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Abstract 

In this paper, we explore two key problems in time 

series motif discovery: releasing the constraints of trivial 

matching between subsequences with different lengths 

and improving the time and space efficiency. The purpose 

of avoiding trivial matching is to avoid too much 

repetition between subsequences in calculating their 

similarities. We describe a limited-length enhanced suffix 

array based framework (LiSAM) to resolve the two 

problems. Experimental results on Electrocardiogram 

signals indicate the accuracy of LiSAM on finding motifs 

with different lengths. 
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1 Introduction 

Motifs of a time series are the frequently-occurred 
and approximately similar subsequences that can 
summarize the features of the time series [1]. Motifs 
have been applied in a variety of areas of time series 
processing, such as the anomaly detection in moving 
objects trajectories [2-3], the semantic analysis for the 
surgical sensor data streams [4], repeating pattern 
mining in audio streams [5-6], and human activity 
discovery [7-8]. Especially, it has been applied to the 
medical signals [9], like Electrocardiography (ECG) 
[10] and biological signals [11-13] for normal 
condition recognition and disease detection. 

Discovering motifs for time series is an important 
and tough task. It has been proved that the subsequence 
clustering is meaningless in unsupervised data stream 
mining area, and the motif grouping in the discrete data 
stream mining has been applied as a replacement of the 
subsequence-clustering in the real-time series [14]. In 
this paper, we focus on two primary issues in the time 
series motif discovery: reducing the computational 
complexity and avoiding unexpected repetitions among 

different motifs and among instances of one motif. In 
an unsupervised context with little knowledge about 
the time series, it might be intractable to find all the 
motifs with different lengths by using exact and brute-
force methods. There has been a series of work 
focusing on improving the time efficiency. One 
significant improvement is the method proposed by 
Minnen et al. [15], which has sub-quadratic time 
complexity in the time series length. 

The subsequence trivial matching [16] and the 
overlapping among different motifs [1] are two types 
of motif repetition issues in the literature. To avoid 
trivial matching, some methods assumed that the 
instances of a motif do not overlap with each other at 
all [15]. We believe that, however, a more flexible and 
user-manageable mechanism is necessary to control the 
numbers and styles of the discovered patterns. 

Enhancing the time and space complexity, and at the 
same time, guaranteeing an expected accuracy is 
always one of the top topics in data processing. Some 
motif discovery researchers used approximate solutions 
to get an acceptable computational complexity [17]. In 
this work, we propose an unsupervised Limited-length 
suffix array based Motif Discovery algorithm (LiSAM) 
for continuous time series, which is time and space 
efficient, and supports approximately discovering 
motifs in different lengths. We first convert the 
continuous time series to the discrete time series by 
using the Symbolic Aggregate approXimation 
procedure (SAX) [18], and then identify the different-
length motifs based on the discrete time series. Our 
illustration of discrete motif discovery is on the basis 
of an exact substring matching procedure, however, we 
can easily embed the existing approximate substring 
matching methods, such as [19] and [20], in LiSAM. 
That is, we use the exact subsequence grouping of 
discrete time series to discover the approximate 
patterns of continuous time series. The distinctive 
contribution of LiSAM is as below: 

(1) LiSAM can discover motifs in different lengths 
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(e.g., maxLength to minLength provided by users), 
avoid the unexpected trivial-matching by allowing 
user-defined overlapping degree (represented as α) 
between the instances of motifs, and support 
discovering motifs that overlap with each other in a 
specified degree (β). It can either be an automatic or 
semi-automatic algorithm by either manually setting all 
the parameters or by using default parameters (e.g., set 
maxLength = 0.5 * |T| (T is a time series), minLength = 
2, α = 0 and β = 0). 

(2) LiSAM is both space and time efficient. It has 
linear space complexity O(N). We use a limited-length 
enhanced suffix array with linear space consumption to 
improve the space efficiency. In addition, in an 
extreme case that S has maximum LCP intervals, 
O(LiSAM) = O(N+n), while in the case an interval has 
maximum child intervals, O(LiSAM) = O(N+n2), where 
N is the length of the raw time series T, and n is the 
length of the discrete time series S. If N>>n, the 
performance can be improved dramatically. 

(3) We conduct extensive experiments based on both 
synthetic time series datasets to evaluate the 
performance of LiSAM. Experimental results show the 
high accuracy of LiSAM and its applicability in the 
pattern recognition of data streams such as ECG. 

2 Background Knowledge 

We briefly introduce the frequently used symbols 
(Table 1) and the basic concept of the enhanced suffix 
array in this section. Readers can refer to [21] for more 
details.  

Table 1. Symboles and definitions 

Concepts Definitions 

T a continuous time series 

Σ a finite ordered alphabet 

Σ* strings over Σ 

Σ+ Σ* without null 

S 
a discrete time series over Σ with  

length |S| = n 

~ ~∈Σ, ~ >σ, ∀ σ∈Σ 

S[i, j] substring of S between positions i and j 

suftab[suf] suffix array table of S 

presuf [pre] 
the suffix index of the previous position  

of the current suffix in suftab 

nextsuf [next] 
the suffix index of the next position of  

the current suffix in suftab 

Ssuftab[i] the ith suffix of S, i∈[0, n] 

lcptab[i] 
Longest common prefix (LCP) of  

Ssuf[i-1] and Ssuf[i]  

bwttab[i] 

(bwt) 

