
Space Efficient and Integrity-ensured Secret Sharing Schemes for Multimedia Secrecy without Recursion 1901

Space Efficient and Integrity-ensured Secret Sharing Schemes for

Multimedia Secrecy without Recursion

Wei-Liang Tai1, Ya-Fen Chang2*

1 Department of Information Communications, Chinese Culture University, Taiwan
2 Department of Computer Science and Information Engineering,

National Taichung University of Science and Technology, Taiwan

dwl@ulive.pccu.edu.tw, cyf@nutc.edu.tw

*Corresponding Author: Ya-Fen Chang; E-mail: cyf@nutc.edu.tw

DOI: 10.3966/160792642018111906025

Abstract

Multimedia is content that uses a combination of

different content forms. To share multimedia among

multiple users secretly becomes a tough challenge

because the amount of transmitted or involved data might

be large. To ensure efficiency and security for multimedia

secret sharing, we propose two secret sharing schemes

without recursion in this paper, where the second scheme

can control the security of produced shares. The proposed

schemes ensure both security and efficiency and further

provide a mechanism to check the integrity of the

recovered secret.

Keywords: Multimedia, Secret sharing, Recursion,

Integrity

1 Introduction

Multimedia is content that uses a combination of

different content forms such as text, images, audio,

video and interactive content. Due to its variety,

multimedia might be recorded, played, displayed, or

interacted with by some processing devices. To

increase the security level of multimedia information,

the multimedia information needs to be shared among

multiple users, and only a certain number of them can

cooperate to retrieve the original multimedia

information. Unlike text, the amount of transmitted or

involved multimedia information might be large. This

makes share multimedia among multiple users secretly

becomes a tough challenge [1].

Shamir first proposed the concept of secret sharing

in 1979 [2]. Shamir’s secret sharing scheme possesses

a distinguishing property such that the secret can be

shared among n users and reconstructed by only k users.

It is well-known to be k-out-of-n secret sharing.

However, the size of n shares is the same as or greater

than that of the secret. This makes Shamir’s secret

sharing scheme lack space efficiency and not suitable

for multimedia information.

In 2011, Parakh and Kak [3] proposed a secret

sharing scheme for implicit data security by modifying

Krawczyk’s scheme [4]. In Parakh and Kak’s secret

sharing scheme, the size of shares is only 1/(k-1) of

that in Shamir’s scheme, and a recursion algorithm is

adopted to generate corresponding polynomials.

Parakh and Kak claimed that their scheme possessed

superior space efficiency. Meanwhile, they also

proposed a mechanism to control the security of

produced shares. However, Tai et al. found that both of

Parakh and Kak’s secret sharing schemes suffer from

degree degeneration and gave counter examples [5].

This flaw results from that the coefficient of xk-1 is

automatically generated by a recursive algorithm. That

is, the coefficient of xk-1 might be 0 such that the shared

secret can be retrieved when the number of involved

shareholders is less than the legality threshold k.

Although this flaw makes Parakh and Kak’s secret

sharing schemes violate the concept of secret sharing,

the technique to reduce the size of shares can be

adopted to ensure space efficiency. On the other hand,

a recursion algorithm is adopted in Parakh and Kak’s

secret sharing schemes to generate corresponding

polynomials. This approach makes Parakh and Kak’s

schemes lack computational efficiency. How to

preserve space efficiency while enhancing

computational efficiency of Parakh and Kak’s schemes

is the key to designing a secret sharing scheme for

multimedia secrecy.

This paper, a part of [6], proposes two space

efficient secret sharing schemes for multimedia secrecy

without recursion to ensure computational efficiency,

where the first scheme is first shown in [6] and the

second scheme can control the security of produced

shares. Different from Shamir’s and Parakh and Kak’s

secret sharing schemes, the proposed schemes ensure

the integrity of the retrieved secret. The remainder of

this paper is organized as follows. Section 2 reviews

Parakh and Kak’s secret sharing schemes and the

corresponding examples that result in degree

degeneration. In Section 3, the proposed space efficient

1902 Journal of Internet Technology Volume 19 (2018) No.6

secret sharing schemes without recursion are shown,

and the corresponding examples are given. Security

and efficiency analyses are made in Section 4. Finally,

some conclusions are drawn in Section 5.

