S3 sender stops

the flows to prevent them from consuming any

network resource. Sometimes, if a packet suffers from

a timeout, S3
 will resend the packet immediately. In our

implementation, the timeout time interval is twice

RTTs.

Receiver. The operation of S3
 receiver is simple. The

receiver only copies the scheduling header from each

data packet to its corresponding ACK.

4.3 S
3
 Switch

In the S3
 switch, flows are assigned a rate according

to our scheduling algorithm running at the switch. If a

flow can be scheduled, it obtains the rate contained in

the scheduling header. On the contrary, if a flow can

not be scheduled now, the switch assigns zero rate to

the flow and records the switch ID into Si in the

scheduling header of the packet (i.e., pauses the flow).

Next, we illustrate the scheduling algorithm, which

is the key operation of S3 switch. The basic idea of S3

is that it adopts both the flow sizes and flow deadlines

to determine the sending order of flows. The

scheduling algorithm includes two operations, called

FILTER and SLACK. In FILTER operation, flows are

sorted by deadline with an enhanced EDF discipline.

Then, S3
 adjusts scheduling orders to send small flows

as many as possible to achieve lower deadline-miss

ratio in SLACK operation.

FILTER operation. It is known that, EDF sorts the

flow scheduling order only by the flow deadline. That

is, the flow with the earliest deadline will have the

highest priority. Even if the flow can not finish its

transmission before deadline, it still transmits by the

deadline order, which is obviously useless and may

harm flows with larger deadlines. Therefore, FILTER

operation checks if a flow is schedulable with the

consideration of flow execution time, which is

determined by flow size.

For n flows, we sort them by their ascending

deadline order to get the ordered set F={f1, f2,
… , fn

}.

The corresponding deadlines are denoted as D={d1,

d2, …, dn } and the sizes are S={s1, s2, …, sn }. We

assume one unit size needs one unit time to finish

transmission. Then, if flow fi is schedulable, it should

satisfy

1

1

i

i i j

j

d s s

−

=

≥ +∑ , (1)

where sj is the size of a schedulable flow, and di is the

deadline of flow fi. The formula shows that flow fi is

schedulable if its deadline is not less than its size plus

the sum of flow size of all schedulable flows whose

positions (i.e., scheduling order) are before flow fi. The

detail of the FILTER operation is presented in

Algorithm 1.

Algorithm 1. FILTER operation

Initial state:

At the beginning, there are n flows that need to be

determined on the scheduling order at a switch. sum

refers to the sum of all scheduleable flow sizes

fi.deadline refers to the deadline of flow i, fi.size refers

to the size of flow i, and fi.mark refers to a mark bit of

flow i, taking 1 for the schedulable flow, or else 0;

1: Sort the flows by deadlines;

2: sum = 0;

3: for i = 0…n do

4: if fi.deadline > sum + fi.size then

5: fi.mark = 1;

6: sum = sum + fi.size;

7: else

8: fi.mark = 0;

9: end if

10: end for

S3 firstly sorts the flow scheduling order with EDF

discipline in Step 1. Then, S3 checks whether the

scheduling result of EDF is schedulable or not in Step

4. If a flow is schedulable according to Eq. (1), the

flow is marked with 1, otherwise it is marked with 0.

SLACK operation. After the FILTER operation, small

flows may be blocked and can not finish their sending

before deadlines. If we substitute some small

unschedul- able flows for the large schedulable flow,

the total number of schedulable flows may be

increased. In our algorithm, the flow substitution is

called SLACK.

The SLACK operation is given in Algorithm 2.

After the FILTER operation, all flows have been sorted

by the deadline. The schedulable and unschedulable

flows are marked 1 and 0, respectively. If flow fi is

marked 1, Algorithm 2 inserts flow fi into a binary

search tree structure T in Step 5. The structure is used

to find the largest removable flow from Ff with O(logn)

time complexity. If flow fi is marked 0, Algorithm 2

firstly checks whether fi can be added into Ff. If fi

satisfies the Eq. (1) in Step 8, it is marked 1. Or else, in

1966 Journal of Internet Technology Volume 19 (2018) No.7

Step 12, Algorithm 2 finds out the the largest flow fmax

from T. If the size of fi is not larger than that of fmax and

fi’s deadline is greater than the total size of schedulable

flows before it, Algorithm 2 substitutes fi for fmax and

updates T and sum.