S[suftab[i]-1], if suf[i] > 0; 

null, if suf [i]=0 

lℓ-interval 

lℓ-[i, j] 

an LCP interval from index i to index j  

With length ℓ 

l-[l, l] singleton interval (SI): Ssuf[l] 

NSI non singleton interval 

mℓ-[i, j] m-interval: instances of lℓ interval  

A suffix array of S is an integer array (suftab) having 
values k∈[0, n]. An enhanced suffix array (ESA) is a 
suffix array with a number of additional supporting 
arrays, where two of them (lcptab and bwttab) will be 
used in this paper. We use an example of Sexamp = 
aceaceacece to describe the ESA that is shown in 
Table 2. The suftab keeps the starting positions of 
suffixes of S in ascending lexicographic order. The 
definition of lcptab is in Table 2. From Table 2, 
lcptab[0] = 0 and lcptab[n] = 0. To group the suffixes 
that have the longest common prefixes, the concept of 
LCP interval is proposed. We describe the definition of 
an LCP interval in Definition 1.  

Table 2. An enhanced suffix array 

index suf lcptab bwt Ssuf[i] 

0 0 0 null aceaceacece~ 

1 3 6 e aceacece~ 

2 6 3 e acece~ 

3 1 0 a ceaceacece~ 

4 4 5 a ceacece~ 

5 7 2 a cece~ 

6 9 2 e ce~ 

7 2 0 c eaceacece~ 

8 5 4 c eacece~ 

9 8 0 c cece~ 

10 10 0 c e~ 

11 11 0 e ~ 

 
Definition 1. Given S and its enhanced suffix array, an 
interval [i, j] of index (e.g., see Table 2), where i, j∈[0, 
n] and i < j, is an LCP interval with LCP length ℓ if the 
following conditions are satisfied: (1) lcptab[i] < ℓ; (2) 
lcptab[k] ≥ ℓ, ∀ k ∈ [i+1, j]; (3) lcptab[k] = ℓ, if 
∃k∈[i+1, j]; (4) lcptab[j+1] < ℓ. The LCP interval [i, j] 
with LCP length ℓ can be represented as lℓ-[i, j]. 

An LCP interval tree indicates the embedding and 
enclosing relations between LCP intervals. We 
describe an example of LCP tree of Sexamp in Figure . 
We can see that the root of the LCP tree covers all the 
suffixes of Sexamp. The child intervals are the intervals 
embedded in their father intervals. The leaf intervals do 
not enclose any NSI. A fast traversing procedure for 
LCP trees is defined in [22]. Note that in this paper we 
use lℓ to represent an l-interval with LCP length ℓ, 
while use mℓ to represent a motif interval (Def. 6}) 
with LCP length ℓ. In addition, we refer the normal 
LCP intervals to non-singleton intervals (NSIs). 

 

Figure 1. LCP tree of Sexamp 
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3 Problem Formulation 

A continuous time series T is a sequence of real 
values that have temporal properties. To identify the 
motifs of a time series, previous work has given 
different forms of motif definitions [23]. We 
summarize these definitions and present a 
comprehensive motif concept in Definition 2. 
Definition 2. A motif M of a time series T is a set of 
similar subsequences SQ = sq0, ..., sqn-1 such that n ≥2, 

and ∀ i, j ∈ [0, n-1], the length of |sqi| ≥2, |sqi ∩ sqj| ≤o, 

and Dis (sqi, sqj) ≤d, where o is an overlapping 
threshold to constraint the overlapping length between 
two subsequences of M, Dis is a distance measure, and 
d ≥0 is a small value to guarantee a certain similarity 
among subsequences. We call a subsequence of M as 
an instance of this motif. 
Definition 3. Given two l-intervals lℓ-[i1, j1] and lℓ-[i2, 
j2], sk1 (k1∈[i1, j1]) is an instance of lℓ1, sk2 (k2∈[i2, j2]) 
is an instance of lℓ2, sz1 = |j1-i1+1|: (1) instance sk1 is α-
covered by sk2 if ℓ1 < ℓ2, sk1 overlaps with sk2 at sub-
string s″ where s″ ⊆  sk2 and s″ ⊆  sk1, and s″ > α, sk1 ≥ 

α ≥ (1/2)* |sk1|. Or else, sk1 is α-uncovered by sk2; (2) 

interval lℓ1 is β-covered by lℓ2, if h instances of lℓ1 are 
covered by the instances of lℓ2, where sz1–β < h ≤ sz1, 
and h is a pre-defined threshold. Or else, lℓ1 is β-

uncovered (or uncovered) by lℓ2. 
A pattern of S is defined in Definition 4. 

Definition 4. Given an alphabet set Σ and an 
approximate time series S∈Σ*, a pattern of S is a time 
series pt that 1 ≤ |pt| << |S|, pt ⊆  S, and occurs k (k ≥ 2) 

times in S at positions {p1, ..., pk}, p1 ≠ ... ≠ pk, where a 
position is the start point of an occurrence of pt in S. 

