Limited-length Suffix-array-based Method for Variable-length Motif Discovery in Time Series

Le Sun ${ }^{1}$, Jinyuan He^{2}, Jiangang Ma², Hai Dong ${ }^{3}$, Yanchun Zhang ${ }^{2}$
${ }^{1}$ School of Computer and Software, Nanjing University of Information Science and Technology, China
${ }^{2}$ Institute for Sustainable Industries and Livable Cities, Victoria University, Australia
${ }^{3}$ School of Science, RMIT University, Australia
sunle2009@gmail.com, jinyuan.he@live.vu.edu.au, Jiangang.Ma@vu.edu.au, hai.dong@rmit.edu.au, Yanchun.Zhang@vu.edu.au

Abstract

In this paper, we explore two key problems in time series motif discovery: releasing the constraints of trivial matching between subsequences with different lengths and improving the time and space efficiency. The purpose of avoiding trivial matching is to avoid too much repetition between subsequences in calculating their similarities. We describe a limited-length enhanced suffix array based framework (LiSAM) to resolve the two problems. Experimental results on Electrocardiogram signals indicate the accuracy of LiSAM on finding motifs with different lengths.

Keywords: Time series, Motif discovery, Enhanced suffix array, ECG

1 Introduction

Motifs of a time series are the frequently-occurred and approximately similar subsequences that can summarize the features of the time series [1]. Motifs have been applied in a variety of areas of time series processing, such as the anomaly detection in moving objects trajectories [2-3], the semantic analysis for the surgical sensor data streams [4], repeating pattern mining in audio streams [5-6], and human activity discovery [7-8]. Especially, it has been applied to the medical signals [9], like Electrocardiography (ECG) [10] and biological signals [11-13] for normal condition recognition and disease detection.

Discovering motifs for time series is an important and tough task. It has been proved that the subsequence clustering is meaningless in unsupervised data stream mining area, and the motif grouping in the discrete data stream mining has been applied as a replacement of the subsequence-clustering in the real-time series [14]. In this paper, we focus on two primary issues in the time series motif discovery: reducing the computational complexity and avoiding unexpected repetitions among
different motifs and among instances of one motif. In an unsupervised context with little knowledge about the time series, it might be intractable to find all the motifs with different lengths by using exact and bruteforce methods. There has been a series of work focusing on improving the time efficiency. One significant improvement is the method proposed by Minnen et al. [15], which has sub-quadratic time complexity in the time series length.

The subsequence trivial matching [16] and the overlapping among different motifs [1] are two types of motif repetition issues in the literature. To avoid trivial matching, some methods assumed that the instances of a motif do not overlap with each other at all [15]. We believe that, however, a more flexible and user-manageable mechanism is necessary to control the numbers and styles of the discovered patterns.

Enhancing the time and space complexity, and at the same time, guaranteeing an expected accuracy is always one of the top topics in data processing. Some motif discovery researchers used approximate solutions to get an acceptable computational complexity [17]. In this work, we propose an unsupervised Limited-length suffix array based Motif Discovery algorithm (LiSAM) for continuous time series, which is time and space efficient, and supports approximately discovering motifs in different lengths. We first convert the continuous time series to the discrete time series by using the Symbolic Aggregate approXimation procedure (SAX) [18], and then identify the differentlength motifs based on the discrete time series. Our illustration of discrete motif discovery is on the basis of an exact substring matching procedure, however, we can easily embed the existing approximate substring matching methods, such as [19] and [20], in LiSAM. That is, we use the exact subsequence grouping of discrete time series to discover the approximate patterns of continuous time series. The distinctive contribution of LiSAM is as below:
(1) LiSAM can discover motifs in different lengths

[^0](e.g., maxLength to minLength provided by users), avoid the unexpected trivial-matching by allowing user-defined overlapping degree (represented as α) between the instances of motifs, and support discovering motifs that overlap with each other in a specified degree (β). It can either be an automatic or semi-automatic algorithm by either manually setting all the parameters or by using default parameters (e.g., set maxLength $=0.5 *|T|$ (T is a time series), minLength $=$ 2, $\alpha=0$ and $\beta=0$).
(2) LiSAM is both space and time efficient. It has linear space complexity $\mathrm{O}(N)$. We use a limited-length enhanced suffix array with linear space consumption to improve the space efficiency. In addition, in an extreme case that S has maximum LCP intervals, $O(L i S A M)=O(N+n)$, while in the case an interval has maximum child intervals, $O(L i S A M)=O\left(N+\mathrm{n}^{2}\right)$, where N is the length of the raw time series T, and n is the length of the discrete time series S. If $N \gg n$, the performance can be improved dramatically.
(3) We conduct extensive experiments based on both synthetic time series datasets to evaluate the performance of LiSAM. Experimental results show the high accuracy of LiSAM and its applicability in the pattern recognition of data streams such as ECG.

2 Background Knowledge

We briefly introduce the frequently used symbols (Table 1) and the basic concept of the enhanced suffix array in this section. Readers can refer to [21] for more details.

Table 1. Symboles and definitions

Concepts	Definitions
T	a continuous time series
Σ	a finite ordered alphabet
Σ^{*}	strings over Σ
Σ^{+}	Σ^{*} without null
S	a discrete time series over Σ with length $\|S\|=n$
\sim	$\sim \in \Sigma, \sim>\sigma, \forall \sigma \in \Sigma$
$S[i, j]$	substring of S between positions i and j
suftab[suf]	suffix array table of S
presuf [pre]	the suffix index of the previous position of the current suffix in suftab
nextsuf [next]	the suffix index of the next position of the current suffix in suftab
$S_{\text {suftab[i] }}$	the $i^{\text {th }}$ suffix of $S, i \in[0, n]$
lcptab[i]	Longest common prefix ($L C P$) of $S_{s u f i-1]}$ and $S_{s u f i]}$
bwttab[i] (bwt)	$\begin{aligned} & S[\text { suftab }[i]-1] \text {, if suf }[i]>0 \text {; } \\ & \text { null, if } \operatorname{suf}[i]=0 \end{aligned}$
l_{ℓ}-interval $l_{t}-[\mathrm{i}, \mathrm{j}]$	an LCP interval from index i to index j With length ℓ
$l-[l, l]$	singleton interval (SI): $S_{\text {sufl }}$
NSI	non singleton interval
$m_{\ell}-[i, j]$	m-interval: instances of l_{ℓ} interval

A suffix array of S is an integer array (suftab) having values $k \in[0, n]$. An enhanced suffix array (ESA) is a suffix array with a number of additional supporting arrays, where two of them (lcptab and bwttab) will be used in this paper. We use an example of $S_{\text {examp }}=$ aceaceacece to describe the ESA that is shown in Table 2. The suftab keeps the starting positions of suffixes of S in ascending lexicographic order. The definition of lcptab is in Table 2. From Table 2, $\operatorname{lcptab}[0]=0$ and $\operatorname{lcptab}[n]=0$. To group the suffixes that have the longest common prefixes, the concept of LCP interval is proposed. We describe the definition of an LCP interval in Definition 1.