Algorithm 2. SLACK operation

Initial state:

There are n flows after performing the FILTER

operation. sum refers total execution time, fmax refers to

the flow with the largest size, and T refers to a binary

search tree;

1: Sort the flows by deadlines;

2: sum = 0;

3: for i = 0…n do

4: if fi.mark == 1 then

5: insert fi into the binary search tree T;

6: sum = sum + fi.size;

7: else

8: if fi.deadline≥ sum + fi.size then

9: insert fi into a tree T and set fi.mark to be 1;

10: sum = sum + fi.size;

11: else

12: find flow fmax with the largest size from T;

13: if fi.size≤ fmax.size and fi.deadline≥ sum - fma

fi.size then

14: update T;

15: update fi.mark and fmax.mark;

16: sum = sum - fmax.size + fi.size;

17: end if

18: end if

19: end if

20: end for

For a flow that cannot be scheduled first, its inter-

probing time Pi is calculated by:

 Pi = 0.2⋅ RTTavg ⋅ Ii, (2)

where RTTavg is the average RTT of all flows passing

through the current switch and Ii is the index of flow i

in the set of schedulable flows determined by the

scheduling algorithm.

4.4 Analysis of S
3
 Scheduling Discipline

We give an illustrative example to validate the

algorithm of S3. In Figure 4, each flow is denoted as a

rectangle. At the top of each rectangle, the notation (s,

d) represents that the flow has size s and deadline d.

For example, the size and the deadline of f3 are 6 and 7,

respectively. Figure 4(a) shows the result of EDF, in

which all flows are sorted in ascending order of

deadline. The result set after FILTER operation is

shown in Figure 4(b). Here, we use Ff for denoting the

schedulable flow set, and Fr for the unschedulable flow

set. In Figure 4(b), Ff ={ f1, f3, f4 }, Fr ={ f2, f5, f6, f7 },

and F=Ff∪Fr. Figure 4(c) shows that f6 substitutes the

largest one in the three schedulable flows f1, f3 and f4.

Figure 4(d) shows the final result after the SLACK

operation. Clearly, the total number of schedulable

flows increases from 3 to 4.

(a) The flow set sorted by EDF

(b) The flow set after FILTER operation

(c) The flow set after f4 is substituted for f6

in SLACK operation

(d) The flow set after f7 is added into Ff

in SLACK operation

Figure 4. An illustrative scheduling example

The illustrative example shows that our alogrithm

outperforms EDF when there are no other flows

arriving. However, in a dynamic setting, the problem

that minimiz- ing the number of flows missing their

deadlines is an NP-complete problem [10]. The idea of

the scheduling alogithm S3 is designed based on the

principle of the least slack time (i.e., the difference of

the flow deadline and the flow size), which has been

proven that it has better performance than EDF when

flows can not be scheduled to satisfy their deadlines by

any algorithm [17]. Our contribution here is that we

apply the scheduling principle to a preemptive flow

scheduling protocol S3 for meeting flow deadlines in

DCNs.

One concern on the preemptive flow scheduling

protocol S3 is that the time complexity of the

scheduling algorithm. In DCN, a switch may handle

several thousand active flows in a one second [22].

This makes it the critical requirement for low time

complexity in a scheduling algorithm. For our

algorithm implemen- tation, we use quick sort in

FILTER operation with O(nlogn) time complexity. In

the SLACK operation, since the binary search tree

S
3
: Size-aware Sequential Scheduling to Meet Deadlines in Data Center Networks 1967

structure in T is used to find the largest flow, it will

only take O(nlogn) to insert or delete a flow. Therefore,

the total time complexity of S3
 algorithm is O(nlogn),

which is as same as that of PDQ.

5 Performance Evaluation

5.1 Evaluation Setting

In the performance evaluations, we compare the

following three schemes with S3
 in DCN. The reason

that we choose these schemes is because they are

typical protocols using different scheduling discipline

for meeting flow deadlines. For example, PDQ

schedules flows mainly using EDF, D3 adopting FIFO

and TCP approximating PS. While S3 schedules flows

by considering both deadlines and sizes. The parameter

settings of the schemes are described as follows.

PDQ [10]: As a typical flow scheduling scheme in

DCN, PDQ mainly uses EDF as the scheduling

algorithms. The Early Start, Early Termination and

Suppressed Probing described in [10] are also used to

enhance its performance in the evaluations. The

threshold K in Early Start is set to 1.5 to get better

performance.