In the above definition, we define that a pattern 
should occur at least twice in a time series. From the 
definition of l-interval, an lℓ-interval is composed of at 
least two suffixes that have the LCP of length ℓ. 
Therefore, an l-interval can be seen as a pattern of S, 
and the LCPs of the l-interval correspond to the 
occurrences of the pattern. However, the requirement 
on the minimum occurrence times of a pattern varies in 
different situations. For example, in a very long S (e.g., 
≥10 thousands), the element that repeats a small 
number of times (e.g., <10 times) is meaningless for 
the time series analysis. Therefore, we define a general 
concept of an approximate motif of discrete time series 
in Definition 5. 
Definition 5. Assume u = S [a, b] (a ≤ b) is an instance 
of an l-interval lℓ-[i, j] of S. Given a lower bound minT 

(minT ≥ 2) of the pattern occurrences, if ɛ  = j-i+1 ≥ 

minT, and lℓ is uncovered by any other l-intervals of S, 
it is an approximate motif of S, represented as mf = (ℓ; 

P = p1, …, p
ɛ

}), where ℓ = b - a + l (l ≥ 1) is the length 

of mf, pi is the start index of the occurrences of u in S, 

and ɛ  is the size of the motif mf. 

In the following description, a motif of S refers to an 
approximate motif. The relation between an l-interval 

and a motif of S is defined as an m-interval. 
Definition 6. For an l-interval lℓ-[i1, j1] of S, if the 
instances of lℓ is one-to-one matched to the occurrences 
of a motif mf = (ℓ; {suftab[i], …, suftab[j]})$, then lℓ is 
an m-interval, represented as mℓ-[i, j]. 

Based on Definition 6, motifs and m-intervals have 
the following relation. 
Lemma 1. A motif of S corresponds to and only 
corresponds to one m-interval of S. 

Proof. Given a motif mfu = (ℓ; Pu = {p1,…, p
ɛ

}) of S, 

as ɛ  ≥ 2, then the subsequence u occurs at least twice 

in S. Based on the definition of LCP intervals and 

suffix array, the suffixes sf={S[p1, ~],..., S[p
ɛ

, ~]} are 

in one LCP interval lℓ-[i, j], where p1,..., pɛ
∈[i, j], ℓ=|u| 

and ~ represents the end of S. Assume (1) ∃k, k∈[i, j] 
that s1 = S[suftab[k], suftab[k+ℓ-1]] = u, but s1 is not an 
occurrence of mfu, i.e., k ∉Pu, which is contrast to the 

given condition that mfu is a motif of S, because a motif 
needs to contain all the subsequences fitting one 
pattern. Assume (2) ∃ px ∈  Pu but px ∉ [i, j], and 

∃ py ∈ Pu and py ∈ [i, j], then (s1 = S[suftab[px], 
suftab[px+ℓ-1]]) = u = (s2 = S[suftab[py], suftab[py+ℓ-
1]]), that is, s1 and s2 are similar LCP and need to be in 
one LCP interval (suppose in lℓ' - [i', j']). As lℓ and lℓ' 
have one LCP u, they are the same l-interval, which is 
contrast to assumption (2). Lemma 1 is proved.  

In the following sections, we refer an m-interval to a 
motif. 

4 Limited-length Suffix-Array-Based Motif 

Discovery 

The Limited-length Suffix-Array-Based Motif 
Discovery (LiSAM) Framework identifies motifs of S 
by determining the α-covering and β-covering degrees 
between instances of one l-interval and between 
different l-intervals, which is based on a bottom-up 
traversing process of identifying LCP intervals of the 
enhanced suffix array. The LiSAM is composed of two 
main algorithms: (1) βUncover (Alg. 1) determines 
whether or not an LCP interval is β-covered by other 
LCP intervals given a constraint minT on the β-
covering degree of a motif. From definition, the 
determination of β-covering is based on the α-covering 
degree. To identify the α-covering relations between 
instances, part (2) αUncovered (Alg. 4) is described, 
which determines the nontrivial matching instances of 
an LCP interval given a constraint on the α-covering 
degree between motifs. If an l-interval is β-uncovered, 
the instances of this interval form a motif. 

4.1 Identify β-uncovered l-intervals for Discrete 

Time Series 

In ESA, identifying LCP intervals is a bottom-up 
traversing process. When an LCP interval is being 
processed, its child intervals have been identified, so 
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the child intervals can support the determination of β-
covering of the LCP interval. We distinguish the case 
of an LCP interval having a single character (the 
singleChar interval) with the case that the interval is 
comprised of more than one character (the multiChar 
interval). We give Lemma 2 to identify the β-
uncovered multiChar intervals. 
Lemma 2. Given a multiChar LCP interval lℓ-[i, j], its 
child intervals Θ, and the lower bound of the 
occurrence times of motifs minT ≥ 2, let λ = j − i + 1, lℓ 

is β-uncovered by other l-intervals if any of the 
following conditions is satisfied: 

(1) |Θ| = 0, λ = minT and bwttab[i, j] are pair-wise 
different, i.e., bwttab[i] ≠ ... ≠ bwttab[j]; 

(2) |Θ| = 0, and ∃σ1 ≠ ... ≠ σγ, σ1, ..., γ ∈ bwttab[i...j], 
minT + 1 ≤ γ ≤ λ; 

(3) |Θ| > 0, ∃  lℓ1 - [w1, z1], lℓ1 ∈ Θ and λθ = z1 − w1 +1 
≥ minT, and ∃ r1...rk ∈ [w1, z1] and h1...hk ∈ [i, j] but ∉ 

[w1, z1] that bwttab[r1] ≠ bwttab[h1], ..., bwttab[rk] ≠ 
bwttab[hk], k ≥ minT. 

(4) |Θ| > 1, ∃  mℓ1 - [w1, z1], ..., mℓk - [wk, zk] ∈ Θ, k ≥ 
minT, and mℓ1, ..., mℓk are β-uncovered. 