Table 2. An enhanced suffix array

index	suf	lcptab	bwt	$S_{\text {suffi] }}$
0	0	0	null	aceaceacece \sim
1	3	6	e	aceacece \sim
2	6	3	e	acece \sim
3	1	0	a	ceaceacece \sim
4	4	5	a	ceacece \sim
5	7	2	a	cece \sim
6	9	2	e	ce \sim
7	2	0	c	eaceacece \sim
8	5	4	c	eacece \sim
9	8	0	c	cece \sim
10	10	0	c	e \sim
11	11	0	e	\sim

Definition 1. Given S and its enhanced suffix array, an interval $[i, j]$ of index (e.g., see Table 2), where $i, j \in[0$, n] and $i<j$, is an LCP interval with LCP length ℓ if the following conditions are satisfied: (1) lcptab $[i]<\ell$; (2) $\operatorname{lcptab}[k] \geq \ell, \forall k \in[i+1, j] ;$ (3) lcptab $[k]=\ell$, if $\exists k \in[i+1, j]$; (4) $l c p t a b[j+1]<\ell$. The LCP interval $[i, j]$ with LCP length ℓ can be represented as $1_{\epsilon}-[i, j]$.
An LCP interval tree indicates the embedding and enclosing relations between LCP intervals. We describe an example of LCP tree of $S_{\text {examp }}$ in Figure . We can see that the root of the LCP tree covers all the suffixes of $S_{\text {examp }}$. The child intervals are the intervals embedded in their father intervals. The leaf intervals do not enclose any NSI. A fast traversing procedure for LCP trees is defined in [22]. Note that in this paper we use l_{ℓ} to represent an l-interval with LCP length ℓ, while use m_{ℓ} to represent a motif interval (Def. 6\}) with LCP length ℓ. In addition, we refer the normal LCP intervals to non-singleton intervals (NSIs).

Figure 1. LCP tree of $S_{\text {examp }}$

3 Problem Formulation

A continuous time series T is a sequence of real values that have temporal properties. To identify the motifs of a time series, previous work has given different forms of motif definitions [23]. We summarize these definitions and present a comprehensive motif concept in Definition 2.
Definition 2. A motif M of a time series T is a set of similar subsequences $S Q=s q_{0}, \ldots, s q_{\mathrm{n}-1}$ such that $n \geq 2$, and $\forall i, j \in[0, n-1]$, the length of $\left|s q_{i}\right| \geq 2,\left|s q_{i} \bigcap s q_{j}\right| \leq o$, and $\operatorname{Dis}\left(s q_{i}, s q_{j}\right) \leq d$, where o is an overlapping threshold to constraint the overlapping length between two subsequences of M, Dis is a distance measure, and $d \geq 0$ is a small value to guarantee a certain similarity among subsequences. We call a subsequence of M as an instance of this motif.
Definition 3. Given two l-intervals $l_{\ell^{-}}\left[i_{1}, j_{1}\right]$ and $l_{\ell^{-}}\left[i_{2}\right.$, $\left.j_{2}\right], s_{k 1}\left(k 1 \in\left[i_{1}, j_{1}\right]\right)$ is an instance of $l_{\ell 1}, s_{k 2}\left(k 2 \in\left[i_{2}, j_{2}\right]\right)$ is an instance of $l_{\ell 2}, s z_{1}=\left|j_{1}-i_{1}+1\right|:(1)$ instance $s_{k 1}$ is α covered by $s_{k 2}$ if $\ell_{1}<\ell_{2}, s_{k 1}$ overlaps with $s_{k 2}$ at substring $s^{\prime \prime}$ where $s^{\prime \prime} \subseteq s_{k 2}$ and $s^{\prime \prime} \subseteq s_{k 1}$, and $s^{\prime \prime}>\alpha, s_{k 1} \geq$ $\alpha \geq(1 / 2)^{*}\left|s_{k 1}\right|$. Or else, $s_{k 1}$ is α-uncovered by $s_{k 2}$; (2) interval $l_{\ell 1}$ is β-covered by $l_{\ell 2}$, if h instances of $l_{\ell 1}$ are covered by the instances of $l_{\ell 2}$, where $s z_{1}-\beta<h \leq s z_{1}$, and h is a pre-defined threshold. Or else, $l_{\ell 1}$ is β uncovered (or uncovered) by $l_{\ell 2}$.

A pattern of S is defined in Definition 4.
Definition 4. Given an alphabet set Σ and an approximate time series $\mathrm{S} \in \Sigma^{*}$, a pattern of S is a time series $p t$ that $1 \leq|p t| \ll|S|, p t \subseteq S$, and occurs $k(k \geq 2)$ times in S at positions $\left\{p_{1}, \ldots, p_{k}\right\}, p_{l} \neq \ldots \neq p_{k}$, where a position is the start point of an occurrence of $p t$ in S.

In the above definition, we define that a pattern should occur at least twice in a time series. From the definition of l-interval, an l_{ℓ}-interval is composed of at least two suffixes that have the LCP of length ℓ. Therefore, an l-interval can be seen as a pattern of S, and the LCPs of the l-interval correspond to the occurrences of the pattern. However, the requirement on the minimum occurrence times of a pattern varies in different situations. For example, in a very long S (e.g., ≥ 10 thousands), the element that repeats a small number of times (e.g., <10 times) is meaningless for the time series analysis. Therefore, we define a general concept of an approximate motif of discrete time series in Definition 5.
Definition 5. Assume $u=S[a, b](\mathrm{a} \leq \mathrm{b})$ is an instance of an l-interval $l_{\ell^{-}}[i, j]$ of S. Given a lower bound $\min T$ ($\min T \geq 2$) of the pattern occurrences, if $\varepsilon=j-i+1 \geq$ $\min T$, and l_{ℓ} is uncovered by any other l-intervals of S, it is an approximate motif of S, represented as $m f=(\ell$; $\left.\left.P=p_{l}, \ldots, p_{\varepsilon}\right\}\right)$, where $\ell=\mathrm{b}-\mathrm{a}+l(l \geq 1)$ is the length of $m f, p_{i}$ is the start index of the occurrences of u in S, and \mathcal{E} is the size of the motif $m f$.

In the following description, a motif of S refers to an approximate motif. The relation between an l-interval
and a motif of S is defined as an m-interval.
Definition 6. For an l-interval $l_{\ell}-\left[i_{1}, j_{1}\right]$ of S, if the instances of l_{ℓ} is one-to-one matched to the occurrences of a motif $\mathrm{mf}=(\ell ;\{\operatorname{suftab}[i], \ldots$, suftab $[j]\}) \$$, then l_{ℓ} is an m-interval, represented as $m_{\ell}-[i, j]$.