D3 [5]: We implement D3
 with the rate allocation and

flow quenching algorithm. In the rate allocation, the

parameters α = 0.1 and β =1. Since D3 allocates the

flow rate depending on the flow arriving order, we

assume that the order is not previously determined. The

lucky flow will obtain its desired rate.

TCP: We use the TCP NewReno as the default

transport protocol in DCN. In order to alleviate the

Incast problem, we set a small value of 10ms to RTOmin

as suggested in [24].

For the deadline-constrained flows, as the same as

[10], the default flow size is set uniformly from the

interval [2KByte, 198KByte], and the default flow

deadline is drawn from an exponential distribution with

mean 20ms. We set a low bound of deadline to 3ms,

therefore each flow can finish before its deadline if

there does not exist any other flows.

5.2 Query Aggregation

The Query Aggregation is the most common

communication pattern in data center networks.

Requests from application layers are partitioned into

pieces and forwarded to the workers in low layers.

Then the results returned by the workers are

aggregated to produce a final result. The Query

Aggregation appears in popular applications such as

MapReduce [4]. In this subsection, we evaluate the

application throughput with different number of flows,

flow sizes and flow deadlines.

In Section 5.2 and Section 5.3, we use the single-

rooted tree topology as shown in Figure 5. Each switch

has 1Gbps uplink and a buffer of 100Kbytes for each

port. The end-to-end round trip latency is 160 µ s.

Figure 5. Many-to-one single-rooted tree

5.2.1 Comparison of Application Throughput

Impact of number of flows. Figure 6(a) shows that,

with the increasing of the number of concurrently

sending flows, the application throughput of D3 and

TCP decrease a lot while that of PDQ and S3
 degrade

gracefully. When the number of flows becomes larger,

S3
 has more opportunities to execute the SLACK

operation. Therefore, S3
 obtains higher performance

improvement with the number of flows increasing. The

application throughput of S3
 is about 10% higher than

that of PDQ when the number of flows is larger than

55.

Impact of flow size. We study the application

throughput of 30 concurrent flows in this test. Figure

6(b) demonstrates that, when the flow size becomes

larger, the application throughputs of all protocols are

degraded. As a deadline-agnostic protocol, TCP gets

the worst performance. PDQ uses EDF to schedule

flows and thus gets high application throughput. By

preventing larger flows occupy too much service time

of smaller flows, S3 still achieves better performance

than that of PDQ with different flow sizes.

Impact of flow deadline. The maximum percent of

flows that can meet their deadlines is the focus of the

operations of data center. In this comparison, we

change the mean flow deadline to test the maximal

number of flows that can ensure 90% application

throughput. Intuitively, the larger mean deadline, the

more flows can be guaranteed to ensure the 90%

application throughput.

Figure 6(c) shows that, for all protocols, the number

of flows at 90% application throughput becomes larger

when the deadline is increasing. D3
 and TCP can

support only less than 40 concurrent flows to ensure

90% application throughput with the mean deadlines

from 20ms to 60ms. The performances of S3
 and PDQ

are much better. Moreover, we find that S3
 obtains

about 10% improvement over PDQ, more than 3 times

improvement over D3 when the mean deadline is 60ms.

1968 Journal of Internet Technology Volume 19 (2018) No.7

(a) Varying the number of flow

(b) Varying the mean flow size

(c) Varying the mean flow deadline

Figure 6. Application throughput in query aggregation

5.2.2 Comparison of Flow Completion Time

For deadline-constrained flows, we compare the

flow completion time (FCT) for varying number of

flows in Figure 7(a) and Figure 7(b). Since S3 has

higher application throughput than PDQ or D3 as

shown in Figure 6(a), to make accurate and fair

comparison, we measure the FCT under the same

application throughput. For example, if PDQ or D3

only finishes 30 flows, we also choose the first 30

flows finished by S3
 to calculate the FCT. The

maximum, average and minimum of FCT are drawn in

Figure 7(a) and Figure 7(b). We find that S3

outperforms both PDQ and D3 with the increasing of

the number of flows. When the number of flows is 80,

the average FCT of S3
 is about 20% lower than PDQ,

and 7 times lower than D3.