Proof: 

(1) |Θ| = 0, so the characters after the LCP 
subsequences of lℓ are pair-wise different, i.e., 
S[suftab[i]+ ℓ] ≠ S[suftab[j] + ℓ]. Meanwhile, λ = minT 

and bwttab[i] ≠ ... ≠ bwttab[j]. Therefore, the instances 
of lℓ are not covered by any longer repeated sequences 
in S. Hence, lℓ is β-uncovered. 

(2) if γ > minT, then at least minT + 1 characters in 
bwttab[i, j] are different (assume bwttab[k1] ≠ 
bwttab[k2]); and as Θ = 0, the k1 th and k2 th LCP 
subsequences are not covered by any longer 
subsequences of its child intervals. So lℓ is β-uncovered. 

(3) assume lℓ have one child interval cθ, where λθ ≥ 
minT, i ≤ wθ ≤ zθ ≤ j and λ > minT. (a) Assume λ − λθ = 
0, then lℓ = cθ, cθ is not a child interval of lℓ. 
Assumption (a) is not true. (b) Assume λ − λθ < minT, 
then there are λ − minT instances of lℓ covered by the 
instances of cθ, so interval lℓ is covered by interval cθ, 
and lℓ is not a motif. Assumption (b) is not true. (c) as λ 

− λθ ≥ minT, then there are at least minT instances of lℓ 

that are not covered by the instances of cθ. In addition, 
∃σ1 ≠ ... ≠ σγ, σ1,...,γ ∈ bwttab[i...j], minT < γ ≤ λ, based 
on the proof of (3), lℓ is β-uncovered. 

(4) if k = minT, as mℓ1, ..., mℓk are k motifs, the 
subsequences in all of the minT intervals are pairwise 
different, so the interval lℓ, where ℓ < ℓ1, ..., ℓ minT, 
cannot be covered by any of {mℓ1 (as ∀  |mℓt| ≥ minT, t 
∈ [1, k], t ≠1), ..., mℓminT }, that is, the interval lℓ cannot 
be individually covered by any of its k child motifs. So 
lℓ is β-uncovered. 

For singleChar intervals, the problem of determining 
their motif property is to avoid finding a shorter 
singleChar motif covered by a longer singleChar motif. 
Lemma 3 shows how to determine if a singleChar 
interval is β-uncovered. 
Lemma 3. Given a singleChar interval lℓ - [i, j] that its 

LCP subsequence, i.e., S[suftab[i], suftab[i] + ℓ − 1], is 
only comprised of one character (assume σ), 

(1) if lℓ does not have child intervals, i.e., |Θ| = 0 and 
∃σ1 ≠ ... ≠ σγ, σ1,...,γ ∈ bwttab[i...j], minT + 1 ≤ γ ≤ λ, 
then lℓ is β-uncovered; 

(2) if |Θ| > 0 and θ - [w, z] ∈ Θ, that ∃σ1 ≠ ... ≠ σγ ≠ 
σ and σ1,...,γ ∈ bwttab[w...z], where γ > 0, and ∃σ’1 ≠ … 
σ’λ ≠ σ and σ’1,…, λ ∈ bwttab[w’...z’], where z’ − w’ + 1 
≥ 2, λ > 0, [w’...z’ ]∈[i...j] and [w’...z’] is β-uncovered 
by [w...z];  

Proof: 

(1) As lℓ does not have child intervals, lℓ cannot be 
covered by an interval comprising LCP subsequences 
of u’ = S[suftab[k1], ..., suftab[k1] + ℓ’ − 1], where k1 ∈ 
[i, j], ℓ’ > ℓ. In addition, as ∃ σ1 ≠ ... ≠ σγ, σ1,...,γ ∈ 
bwttab[i...j], minT + 1 ≤ γ ≤ λ, lℓ cannot be covered by 
an interval comprising LCP subsequences of u″ = 
S[suftab[k2] − 1, ..., suftab[k2] − 1 + ℓ″ − 1], where k2 ∈ 
[i, j], ℓ″ > ℓ. So lℓ is a β-uncovered. 

(2) Assume u = S[suftab[i] ... suftab[j] + θ − 1] is the 
prefix of lℓ, and u’ = S[suftab[w] ... suftab[w] + θ − 1] 
is the prefix of lθ, and assume ∃σ1 ∈ bwttab[w...z] and 
∃σ2 ∈ bwttab[w’, z’ ] that σ1 ≠ σ and σ2 ≠ σ, then (1) 
any child interval lθ cannot cover lℓ, since z’ − w’ + 1 ≥ 
2; (2) we prove that under condition 2 in Lemma 3, if lℓ 

is a singleChar interval with LCPs like u = x1, …, xℓ, 
then not ∃ lθ (the strings of its singleChar LCP u’ = 
x1, …, xθ, (θ > ℓ)) that cover lℓ. Assume such a lθ exists, 
then the strings of the LCP of lθ include all the stings 
whose prefixes with length θ are u’, i.e., ∃k (= z − w + 
1) subsequences u ∈ S, and there must be η (= k * (θ – 
1)) bwttabs that bwttab[r1] = ... = bwttab[rη] = σ, η = z’ 

– w’ + 1 and k + η = j − i + 1; which means there must 
not exist σ’1,...,λ ≠ σ, λ > 0 in bwttab[w’, z’]. This is 
contradicting with condition 2 of Lemma 3, so the 
second statement (2) is correct. Combining statements 
(1) and (2), the singleChar interval lℓ is β-uncovered 
given condition 2 of Lemma 3. 