Based on Definition 6, motifs and m-intervals have the following relation.
Lemma 1. A motif of S corresponds to and only corresponds to one m-interval of S.
Proof. Given a motif $m f_{u}=\left(\ell ; P_{u}=\left\{p_{l}, \ldots, p_{\varepsilon}\right\}\right)$ of S, as $\varepsilon \geq 2$, then the subsequence u occurs at least twice in S. Based on the definition of LCP intervals and suffix array, the suffixes $s f=\left\{S\left[p_{1}, \sim\right], \ldots, S\left[p_{\varepsilon}, \sim\right]\right\}$ are in one LCP interval $l_{\ell}-[i, j]$, where $p_{1}, \ldots, p_{\varepsilon} \in[i, j], \ell=|u|$ and \sim represents the end of S. Assume (1) $\exists k, k \in[i, j]$ that $s_{I}=S[\operatorname{suftab}[k]$, suftab $[k+\ell-1]]=u$, but s_{1} is not an occurrence of $m f_{u}$, i.e., $k \notin P_{u}$, which is contrast to the given condition that $m f_{u}$ is a motif of S, because a motif needs to contain all the subsequences fitting one pattern. Assume (2) $\exists p_{x} \in P_{u}$ but $p_{x} \notin[i, j]$, and $\exists p_{y} \in P_{u}$ and $p_{y} \in[i, j]$, then $\left(s_{l}=S\left[\operatorname{suftab}\left[p_{x}\right]\right.\right.$, $\left.\left.\operatorname{suftab}\left[p_{x}+\ell-1\right]\right]\right)=u=\left(s_{2}=S\left[\operatorname{suftab}\left[p_{y}\right], \operatorname{suftab}\left[p_{y}+\ell-\right.\right.\right.$ 1]]), that is, s_{1} and s_{2} are similar LCP and need to be in one LCP interval (suppose in $l_{\ell}{ }^{\prime}-\left[i^{\prime}, j\right]$). As l_{ℓ} and $l_{\ell}{ }^{\prime}$ have one LCP u, they are the same l-interval, which is contrast to assumption (2). Lemma 1 is proved.

In the following sections, we refer an m-interval to a motif.

4 Limited-length Suffix-Array-Based Motif Discovery

The Limited-length Suffix-Array-Based Motif Discovery (LiSAM) Framework identifies motifs of S by determining the α-covering and β-covering degrees between instances of one 1 -interval and between different l-intervals, which is based on a bottom-up traversing process of identifying LCP intervals of the enhanced suffix array. The LiSAM is composed of two main algorithms: (1) β Uncover (Alg. 1) determines whether or not an LCP interval is β-covered by other LCP intervals given a constraint $\min T$ on the β covering degree of a motif. From definition, the determination of β-covering is based on the α-covering degree. To identify the α-covering relations between instances, part (2) α Uncovered (Alg. 4) is described, which determines the nontrivial matching instances of an LCP interval given a constraint on the α-covering degree between motifs. If an l-interval is β-uncovered, the instances of this interval form a motif.

4.1 Identify $\boldsymbol{\beta}$-uncovered \boldsymbol{l}-intervals for Discrete Time Series

In ESA, identifying LCP intervals is a bottom-up traversing process. When an LCP interval is being processed, its child intervals have been identified, so
the child intervals can support the determination of β covering of the LCP interval. We distinguish the case of an LCP interval having a single character (the singleChar interval) with the case that the interval is comprised of more than one character (the multiChar interval). We give Lemma 2 to identify the β uncovered multiChar intervals.
Lemma 2. Given a multiChar LCP interval $l_{t^{-}}[i, j]$, its child intervals Θ, and the lower bound of the occurrence times of motifs $\min T \geq 2$, let $\lambda=j-i+1, l_{\ell}$ is β-uncovered by other l-intervals if any of the following conditions is satisfied:
(1) $|\Theta|=0, \lambda=\min T$ and $\operatorname{bwttab}[i, j]$ are pair-wise different, i.e., $b w t t a b[i] \neq \ldots \neq b w t t a b[j]$;
(2) $|\Theta|=0$, and $\exists \sigma_{1} \neq \ldots \neq \sigma_{\gamma}, \sigma_{1, \ldots, \gamma} \in \operatorname{bwttab}[i . . . j]$, $\operatorname{minT}+1 \leq \gamma \leq \lambda$;
(3) $|\Theta|>0, \exists l_{\ell 1}-\left[w_{1}, z_{1}\right], l_{\ell 1} \in \Theta$ and $\lambda_{\theta}=z_{1}-w_{1}+1$ $\geq \min T$, and $\exists r_{1} \ldots r_{k} \in\left[w_{1}, z_{1}\right]$ and $h_{1} \ldots h_{k} \in[i, j]$ but \notin $\left[w_{1}, z_{1}\right]$ that bwttab $\left[r_{1}\right] \neq$ bwttab $\left[h_{1}\right], \ldots$, bwttab $\left[r_{k}\right] \neq$ $b w t t a b\left[h_{k}\right], k \geq \min T$.
(4) $|\Theta|>1, \exists m_{\ell 1}-\left[w_{1}, z_{1}\right], \ldots, m_{\ell \mathrm{k}}-\left[w_{k}, z_{k}\right] \in \Theta, k \geq$ $\min T$, and $m_{\ell 1}, \ldots, m_{\ell \mathrm{k}}$ are β-uncovered.

Proof:

(1) $|\Theta|=0$, so the characters after the LCP subsequences of l_{ℓ} are pair-wise different, i.e., $S[\operatorname{suftab}[i]+\ell] \neq S[\operatorname{suftab}[j]+\ell]$. Meanwhile, $\lambda=\min T$ and $b w t t a b[i] \neq \ldots \neq b w t t a b[j]$. Therefore, the instances of l_{ℓ} are not covered by any longer repeated sequences in S. Hence, l_{ℓ} is β-uncovered.
(2) if $\gamma>\min T$, then at least $\min T+1$ characters in $\operatorname{bwttab}[i, j]$ are different (assume $b w t t a b\left[k_{1}\right] \neq$ $\operatorname{bwttab}\left[k_{2}\right]$); and as $\Theta=0$, the k_{1} th and k_{2} th LCP subsequences are not covered by any longer subsequences of its child intervals. So l_{ℓ} is β-uncovered.
(3) assume l_{ℓ} have one child interval c_{θ}, where $\lambda_{\theta} \geq$ $\min T, i \leq w_{\theta} \leq z_{\theta} \leq j$ and $\lambda>\min T$. (a) Assume $\lambda-\lambda_{\theta}=$ 0 , then $l_{\ell}=c_{\theta}, c_{\theta}$ is not a child interval of l_{ℓ}. Assumption (a) is not true. (b) Assume $\lambda-\lambda_{\theta}<\min T$, then there are $\lambda-\min T$ instances of l_{ℓ} covered by the instances of c_{θ}, so interval l_{ℓ} is covered by interval c_{θ}, and l_{ℓ} is not a motif. Assumption (b) is not true. (c) as λ $-\lambda_{\theta} \geq \min T$, then there are at least $\min T$ instances of l_{ℓ} that are not covered by the instances of c_{θ}. In addition, $\exists \sigma_{1} \neq \ldots \neq \sigma_{\gamma}, \sigma_{1, \ldots, \gamma} \in \operatorname{bwttab}[i \ldots j], \min T<\gamma \leq \lambda$, based on the proof of (3), l_{ℓ} is β-uncovered.
(4) if $k=\min T$, as $m_{\ell 1}, \ldots, m_{\ell \mathrm{k}}$ are k motifs, the subsequences in all of the $\min T$ intervals are pairwise different, so the interval l_{ℓ}, where $\ell<\ell_{1}, \ldots, \ell_{\text {min }}$, cannot be covered by any of $\left\{m_{\ell 1}\right.$ (as $\forall\left|m_{\ell t}\right| \geq \min T, t$ $\left.\in[1, k], t \neq 1), \ldots, m \ell_{\min T}\right\}$, that is, the interval l_{ℓ} cannot be individually covered by any of its k child motifs. So l_{ℓ} is β-uncovered.