2 Review of Parakh and Kak’s Secret

Sharing Schemes and Counter Examples

Parakh and Kak proposed two secret sharing

schemes for space efficiency. Parakh and Kak’s

original secret sharing scheme and mechanism to

control the security of produced shares are briefly

reviewed in Subsections 2.1 and 2.2, respectively. The

corresponding examples that result in degree

degeneration are reviewed in Subsection 2.3.

2.1 Parakh and Kak’s Original Secret Sharing

Scheme

Parakh and Kak’s original secret sharing scheme is

composed of two phases, dealing and reconstruction.

The details are as follows.

2.1.1 Dealing Phase

In this phase, the secret holder/dealer generates n

shares such that any k shares can reconstruct the secret

S by the following steps.

Step 1: Divide the secret S into k-1 pieces, s1, s2,…,

sk-1.

Step 2: Choose a large prime p, where p > max(smax,

n) and smax = max(si) for i=1, 2,…, k-1.

Step 3: Choose a number a1∈ Zp randomly and

uniformly.

Step 4: Create a polynomial f1(x) = a1x + s1 mod p.

Step 5: Sample fj-1(x) at j points, Dj-1,1 = fj-1(1), Dj-1,2

= fj-1(2),…, Dj-1,j = fj-1(j), and generate a polynomial fj(x)

= Dj-1,j x
j + Dj-1,j-1 x

j-1 +…+ Dj-1,1 x + sj mod p for j = 2,

3,…, k-1.

Step 6: Sample fk-1(x) at n points, D1 = fk-1(1), D2 = fk-

1(2),…, Dn = fk-1(n).

Step 7: Distribute the share (i, Di) to the shareholder

Ui for i=1, 2,…, n.

2.1.2 Reconstruction Phase

When k shareholders want to reconstruct the secret S,

the following steps are performed.

Step 1: Interpolate the collected k shares (r′, Dr′) ∈

(i, Di), where r=1, 2,…, k and i=1, 2,…, n, to

reconstruct the (k-1)-th polynomial fk-1(x) = Dk-2,k-1 x
k-1

+ D k-2,k-2 x
k-2 +…+ Dk-2,1x + sk-1 mod p and evaluate sk-1

= fk-1(0).

Step 2: Interpolate (1, Dj-1,1), (2, Dj-1,2),…, (j, Dj-1,j)

to extract all coefficients of fj(x), construct the (j-1)-th

polynomial fj-1(x), and evaluate sj-1 = fj-1(0) for j = k-1,

k-2,…, 2.

Step 3: Reconstruct the secret S with the k-1 pieces,

s1, s2,…, sk-1.

2.2 Parakh and Kak’s Mechanism to Control

the Security of Produced Shares

Parakh and Kak’s mechanism to control the security

of produced shares is composed of two phases, dealing

and reconstruction. The details are as follows.

2.2.1 Dealing Phase

In this phase, the secret holder/dealer generates n

shares such that any k shares can reconstruct the secret

S by the following steps, where the secret S is divided

into m pieces instead of k-1 and m can be k-2, k-3, or 1

when the security of produced shares is further

controlled.

Step 1: Divide the secret S into m pieces, s1, s2,…, sm.

Step 2: Choose a large prime p, where p > max(smax,

n) and smax = max(si) for i=1, 2,…, m.

Step 3: Choose k-m numbers ai ∈ Zp randomly and

uniformly for i=1, 2,…, k-m.

Step 4: Create a polynomial f1(x) = ak-mxk-m + ak-m-1x
k-

m-1 +…+a1x + s1 mod p.

Step 5: Sample fj-1(x) at (k-m+j-1) points, Dj-1,1 = fj-

1(1), Dj-1,2 = fj-1(2),…, Dj-1,k-m+j-1 = fj-1(k-m+j-1), and

generate a polynomial fj(x) = Dj-1,k-m+j-1x
k-m+j-1 + Dj-1,k-m+j-

2 x
k-m+j-2 +…+ Dj-1,1 x + sj mod p for j = 2, 3,…, m.

