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Abstract 

In modern Data Center Network (DCN), there exist 

various on-line interactive application services, such as 

web search, social networking and online transaction 

processing. An urgent demand for these on-line 

interactive applications is low deadline miss ratio. 

Though the flows with small or tiny size are 

overwhelming for most data center applications, previous 

deadline-aware transport protocols have no consideration 

for protection of these flows, with the inevitable result 

that few large flows occupy too much network service 

time and many small flows could not meet their deadlines. 

Therefore, the deadline miss ratio may be improved 

further if the flow sizes are considered by transport 

protocols. In this paper, we first analyze the distribution 

of the flow size according to the real DCN traffic trace. 

Then, based on the analysis, we propose a preemptive 

distribution flow scheduling protocol, Size-aware 

Sequential Scheduling (S
3
), which schedules flows such 

that they can send data at their maximal sending rates and 

finish as quickly as possible. More importantly, different 

from the previous transport protocol studies, S
3 

sequentially adjusts the flow scheduling order with the 

consideration of both the flow size and the flow deadline, 

which can help more small flows meet their deadlines. 

The at-scale simulations and a real flow distribution 

based test results show that S
3
 significantly reduces the 

deadline miss ratio and obtains lower flow completion 

time compared to the recent protocols PDQ and D
3
. In 

addition, S
3
 is resilient to packet loss, and schedules 

flows with only the same time complexity as PDQ. 

Keywords: Transport control protocol, Data center 

network, Deadline, Flow completion time 

1 Introduction 

Nowadays, many data centers are constructed and 

deployed to provide various on-line interactive 

application services, such as web search, social 

networking and online transaction processing [1]. 

These application services have soft-real-time nature 

and needs to respond in a timely fashion. The high 

response latency of these services degrades the user 

experience and consequently reduces the revenue of 

operators of data centers. For example, Amazon found 

that every extra 100ms latency is equivalent to a 1% 

loss in business revenue [2]. Hence it is important to 

guarantee low latency for the on-line interactive 

application services. 

Unfortunately, the underlying transport protocol 

deployed in many today’s data centers is traditional 

Transport Control Protocol (TCP), which aims to 

maximize throughput over the unreliable networks like 

Internet, inclining to enlarge the latency by filling up 

the switch buffer. Consequently, TCP performs poorly 

in data center networks (DCNs). For instance, in the 

popular application services such as MapReduce [3], 

the many-to-one communication pattern causes TCP 

flows to suffer from timeout or even the Incast 

throughput collapse problem [4], which greatly 

degrades the latency performances of application 

services. 

Recent research focuses on designing novel 

transport control protocols to address the problem of 

latency performance with TCP [5-14]. Especially, the 

proposed protocols operate under soft-real-time 

constraints (e.g., 300ms latency) which imply 

deadlines for network communi- cation within the on-

line applications. D3 [5] and D2TCP [6] exploit the 

explicit deadline information to allocate bandwidth for 

each flow in their protocol designs. They all try to help 

more flows to meet their deadlines since the less flows 

miss their deadlines, the better the response results of 

online application services are. To help more flows 

meet their deadlines, some other deadline-aware 

protocols are proposed to mimic various scheduling 

principles [9-11]. For example, PDQ [10] uses Earliest 

Deadline First (EDF) discipline to meet the deadline 

requirements. The smaller deadline a flow has, the 

earlier it sends data. When flows have the same 

deadline, PDQ uses Shortest Job First (SJF) discipline, 



1962 Journal of Internet Technology Volume 19 (2018) No.7 

 

that is, a flow with the smallest size will send data 

firstly. 

These approaches could alleviate the impact of 

latency problem greatly and still suffer from their 

respective drawbacks. In particular, when the 

aggregate rate demand of the deadline-aware flows 

exceeds the link capacity, PDQ may not help the 

maximum number of flows to meet their respective 

deadlines. Other deadline-aware transport control 

protocols still use Fair Sharing or First In First Out 

(FIFO) scheduling discipline, which could degrade the 

latency performance of large number of small flows. 

As a result, the number of flows meeting deadlines is 

reduced much. 

In this paper, we propose a flow scheduling protocol 

called Size-aware Sequential Scheduling (S3) to meet 

deadlines for as many flows as possible. S3 adopts 

preemptive distributed flow scheduling to finish flows 

quickly. The key point is that by considering both flow 

sizes and flow deadlines, small flows can preempt 

large flows. Therefore, S3 prevents large flows from 

occupying too much service time of small flows. The 

results of performance evaluation show that S3 

outperforms D3, TCP and PDQ in terms of deadline 

miss ratio. 

2 Related Work 

Many transport protocols have been proposed to 

reduce the latency and meet deadlines for flows in 

DCNs. In this section, we boardly classify those 

protocols into three categories. They approximate 

different, scheduling disciplines, which are 

summerized in Table 1. In the following, the details of 

these protocols are illustrated. 