For singleChar intervals, the problem of determining their motif property is to avoid finding a shorter singleChar motif covered by a longer singleChar motif. Lemma 3 shows how to determine if a singleChar interval is β-uncovered.
Lemma 3. Given a singleChar interval $l_{\ell}-[i, j]$ that its

LCP subsequence, i.e., $S[$ suftab[i], suftab[i] $+\ell-1]$, is only comprised of one character (assume σ),
(1) if l_{ℓ} does not have child intervals, i.e., $|\Theta|=0$ and $\exists \sigma_{1} \neq \ldots \neq \sigma_{\gamma}, \sigma_{1, \ldots, \gamma} \in \operatorname{bwttab}[i \ldots j], \min T+1 \leq \gamma \leq \lambda$, then l_{ℓ} is β-uncovered;
(2) if $|\Theta|>0$ and $\theta-[w, z] \in \Theta$, that $\exists \sigma_{1} \neq \ldots \neq \sigma_{\gamma} \neq$ σ and $\sigma_{1, \ldots, \gamma} \in b w t t a b[w \ldots z]$, where $\gamma>0$, and $\exists \sigma^{\prime}{ }_{1} \neq \ldots$ $\sigma_{\lambda}^{\prime} \neq \sigma$ and $\sigma_{1, \ldots, \lambda}^{\prime} \in \operatorname{bwttab}\left[w^{\prime} . . . z^{\prime}\right]$, where $z^{\prime}-w^{\prime}+1$ $\geq 2, \lambda>0,\left[w^{\prime}, . . z^{\prime}\right] \in[i \ldots j]$ and $\left[w^{\prime} . . . z^{\prime}\right]$ is β-uncovered by [$w . . . z$];

Proof:

(1) As l_{ℓ} does not have child intervals, l_{ℓ} cannot be covered by an interval comprising LCP subsequences of $u^{\prime}=S\left[\operatorname{suftab}\left[k_{1}\right], \ldots, \operatorname{suftab}\left[k_{1}\right]+\ell^{\prime}-1\right]$, where $k_{1} \in$ $[i, j], \ell^{\prime}>\ell$. In addition, as $\exists \sigma_{1} \neq \ldots \neq \sigma_{\gamma}, \sigma_{1, \ldots, \gamma} \in$ bwttab[i..j], $\min T+1 \leq \gamma \leq \lambda, l_{\ell}$ cannot be covered by an interval comprising LCP subsequences of $u^{\prime \prime}=$ $S\left[\operatorname{suftab}\left[k_{2}\right]-1, \ldots, \operatorname{suftab}\left[k_{2}\right]-1+\ell^{\prime \prime}-1\right]$, where $k_{2} \in$ $[i, j], \ell^{\prime \prime}>\ell$. So l_{ℓ} is a β-uncovered.
(2) Assume $u=S[\operatorname{suftab}[i] \ldots$ suftab $[j]+\theta-1]$ is the prefix of l_{ℓ}, and $u^{\prime}=S[\operatorname{suftab}[w] \ldots \operatorname{suftab}[w]+\theta-1]$ is the prefix of l_{θ}, and assume $\exists \sigma_{1} \in b w t t a b[w \ldots z]$ and $\exists \sigma_{2} \in \operatorname{bwttab}\left[w^{\prime}, z^{\prime}\right]$ that $\sigma_{1} \neq \sigma$ and $\sigma_{2} \neq \sigma$, then (1) any child interval l_{θ} cannot cover l_{ℓ}, since $z^{\prime}-w^{\prime}+1 \geq$ 2; (2) we prove that under condition 2 in Lemma 3, if l_{ℓ} is a singleChar interval with LCPs like $u=x_{1, \ldots}, x_{\ell}$, then not $\exists l_{\theta}$ (the strings of its singleChar LCP $u^{\prime}=$ $\left.x_{l, \ldots}, x_{\theta},(\theta>\ell)\right)$ that cover l_{ℓ}. Assume such a l_{θ} exists, then the strings of the LCP of l_{θ} include all the stings whose prefixes with length θ are u ', i.e., $\exists k(=z-w+$ 1) subsequences $u \in S$, and there must be η ($=k^{*}(\theta-$ 1)) bwttabs that $b w t t a b\left[r_{1}\right]=\ldots=b w t t a b\left[r_{\eta}\right]=\sigma, \eta=z$, $-w^{\prime}+1$ and $k+\eta=j-i+1$; which means there must not exist $\sigma_{1, \ldots, \lambda}^{\prime} \neq \sigma, \lambda>0$ in $\operatorname{bwttab}\left[w^{\prime}, z^{\prime}\right]$. This is contradicting with condition 2 of Lemma 3, so the second statement (2) is correct. Combining statements (1) and (2), the singleChar interval l_{ℓ} is β-uncovered given condition 2 of Lemma 3.

Based on Lemma 2 and 3, we design the procedure of determining an LCP interval being β-uncovered in Algorithm 1. The procedure sinChar() (line 3) determines whether l_{ℓ} is a singleChar interval: if it is singleChar, return the character, otherwise, return null. The singleChar status of l-intervals can be determined in the construction process of the suffix array. countUniqChar() (line 4, Alg.2) calculates the number of different characters in $b w t t a b[i, j]$. If l_{ℓ} does not have children ($c d$); it is a singleChar interval; and it has at least $m t$ different characters (uc) other than the $s c$ character, then l_{ℓ} is a motif (lines 7-8 in Alg. 1, point 1 in Lemma 3). If l_{ℓ} is a multiChar interval ($s c==$ null) with more than $m t$ unique characters, it is a motif (lines $7-8$, point 2 in Lemma 2). For a multiChar interval, if it at least has $m t$ children that are motif intervals ($l_{f} \cdot m c d . s z$), then it is a motif (lines $10-12$, point 4 in Lemma2). For each interval, we can use an integer variable to keep the number of motifs of its children, and this integer value can be determined during the
suffix array building process. Lines 13-18 are based on point 3 in Lemma 2, where $c u$ represents the current child interval; $f c d$ is the first child interval; $n t$ and $l a$ are respectively the next and last child intervals of cu ; and $l b$ and $r b$ are the left and right boundaries of an $l-$ interval. The procedure difCharPair() (Line 14, Alg.3) compares a child interval ($\mathrm{cu} u$) of l_{ℓ} with the other part of $l_{t}\left(l^{\prime}\right)$, where l^{\prime} includes the intervals not covered by any child intervals of l_{ℓ}, and also the other child intervals apart from cu . If there are at least two pair of different character pairs in bwttab $[i, j]$, that is, $\exists i_{1}, i_{2}, i_{3}, i_{4} \in[i, j]$ that bwttab $\left[i_{1}\right] \neq \operatorname{bwttab}\left[i_{2}\right]$ and bwttab $\left[i_{3}\right] \neq$ bwttab $\left[i_{4}\right]$, then $c p \leftarrow$ true.

```
Algorithm 1. Identify \(\beta\)-uncovered \(l\)-intervals
    : procedure \(\beta \mathrm{UNCOVERED}\left(l_{t}-[i, j], m i, m a, b w t\right.\),
    \(m t)\)
        \(s z \leftarrow j-i+1\)
        \(s c \leftarrow \sin \operatorname{Char}\left(l_{l}\right)\)
        \(u c \leftarrow \operatorname{countUniqChar}\left(l_{t}\right.\), singleChar \()\)
        if \(s z=m t \& b w t[i, j]\) are pair-wise different then
            return true
        else if \(l_{t} . c d=n u l \&(s c \neq n u l \& u c \geq m t \| u c>\)
        \(m t\) ) then
            return true
        else
            if \(l_{t} \cdot m c d . s z \geq m t \& s c==\) null then
                return true
            end if
            for all \(c u \in l_{d}\).cd do
                \(c p \leftarrow c u . \operatorname{difCharPair}(c u, l)\)
                if \(\mathrm{cp} \| \mathrm{cu}==\mathrm{fcd} \& \mathrm{I}<l_{f}\).fcd.lb \(\& \mathrm{cp} \|\)
                \(l_{t} . \mathrm{cu} . \mathrm{rb}+1<l_{t}\).nt.lb \& cp \(\| \mathrm{cu}==\mathrm{la} \&\)
                \(l_{\ell}\).la.rb \(+1<l_{\ell}\).rb \& cp then
                    return true
                end if
            end for
        end if
        return false
    end procedure
```