Based on Lemma 2 and 3, we design the procedure 
of determining an LCP interval being β-uncovered in 
Algorithm 1. The procedure sinChar() (line 3) 
determines whether lℓ is a singleChar interval: if it is 
singleChar, return the character, otherwise, return null. 
The singleChar status of l-intervals can be determined 
in the construction process of the suffix array. 
countUniqChar() (line 4, Alg.2) calculates the number 
of different characters in bwttab[i, j]. If lℓ does not have 
children (cd); it is a singleChar interval; and it has at 
least mt different characters (uc) other than the sc 

character, then lℓ is a motif (lines 7-8 in Alg.1, point 1 
in Lemma 3). If lℓ is a multiChar interval (sc == null) 
with more than mt unique characters, it is a motif (lines 
7-8, point 2 in Lemma 2). For a multiChar interval, if it 
at least has mt children that are motif intervals 
(lℓ.mcd.sz), then it is a motif (lines 10-12, point 4 in 
Lemma2). For each interval, we can use an integer 
variable to keep the number of motifs of its children, 
and this integer value can be determined during the 
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suffix array building process. Lines 13-18 are based on 
point 3 in Lemma 2, where cu represents the current 
child interval; fcd is the first child interval; nt and la 

are respectively the next and last child intervals of cu; 
and lb and rb are the left and right boundaries of an l-
interval. The procedure difCharPair() (Line 14, Alg.3) 
compares a child interval (cu) of lℓ with the other part 
of lℓ (l’), where l’ includes the intervals not covered by 
any child intervals of lℓ, and also the other child 
intervals apart from cu. If there are at least two pair of 
different character pairs in bwttab[i, j], that is, 
∃ i1,i2,i3,i4 ∈  [i, j] that bwttab[i1] ≠ bwttab[i2] and 
bwttab[i3] ≠ bwttab[i4], then cp ← true. 

 

Algorithm 1. Identify β-uncovered l-intervals 

1: procedure βUNCOVERED(lℓ - [i,j], mi, ma, bwt,  
mt) 

2:     sz ← j − i + 1 
3:     sc ← sinChar(lℓ) 
4:     uc ← countUniqChar(lℓ, singleChar) 
5:     if sz == mt & bwt[i,j] are pair-wise different then

6:         return true 
7:     else if lℓ.cd == nul & (sc ≠ nul & uc ≥ mt||uc >  

mt) then 
8:         return true 
8:     else 
10:         if lℓ.mcd.sz ≥ mt & sc == null then 
11:            return true 
12:        end if 
13:        for all cu ∈ lℓ.cd do 
14:            cp ← cu.difCharPair(cu, l) 
15:            if cp || cu == fcd & I < lℓ.fcd.lb & cp ||  

lℓ.cu.rb + 1 < lℓ.nt.lb & cp || cu == la &  
lℓ.la.rb + 1 < lℓ.rb & cp then 

16:                return true 
17:            end if 
18:        end for 
19:    end if 
20:    return false 
21:end procedure 

 
Algorithm 2 calculates the number of different 

characters in an l-interval given that the interval is 
singleChar or multiChar (based on the value of sc). In 
line 2, if l does not have children, traverse the index tab 
(e.g., i in Table 3) of LCP table from w to z, and count 
the index if bwttab[x] is different with the other 
characters in bwttab[i, j] and different with the sc 
character (see the procedure addCnt(c,cx) in lines 24-
29). The addCnt() indicates that if l is a multiChar 
interval (sc = null and c ≠ sc), or if it is a singleChar 
interval (without considering the indexes with bwttab[x] 
= sc, i.e., c ≠ sc), and the current character has not 
happened in l’ (!l .has(c)), then count once and record 
the character in l’. Lines 7-20 count the pair-wise 
different characters in each child of l and in the indexes 
uncovered by any of its child, where la is the child 
interval of l’ before cu; nt is the child interval after cu; 

and lb and rb are left and right bounds of an interval. 
Lines 15 checks which character is in the current child 
interval cu. If cu is not a singleChar interval or the 
character sc is not counted (c ≠ sc, in line 15), and the 
character c occurs in cu but not in l’, then this character 
c is counted (line 16), and is marked as happened in the 
interval l’ (line 17). 

 

Algorithm 2.  Count the number of different 
characters in an l-interval 

1:procedure COUNTUNIQCHAR(l’ - [w, z], sc) 
2:    if lℓ’.children == null then 
3:        for all x ∈ [w,z] do 
4:            addCnt(bwt[x],x) 
5:        end for 

6:    else 

7:        for all cu ∈ lℓ’.cd do 

8:            for all c ∈ bwttab[la.rb + 1... lℓ’.rb] do 

9:                addCnt(c,cx) 
10:            end for 

11:            for all c ∈ bwttab[cu.rb + 1...nt.lb − 1] do

12:                addCnt(c,cx) 
13:            end for 

14:            for all c ∈ Sigma do 

15:                if c ≠ sc & ! lℓ’.has(c) & cu.has(c) then 

16:                    lℓ’.cnt + + 

17:                    lℓ’.has(bwt[cx]) = true 

18:                end if 

19:            end for 

20:        end for 

21:    end if 

22:    return cnt 

23:end procedure 

24:procedure ADDCNT(c,cx) 
25:    if c ≠ sc & ! lℓ’.has(c) then 

26:        lℓ’.cnt + + 

27:        lℓ’.has(bwt[cx]) = true 

28:    end if 

29:end procedure 

Table 3. Pre and nextsuf 

i pre next suf sel. 