Table 1. Transport protocols for reducing the latency 

in DCNs 

Category Examples 
Scheduling 

discipline 

Fair sharing 

protocols 
DCTCP [12] PS 

D3 [5], D2TCP [6], 

MCP [16] 

 

FIFO 

L2DCT [11] LAS 

Deadline-aware 

protocols 

PDQ [10] EDF 

pFabric [9] SRPT Size-aware 

protocols PASE [18] SJF 

 

2.1 Fair Sharing Protocols 

As a pioneer of enhanced TCP protocol in DCNs, 

Data Center TCP (DCTCP) [12] uses Explicit 

Congestion Notification (ECN) marks for measuring 

the extent of congestion, and adjusts its sending rate to 

alleviate congestion. With the accurate congestion 

information according to ECN marks, DCTCP can 

control the queue around a small value well and reduce 

the flow completion time. However, DCTCP is a 

deadline-unaware protocol and approximates to Fair 

Sharing or Processor Sharing (PS) [15] discipline, 

which is known to be far from maximizing the number 

of deadline-meeting flows. When flows have their 

respective deadline requirements, DCTCP has no 

corresponding mechanisms to change the sending rates 

of these flows according to their deadlines. 

2.2 Deadline-aware Protocols 

D3 [5] is the first deadline- aware transport control 

protocol, which employs explicit rate control with the 

aid of switches. Although D3 significantly enhances the 

deadline-meeting ratio in comparison with DCTCP, it 

does not employ any flow scheduling strategy but 

allocates rates to flows by their arriving orders. This 

means that the scheduling discipline of D3
 is FIFO. 

Consequently, the flows with lax deadlines coming 

earlier occupy the bottleneck bandwidth, while some 

urgent flows arriving later may miss their deadlines. 

Based on DCTCP, Balajee Vamanan et al. propose 

D2TCP [6], which elegantly regulates the congestion 

window size according to the extent of congestion and 

the flow deadlines. When the congestion occurs, the 

far-deadline flows release some bandwidth to the near-

deadline ones. Unfortunately, D2TCP only modifies the 

congestion control algorithm at the sender side without 

any enhancement of the flow scheduling scheme, thus 

faces the same problem of D3
 as illustrated above. 

The recent proposed transport protocol L2DCT [11] 

mimics the Least Attained Service (LAS) scheduling at 

senders in a distributed way. According to the bytes a 

flow has sent, L2DCT distinguishes the large and small 

flows. When flows suffer the congestion, the rate of 

small flows are decreased less than large flows. In this 

way, more small flows can meet their deadlines. 

Nevertheless, the large and small flows still compete 

for the bottleneck link, meaning that the number of 

deadline-meeting flows with L2DCT can be improved 

further. 

MCP (Minimal-impact Congestion control Protocol) 

[16] derives optimal source rates by solving a 

stochastic packet delay minimization with constraints 

on completing within deadlines. Apart from finishing 

the deadline flows, MCP minimizes the flow 

completion time of non-deadline flows. Although the 

design of MCP has the solid theory basis, the 

scheduling discipline of MCP is same to D3. 

Unlike the previous protocols, PDQ [10] is a 

preemp- tive flow scheduling protocol which sends 

flows based on flow priorities. The flow priority is 

determined on switches according to the EDF 

discipline, that is, a flow with smaller deadline has 

higher priority. Unless flows have the same deadline, 

the flow with the smaller size has higher priority (SJF). 

Flows with high priorities send data with the link rate 

and can preempt flows with lower priorities. Besides, 
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when PDQ anticipates that a flow cannot finish its 

sending before its deadline, it terminates the flow to 

save the bottleneck link bandwidth for other flows. 

However, when the bottleneck link are overloaded, 

EDF may degrade the deadline miss ratio [17]. 

Furthermore, for the flows with different deadlines, it 

is very possible that large flows are scheduled earlier 

due to their smaller deadlines. In this case, even a few 

of large flows may block a great quantity of small 

flows, which can result in high deadline miss ratio. 

2.3 Size-aware Protocols 

pFabric [9] decouples flow scheduling from rate 

control. The switch determines the flow scheduling 

order according to the remaining flow size. The flow 

with the least remaining size is scheduled first 

(Shortest Remaining Processing Time, SRPT). 

Congestion control is simplified at sources which send 

flows at line rate at the beginning and throttle rate only 

under persistent packet loss. pFabric minimizes the 

average flow completion time, but its aggressive 

congestion control manner results in lots of packet loss. 

PASE [18] synthesizes existing transport protocols 

strategies to reduce the average flow completion time 

and meet the flow deadlines. In its arbitration strategy, 

PASE determine the flow priorities according to the 

flow size (SJF), while our work explores the method to 

schedule flows using both the flow sizes and deadlines. 

3 Background and Motivation 

3.1 Flow Information 

Flow deadline. In most enterprises, the latency 

requirements of online interactive application services 

have been specified by SLAs (Service Level 

Agreements) [19-20]. To prevent the SLA from being 

violated, working processes in these applications are 

assigned deadlines, usually on the order of 10-100ms. 

For these online interactive application services, the 

number of flows meeting their deadlines is a key 

performance metric since it relates with the response 

quality. For example, in the web search application 

using the partition-aggregate structure, more indexing 

results can improve the accuracy of query responses 

[6]. 