Step 6: Sample fm(x) = Dm-1,k-1x
k-1 + Dm-1,k-2 x

k-2 +…+

Dm-1,1 x + sm mod p at n points, D1 = fm(1), D2 = fm(2),…,

Dn = fm(n).

Step 7: Distribute the share (i, Di) to the shareholder

Ui for i=1, 2,…, n.

2.2.2 Reconstruction Phase

When k shareholders want to reconstruct the secret S,

the following steps are performed.

Step 1: Interpolate the collected k shares (r′, Dr′) ∈

(i, Di), where r=1, 2,…, k and i=1, 2,…, n, to

reconstruct the m-th polynomial fm(x) = Dm-1,k-1x
k-1 +

Dm-1,k-2 x
k-2 +…+ Dm-1,1 x + sm mod p and evaluate sm =

fm(0).

Step 2: Interpolate (1, Dj-1,1), (2, Dj-1,2),…, (k-m+j-1,

Dj-1,k-m+j-1) to extract all coefficients of fj(x), construct

the (j-1)-th polynomial fj-1(x), and evaluate sj-1 = fj-1(0).

Step 3: Reconstruct the secret S with the m pieces, s1,

s2,…, sm.

2.3 The Counter Examples

Tai et al. found that both of Parakh and Kak’s secret

sharing schemes suffer from degree degeneration and

gave counter examples [5]. In the following, the

counter examples given by Tai et al. are reviewed.

2.3.1 Review of the Counter Example of Parakh

and Kak’s Original Secret Sharing Scheme

In dealing phase, the secret dealer generates seven

Space Efficient and Integrity-ensured Secret Sharing Schemes for Multimedia Secrecy without Recursion 1903

shares by the following and any five shares can

reconstruct the secret S = 17280212. First, the secret S

is divided into four pieces s1=17, s2=28, s3=02, and

s4=12. The secret dealer chooses a prime p = 31 such

that p > max(smax, 7) and smax = max(si) for i=1, 2,…, 4,

and the secret dealer chooses a number a1= 22 in Zp.

Polynomial f1(x) = a1x + s1 mod p = 22x + 17 mod 31 is

generated, and f1(x) is sampled at two points D1,1 = f1(1)

=8 and D1,2 = f1(2) = 30. Polynomial f2(x) = D1,2x
2 +

D1,1x + s2 mod p = 30x2 + 8x + 28 mod 31 is generated,

and f2(x) is sampled at three points D2,1 = f2(1) =4, D2,2

= f2(2) = 9, and D2,3 = f2(3) =12. Polynomial f3(x) =

D2,3x
3 + D2,2x

2 + D2,1x + s3 mod p = 12x3 + 9x2 + 4x + 2

mod 31 is generated, and f3(x) is sampled at four points

D3,1 = f3(1) =27, D3,2 = f3(2) = 18, D3,3 = f3(3) =16, and

D3,4 = f3(4) =0. Polynomial f4(x) = D3,4x
4 +D3,3x

3 +

D3,2x
2 + D3,1x + s4 mod p = 0x4 +16x3 + 18x2 + 27x + 12

mod 31 is generated, and f4(x) is sampled at seven

points, D1 = f4(1) = 11, D2 = f4(2) = 18, D3 = f4(3) = 5,

D4 = f4(4) = 6, D5 = f4(5) = 24, D6 = f4(6) = 0, and D7 =

f4(7) = 30. These seven shares (1, 11), (2, 18), (3, 5), (4,

6), (5, 24), (6, 0), and (7, 30) are distributed to seven

shareholders.

In reconstruction phase, only four shares (1, 11), (2,

18), (3, 5), and (4, 6) are obtained, but the secret still

can be recovered because D3,4 = f3(4) =0. The details

are as follows. Polynomial f4(x) = 0x4 +16x3 + 18x2 +

27x + 12 mod 31 is constructed by interpolating (1, 11),

(2, 18), (3, 5), and (4, 6), and s4 = f4(0) =12 is evaluated.