Algorithm 2 calculates the number of different characters in an l-interval given that the interval is singleChar or multiChar (based on the value of $s c$). In line 2 , if l does not have children, traverse the index tab (e.g., i in Table 3) of LCP table from w to z, and count the index if $b w t t a b[x]$ is different with the other characters in $b w t t a b[i, j]$ and different with the $s c$ character (see the procedure $\operatorname{add} \operatorname{Cnt}(c, c x)$ in lines $24-$ 29). The addCnt() indicates that if 1 is a multiChar interval ($s c=$ null and $c \neq s c$), or if it is a singleChar interval (without considering the indexes with $b w t t a b[x]$ $=s c$, i.e., $c \neq s c$), and the current character has not happened in $l^{\prime}(!l . \operatorname{has}(c))$, then count once and record the character in l '. Lines $7-20$ count the pair-wise different characters in each child of l and in the indexes uncovered by any of its child, where $l a$ is the child interval of l ' before $c u$; $n t$ is the child interval after $c u$;
and $l b$ and $r b$ are left and right bounds of an interval. Lines 15 checks which character is in the current child interval $c u$. If $c u$ is not a singleChar interval or the character $s c$ is not counted ($c \neq s c$, in line 15), and the character c occurs in $c u$ but not in l^{\prime}, then this character c is counted (line 16), and is marked as happened in the interval l' (line 17).

```
Algorithm 2. Count the number of different
            characters in an \(l\)-interval
    1:procedure COUNTUNIQCHAR \(\left(l^{\prime}-[w, z], s c\right)\)
    if \(l_{\ell^{\prime}}\).children \(==\) null then
        for all \(x \in[w, z]\) do
            \(\operatorname{addCnt}(b w t[x], x)\)
        end for
    else
        for all \(c u \in l_{\ell^{\prime}} \cdot c d\) do
            for all \(c \in b w t t a b\left[l a . r b+1 \ldots l_{e^{\prime}} \cdot r b\right]\) do
                addCnt(c,cx)
                end for
                for all \(c \in b w t t a b[c u . r b+1 \ldots n t . l b-1]\) do
                    addCnt \((c, c x)\)
                end for
                for all \(c \in\) Sigma do
                if \(c \neq s c \&!l_{\ell} \cdot h a s(c) \& c u \cdot h a s(c)\) then
                    \(l_{l} \cdot . c n t++\)
                        \(l_{f^{\prime}} \cdot \operatorname{has}(b w t[c x])=\) true
                end if
                end for
            end for
        end if
        return ent
    end procedure
    procedure \(\operatorname{ADDCNT}(c, c x)\)
        if \(c \neq s c \&!l_{e^{\prime}} \cdot \operatorname{has}(c)\) then
            \(l_{\ell^{\prime}} \cdot c n t++\)
            \(l_{\ell^{\prime}} \cdot h a s(b w t[c x])=\) true
        end if
29:end procedure
```

Table 3. Pre and nextsuf

i	pre	next	suf	sel.
0	-1	0	3	aceace
1	6	3	4	aceace
2	7	6	5	ace \sim
3	0	1	6	ceacea
4	1	4	7	ceace \sim
5	2	7	8	ce \sim
6	3	2	1	eaceac
7	4	5	2	eace \sim
8	5	8	9	e $^{\sim}$
9	8	9	10	\sim

Algorithm 3 calculates the different character pairs between one child interval and the other part of l_{l}. The inputs are two intervals (child intervals or l_{e} 's subintervals that are not covered by any child intervals of
$\left.l_{\ell}\right) . l_{\ell}$ is a motif if at least $m t$ different character pairs (cd) are identified (line 8, point 4 in Lemma2); otherwise, count the next pair of characters in $l_{\ell 1}$ and $l_{\ell 2}$. In addition, if the current interval l is a singleChar interval $(s c \neq n u l)$, and its two child intervals $l_{\ell 1}$ and $l_{\ell 2}$ both have at least 1 character that is different with the $s c$ character, then l_{ℓ} is a motif (line $15-16$, point 2 in Lemma3).

```
Algorithm 3. Count different character pairs between
            two intervals
1:procedure DIFCHARPAIR \(\left(l_{t 1}, l_{t 2}\right)\)
    \(c d=0\)
    for all \(c 1 \in\) Sigma do
        for all \(c 2 \in\) Sigma \& \(l_{\ell 1} \cdot \operatorname{has}(c 1) \& c \neq s c\) do
            if \(c 2 \neq s c \& l_{t 2}\). has \((c 2) \& c 1 \neq c 2\) then
                \(c d++\)
            end if
            if \(c d \geq m t\) then
                    return true
            else
                    break the inner for-loop
                end if
            end for
        end for
        if \(s c \neq\) nul \& countUniqChar \(\left(l_{t 1}, s c\right)>0 \&\)
        countUniqChar \(\left(l_{t 2}, s c\right)>0\) then
            return true
        end if
        return false
    :end procedure
```


4.2 Identify α-uncovered Instances for Discrete Time Series

In section 3 , we defined the concept of α-covering between instances of one interval. For example, in a time series $s=$ aceaceace, if we expect a motif of length 6 , we may get a motif with two instances:

where instance 23 -covers instance 1 . To control the α covering degree, we introduce two tabs: presuf and nextsuf that respectively record the indexes of the previous suffix and the next suffix for the current suffix. An example of the two tabs is shown in Table 3.

The values of pre and next can be determined during the process of building suffix arrays, so it does not take extra time. The pre of the 0 th suffix is -1 and the next of the last suffix is length(s).