Flow size. For many on-line interactive application 

services, the flows size initiated by working processes 

can be known in advance. For example, in web search, 

the size of query flows is fixed (1.6KB), and the size of 

the corresponding response flows is 1.6-2KB [12]. In 

cloud storage system, each Server Request Unit (SRU) 

stripped on a server is constant, e.g., 64KB or 128KB 

[21]. The same holds for application services like key-

value store and data processing [10].  

Next, we give a comprehensive analysis of traffic 

trace from a real DCN to illustrate the characteristic of 

the flow size distribution. The data trace is collected 

from a real university campus data center [22]. The 

2.1G trace records traffic data of more than 300,000 

flows for at least 10 days. Figure 1(a) presents the 

cumulative distribution function (CDF) for different 

flow sizes. The probability of the flow size less than 

10KB approximates 0.8, while the probability of that 

between 10KB and 100KB is about 0.2. In Figure 1(b), 

we list the percentage results in 5 seconds and 60 

seconds drawn randomly from the trace. The 

percentages of the number of flows below 10K are 

about 96.7% in 5 seconds and about 90.9% in 60 

seconds. As shown in Figure 1(b), the percentages of 

flow size is the ratio of the sum of the flow sizes in 

corresponding interval to the sum of all flow sizes, We 

can find that the prercentages of flow sizes below 10K 

are only 65% and 40.7% in 5 seconds and 60 seconds, 

respectively. It is clear that the number of small flows 

are in the majority, but their total sizes are small. It 

should be noted that the similar result is also given 

from the typical applications in DCN. For example, the 

Web Searching traffic involves at least 80% flows with 

the data size below 10KB, while this proportion is 

higher than 96% in the Data Mining traffic [23]. 

 

(a) The CDF of the number of flows 

 

(b) The percentage of flow sizes and number of  

flows in 5s and 60s 

Figure 1. Flow size and the number of flows 

distribution in a real data center 

3.2 Size-aware Scheduling 

Based on the flow size distribution, there comes a 

problem that, if a few large flows occupy too much 

network resources, large number of small flows may be 
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blocked and can not finish their sending before 

deadlines. Unfortunately, the problem is ignored by 

most of scheduling disciplines. Next, by a simple 

example, we compare three disciplines which are PS 

scheduling discipline approximated by TCP or DCTCP, 

FIFO used by D3 and EDF adopted by PDQ. We use 

application throughput, the percentage of flows 

meeting their deadlines, as the performance metric.  

Consider the scenario that there are three flows A, B 

and C through the same bottleneck link. For simplicity, 

we assume that one unit size needs one unit time to 

transmit. As shown in Table 2, the flow sizes of three 

flows are 3, 4, and 6, and the corresponding deadlines 

are 7, 8 and 6, respectively. When a flow can not finish 

sending before its deadline, it will be terminated to free 

its occupied network resources. 

Table 2. Flow sizes and deadlines of A, B, C 

Flow Size Deadline 

A 3 7 

B 4 8 

C 6 6 

 

As shown in Figure 2(a), if PS scheduling discipline 

is adopted, all three flows share the bottleneck link 

fairly. After 8 units time, flow C only sends 2 units, 

flow A sends 2.5 units and flow B sends 3.5 units. 

Obviously, all flows miss their deadlines. In Figure 

2(b), the flows are scheduled in FIFO discipline. We 

assume that flows arrive in the order C→B→A. In this 

case, only C accomplishes its transmission before its 

deadline. Figure 2(c) demonstrates the situation of 

EDF discipline. According to EDF discipline, C sends 

earlier than A or B since its deadline is smaller than A 

or B. Obviously, both A and B miss their deadline 

requirements. For PS, FIFO and EDF, the application 

throughputs are 0, 1/3 and 1/3, respectively. The reason 

of low efficiency is that the large flow C sends firstly 

and occupies too much service time. Consequently, the 

small flow A and B are not able to meet their deadlines. 

However, as shown in Figure 2(d), if A preempts C, 

while B is scheduled at time 3, only C will miss its 

deadline. In this case, the application throughput, i.e., 

the ratio of the number of flows meeting their 

deadlines to the total number of flows, is increased to 

2/3. Based on the observation of the above scheduling 

example, it is obvious that the application throughput 

could be improved if the large flow is prevented from 

occupying too much service time. 

Our observation of the empirical data and the 

example leads us to conclude that (i) the number of 

small flows is much larger than that of larger flows in 

most of applications, and (ii) the number of flows 

meeting deadlines can be improved if we schedule the 

small flows first rather than larger flows. These 

conclusions motivate us to investigate a novel 

scheduling algorithm using both the flow size and flow 

deadline information. 

  

(a) PS (b) FIFO 

  

(c) EDF (d) Ideal 

Figure 2. Flow scheduling example 

4 Protocol Design 

4.1 S
3
 Overview 

S3 is a flow scheduling protocol, which aims to 

maximize the number of flows meeting their deadlines. 

S3 works in the distribute manner that can achieve 

scalability and avoid the single point failure occurring 

in the centralized manner.  