In DCN, there also exits flows having no deadline,

such as flows for updating data across servers, but it is

desirable that they can finish earlier. For these

deadline-unconstrained flows, we use the average flow

completion time (AFCT) to compare the performance

in different protocols. We measure the completion time

of 100 flows in query scenario. In Figure 7(c), both S3

and PDQ have the lowest AFCT for the reason that

both scheduling algorithms degenerate into the SJF

discipline in the absence of flow deadlines.

(a) FCT of S3 and PDQ (b) FCT of S3 and D3

(c) Deadline-unconstrained flows

Figure 7. FCT in query aggregation

5.3 Impact of Dynamic Flows

Compared with EDF discipline in PDQ, S3

interchanges the scheduling order of large and small

flows to add new flows into the scheduling order. In

this test, we compare the dynamic scheduling of S3 and

PDQ. We start five flows at time 0. One flow, which is

the largest one, has the size of 1MB and the deadline of

10ms. The sizes of other four small flows are 120KB,

140KB, 160KB and 180KB respectively, and their

deadlines are randomly selected in the range of [10ms,

12ms].

Figure 8 shows the test results of PDQ and S3 with

dynamic flows. In Figure 8(a), since PDQ schedules

flows according to the deadline, the first flow grabs the

whole link bandwidth until it finishes sending all data

packets. Then, the other four flows begin their

transmission based on their deadlines. At last, only 3

flows are completed before their deadlines. While in

Figure 8(b) with S3 algorithm, flow 1~4 are transmitted

earlier due to their smaller size and larger deadline

compared with flow 0. Finally, 4 small flows all meet

their deadlines. Compared to PDQ, the application

throughput is improved by 20%. In Figure 8(c) and

Figure 8(d), both S3 and PDQ can achieve 100% link

utilization at flow scheduling time, which means that

S3
 and PDQ can converge to the equilibrium rate

quickly. The degradation of link utilization at the

beginning is due to sending the SYN packet in the

initial RTT. Figure 8(e) and Figure 8(f) show the

instantaneous queue lengths of S3 and PDQ, which are

both well controlled. The reason is that, with the flow

scheduling algorithm of S3 and PDQ, there is usually

only one flow running in the bottleneck link and thus

the oversubscription problem is prevented. We observe

that the queue length is not larger than 5, which is

mainly caused by probe packets. Nonetheless, from

S
3
: Size-aware Sequential Scheduling to Meet Deadlines in Data Center Networks 1969

Figure 8, the FCT of S3
 is much shorter than that of

PDQ. For example, PDQ takes about 11ms for

finishing three flows, while S3
 takes roughly 5.7ms for

finishing four flows.

(a) Flow throughput of PDQ (b) Flow throughput of S3

(c) Link utilization of PDQ (d) Link utilization of S3

(e) Queue length of PDQ (f) Queue length of S3

Figure 8. Dynamic flows of PDQ and S3

5.4 Impact of Traffic Workload

In this subsection, we study the impact of different

traffic workloads, which are generated by

corresponding sending patterns: (1) Aggregation: the

many-to-one sending pattern which has been stated in

Section 5.2. (2) Stride(z): a server with index γ will

send flows to the server with index (γ+z) mod N, where

N is the total number of servers and z is a fixed integer

number. (3) Random Permutation: a server sends flows

to another randomly selected server, and each server

receives flows from only another server. (4) Prob(p): a

server sends flows to another server in the same rack

with probability p whereas to the other server in a

different rack with probability 1-p. We use the two-

level 12-server single-rooted tree topology as shown in

Figure 9. The link rate, switch buffer and link delay are

set as same as that in Section 5.3.

Figure 9. Two-level 12-server single-rooted tree

Figure 10(a) shows that S3 outperforms the other

three protocols. We normalize the finished flow

number based on that of S3. Thus, the value of S3
 is

always 1 for each sending pattern. Compared to PDQ,

S
3
 gets the best performance improvement in the many-

to-one pattern. In Prob(0.7) pattern, flows are confined

in the same rack with a large probability. These local

flows have smaller RTTs than those across different

racks. As the local flows and non-local flows have the

same distribution of the flow sizes, this means that the

local flows have more lax deadlines. Similar to the

result in Section 5.2, the Prob(0.7) pattern gets more

performance benefit than Prob(0.3). Note that in the

Stride(1) pattern, since each rack has 3 servers, there

are only about 2/3≈0.67 of flows running in the same

rack. Therefore, the performance of Stride(1) pattern is

worse than that of Prob(0.7). In Figure 10(b) and

Figure 10(c), we compare the FCT in different patterns.