Algorithm 4 shows how to identify the α-uncovered instances of an m-motif. In Algorithm 4, \bigcap represents the overlapping part of two suffixes; $s[r .$.$] represents$ the suffix starting from position r. If the index of the suffix ($n t S$) after the current suffix ($s u f$) is in interval
$[a, b]$, and the overlapping length between suffix $s[s u f t a b[p] .$.$] and suffix s[$ suftab $[n t S[p]] .$.$] is less than$ the threshold value α, then the position $\operatorname{suf}[p]$ is recorded as a start position of an α uncovered instance (lines 10-11). If the overlapping length between suffix $s[s u f[p] .$.$] and suffix s[s u f[n t S[p]] .$.$] is over \alpha$, then continue checking the suffix after $n t S[p]$, until the checking step is over the $m a D$ (lines 8 to 15). As the LCP length of the current interval is ℓ, if an instance is $m a D$ far from the current instance, it is impossible that the two instances can α-cover each other. For each suffix, Algorithm 4 checks its α-covering instances by only iterating the suffixes from start positions afterwards. We temporally create an array ('visited' in lines $5,6,9$) for the m-interval to record the visited status of each instance.

```
Algorithm 4. Identify \(\alpha\) Uncovered \(l\)-intervals
    procedure \(\alpha \operatorname{UNCOVERED}\left(\epsilon, m_{\ell}-[a, b]\right)\)
    \(m a D=\ell-\alpha+1\)
    for all \(p \in[a, b]\) do
            if \(m_{\ell}\).visited then
                P.add(p)
                \(m_{\ell \cdot}\). visited \(=\) true
            end if
            while \(q \leq m a D\) do
                if \(n t S[p] \in[a, b] \& \mid s[s u f[p] ..] \cap\)
                \(s[s u f[n t S[p]] .] \mid.<\alpha\) then
                    P.add(p)
                        \(m_{\ell}[p]\). visited \(=\) true
                else if \(|s[s u f[p] ..] \cap s[s u f[n t S[p]] .].| \geq \alpha\) then
                    \(m_{\ell}[p]\).visited \(=\) true
                    end if
            end while
        end for
        return \(P\)
18:end procedure
```

Algorithm 4 identifies α-uncovered instances given that the input interval is β-uncovered in terms of $\alpha=1$. We can also interactively perform the algorithms β Uncover and α Uncover to determine the β-uncovered motifs in terms of different values of α by using the tab pre: in the process of β Uncover, for each instance of an l-interval, we check both its pre- (i.e. suffixes with prior starting positions) and afterwards-suffixes simultaneously by using the chain-procedure of Algorithm 4 (for pre-suffixes, next can be simply replaced by pre). Specifically, we check each line in [i, j] when $b w t t a b[i \ldots j]$ is traversed in line 5 of Alg. 1 , and determine whether this instance is overlapping with its previous instances pre. Remove it if it is overlapped with pre. In addition, in Alg. 2, we can check each position in $[i, j]$ in lines 3,8 and 11 , and remove this position if it is overlapped with its previous instance. At last, only the instances that are not overlapping with each other are used to decide if the current l-interval is
β Uncovered.

5 Performance Evaluation and Complexity Analysis

In this section, we present the experimental results to show the efficiency of LiSAM. We insert patterns to random time series generated by gaussian white noise, and quantitatively measure the algorithm performance on the simulated data sets, in terms of the overlapping degree between the planted pattern and the discovered pattern of a time series (represented as old). In addition, time and space complexities of the proposed algorithm are analyzed. Our experiments are conducted on a windows 64 -bit system with 3.2 GHz CPU and 4 GB RAM, and is implemented by Java.

5.1 Accuracy and Inner Quality of Motifs

We extract patterns from six different ECG data streams [24], repeat each pattern 30 times and insert the repeated patterns to Gaussian white noise data streams separately. The information of the extracted patterns and the parameter settings is shown in the top part of Table 4. The first three datasets are from the UCR Time Series Classification Archive [24], and the other three are from the Physionet [25]. Particularly, the $n L$ is the length of a piece of noise subsequence between two pieces of a pattern. We use the fixedlength intervals (i.e., length of noise subsequences) between two pattern subsequences to make the annotation of the pattern instances easy. Column $s L$ sets the parameters of the SAX-based symbol conversion, representing the length of a subsequence that corresponds to a symbol. Columns max M set the upper bounds of the lengths of the discovered patterns. The lower bounds of the lengths of the discovered patterns for all datasets are set as 10 .

Table 4. Dataset settings \& old and InDis performance

Datasets	nL	sL	maxM	old	inDis
ECG200	50	2	100	0.9892	0.0076
ECGfivedays	50	2	140	0.9924	0.0076
ECGtorse	100	10	1640	0.9947	0.0068
ECGtwa01	150	3	300	0.9933	0.0086
ECGsvdb800	150	2	170	0.9939	0.0112
ECGmitdb100	150	2	150	0.9966	0.006
LTDB14134	-	2	150	-	-
SVDB800	-	2	150	-	-
AHADB0001	-	2	120	-	-
CARTI01	-	2	100	-	-

We use old to measure the accuracy of the discovered motifs, which represents the overlapping degree between the inserted pattern $\left(p_{i}\right)$ and the
discovered pattern $\left(d_{j}\right)$:

$$
\begin{equation*}
\text { old }=\frac{\sum i \sum j \operatorname{joverlap}\left(p_{i}, d_{j}\right)}{\text { length }(\text { plantedPattern })} \tag{1.1}
\end{equation*}
$$

The old values for each of the simulated ECG time series are shown in Table 4 . We can see that the proposed motif discovery algorithm can identify the inserted patterns with very high accuracy (all over 0.9). We compare the shapes of the planted patterns and the discovered motifs in each of the six time series in Figure 2. In addition, we use the average pair-wise distances among instances (represented as inDis) of a motif to measure the dissimilarity degree of the instances of one discovered motif (e.g., motif m), which is calculated as:

$$
\begin{equation*}
\operatorname{inDis}(m)=\frac{\sum i, j \operatorname{dis}\left(m_{i}, m_{j}\right)}{m \cdot l e n * m \cdot s i z e} \tag{1.2}
\end{equation*}
$$

where m_{i} and m_{j} represent the $i t h$ and $j t h$ instances of m; and m.len is the length of this motif; m.size is the number of its instances, and dis is the Euclidean distance function. The average inDis value of each time series is shown in Table 4, and the distance distribution of each instance pair of the most frequent motif for each dataset is shown in Figure 3. We can see that the instances of one motif for each datasets are very close to each other, all of which have less than 0.1 average instance dis-similarities.

5.2 Pattern Discovery on Real Datasets

We use the proposed SAMOF algorithm to identify the most frequent patterns in four real ECG datasets: the MITBIH Long Term Database (LTDB), the Supraventricular Arrhythmia Database (SVDB), the American Heart Association Database (AHADB), and the St. Petersburg INCART Arrhythmia Database (CART) 0. Their information is listed in the bottom part of Table 4. For each dataset, we conduct pattern recognition in the first 30,000 samples $(1: 30000)$. We discover the most frequent motifs for each datasets, and present the motifs in Figure 4.

5.3 Time Complexity Analysis

The LiSAM mainly contains three steps: (1) discrete the time series based on SAX; (2) establish suffix array for the discrete time series and traverse the suffix array to find the LCP intervals; (3) determine the β uncovered l-intervals.