Figure 3 provides the overview of S3. First, the 

application exposes the flow size and flow deadline to 

S3 transport layer. Then the sender adds a scheduling 

header carrying the flow information to the SYN 

packet. According to the flow information in the SYN 

packet, the switch determines the sending order of each 

flow. The flow will be paused by switch if it is not 

scheduled to send data. After receiving the SYN packet, 

the receiver copies all information in the scheduling 

header into the ACK packet. Finally, when the ACK 

packet arrives, the feedback information is used to 

determine whether the sender is paused. If it is not 

paused, the sender will send data packets with the link 

rate. Otherwise, it will send probe packets until it is not 

paused by switches or misses its deadline. 

 

Figure 3. Overview of S3 
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4.2 S
3
 Sender and Receiver 

Similar to PDQ, S3 is deployed on the switch, sender 

and receiver sides. The details are as follows. 

Sender. For S3
 sender, it sends a SYN packet for flow 

initialization. Whenever a packet departs, the sender 

attaches a scheduling header to the packet, containing 

its current sending rate Ri, the ID of the switch (if any) 

Si, the flow deadline Di, the inter-probing time Pi, and 

the measured Round Trip Time (RTT) RTTi. The 

current sending rate Ri is initialized to the link rate, and 

Si, Pi and RTTi are zero. When an ACK packet arrives, 

the sender updates these variables based on the 

feedback. If Si is not zero, it means that the sender is 

paused by a switch in the network. Then, the sender 

will send a probe packet every Pi to obtain the sending 

information from switches. 

For flows which can not finish before their deadlines 

even if they are not paused by switches, S3 sender stops 

the flows to prevent them from consuming any 

network resource. Sometimes, if a packet suffers from 

a timeout, S3
 will resend the packet immediately. In our 

implementation, the timeout time interval is twice 

RTTs. 

Receiver. The operation of S3
 receiver is simple. The 

receiver only copies the scheduling header from each 

data packet to its corresponding ACK. 

4.3 S
3
 Switch 

In the S3
 switch, flows are assigned a rate according 

to our scheduling algorithm running at the switch. If a 

flow can be scheduled, it obtains the rate contained in 

the scheduling header. On the contrary, if a flow can 

not be scheduled now, the switch assigns zero rate to 

the flow and records the switch ID into Si in the 

scheduling header of the packet (i.e., pauses the flow). 

Next, we illustrate the scheduling algorithm, which 

is the key operation of S3 switch. The basic idea of S3 

is that it adopts both the flow sizes and flow deadlines 

to determine the sending order of flows. The 

scheduling algorithm includes two operations, called 

FILTER and SLACK. In FILTER operation, flows are 

sorted by deadline with an enhanced EDF discipline. 

Then, S3
 adjusts scheduling orders to send small flows 

as many as possible to achieve lower deadline-miss 

ratio in SLACK operation. 

FILTER operation. It is known that, EDF sorts the 

flow scheduling order only by the flow deadline. That 

is, the flow with the earliest deadline will have the 

highest priority. Even if the flow can not finish its 

transmission before deadline, it still transmits by the 

deadline order, which is obviously useless and may 

harm flows with larger deadlines. Therefore, FILTER 

operation checks if a flow is schedulable with the 

consideration of flow execution time, which is 

determined by flow size.  

For n flows, we sort them by their ascending 

deadline order to get the ordered set F={f1, f2,
… , fn 

}. 

The corresponding deadlines are denoted as D={d1, 

d2, …, dn } and the sizes are S={s1, s2, …, sn }. We 

assume one unit size needs one unit time to finish 

transmission. Then, if flow fi is schedulable, it should 

satisfy 

 
1

1

i

i i j

j

d s s

−

=

≥ +∑ , (1) 

where sj is the size of a schedulable flow, and di is the 

deadline of flow fi. The formula shows that flow fi is 

schedulable if its deadline is not less than its size plus 

the sum of flow size of all schedulable flows whose 

positions (i.e., scheduling order) are before flow fi. The 

detail of the FILTER operation is presented in 

Algorithm 1. 

 

Algorithm 1. FILTER operation 

Initial state: 

At the beginning, there are n flows that need to be

determined on the scheduling order at a switch. sum

refers to the sum of all scheduleable flow sizes

fi.deadline refers to the deadline of flow i, fi.size refers

to the size of flow i, and fi.mark refers to a mark bit of

flow i, taking 1 for the schedulable flow, or else 0; 

1: Sort the flows by deadlines; 

2: sum = 0; 

3: for i = 0…n do 

4:    if fi.deadline > sum + fi.size then 

5:       fi.mark = 1; 

6:       sum = sum + fi.size; 

7:    else 

8:       fi.mark = 0; 

9:    end if 

10: end for 

 

S3 firstly sorts the flow scheduling order with EDF 

discipline in Step 1. Then, S3 checks whether the 

scheduling result of EDF is schedulable or not in Step 

4. If a flow is schedulable according to Eq. (1), the 

flow is marked with 1, otherwise it is marked with 0. 