All coefficients of f4(x) are extracted to reconstruct f3(x)

= 12x3 + 9x2 + 4x + 2 mod 31 by interpolating (1, 27),

(2, 18), (3, 16), and (4, 0), and s3 = f3(0) = 2 is

evaluated. All coefficients of f3(x) are extracted to

reconstruct f2(x) = 30x2 + 8x + 28 mod 31 by

interpolating (1, 4), (2, 9), and (3, 12), and s2 = f2(0) =

28 is evaluated. All coefficients of f2(x) are extracted to

reconstruct f1(x) = 22x + 17 mod 31 by interpolating (1,

8) and (2, 30), and s1 = f1(0) = 17 is evaluated. At last,

four pieces s1=17, s2=28, s3=02, and s4=12 are obtained

with only four shares.

2.3.2 Review of the Counter Example of Parakh

and Kak’s Mechanism to Control the

Security of Produced Shares

In dealing phase, the secret dealer generates seven

shares by the following and any five shares can

reconstruct the secret S = 7901728. First, the secret S is

divided into two pieces s1=790 and s2=1728. The secret

dealer chooses a prime p = 1733 such that p > max(smax,

7) and smax = max(si) for i=1, 2, and the secret dealer

chooses three numbers a1 = 105, a2 = 61, and a3= 20.

Polynomial f1(x) = a3x
3 + a2x

2 + a1x + s1 mod p = 20x3

+ 61x2 + 105x + 790 mod 1733 is generated, and f1(x)

is sampled at four points D1,1 = f1(1) =976, D1,2 = f1(2)

=1404, D1,3 = f1(3) = 461, and D1,4 = f1(4) = 0.

Polynomial f2(x) = D1,4x
4 + D1,3x

3 + D1,2x
2 + D1,1x + s2

mod p = 0x4 + 461x3 + 1404x2 + 976x + 1728 mod

1733 is generated, and f2(x) is sampled at seven points,

D1 = f2(1) = 1103, D2 = f2(2) = 853, D3 = f2(3) = 278,

D4 = f2(4) = 411, D5 = f2(5) = 552, D6 = f2(6) = 1, and

D7 = f2(7) = 1524. At last, these seven shares (1, 1103),

(2, 853), (3, 278), (4, 411), (5, 552), (6, 1), and (7,

1524) are distributed to seven shareholders.

In reconstruction phase, only four shares (1, 1103),

(2, 853), (3, 278), and (7, 1524) are obtained, but the

secret still can be recovered because D1,4 = f1(4) =0.

The details are as follows. Polynomial f2(x) = 0x4 +

461x3 + 1404x2 + 976x + 1728 mod 1733 is constructed

by interpolating (1, 1103), (2, 853), (3, 278), and (7,

1524), and s2 = f2(0) = 1728 is evaluated. All

coefficients of f2(x) are extracted to reconstruct f1(x) =

20x3 + 61x2 + 105x + 790 mod 1733 by interpolating (1,

976), (2, 1404), (3, 461), and (4, 0), and s1 = f1(0) =

790 is evaluated. At last, two pieces s1=790 and

s2=1728 are obtained with only four shares.

3 The Proposed Space Efficient Secret

Sharing Schemes Without Recursion

To ensure space efficiency and computational

efficiency, we propose two secret sharing schemes

without recursion, where the second one can control

the security of produced shares. Different from

Shamir’s and Parakh and Kak’s secret sharing schemes,

the proposed schemes ensure the integrity of the

retrieved secret by adopting a hash function. The

proposed secret sharing scheme and mechanism to

control the security of produced shares with examples

are shown in Subsections 3.1 and 3.2, respectively.

3.1 Parakh and Kak’s Original Secret Sharing

Scheme

This scheme is composed of two phases: dealing

phase and reconstruction phase. These two phases and

the corresponding example are given as follows.

3.1.1 Dealing Phase

In this phase, the secret holder/dealer generates n

shares such that any k shares can reconstruct the secret

S by the following steps.

Step 1: Divide the secret S into k-1 pieces, s1, s2,…,

sk-1.

Step 2: Choose a large prime p, where p > max(smax,

n) and smax = max(si) for i=1, 2,…, k-1.