If the length of a time series is N, the first step of time series discretion takes ON time. After discretion, if there are n symbols, the maximum time taken to build and traverse the suffix array (step 2) is $n+n=2 n$. The main part of Step 3 is the process of Algorithm 1.

Figure 2. Planted patterns and discovered motifs

Figure 3. Distance distribution of instance pairs of the most frequent motif for six datasets

Figure 4. Discovered most frequent motifs of four real datasets

For an LCP interval $l_{\ell}-[i, j]$, the hasSingleChar function can be implemented during the suffix array construction process (line 3 in Alg.1). countUniq $\operatorname{Char}()$ function (line 7 in Alg.1, and Alg.2) takes maximum time $z \times r$, where $s z=|w-z|$ is the size of a child interval of l_{ℓ}, and r is the number of symbols in Σ. The three 'for-loop's in lines 6-8 in Alg. 2 are actually a traverse of the index tab in $[w, z]$. As r is a constant normally less than 10 , the $\mathrm{O}(\operatorname{Alg} .2))=\mathrm{O}(s z)$. The time complexity of function compInterv() depends on the interval size $s z$ and the complexity of countUniqChar(), so it is $\mathrm{O}(s z)$. Then the worst time complexity of LiSAM is: $\mathrm{O}($ LiSAM $)=\mathrm{O}\left(N+m_{0} \times s z_{0}+m_{1} \times s z_{1}\right.$ $\left.+\cdots+m_{K} \times s z_{K}\right)$.

We may intuitively believe that the worst time complexity of LiSAM is $\mathrm{O}\left(N+n^{3}\right)$. However, the values of K, m, and $s z$ are interrelated with each other to influence the $\mathrm{O}(L i S A M)$. Lemma 4 gives their relations. We always exclude singleton intervals SI whenever we mention the l-intervals and their child intervals.
Lemma 4. Given a discrete time series S with length n , and an LCP tree LT of S.
(1) S has maximum $n-1 l$-intervals, i.e., $\max (K)=$ $n-1$, each LCP interval has at most 2 child nonsingleton intervals (abbr. NSI), i.e., $m \leq 2$, and the $\max (s z)=n-1$.
(2) S has minimum $1 l$-interval (i.e., the root interval $l[0 \ldots n-1])$ that has 0 child NSI. Other than this case, the number of 1 -intervals of an LCP tree is a decreasing function of the child number of each LCP interval. That is, $K=f\left(1 / c_{k}\right)$, where c_{k} is the child number of the k th interval.
(3) given an $l_{\ell}-[i, j]$, the number of its child intervals m is a decreasing function for the sizes of its child intervals: $m=f(1 / s z)$.

Proof: We describe the problem of counting the LCP intervals as a problem of picking up elements from a set (see Figure 5). There are n sequential elements in S. Each time we remove any two adjacent elements (e.g., e_{i}, e_{i+1} in S_{n}) from S and combine these two elements as one new elements $\left(e_{i . i+1}\right)$, and put this new elements back to S. For example, S_{n-1} in Figure 5 represents the S after the first time combination, and the number of elements in S_{n-1} is $n-1$. We continue this process until there is only one element in $S_{1}: e_{1 . n}$. In this process, we need to conduct the combination $n-1$ times in total. And each time we can combine both SIs and NSIs. We can see that each combination forms a new NSI, and this NSI has at most two NSI children. For the g th combination, there are $n-g$ elements in the set $S_{n-g}, g=1, \ldots, n-1$. A child interval $l \cdot 0-[w, z]$ of any l-intervals in $L T$ has size $n-1$ when it is after the ($n-$ 2)th combination: $l_{c}-[1, n-1]$, which is the maximum size of a child interval.

We then prove that $n-1$ is the maximum number of $N S I$ in $L T$. If we remove $k(k>2)$ elements from S_{n-1}, \ldots, S_{n-w}, where $w \geq 1$ and $1, \ldots, w$ are not necessarily adjacent, and we remove 2 elements from

Figure 5. Number of LCP intervals
$S_{n-v}, \forall v \in[1, n-1]$, and $v \neq 1, \ldots, w$, then after w times combinations, it remains $n-w \times k$ elements in $S_{n-(w)}$, and requires $n-w \times k-1$ times combination. So the overall combination times is $t=n-1-k(w-1)$, as k >2 and $w>1$, so $t<n-1=\max (K)$.
We call the behavior of combining more than one elements at one time as multi-combination (statement 1). This proof also indicates that as long as multicombination happens (once or more than once and at any positions), the total number of LCP intervals will be decreased. Hence, the number of LCP interval is a decreasing function of the child number of each interval (statement 2).

Statement 3 is definite. When $[i, j]$ is fixed, as the child intervals of l_{ℓ} cannot be overlap with each other, the increase of m will result in the decrease of z.

Based on Lemma 4, it is impossible that $\mathrm{O}($ LiSAM $)$ reaches $\mathrm{O}\left(N+n^{3}\right)$. We consider two extreme cases:

- Assume S has maximum number of LCP intervals $n-1$, the root interval l^{n-1} has $s z_{0}=n-1$, and each interval $\left(l^{n-1}, \cdots, l^{1}\right)$ has $\max (m)=2$, then the time complexity of LiSAM is $\mathrm{O}($ LiSAM $)=\mathrm{O}(N+(n-1)$ $\times 2+\cdots+2 \times 2)=\mathrm{O}(N+n)$;
- Assume C is a child interval of an l-interval in $L T$, has $s z=n-2$, and has $m=\operatorname{floor}((n-1) / 2)$ NSI children, then C is the only child of the root interval [$0, n-1$], $K=2+m$, and each child of C has $s z=2$ and has 0 children, then the time complexity is $\mathrm{O}(N$ $+1 \times m \times(n-1)+m \times 2)=\mathrm{O}\left(N+n^{2}\right)$.
If S is highly compressed compared with T (i.e., $N \gg n$), the time complexity of LiSAM can be improved dramatically.

6 Conclusion and Future Work

In this paper, we proposed an algorithm LiSAM to resolve two important problems in discovering approximate time series motif: releasing the constraints of trivial matching between sub-sequences with different lengths and improving the time and space efficiency. We proposed two covering relations: $\alpha-$ covering between instances of l-intervals and β covering between l-intervals to support the motif discovery. Experimental results showed the high accuracy of LiSAM on finding different-length motifs. In this paper, we focused on the exact discrete subsequence matching to identify clusters of subsequences with different lengths. In the future, we are
going to explore the exact motif discovery based on the approximate motif grouping to further improve the motif identification accuracy and computational efficiency.

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grants No 61702274) and the Natural Science Foundation of Jiangsu Province (Grants No BK20170958).