SLACK operation. After the FILTER operation, small 

flows may be blocked and can not finish their sending 

before deadlines. If we substitute some small 

unschedul- able flows for the large schedulable flow, 

the total number of schedulable flows may be 

increased. In our algorithm, the flow substitution is 

called SLACK. 

The SLACK operation is given in Algorithm 2. 

After the FILTER operation, all flows have been sorted 

by the deadline. The schedulable and unschedulable 

flows are marked 1 and 0, respectively. If flow fi is 

marked 1, Algorithm 2 inserts flow fi into a binary 

search tree structure T in Step 5. The structure is used 

to find the largest removable flow from Ff with O(logn) 

time complexity. If flow fi is marked 0, Algorithm 2 

firstly checks whether fi can be added into Ff. If fi 

satisfies the Eq. (1) in Step 8, it is marked 1. Or else, in 
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Step 12, Algorithm 2 finds out the the largest flow fmax 

from T. If the size of fi is not larger than that of fmax and 

fi’s deadline is greater than the total size of schedulable 

flows before it, Algorithm 2 substitutes fi for fmax and 

updates T and sum. 

 

Algorithm 2. SLACK operation 

Initial state: 

There are n flows after performing the FILTER

operation. sum refers total execution time, fmax refers to

the flow with the largest size, and T refers to a binary

search tree; 

1: Sort the flows by deadlines; 

2: sum = 0; 

3: for i = 0…n do 

4:    if fi.mark == 1 then 

5:       insert fi into the binary search tree T; 

6:       sum = sum + fi.size; 

7:    else 

8:       if fi.deadline≥ sum + fi.size then 

9:          insert fi into a tree T and set fi.mark to be 1; 

10:        sum = sum + fi.size; 

11:     else 

12:        find flow fmax with the largest size from T; 

13:       if fi.size≤ fmax.size and fi.deadline≥ sum - fma

fi.size then 

14:           update T; 

15:           update fi.mark and fmax.mark; 

16:           sum = sum - fmax.size + fi.size; 

17:        end if 

18:     end if 

19:   end if 

20: end for 

 

For a flow that cannot be scheduled first, its inter-

probing time Pi is calculated by: 

 Pi = 0.2⋅ RTTavg ⋅ Ii, (2) 

where RTTavg is the average RTT of all flows passing 

through the current switch and Ii is the index of flow i 

in the set of schedulable flows determined by the 

scheduling algorithm. 

4.4 Analysis of S
3
 Scheduling Discipline 

We give an illustrative example to validate the 

algorithm of S3. In Figure 4, each flow is denoted as a 

rectangle. At the top of each rectangle, the notation (s, 

d) represents that the flow has size s and deadline d. 

For example, the size and the deadline of f3 are 6 and 7, 

respectively. Figure 4(a) shows the result of EDF, in 

which all flows are sorted in ascending order of 

deadline. The result set after FILTER operation is 

shown in Figure 4(b). Here, we use Ff for denoting the 

schedulable flow set, and Fr for the unschedulable flow 

set. In Figure 4(b), Ff ={ f1, f3, f4 }, Fr ={ f2, f5, f6, f7 }, 

and F=Ff∪Fr. Figure 4(c) shows that f6 substitutes the 

largest one in the three schedulable flows f1, f3 and f4. 

Figure 4(d) shows the final result after the SLACK 

operation. Clearly, the total number of schedulable 

flows increases from 3 to 4. 

 

(a) The flow set sorted by EDF 

 

(b) The flow set after FILTER operation 

 

(c) The flow set after f4 is substituted for f6  

in SLACK operation 

 

(d) The flow set after f7 is added into Ff  

in SLACK operation 

Figure 4. An illustrative scheduling example 

The illustrative example shows that our alogrithm 

outperforms EDF when there are no other flows 

arriving. However, in a dynamic setting, the problem 

that minimiz- ing the number of flows missing their 

deadlines is an NP-complete problem [10]. The idea of 

the scheduling alogithm S3 is designed based on the 

principle of the least slack time (i.e., the difference of 

the flow deadline and the flow size), which has been 

proven that it has better performance than EDF when 

flows can not be scheduled to satisfy their deadlines by 

any algorithm [17]. Our contribution here is that we 

apply the scheduling principle to a preemptive flow 

scheduling protocol S3 for meeting flow deadlines in 

DCNs. 

One concern on the preemptive flow scheduling 

protocol S3 is that the time complexity of the 

scheduling algorithm. In DCN, a switch may handle 

several thousand active flows in a one second [22]. 

This makes it the critical requirement for low time 

complexity in a scheduling algorithm. For our 

algorithm implemen- tation, we use quick sort in 

FILTER operation with O(nlogn) time complexity. In 

the SLACK operation, since the binary search tree 
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structure in T is used to find the largest flow, it will 

only take O(nlogn) to insert or delete a flow. Therefore, 

the total time complexity of S3
 algorithm is O(nlogn), 

which is as same as that of PDQ. 