0 -1 0 3 aceace 

1 6 3 4 aceace 

2 7 6 5 ace∼  

3 0 1 6 ceacea 

4 1 4 7 ceace∼  

5 2 7 8 ce∼  

6 3 2 1 eaceac 

7 4 5 2 eace∼  

8 5 8 9 e∼  

9 8 9 10 ∼  

 
Algorithm 3 calculates the different character pairs 

between one child interval and the other part of lℓ. The 
inputs are two intervals (child intervals or lℓ’s sub-
intervals that are not covered by any child intervals of 
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lℓ). lℓ is a motif if at least mt different character pairs 
(cd) are identified (line 8, point 4 in Lemma2); 
otherwise, count the next pair of characters in lℓ1 and lℓ2. 
In addition, if the current interval l` is a singleChar 
interval (sc ≠ nul), and its two child intervals lℓ1 and lℓ2 

both have at least 1 character that is different with the 
sc character, then lℓ is a motif (line 15-16, point 2 in 
Lemma3). 

 

Algorithm 3. Count different character pairs between 
two intervals 

1:procedure DIFCHARPAIR(lℓ1, lℓ2) 
2:    cd = 0 
3:    for all c1 ∈ Sigma do 
4:        for all c2 ∈ Sigma & lℓ1.has(c1) & c ≠ sc do 
5:            if c2 ≠ sc & lℓ2.has(c2) & c1 ≠ c2 then 
6:                cd + + 
7:            end if 

8:            if cd ≥ mt then 

9:                return true 

10:            else 

11:                break the inner for-loop 

12:            end if 

13:        end for 

14:    end for 

15:    if sc ≠ nul & countUniqChar(lℓ1, sc) > 0 &  
countUniqChar(lℓ2, sc) > 0 then  

16:        return true 

17:    end if 

18:    return false 

19:end procedure 

 

4.2 Identify α-uncovered Instances for 

Discrete Time Series 

In section 3, we defined the concept of α-covering 
between instances of one interval. For example, in a 
time series s = aceaceace, if we expect a motif of 
length 6, we may get a motif with two instances:  

  

where instance2 3-covers instance1. To control the α-
covering degree, we introduce two tabs: presuf and 
nextsuf that respectively record the indexes of the 
previous suffix and the next suffix for the current 
suffix. An example of the two tabs is shown in Table 3.  

The values of pre and next can be determined during 
the process of building suffix arrays, so it does not take 
extra time. The pre of the 0th suffix is −1 and the next 

of the last suffix is length(s). 
Algorithm 4 shows how to identify the α-uncovered 

instances of an m-motif. In Algorithm 4, ∩  represents 

the overlapping part of two suffixes; s[r..] represents 
the suffix starting from position r. If the index of the 
suffix (ntS) after the current suffix (suf) is in interval 

[a,b], and the overlapping length between suffix 
s[suftab[p]..] and suffix s[suftab[ntS[p]]..] is less than 
the threshold value α, then the position suf[p] is 
recorded as a start position of an αuncovered instance 
(lines 10-11). If the overlapping length between suffix 
s[suf[p]..] and suffix s[suf[ntS[p]]..] is over α, then 
continue checking the suffix after ntS[p], until the 
checking step is over the maD (lines 8 to 15). As the 
LCP length of the current interval is ℓ, if an instance is 
maD far from the current instance, it is impossible that 
the two instances can α-cover each other. For each 
suffix, Algorithm 4 checks its α-covering instances by 
only iterating the suffixes from start positions 
afterwards. We temporally create an array (’visited’ in 
lines 5, 6, 9) for the m-interval to record the visited 
status of each instance. 

 

Algorithm 4. Identify αUncovered l-intervals 

1:procedure αUNCOVERED(ϵ, mℓ - [a, b]) 
2:    maD = ℓ − α + 1 
3:    for all p ∈ [a,b] do 
4:        if mℓ.visited then 
5:            P.add(p) 
6:            mℓ.visited = true 
7:        end if 
8:        while q ≤ maD do 

9:            if ntS[p] ∈ [a,b] & |s[suf[p]..] ∩   

s[suf[ntS[p]]..]| < α then 
10:                P.add(p) 
11:                mℓ[p].visited = true 

12:            else if |s[suf[p]..] ∩  s[suf[ntS[p]]..]| ≥ α then

13:                mℓ[p].visited = true 
14:            end if 
15:        end while 
16:    end for 
17:    return P 
18:end procedure 

 
Algorithm 4 identifies α-uncovered instances given 

that the input interval is β-uncovered in terms of α = 1. 
We can also interactively perform the algorithms 
βUncover and αUncover to determine the β-uncovered 
motifs in terms of different values of α by using the tab 
pre: in the process of βUncover, for each instance of an 
l-interval, we check both its pre- (i.e. suffixes with 
prior starting positions) and afterwards-suffixes 
simultaneously by using the chain-procedure of 
Algorithm 4 (for pre-suffixes, next can be simply 
replaced by pre). Specifically, we check each line in [i, 
j] when bwttab[i…j] is traversed in line 5 of Alg. 1, and 
determine whether this instance is overlapping with its 
previous instances pre. Remove it if it is overlapped 
with pre. In addition, in Alg. 2, we can check each 
position in [i, j] in lines 3, 8 and 11, and remove this 
position if it is overlapped with its previous instance. 
At last, only the instances that are not overlapping with 
each other are used to decide if the current l-interval is 
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βUncovered. 