The FCT is calculated under the same application

throughput with the same comparison method in

Section 5.3. The best performance improvement is still

in the many-to-one pattern, and S3
 has lower FCT than

other protocols.

(a) 90% Application throughput

(b) FCT of S3 and PDQ

(c) FCT of S3 and D3

Figure 10. Performance comparison under aggregation,

stride, random permutation and probability patterns

1970 Journal of Internet Technology Volume 19 (2018) No.7

5.5 Impact of Network Scale

In the architecture design of large scale DCN, recent

trends favor the network fabric based on multi-rooted

tree topologies, such as Fattree [25] and VL2 [26]. To

investigate the impact of the network scale, we conduct

the simulation using the fat-tree topology. Here, we

just present the fat-tree topology with 4 pods in Figure

11. In this test, we provide the test results when the

number of pods ranges from 4 to 8, with the

corresponding number of servers varying from 16 to

128. The other network parameters like link rate,

switch buffer and link delay are as same as that in

former settings.

Figure 11. A simple fat-tree topology with pod=4

Figure 12(a) shows the number of flows at 90%

application throughput of S3, PDQ, D3 and TCP. We

find that, when the network scale becomes larger, there

are more network resources like servers, switch buffers

and links. In this case, more flows could meet their

deadlines. Therefore, the test results of all protocols are

getting better with larger m. Meanwhile, compared

with D3 and TCP, both S3
 and PDQ obtain higher

improvements. Since S3
 avoids the deficit of PDQ, the

performance of S3
 is higher than that of PDQ. Figure

12(b) also presents the FCT with the number of

deadline-constrained flows varying from 100, 250 to

600 for different pods, respectively. The number of

flows we test is about 5 times of the number of servers.

As the FCT of TCP and D3 are very large, we only

present the results of S3
 and PDQ for clarity. Although

the FCT increases with the increasing pods, S3
 still

obtains the lower AFCT than PDQ consistently.

(a) Application throughput (b) FCT

Figure 12. Performance under different pods

5.6 Real Flow Distribution Based Test

To test our protocol according to a real flow

distribution, we generate flows from the previous

measured results in Section 3.1. The probability of the

flow size between 1KB and 10KB is 0.8, while that

between 10KB and 100KB is 0.2. The distribution of

the flow deadline is drawn from exponential

distribution with mean 5ms or 10ms. Also we set a 2ms

lower bound for all flows.

In Figure 13(a) and Figure 13(b), the mean of the

flow deadline is 5ms. When the number of flows is less

than 40, the performances of S3 and PDQ are close.

After 40, S3 has higher application throughput than

PDQ and lower flow completion time apparently. In

Figure 13(c) and Figure 13(d), the mean of the flow

deadline is 10ms. Compared with the results with 5ms

flow deadline, both S3
 and PDQ have higher

application throughput when the number of flows

becomes larger. The reason is larger deadline means

more flows can finish before their deadlines. Besides,

the number of flows that S3 outperforms PDQ a lot

begins from 50 (the value is 40 with 5ms flow

deadline), which is increased due to the larger deadline.

However, the difference of FCT between S3
 and PDQ

varies less than that with 5ms flow deadline since more

flows can meet their deadlines with 10ms flow

deadline.

(a) Application throughput

in 5ms

(b) FCT in 5ms

(c) Application throughput

in 10ms

(d) FCT in 10ms

Figure 13. Performance testing with a real distribution

5.7 Resilience to Packet Loss

Packet loss frequently happens in DCN due to

S
3
: Size-aware Sequential Scheduling to Meet Deadlines in Data Center Networks 1971

congestion caused by bursts of flows or flows sending

data at line rate simultaneously. Figure 14(a) shows the

90% application throughput when the packet loss rate

changes from 0 to 3%. Since S3 sends probe packets

continuously and always sends data at the maximal rate,

the performance damage caused by packet loss can be

amended. Thus, packet loss does not significantly

affect the performance of S3. When the packet loss rate

becomes large, the AFCT of S3 increases, as shown in

Figure 14(b). TCP suffers from large AFCT since the

timeout time is very large. In our evaluation, the

performance of TCP is 40 times worse than S3 at 3%

packet loss rate.