Step 3: Generate a collision-resistant one-way hash

function h(.), where h(.)’s computation result is in Zp.

Step 4: Compute ak-1 = h(I), where I = S. While ak-1

=0, I = I+1 and compute ak-1 = h(I).

Step 5: Create a polynomial f(x) = ak -1x
k-1 + ak-2 x

k-2

+…+ a1 x + a0 mod p, where ai = sk-1-i for i = 0, 1,…, k-

2.

Step 6: Sample f (x) at n points, D1 = f (ID1), D2 = f

(ID2),…, Dn = f (IDn), where IDi is the identifier of the

1904 Journal of Internet Technology Volume 19 (2018) No.6

shareholder Ui for i = 1, 2,…, n and U1, U2,…, Un are

distinct shareholders.

Step 7: Distribute the share Di to the shareholder Ui

for i=1, 2,…, n.

3.1.2 Reconstruction Phase

When k shareholders want to reconstruct the secret S,

the following steps are performed.

Step 1: Interpolate the collected k shares Dr′ ∈ Di,

where r=1, 2,…, k and i=1, 2,…, n, to reconstruct the

polynomial f(x) = ak -1x
k-1 + ak-2 x

k-2 +…+ a1 x + a0 mod

p.

Step 2: Reconstruct the secret S with the k-1 pieces,

s1, s2,…, sk-1, where ai = sk-1-i for i = 0, 1,…, k-2.

Step 3: Check the integrity of S by checking whether

ak-1 = h(I), where I = S. If ak-1 =0, I = I+1 and compute

ak-1 = h(I).

3.1.3 The Example

Assume the secret S = 19213012. The secret

holder/dealer will generate seven shares for users U1,

U2,…, U7, and the secret S can be reconstructed with

any five shares, where Ui’s identifier IDi is i for i = 1,

2,…, n. The details are as follows.

In dealing phase, the secret holder/dealer performs

the following.

Step 1: Divide the secret S into four pieces s1= 19,

s2= 21, s3= 30, and s4= 12.

Step 2: Choose a large prime 31.

Step 3: Generate a collision-resistant one-way hash

function h(.), where h(.)’s computation result is in Z31.

Step 4: Compute a4 = h(I) = h(19213012)=3.

Step 5: Create a polynomial f(x) = a4x
4 + a3x

3 +

a2x
2+ a1 x + a0 mod p = 3x4 + 19x3 +21x2+ 30 x + 12

mod 31.

Step 6: Sample f(x) at 7 points, D1 = f(ID1) = f(1)

=23, D2 = f(ID2) = f(2) = 15, D3 = f(ID3) = f(3) = 24, D4

= f(ID4) = f(4) = 3, D5 = f(ID5) = f(5) = 8, D6 = f(ID6) =

f(6) = 12, and D7 = f(ID7) = f(7)=29.

Step 7: Distribute the share Di to the shareholder Ui

for i=1, 2,…, 7.

In reconstruction phase, any five of (1, D1), (2,

D2),…, (7, D7) can reconstruct f(x) = 3x4 + 19x3 +21x2+

30 x + 12 mod 31 by interpolating them. Then the

secret S is reconstructed such that S = 19213012. Then

the integrity is checked by checking whether

h(19213012)=3 holds or not.

3.2 The Proposed Secret Sharing Scheme with

Controlling the Security of Produced

Shares and the Corresponding Example

The second scheme is composed of two phases:

dealing phase and reconstruction phase. These two

phases and the corresponding example are given as

follows.

3.2.1 Dealing Phase

In this phase, the secret holder/dealer generates n

shares such that any k shares can reconstruct the secret

S by the following steps, where the secret S is divided

into m pieces instead of k-1 and m can be k-2, k-3, or 1

when the security of produced shares is further

controlled.

Step 1: Divide the secret S into m pieces, s1, s2,…, sm.

Step 2: Choose a large prime p, where p > max(smax,

n) and smax = max(si) for i=1, 2,…, m.

Step 3: Generate a collision-resistant one-way hash

function h(.), where h(.)’s computation result is in Zp.

Step 4: Choose k-m-1 numbers ai∈ Zp randomly and

uniformly for i=k-2, k-3,…, m.