5 Performance Evaluation and Complexity 

Analysis 

In this section, we present the experimental results 
to show the efficiency of LiSAM. We insert patterns to 
random time series generated by gaussian white noise, 
and quantitatively measure the algorithm performance 
on the simulated data sets, in terms of the overlapping 
degree between the planted pattern and the discovered 
pattern of a time series (represented as old). In addition, 
time and space complexities of the proposed algorithm 
are analyzed. Our experiments are conducted on a 
windows 64-bit system with 3.2GHz CPU and 4 GB 
RAM, and is implemented by Java.  

5.1 Accuracy and Inner Quality of Motifs 

We extract patterns from six different ECG data 
streams [24], repeat each pattern 30 times and insert 
the repeated patterns to Gaussian white noise data 
streams separately. The information of the extracted 
patterns and the parameter settings is shown in the top 
part of Table 4. The first three datasets are from the 
UCR Time Series Classification Archive [24], and the 
other three are from the Physionet [25]. Particularly, 
the nL is the length of a piece of noise subsequence 
between two pieces of a pattern. We use the fixed-
length intervals (i.e., length of noise subsequences) 
between two pattern subsequences to make the 
annotation of the pattern instances easy. Column sL 

sets the parameters of the SAX-based symbol 
conversion, representing the length of a subsequence 
that corresponds to a symbol. Columns maxM set the 
upper bounds of the lengths of the discovered patterns. 
The lower bounds of the lengths of the discovered 
patterns for all datasets are set as 10. 

Table 4. Dataset settings & old and InDis performance 

Datasets nL sL maxM old inDis 

ECG200 50 2 100 0.9892 0.0076

ECGfivedays 50 2 140 0.9924 0.0076

ECGtorse 100 10 1640 0.9947 0.0068

ECGtwa01 150 3 300 0.9933 0.0086

ECGsvdb800 150 2 170 0.9939 0.0112

ECGmitdb100 150 2 150 0.9966 0.006

LTDB14134 - 2 150 - - 

SVDB800 - 2 150 - - 

AHADB0001 - 2 120 - - 

CARTI01 - 2 100 - - 

 
We use old to measure the accuracy of the 

discovered motifs, which represents the overlapping 
degree between the inserted pattern (pi) and the 

discovered pattern (dj):  

 
( , )

( )

i j
i joverlap p d

old
length plantedPattern

=

∑ ∑
 (1.1) 

The old values for each of the simulated ECG time 
series are shown in Table 4. We can see that the 
proposed motif discovery algorithm can identify the 
inserted patterns with very high accuracy (all over 0.9). 
We compare the shapes of the planted patterns and the 
discovered motifs in each of the six time series in 
Figure 2. In addition, we use the average pair-wise 
distances among instances (represented as inDis) of a 
motif to measure the dissimilarity degree of the 
instances of one discovered motif (e.g., motif m), 
which is calculated as: 

 
, ( , )

( )
. * .

i j
i jdis m m

inDis m
m len m size

=

∑
 (1.2) 

where mi and mj represent the ith and jth instances of m; 
and m.len is the length of this motif; m.size is the 
number of its instances, and dis is the Euclidean 
distance function. The average inDis value of each 
time series is shown in Table 4, and the distance 
distribution of each instance pair of the most frequent 
motif for each dataset is shown in Figure 3. We can see 
that the instances of one motif for each datasets are 
very close to each other, all of which have less than 0.1 
average instance dis-similarities.  

5.2 Pattern Discovery on Real Datasets 

We use the proposed SAMOF algorithm to identify 
the most frequent patterns in four real ECG datasets: 
the MITBIH Long Term Database (LTDB), the 
Supraventricular Arrhythmia Database (SVDB), the 
American Heart Association Database (AHADB), and 
the St. Petersburg INCART Arrhythmia Database 
(CART) 0. Their information is listed in the bottom 
part of Table 4. For each dataset, we conduct pattern 
recognition in the first 30,000 samples (1:30000). We 
discover the most frequent motifs for each datasets, 
and present the motifs in Figure 4. 

5.3 Time Complexity Analysis 

The LiSAM mainly contains three steps: (1) discrete 
the time series based on SAX; (2) establish suffix array 
for the discrete time series and traverse the suffix array 
to find the LCP intervals; (3) determine the β-
uncovered l-intervals. 