References

[1] J. Grabocka, N. Schilling, L. Schmidt-Thieme, Latent TimeSeries Motifs, Acm Transactions on Knowledge Discovery from Data, Vol. 11, No. 1, pp. 1-20, August, 2016.
[2] J. Mao, T. Wang, C. Jin, A. Zhou, Feature Grouping-based Outlier Detection Upon Streaming Trajectories, IEEE Transactions on Knowledge and Data Engineering, Vol. 29, No. 12, pp. 2696-2709, December, 2017.
[3] H. J. Jeong, M. J. Lee, C. E. Lee, S. H. Kim, Y. G. Ha, Machine Learning-Based Real-Time Anomaly Detection for Unmanned Aerial Vehicles with a Cloud Server, Journal of Internet Technology, Vol. 18, No. 4, pp. 823-832, July, 2017.
[4] J. Andreu-Perez, D. R. Leff, H. M. D. Ip, G. Z. Yang, From Wearable Sensors to Smart Implants-Toward Pervasive and Personalized Healthcare, IEEE Transactions on Biomedical Engineering, Vol. 62, No. 12, pp. 2750-2762, December, 2015.
[5] C. X. Mavromoustakis, G. Mastorakis, A. Bourdena, E. Pallis, Energy Efficient Resource Sharing Using a Traffic-oriented Routing Scheme for Cognitive Radio Networks, IET Networks, Vol. 3, No. 1, pp. 54-63, March, 2014.
[6] H. Xu, Z. Ou, Scalable Discovery of Audio Fingerprint Motifs in Broadcast Streams with Determinantal Point Process Based Motif Clustering, IEEE/ACM Transactions on Audio Speech \& Language Processing, Vol. 24, No. 5, pp. 978-989, May, 2016.
[7] S. Wang, H. Yi, L. Wu, F. Zhou, N. N. Xiong, Mining Probabilistic Representative Gathering Patterns for Mobile Sensor Data, Journal of Internet Technology, Vol. 18, No. 2, pp. 321-332, March, 2017.
[8] P. Rashidi, D. J. Cook, Com: A Method for Mining and Monitoring Human Activity Patterns in Home-based Health Monitoring Systems, ACM Transactions on Intelligent Systems and Technology, Vol. 4, No. 4, pp. 1-20, September, 2013.
[9] J. Ma, L. Sun, H. Wang, Y. Zhang, U. Aickelin, Supervised Anomaly Detection in Uncertain Pseudo-periodic Data Streams, ACM Transactions on Internet Technology, Vol. 16, No. 1, Article No. 4, February, 2016.
[10] Y. J. Chang, W. T. Huang, A Novel Design of Data-driven Architecture for Remote Monitoring and Remote Control of Sensors over a Wireless Sensor Network and the Internet, Journal of Internet Technology, Vol. 12, No. 1, pp. 129-137,

January, 2011.
[11] L. Deng, J. Zeng, X. Wang, An Improved Certificateless Encryption Scheme for Telecare Medicine Information Systems, Journal of Internet Technology, Vol. 18, No. 2, pp. 223-227, March, 2017.
[12] K. M. Al-Aubidy, A. M. Derbas, A. W. Al-Mutairi, Real-time Healthcare Monitoring System Using Wireless Sensor Network, International Journal of Digital Signals and Smart Systems, Vol. 1, No. 1, pp. 26-42, 2017.
[13] M. Dimkovski, A. An, A Bayesian Model for Canonical Circuits in the Neocortex for Parallelized and Incremental Learning of Symbol Representations, Neurocomputing, Vol. 149, No. 4, pp. 1270-1279, February, 2015.
[14] S. Aghabozorgi, A. S. Shirkhorshidi, T. Y. Wah, Time-series Clustering- A Decade Review, Information Systems, Vol. 53, No. 1, pp. 16-38, October-November, 2015.
[15] D. Minnen, C. L. Isbell, I. Essa, T. Starner, Discovering Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture Learning, Proceedings of the 22nd National Conference on Artificial Intelligence, Menlo Park, Canada, 2007, pp. 615-620.
[16] R. Anirudh, P. Turaga, Geometry-based Symbolic Approximation for Fast Sequence Matching on Manifolds, International Journal of Computer Vision, Vol. 116, No. 2, pp. 161-173, January, 2016.
[17] T. Sun, H. Liu, H. Yu, C. P. Chen, Degree-pruning Dynamic Programming Approaches to Central Time Series Minimizing Dynamic Time Warping Distance, IEEE Transactions on Cybernetics, Vol. 47, No. 7, pp. 1719-1729, July, 2017.
[18] P. Nickerson, R. Baharloo, A. A. Wanigatunga, T. D. Manini, P. J. Tighe, P. Rashidi, Transition Icons for Time Series Visualization and Exploratory Analysis, IEEE Journal of Biomedical and Health Informatics, Vol. 22, No. 2, pp. 623630, March, 2018.
[19] M. G. Baydogan, G. Runger, Time Series Representation and Similarity Based on Local Autopatterns, Data Mining and Knowledge Discovery, Vol. 30, No. 2, pp. 476-509, March, 2016.
[20] A. Bottrighi, G. Leonardi, S. Montani, L. Portinale, P. Terenziani, A Time Series Retrieval Tool for Sub-series Matching, Applied Intelligence, Vol. 43, No. 1, pp. 132-149, July, 2015.
[21] T. D. Wu, Bitpacking Techniques for Indexing Genomes: II. Enhanced Suffix Arrays, Algorithms for Molecular Biology, Vol. 11, No. 1, p. 9, April, 2016.
[22] M. I. Abouelhoda, S. Kurtz, E. Ohlebusch, Replacing Suffix Trees with Enhanced Suffix Arrays, Journal of Discrete Algorithms, Vol. 2, No. 1, pp. 53-86, March, 2014.
[23] A. Mueen, E. Keogh, Q. Zhu, S. S. Cash, M. B. Westover, N. Bigdely-Shamlo, A Disk-aware Algorithm for Time Series Motif Discovery, Data Mining and Knowledge Discovery, Vol. 22, No. 1, pp. 73-105, January, 2011.
[24] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, H. E. Stanley, Physiobank, Physiotoolkit, and Physionet: Components of a New Research Resource for

Complex Physiologic Signals, Circulation, Vol. 101, No. 23, pp. e215-e220, June, 2000.

Biographies

Le Sun is a Lecturer in School of Computer and Software, Nanjing University of Information Science and Technology, China. She got her Ph.D. (2016) from Center for Applied Informatics, Victoria University, Australia. Her research interests are: anomaly detection in data streams, cloud computing, and smart decision making.

Jinyuan He is a second-year Ph.D. student in Centre for Applied Informatics, Victoria University, Australia. He got his master degree (2015) in School of Software Engineering, Sun Yat-sen University, China. His research interests are: anomaly detection in data streams, cardiac disease detection in ECG, deep learning in bioinformatics.

Jiangang Ma received the Ph.D. degree from Victoria University. He is a research fellow at the Centre for Applied Informatics (CAI), Victoria University. His research interests include Data mining and Web services.

Hai Dong is a Lecturer at School of Science in RMIT University, Australia. He received a Ph.D. from Curtin University and a Bachelor degree from Northeastern University. He published over 70 research publications in international journals and conferences. His primary research interests include Services Computing, Cloud Computing, and IoT.

Yanchun Zhang is the Director of the Centre for Applied Informatics, Victoria University, Australia. He is an international research leader in databases, data mining, health informatics, web information systems, and web services. He has published over 220 research papers in international journals and conferences proceedings, and authored/edited 12 books.

[^0]: *Corresponding Author: Le Sun; E-mail: sunle2009@gmail.com
 DOI: 10.3966/160792642018111906020