5 Performance Evaluation 

5.1 Evaluation Setting 

In the performance evaluations, we compare the 

following three schemes with S3
 in DCN. The reason 

that we choose these schemes is because they are 

typical protocols using different scheduling discipline 

for meeting flow deadlines. For example, PDQ 

schedules flows mainly using EDF, D3 adopting FIFO 

and TCP approximating PS. While S3 schedules flows 

by considering both deadlines and sizes. The parameter 

settings of the schemes are described as follows. 

PDQ [10]: As a typical flow scheduling scheme in 

DCN, PDQ mainly uses EDF as the scheduling 

algorithms. The Early Start, Early Termination and 

Suppressed Probing described in [10] are also used to 

enhance its performance in the evaluations. The 

threshold K in Early Start is set to 1.5 to get better 

performance. 

D3 [5]: We implement D3
 with the rate allocation and 

flow quenching algorithm. In the rate allocation, the 

parameters α = 0.1 and β =1. Since D3 allocates the 

flow rate depending on the flow arriving order, we 

assume that the order is not previously determined. The 

lucky flow will obtain its desired rate. 

TCP: We use the TCP NewReno as the default 

transport protocol in DCN. In order to alleviate the 

Incast problem, we set a small value of 10ms to RTOmin 

as suggested in [24]. 

For the deadline-constrained flows, as the same as 

[10], the default flow size is set uniformly from the 

interval [2KByte, 198KByte], and the default flow 

deadline is drawn from an exponential distribution with 

mean 20ms. We set a low bound of deadline to 3ms, 

therefore each flow can finish before its deadline if 

there does not exist any other flows. 

5.2 Query Aggregation 

The Query Aggregation is the most common 

communication pattern in data center networks. 

Requests from application layers are partitioned into 

pieces and forwarded to the workers in low layers. 

Then the results returned by the workers are 

aggregated to produce a final result. The Query 

Aggregation appears in popular applications such as 

MapReduce [4]. In this subsection, we evaluate the 

application throughput with different number of flows, 

flow sizes and flow deadlines. 

In Section 5.2 and Section 5.3, we use the single-

rooted tree topology as shown in Figure 5. Each switch 

has 1Gbps uplink and a buffer of 100Kbytes for each 

port. The end-to-end round trip latency is 160 µ s. 

 

Figure 5. Many-to-one single-rooted tree 

5.2.1 Comparison of Application Throughput  

Impact of number of flows. Figure 6(a) shows that, 

with the increasing of the number of concurrently 

sending flows, the application throughput of D3 and 

TCP decrease a lot while that of PDQ and S3
 degrade 

gracefully. When the number of flows becomes larger, 

S3
 has more opportunities to execute the SLACK 

operation. Therefore, S3
 obtains higher performance 

improvement with the number of flows increasing. The 

application throughput of S3
 is about 10% higher than 

that of PDQ when the number of flows is larger than 

55. 

Impact of flow size. We study the application 

throughput of 30 concurrent flows in this test. Figure 

6(b) demonstrates that, when the flow size becomes 

larger, the application throughputs of all protocols are 

degraded. As a deadline-agnostic protocol, TCP gets 

the worst performance. PDQ uses EDF to schedule 

flows and thus gets high application throughput. By 

preventing larger flows occupy too much service time 

of smaller flows, S3 still achieves better performance 

than that of PDQ with different flow sizes.  

Impact of flow deadline. The maximum percent of 

flows that can meet their deadlines is the focus of the 

operations of data center. In this comparison, we 

change the mean flow deadline to test the maximal 

number of flows that can ensure 90% application 

throughput. Intuitively, the larger mean deadline, the 

more flows can be guaranteed to ensure the 90% 

application throughput. 

Figure 6(c) shows that, for all protocols, the number 

of flows at 90% application throughput becomes larger 

when the deadline is increasing. D3
 and TCP can 

support only less than 40 concurrent flows to ensure 

90% application throughput with the mean deadlines 

from 20ms to 60ms. The performances of S3
 and PDQ 

are much better. Moreover, we find that S3
 obtains 

about 10% improvement over PDQ, more than 3 times 

improvement over D3 when the mean deadline is 60ms. 
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(a) Varying the number of flow 

 

(b) Varying the mean flow size 

 

(c) Varying the mean flow deadline 

Figure 6. Application throughput in query aggregation 

5.2.2 Comparison of Flow Completion Time 

For deadline-constrained flows, we compare the 

flow completion time (FCT) for varying number of 

flows in Figure 7(a) and Figure 7(b). Since S3 has 

higher application throughput than PDQ or D3 as 

shown in Figure 6(a), to make accurate and fair 

comparison, we measure the FCT under the same 

application throughput. For example, if PDQ or D3
 

only finishes 30 flows, we also choose the first 30 

flows finished by S3
 to calculate the FCT. The 

maximum, average and minimum of FCT are drawn in 

Figure 7(a) and Figure 7(b). We find that S3 

outperforms both PDQ and D3 with the increasing of 

the number of flows. When the number of flows is 80, 

the average FCT of S3
 is about 20% lower than PDQ, 

and 7 times lower than D3.  