(a) Application throughput (b) FCT

Figure 14. Performance under different packet loss

rate

6 Conclusion and Future Work

For the latency intensive applications in DCN,

reducing the number of deadline-missing flows can

improve the service quality. We proposed a size-aware

flow scheduling protocol S3 that prevents large flows

from occupying too much service time of small flows

and sends flows as quickly as possible. The key idea of

S3 is that it schedules flows with the consideration of

the flow size and the flow deadline. With only O(nlogn)

time complexity, S3
 uses the FILTER and SLACK

operations to determine the flow scheduling order and

obtains lower deadline-missing ratio. The extensive

simulations show that, S3
 achieves higher application

throughput and lower flow completion time than PDQ

and D3.

Several improvements will be investigated in the

future. First of all, since S3 modifies the switches, it is

hard to test the performance of S3 in a real large

network system, while it is necessary to further valid

its performance in a real small network system. The

scheduling algorithm of S3 is intentionally designed

with more flow information such that it could

outperfom EDF discipline. However, a detailed

theoretical disscussion on the scheduling algorithm in

the dynamic DCN environment will be more helpful

for understanding the algorithm. Additionally, we will

investigate how to implement the multipath variant of

S3 to raise the application throughput further since

today’s DCN has plenty of paths between servers.

Acknowledgements

This work is supported by the National Natural

Science Foundation of China (Grant nos. 61502539,

61572530, and 61202494).

References

[1] H. Xu, Y. Sun, User Preference Mining and Privacy Policy

Recommdation for Social Networks, Journal of Internet

Technology, Vol. 16, No. 6, pp. 1145 -1155, Novemver, 2015.

[2] Latency Is Everywhere and It Costs You Sales-how to Crush

It, http://highscalability.com/latency-everywhere-and-it-costs-

you-sales-how-crush-it.

[3] J. Dean, S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, Communications of the ACM,

Vol. 51, No. 1, pp. 107-113, January, 2008.

[4] J. Zhang, F. Ren, C. Lin, Modeling and Understanding TCP

Incast in Data Center Networks, Proc. IEEE INFOCOM,

Shanghai, China, 2011, pp. 1377-1385.

[5] C. Wilson, H. Ballani, T. Karagiannis, A. Rowtron, Better

Never than Late: Meeting Deadlines in Datacenter Networks,

Proc. ACM SIGCOMM, Toronto, Canada, 2011, pp. 50-61.

[6] B. Vamanan, J. Hasan, T. N. Vijaykumar, Deadline-aware

Datacenter TCP (D2TCP), Proc. ACM SIGCOMM 2012

Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, Helsinki, Finland,

2012, pp. 115-126.

[7] X. Sun, J. Wang, N. Xiong, P. Dong, An Effective

Experimental Platform for Multipath Transmission Protocol

Algorithms and Performance Analysis, Journal of Internet

Technology, Vol. 19, No. 5, pp. 1315 -1325, September, 2018.

[8] T. Zhang, J. Wang, J. Huang, Y. Huang, J. Chen, Y. Pan,

Adaptive-Acceleration Data Center TCP, IEEE Transactions

on Computers, Vol. 64, No. 6, pp. 1522-1533, June, 2015.

[9] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B.

Prabhakar, S. Shenker, pFabric: Minimal Near-optimal

Datacenter Transport, Proc. ACM SIGCOMM, Hong Kong,

China, 2013, pp. 435-446.

[10] C. Hong, M. Caesar, P. B. Godfrey, Finishing Flows Quickly

with Preemptive Scheduling, Proc. ACM SIGCOMM 2012

Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, Helsinki, Finland,

2012, pp. 127-138.

[11] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail,

M. S. Iqbal, B. Khan, Minimizing Flow Completion Times in

Data Centers, Proc. IEEE INFOCOM, Turin, Italy, 2013, pp.

2157-2165.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, M. Sridharan, Data Center TCP

(DCTCP), Proc. ACM SIGCOMM, New Delhi, India, 2010,

pp. 63-74.

[13] T. Zhang, J. Wang, J. Huang, Y. Huang, J. Chen, Y. Pan,

Adaptive Marking Threshold Method for Delay-sensitive

TCP in Data Center Network, Journal of Network and

Computer Applications, Vol. 61, pp. 222-234, February, 2016.