If the length of a time series is N, the first step of 
time series discretion takes ON time. After discretion, 
if there are n symbols, the maximum time taken to 
build and traverse the suffix array (step 2) is n + n = 2n. 
The main part of Step 3 is the process of Algorithm 1. 
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Figure 2. Planted patterns and discovered motifs 

 

Figure 3. Distance distribution of instance pairs of the most frequent motif for six datasets 

 

Figure 4. Discovered most frequent motifs of four real datasets 
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For an LCP interval lℓ − [i, j], the hasSingleChar 

function can be implemented during the suffix array 
construction process (line 3 in Alg.1). countUniqChar() 
function (line 7 in Alg.1, and Alg.2) takes maximum 
time z × r, where sz = |w − z| is the size of a child 
interval of lℓ, and r is the number of symbols in Σ. The 
three ’for-loop’s in lines 6-8 in Alg.2 are actually a 
traverse of the index tab in [w, z]. As r is a constant 
normally less than 10, the O(Alg.2)) = O(sz). The time 
complexity of function compInterv() depends on the 
interval size sz and the complexity of countUniqChar(), 
so it is O(sz). Then the worst time complexity of 
LiSAM is: O(LiSAM) = O(N + m0 × sz0 + m1 × sz1 

+ ··· + mK × szK). 
We may intuitively believe that the worst time 

complexity of LiSAM is O(N+n3). However, the values 
of K, m, and sz are interrelated with each other to 
influence the O(LiSAM). Lemma 4 gives their relations. 
We always exclude singleton intervals SI whenever we 
mention the l-intervals and their child intervals. 
Lemma 4. Given a discrete time series S with length n, 
and an LCP tree LT of S. 

(1) S has maximum n − 1 l-intervals, i.e., max(K) = 
n − 1, each LCP interval has at most 2 child non-
singleton intervals (abbr. NSI), i.e., m ≤ 2, and the 
max(sz) = n − 1. 

(2) S has minimum 1 l-interval (i.e., the root interval 
l[0…n-1]) that has 0 child NSI. Other than this case, 
the number of l-intervals of an LCP tree is a decreasing 
function of the child number of each LCP interval. 
That is, K = f(1/ck), where ck is the child number of the 
kth interval. 

(3) given an lℓ - [i, j], the number of its child 
intervals m is a decreasing function for the sizes of its 
child intervals: m = f(1/sz). 

Proof: We describe the problem of counting the 
LCP intervals as a problem of picking up elements 
from a set (see Figure 5). There are n sequential 
elements in S. Each time we remove any two adjacent 
elements (e.g., ei, ei+1 in Sn) from S and combine these 
two elements as one new elements (ei..i+1), and put this 
new elements back to S. For example, Sn−1 in Figure 5 
represents the S after the first time combination, and 
the number of elements in Sn−1 is n − 1. We continue 
this process until there is only one element in S1: e1..n. 
In this process, we need to conduct the combination 
n−1 times in total. And each time we can combine both 
SIs and NSIs. We can see that each combination forms 
a new NSI, and this NSI has at most two NSI children. 
For the gth combination, there are n−g elements in the 
set Sn−g, g = 1,..., n−1. A child interval l`0-[w,z] of any 
l-intervals in LT has size n − 1 when it is after the (n − 
2)th combination: lℓ’ - [1, n − 1], which is the 
maximum size of a child interval. 

We then prove that n − 1 is the maximum number of 
NSI in LT. If we remove k (k > 2) elements from 
Sn−1, ..., Sn−w, where w ≥ 1 and 1, ..., w are not 
necessarily adjacent, and we remove 2 elements from  

 

Figure 5. Number of LCP intervals 

Sn−v, ∀ v ∈ [1, n − 1], and v ≠ 1, ..., w, then after w 

times combinations, it remains n − w × k elements in 
Sn−(w), and requires n − w × k − 1 times combination. So 
the overall combination times is t = n−1− k(w − 1), as k 

> 2 and w > 1, so t < n − 1 = max(K). 
We call the behavior of combining more than one 

elements at one time as multi-combination (statement 
1). This proof also indicates that as long as multi-
combination happens (once or more than once and at 
any positions), the total number of LCP intervals will 
be decreased. Hence, the number of LCP interval is a 
decreasing function of the child number of each 
interval (statement 2). 

Statement 3 is definite. When [i, j] is fixed, as the 
child intervals of lℓ cannot be overlap with each other, 
the increase of m will result in the decrease of z. 

Based on Lemma 4, it is impossible that O(LiSAM) 

reaches O(N + n3). We consider two extreme cases: 

‧ Assume S has maximum number of LCP intervals 

n−1, the root interval ln−1 has sz0 = n − 1, and each 
interval (ln−1,··· ,l1) has max(m) = 2, then the time 
complexity of LiSAM is O(LiSAM) = O(N + (n − 1) 
× 2 + ··· + 2 × 2) = O(N + n); 

‧ Assume C is a child interval of an l-interval in LT, 

has sz = n − 2, and has m = floor((n-1)/2) NSI 
children, then C is the only child of the root interval 
[0, n−1], K = 2 + m, and each child of C has sz = 2 
and has 0 children, then the time complexity is O(N 

+ 1 × m × (n − 1) + m × 2) = O(N + n2). 
If S is highly compressed compared with T (i.e., 

N n� ), the time complexity of LiSAM can be 

improved dramatically. 

6 Conclusion and Future Work 

In this paper, we proposed an algorithm LiSAM to 
resolve two important problems in discovering 
approximate time series motif: releasing the constraints 
of trivial matching between sub-sequences with 
different lengths and improving the time and space 
efficiency. We proposed two covering relations: α-
covering between instances of l-intervals and β-
covering between l-intervals to support the motif 
discovery. Experimental results showed the high 
accuracy of LiSAM on finding different-length motifs. 
In this paper, we focused on the exact discrete 
subsequence matching to identify clusters of sub-
sequences with different lengths. In the future, we are 
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going to explore the exact motif discovery based on the 
approximate motif grouping to further improve the 
motif identification accuracy and computational 
efficiency. 
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