In DCN, there also exits flows having no deadline, 

such as flows for updating data across servers, but it is 

desirable that they can finish earlier. For these 

deadline-unconstrained flows, we use the average flow 

completion time (AFCT) to compare the performance 

in different protocols. We measure the completion time 

of 100 flows in query scenario. In Figure 7(c), both S3
 

and PDQ have the lowest AFCT for the reason that 

both scheduling algorithms degenerate into the SJF 

discipline in the absence of flow deadlines. 

  

(a) FCT of S3 and PDQ (b) FCT of S3 and D3 

 

(c) Deadline-unconstrained flows 

Figure 7. FCT in query aggregation 

5.3 Impact of Dynamic Flows 

Compared with EDF discipline in PDQ, S3 

interchanges the scheduling order of large and small 

flows to add new flows into the scheduling order. In 

this test, we compare the dynamic scheduling of S3 and 

PDQ. We start five flows at time 0. One flow, which is 

the largest one, has the size of 1MB and the deadline of 

10ms. The sizes of other four small flows are 120KB, 

140KB, 160KB and 180KB respectively, and their 

deadlines are randomly selected in the range of [10ms, 

12ms]. 

Figure 8 shows the test results of PDQ and S3 with 

dynamic flows. In Figure 8(a), since PDQ schedules 

flows according to the deadline, the first flow grabs the 

whole link bandwidth until it finishes sending all data 

packets. Then, the other four flows begin their 

transmission based on their deadlines. At last, only 3 

flows are completed before their deadlines. While in 

Figure 8(b) with S3 algorithm, flow 1~4 are transmitted 

earlier due to their smaller size and larger deadline 

compared with flow 0. Finally, 4 small flows all meet 

their deadlines. Compared to PDQ, the application 

throughput is improved by 20%. In Figure 8(c) and 

Figure 8(d), both S3 and PDQ can achieve 100% link 

utilization at flow scheduling time, which means that 

S3
 and PDQ can converge to the equilibrium rate 

quickly. The degradation of link utilization at the 

beginning is due to sending the SYN packet in the 

initial RTT. Figure 8(e) and Figure 8(f) show the 

instantaneous queue lengths of S3 and PDQ, which are 

both well controlled. The reason is that, with the flow 

scheduling algorithm of S3 and PDQ, there is usually 

only one flow running in the bottleneck link and thus 

the oversubscription problem is prevented. We observe 

that the queue length is not larger than 5, which is 

mainly caused by probe packets. Nonetheless, from 
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Figure 8, the FCT of S3
 is much shorter than that of 

PDQ. For example, PDQ takes about 11ms for 

finishing three flows, while S3
 takes roughly 5.7ms for 

finishing four flows. 

  

(a) Flow throughput of PDQ (b) Flow throughput of S3

  

(c) Link utilization of PDQ (d) Link utilization of S3 

  

(e) Queue length of PDQ  (f) Queue length of S3 

Figure 8. Dynamic flows of PDQ and S3 

5.4 Impact of Traffic Workload 

In this subsection, we study the impact of different 

traffic workloads, which are generated by 

corresponding sending patterns: (1) Aggregation: the 

many-to-one sending pattern which has been stated in 

Section 5.2. (2) Stride(z): a server with index γ will 

send flows to the server with index (γ+z) mod N, where 

N is the total number of servers and z is a fixed integer 

number. (3) Random Permutation: a server sends flows 

to another randomly selected server, and each server 

receives flows from only another server. (4) Prob(p): a 

server sends flows to another server in the same rack 

with probability p whereas to the other server in a 

different rack with probability 1-p. We use the two-

level 12-server single-rooted tree topology as shown in 

Figure 9. The link rate, switch buffer and link delay are 

set as same as that in Section 5.3. 

 

Figure 9. Two-level 12-server single-rooted tree 

Figure 10(a) shows that S3 outperforms the other 

three protocols. We normalize the finished flow 

number based on that of S3. Thus, the value of S3
 is 

always 1 for each sending pattern. Compared to PDQ, 

S
3
 gets the best performance improvement in the many-

to-one pattern. In Prob(0.7) pattern, flows are confined 

in the same rack with a large probability. These local 

flows have smaller RTTs than those across different 

racks. As the local flows and non-local flows have the 

same distribution of the flow sizes, this means that the 

local flows have more lax deadlines. Similar to the 

result in Section 5.2, the Prob(0.7) pattern gets more 

performance benefit than Prob(0.3). Note that in the 

Stride(1) pattern, since each rack has 3 servers, there 

are only about 2/3≈0.67 of flows running in the same 

rack. Therefore, the performance of Stride(1) pattern is 

worse than that of Prob(0.7). In Figure 10(b) and 

Figure 10(c), we compare the FCT in different patterns. 

The FCT is calculated under the same application 

throughput with the same comparison method in 

Section 5.3. The best performance improvement is still 

in the many-to-one pattern, and S3
 has lower FCT than 

other protocols. 