1972 Journal of Internet Technology Volume 19 (2018) No.7

[14] C. Ruan, J. Wang, J. Huang, W. Jiang, Analysis on Buffer

Occupancy of Quantized Congestion Notification in Data

Center Networks, IEICE Transactions on Communications,

Vol. E99-B, No. 11, pp. 2361-2372, November, 2016.

[15] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McKeown,

Processor Sharing Flows in the Internet, Proc. 13th

International Conference on Quality of Service, Passau,

Germany, 2005, pp. 267-281.

[16] L. Chen, K. Chen, W. Bai, M. Alizadeh, Scheduling Mix-

flows in Commodity Datacenters with Karuna, Proc. ACM

SIGCOMM, Florianopolis, Brazil, 2016, pp. 174-187.

[17] C. D. Locke, Best-effort Decision Making for Real-time

Scheduling, Ph. D. Thesis, Carnegie Mellon University,

Pittsburgh, PA, 1986.

[18] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, F. R.

Dogar, Friends, not Foes: Synthesizing Existing Transport

Strategies for Data Center Networks, Proc. ACM SIGCOMM,

Chicago, IL, 2014, pp. 491-502.

[19] Performance and Scalability, https://www.allthings distributed.

com/2006/04/performance_and_scalability.html

[20] S. Yang, Using SLA Strategy to Design an SOC Platform in

Data Center on the Cloud Computing, Journal of Internet

Technology, Vol. 14, No. 5, pp. 751-758, September, 2013.

[21] H. Wu, Z. Feng, C. Guo, Y. Zhang, ICTCP: Incast Congestion

Control for TCP in Data Center Networks, IEEE/ACM

Transactions on Networking, Vol. 21, No. 2, pp. 345-358,

April, 2013.

[22] T. Benson, A. Akella, D. A. Maltz, Network Traffic

Characteristics of Data Centers in the Wild, Proc. ACM

SIGCOMM Conference on Internet Measurement (IMC),

Melbourne, Australia, 2010, pp. 267-280.

[23] H. Xu, B. Li, Repflow: Minimizing Flow Completion Times

with Replicated Flows in Data Centers, Proc. IEEE

INFOCOM-IEEE Conference on Computer Communications,

Toronto, Canada, 2014, pp. 1581-1589.

[24] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.

Andersen, G. R. Ganger, G. A. Gibson, B. Mueller, Safe and

Effective Fine-grained TCP Retransmissions for Datacenter

Communication, Proc. ACM SIGCOMM 2009 Conference on

Data Communication, Barcelona, Spain, 2009, pp. 303-314.

[25] H. Hsiao, Y. Chao, C. Chu, Irregular Network Topologies for

Data Centers, Journal of Internet Technology, Vol. 16, No. 3,

pp. 517-523, May, 2015.

[26] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P.

Lahiri, D. A. Maltz, P. Patel, S. Sengupta, VL2: A scalable

and Flexible Data Center Network, Proc. ACM SIGCOMM

2009 Conference on Data Communication, Barcelona, Spain,

2009, pp. 51-62.

Biographies

Chang Ruan is currently a student

pursuing his Ph.D. degree at School of

Information Science and Engineering

from Central South University in

China, where he received his Master

(2011) and Bachelor (2007) degrees.

His current research interest includes data center

networks.

Jianxin Wang received the Ph.D.

degree in computer science from

Central South University, China, in

2001. Currently, he is a professor at

School of Information Science and

Engineering, Central South University,

China. His current research interests include algorithm

optimization, computer network and bioinformatics.

Jiawei Huang obtained his Ph.D.

degrees in Computer Science and

Technology from Central South

University, China. He now works in

the School of Information Science and

Engineering at Central South

University. His research interests include wireless

networks and data center networks.

Yi Pan received the BEng and MEng

degrees in computer engineering from

Tsinghua University, China, in 1982

and 1984, respectively, and the Ph.D.

degree in computer science from the

University of Pittsburgh, Pennsylvania,

in 1991. His research interests include parallel and

distributed computing, networks, and bioinformatics.

Naixue Xiong is current a faculty at

the Department of Business and

Computer Science, Southwestern

Oklahoma State University (SWOSU),

OK, USA. He received his both Ph.D.

degrees in Wuhan University, and

Japan Advanced Institute of Science

and Technology, respectively. His research interests

include Cloud Computing, Business Networks, and

Optimization Theory.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