Step 5: Compute ak-1 = h(I), where I = S. While ak-1

=0, I = I+1 and compute ak-1 = h(I).

Step 6: Create a polynomial f(x) = ak -1x
k-1 + ak-2 x

k-2

+…+ a1 x + a0 mod p, where ai = sm-i for i = 0, 1,…, m-

1.

Step 7: Sample f (x) at n points, D1 = f (ID1), D2 = f

(ID2),…, Dn = f (IDn), where IDi is the identifier of the

shareholder Ui for i = 1, 2,…, n and U1, U2,…, Un are

distinct shareholders.

Step 8: Distribute the share Di to the

shareholder Ui for i=1, 2,…, n.

3.2.2 Reconstruction Phase

When k shareholders want to reconstruct the secret S,

the following steps are performed.

Step 1: Interpolate the collected k shares Dr′ ∈ Di,

where r=1, 2,…, k and i=1, 2,…, n, to reconstruct the

polynomial f(x) = ak -1x
k-1 + ak-2 x

k-2 +…+ a1 x + a0 mod

p.

Step 2: Reconstruct the secret S with the m pieces, s1,

s2,…, sm, where ai = sm-i for i = 0, 1,…, m-1.

Step 3: Check the integrity of S by checking whether

ak-1 = h(I), where I = S. If ak-1 =0, I = I+1 and compute

ak-1 = h(I).

3.2.3 The Example

Assume the secret S = 100003 that is divided into

two pieces. The secret holder/dealer will generate

seven shares for users U1, U2,…, U7, and the secret S

can be reconstructed with any five shares, where Ui’s

identifier IDi is i for i = 1, 2,…, n. The details are as

follows.

In dealing phase, the secret holder/dealer performs

the following.

Step 1: Divide the secret S into two pieces s1= 100

and s2= 003.

Step 2: Choose a large prime 113.

Step 3: Generate a collision-resistant one-way hash

function h(.), where h(.)’s computation result is in Z113.

Step 4: Choose two numbers a3= 10 and a2= 13.
Step 5: Compute a4 = h(I) = h(010013100003)=3.

Space Efficient and Integrity-ensured Secret Sharing Schemes for Multimedia Secrecy without Recursion 1905

Step 6: Create a polynomial f(x) = a4x
4 + a3x

3 +

a2x
2+ a1 x + a0 mod p = 3x4 + 10x3 +13x2+ 100 x + 3

mod 113.

Step 7: Sample f (x) at 7 points, D1 = f(ID1) = f(1)

=16, D2 = f(ID2) = f(2) = 44, D3 = f(ID3) = f(3) = 29, D4

= f(ID4) = f(4) = 98, D5 = f(ID5) = f(5) = 111, D6 =

f(ID6) = f(6) = 0, and D7 = f(ID7) = f(7)= 108.

Step 8: Distribute the share Di to the shareholder Ui

for i=1, 2,…, 7.

In reconstruction phase, any five of (1, D1), (2,

D2),…, (7, D7) can reconstruct f(x) = 3x4 + 10x3 +13x2+

100 x + 3 mod 113 by interpolating them. Then the

secret S is reconstructed such that S = 100003. Then

the integrity is checked by checking whether

h(010013100003)=3 holds or not.

4 Security and Efficiency Analyses

In the proposed secret sharing schemes, one (k-1)-

degree polynomial f(x) is generated to produce n shares

for n distinct shareholders. In the first scheme, the

coefficients ak-2, ak-3,…, a1, a0 are the pieces of the

secret S while the coefficient ak-1 = h(I) = h(S). In the

second scheme, the coefficients am-1,…, a1, a0 are the

pieces of the secret S and ak-2, ak-3,…, am are random

numbers while the coefficient ak-1 = h(I) = h(S), where

h(.) is a one-way hash function with computation

results in Zp. In both schemes, if ak-1 = 0, I = I+1 and ak-

1 = h(I). The probability of ak-1 = h(I) = h(S) = 0 is 1/p

because h(.) is a one-way hash function with

computation results in Zp. When ak-1 = 0, I = I+1 and

the probability of ak-1 = h(I) = 0 is 1/p. That is, the

probability of h(S) = h(S+1) = 0 is 1/p2, and the

probability of h(S) = h(S+1) = h(S+2) =…= h(S+t) = 0

is 1/pt, where t denotes the times to consecutively

obtain 0 with inputs S, S+1,…, S+t. However, p is a

large prime such that the probability 1/pt makes this

case infeasible. Thus, via this approach, ak-1 will never

be 0 such that the degree of f(x) can be ensured to be

(k-1).