 

(a) 90% Application throughput 

 

(b) FCT of S3 and PDQ 

 

(c) FCT of S3 and D3 

Figure 10. Performance comparison under aggregation, 

stride, random permutation and probability patterns 
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5.5 Impact of Network Scale 

In the architecture design of large scale DCN, recent 

trends favor the network fabric based on multi-rooted 

tree topologies, such as Fattree [25] and VL2 [26]. To 

investigate the impact of the network scale, we conduct 

the simulation using the fat-tree topology. Here, we 

just present the fat-tree topology with 4 pods in Figure 

11. In this test, we provide the test results when the 

number of pods ranges from 4 to 8, with the 

corresponding number of servers varying from 16 to 

128. The other network parameters like link rate, 

switch buffer and link delay are as same as that in 

former settings. 

 

Figure 11. A simple fat-tree topology with pod=4 

Figure 12(a) shows the number of flows at 90% 

application throughput of S3, PDQ, D3 and TCP. We 

find that, when the network scale becomes larger, there 

are more network resources like servers, switch buffers 

and links. In this case, more flows could meet their 

deadlines. Therefore, the test results of all protocols are 

getting better with larger m. Meanwhile, compared 

with D3 and TCP, both S3
 and PDQ obtain higher 

improvements. Since S3
 avoids the deficit of PDQ, the 

performance of S3
 is higher than that of PDQ. Figure 

12(b) also presents the FCT with the number of 

deadline-constrained flows varying from 100, 250 to 

600 for different pods, respectively. The number of 

flows we test is about 5 times of the number of servers. 

As the FCT of TCP and D3 are very large, we only 

present the results of S3
 and PDQ for clarity. Although 

the FCT increases with the increasing pods, S3
 still 

obtains the lower AFCT than PDQ consistently. 

  

(a) Application throughput (b) FCT 

Figure 12. Performance under different pods 

5.6 Real Flow Distribution Based Test 

To test our protocol according to a real flow 

distribution, we generate flows from the previous 

measured results in Section 3.1. The probability of the 

flow size between 1KB and 10KB is 0.8, while that 

between 10KB and 100KB is 0.2. The distribution of 

the flow deadline is drawn from exponential 

distribution with mean 5ms or 10ms. Also we set a 2ms 

lower bound for all flows.  

In Figure 13(a) and Figure 13(b), the mean of the 

flow deadline is 5ms. When the number of flows is less 

than 40, the performances of S3 and PDQ are close. 

After 40, S3 has higher application throughput than 

PDQ and lower flow completion time apparently. In 

Figure 13(c) and Figure 13(d), the mean of the flow 

deadline is 10ms. Compared with the results with 5ms 

flow deadline, both S3
 and PDQ have higher 

application throughput when the number of flows 

becomes larger. The reason is larger deadline means 

more flows can finish before their deadlines. Besides, 

the number of flows that S3 outperforms PDQ a lot 

begins from 50 (the value is 40 with 5ms flow 

deadline), which is increased due to the larger deadline. 

However, the difference of FCT between S3
 and PDQ 

varies less than that with 5ms flow deadline since more 

flows can meet their deadlines with 10ms flow 

deadline. 

  

(a) Application throughput 

in 5ms 

(b) FCT in 5ms 

  

(c) Application throughput 

in 10ms 

(d) FCT in 10ms 

Figure 13. Performance testing with a real distribution 

5.7 Resilience to Packet Loss 

Packet loss frequently happens in DCN due to 
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congestion caused by bursts of flows or flows sending 

data at line rate simultaneously. Figure 14(a) shows the 

90% application throughput when the packet loss rate 

changes from 0 to 3%. Since S3 sends probe packets 

continuously and always sends data at the maximal rate, 

the performance damage caused by packet loss can be 

amended. Thus, packet loss does not significantly 

affect the performance of S3. When the packet loss rate 

becomes large, the AFCT of S3 increases, as shown in 

Figure 14(b). TCP suffers from large AFCT since the 

timeout time is very large. In our evaluation, the 

performance of TCP is 40 times worse than S3 at 3% 

packet loss rate. 

 

(a) Application throughput (b) FCT 

Figure 14. Performance under different packet loss 

rate 

6 Conclusion and Future Work 

For the latency intensive applications in DCN, 

reducing the number of deadline-missing flows can 

improve the service quality. We proposed a size-aware 

flow scheduling protocol S3 that prevents large flows 

from occupying too much service time of small flows 

and sends flows as quickly as possible. The key idea of 

S3 is that it schedules flows with the consideration of 

the flow size and the flow deadline. With only O(nlogn) 

time complexity, S3
 uses the FILTER and SLACK 

operations to determine the flow scheduling order and 

obtains lower deadline-missing ratio. The extensive 

simulations show that, S3
 achieves higher application 

throughput and lower flow completion time than PDQ 

and D3.  

Several improvements will be investigated in the 

future. First of all, since S3 modifies the switches, it is 

hard to test the performance of S3 in a real large 

network system, while it is necessary to further valid 

its performance in a real small network system. The 

scheduling algorithm of S3 is intentionally designed 

with more flow information such that it could 

outperfom EDF discipline. However, a detailed 

theoretical disscussion on the scheduling algorithm in 

the dynamic DCN environment will be more helpful 

for understanding the algorithm. Additionally, we will 

investigate how to implement the multipath variant of 

S3 to raise the application throughput further since 

today’s DCN has plenty of paths between servers. 
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