In both schemes, the n shares are produced by

sampling f(x) at n points, where D1 = f (ID1), D2 = f

(ID2),…, Dn = f (IDn). To reconstruct the polynomial

f(x) of degree (k-1), (k-1) shares are needed. That is,

the proposed secret sharing schemes can resist degree

degeneration, and the shared secret can be retrieved

only when the number of involved shareholders is

equal to or more than the legality threshold k.

Moreover, to ensure the integrity of the recovered

secret, the involved shareholders can check whether ak-

1 = h(I), where I = S. If ak-1 =0, I = I+1 and compute ak-

1 = h(I).

As to computational efficiency, in both schemes,

only one (k-1)-degree polynomial f(x) is generated, and

only f(x) needs to be reconstructed when shareholders

want to recover the secret S. The computational load in

our schemes is much lighter than that of Parakh and

Kak’s because no recursive operation is needed.

5 Conclusions

This paper proposes two secret sharing schemes

without recursion to ensure both space efficiency and

computational efficiency, where the second scheme

can control the security of produced shares. The

proposed schemes also adopt a collision-resistant one-

way hash function to check the recovered secret’s

integrity. Via the proposed secret sharing schemes,

multimedia information can be shared among multiple

users for security issues easily.

Acknowledgements

This work was supported in part by Ministry of

Science and Technology under the Grants MOST

Grants MOST 106-2221-E-034-006-, MOST 106-

2410-H-025- 006-, MOST 106-2622-H-025-001-CC3,

and MOST 107-2622-H-025-001-CC3.

References

[1] C. F. Hsu, Y. Liu, Q. Cheng, G. H. Cui, New Results on

Multipartite Secret Sharing Matroids, Journal of Internet

Technology, Vol. 11, No. 6, pp. 829-835, November, 2010.

[2] A. Shamir, How to Share a Secret, Communications of the

ACM, Vol. 22, No. 11, pp. 612-613, November, 1979.

[3] A. Parakh, S. Kak, Space Efficient Secret Sharing for Implicit

Data Security, Information Sciences, Vol. 181, No. 2, pp.

335-341, January, 2011.

[4] H. Krawczyk, Distributed Fingerprints and Secure

Information Dispersal, Proceedings of Twelfth Annual ACM

Symposium on Principles of Distributed Computing, New

York, NY, 1993, pp. 207-218.

[5] W. L. Tai, Y. F. Chang, Y. F. Li, Comments on Space

Efficient Secret Sharing Schemes for Implicit Data Security,

Proceedings of ICETA 2015-Fall, Nagoya, Japan, 2015, pp.

79-85.

[6] W. L. Tai, Y. F. Chang, A Space Efficient Secret Sharing

Scheme for Multimedia Secrecy Without Recursion,

Proceedings of CISC 2016, Taichung, Taiwan, 2016, pp. 224-

226.

Biographies

Wei-Liang Tai received the Ph.D.

degree in computer science and

information engineering from

National Chung Cheng University,

Taiwan, in 2008. He is currently

Associate Professor, Department of

Information Communications, Chinese Culture

University. His main interests are in information

security and forensics and multimedia signal

processing. He is currently an Editor of KSII

Transactions on Internet and Information Systems.

1906 Journal of Internet Technology Volume 19 (2018) No.6

Ya-Fen Chang is a professor of

Department of Computer Science and

Information Engineering at National

Taichung University of Science and

Technology in Taiwan. She received

her PhD degree in computer science

and information engineering from National Chung

Cheng University, Taiwan. Her current research

interests include electronic commerce, information

security, cryptography, mobile communications, image

processing, and data hiding.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

