
A Secure Service Agreement Underlying Cloud Computing Environment 1753

A Secure Service Agreement Underlying

Cloud Computing Environment

Mao-Lun Chiang*

Department of Information and Communication Engineering, Chaoyang University of Technology, Taiwan

mlchiang@cyut.edu.tw

*Corresponding Author: Mao-Lun Chiang; E-mail: mlchiang@cyut.edu.tw

DOI: 10.3966/160792642018111906012

Abstract

Reliability is an important research topic of distributed

systems. To achieve fault-tolerance in the distributed

systems, healthy processors need to reach an agreement

before performing certain special tasks, even if faults

exist in many circumstances. In order to achieve fault-

tolerance in distributed systems, one must deal with the

Byzantine Agreement (BA) problem. However, the

traditional BA problem is solved in well-defined

networks, but the cloud computing environment is

increasing in popularity. It can provide a large number of

applications in the Internet. Therefore, the BA problem is

re-examined to enhance the reliability of cloud computing

environment in this paper. The proposed protocol can

reach a secure service agreement while tolerating the

maximum number of faulty processor in a minimal

number of message exchanges under dual failure mode

by using type of service requirement (service chip) and

key (Signsk). Furthermore, our protocol is more adapting

to the changeability of network, such as the mobility of

processors than other works.

Keywords: Byzantine agreement, Fault-tolerant,

Reliability, Cloud computing

1 Introduction

A distributed computing system consists of a set of

processors, which can communicate with each other by

exchanging messages. In order to enhance the

reliability of a computer system, a mechanism allowing

a set of processors to agree on a common value is

needed [10, 13]. Some examples of such applications

are: a commitment problem in a distributed database

system [5, 13], a clock synchronization problem [6],

and a landing task controlled by a flight path finding

system [2]. Such a unanimity problem was first studied

by Lamport et al. [10], and called a Byzantine

Agreement (BA) [2-3, 7, 17]. This problem requires a

number of independent processors to reach an

agreement in cases where some of those processors

might be faulty.

Subsequently, the symptom of processor failure

needs to be mentioned, it can be classified into two

categories, the dormant fault (fd) and malicious fault (fm)

[7, 10, 16, 19, 20-22]. Dormant processor faults

include broken processors (crash faults) and message

misses (omission faults), and are easy to detect and

solve. However, malicious faults are unpredictable and

damaging. An malicious processor can withhold

messages or collude with other faulty processors to

send irregular message to others, and thus is a more

serious problem than dormant faults. However, some

malicious-resilient BA protocols treat all faults as

malicious faults, even though some faults may be

subjected to dormant faults. Thus, malicious-resilient

BA protocols cannot tolerate the maximum number of

faults if the dormant faults exist. These observations

motivate this study to maximize the number of

allowable faulty processors in dual fault mode

(malicious and dormant faults exist simultaneously).

As the network technology continues to grow at a

high rate of speed, traditional network topology is

improved with huge computation ability, such as cloud

computing environment [4, 8, 15-16, 18, 23, 25-27].

This kind of environment is extended from the grid

computing and distributed computing, thus there exist

several challenges to this new concept of cloud

computing environment, such as the reliability and

fluency. The service requirements need to be

dispatched and executed completed even if some

components are faulty. Besides, the user may emigrate

away from its region, the service processors may

forward the workload to other service processors. For

reducing workload of service processors, the service

requirements of user need to be relocated and

dispatched to appropriate service processor. Therefore,

the proposed protocol needs to enhance the reliability

of cloud computing environment and tolerate a

maximal number of faulty processors under dual

failure mode by using minimal number of message

exchange.

The rest of this paper is organized as follows:

Section 2 illustrates the basic assumption and previous

work underlying our protocol. The detail of the

proposed protocol is shown in Section 3. Section 4

illustrates examples of execution procedure in detail.

Subsequently, correctness and complexity are

1754 Journal of Internet Technology Volume 19 (2018) No.6

illustrated in Section 5. Finally, the conclusion is

presented in Section 6.

2 The Basic Assumption and Previous

Work

In general, the cloud computing is a new concept of

distributed system to provide multiple external

customers “as a service” using Internet technologies

and is showing in Figure 1. The providers of cloud

provide various applications and computing

infrastructure by using virtualization of infrastructure

for different customers. The popular examples are

Google [25-26], IBM Blue Cloud [27], Microsoft

Azure [28], and Amazon [24]. In the Google

application, the free storage capacity and powerful

computing capacity are provided, such as the Gmail

and YouTube. Besides, the Google App Engine

provides users to make web applications with its SDKs

and APIs in the develop platform.

Figure 1. The cloud computing environment

Besides, the related classification of services

including Software-as-a-Service (SaaS), Platform-as-a-

Service (PaaS) and Infrastructure-as-a-Service (IaaS)

[15]. The SaaS allows the users to use the applications

over Internet on demand, such as Google Docs [26].

And, the popular instance of PaaS is Google App

Engine [26] that enables to deploy the Web platform.

In IaaS, the basic infrastructure is provided, such as

ability of CPU, memory, storage, and related resources.

The Amazon’s Elastic Compute Cloud (EC2) [24] is an

example for IaaS.

However, the services of cloud computing must be

terminated while the components are damaged or

failure. Therefore, a safe agreement protocol is

necessary to reach reliability and integrity. The

proposed agreement protocol needs to obtain the

common message to recognize the type of service by

service chip [14] and forward the job to other service

processors safety. Subsequently, the basic assumptions

agreement protocol is described as follows.

In general, the traditional agreement problem cannot

achieve agreement in a cloud computing environment.

It is because that the cloud computing environment is

consisting of a large number of processors and

applications, each service needs to be cooperated with

service processor to get the agreement. As a result, the

BA problem needs to be revised in cloud computing

environment. Besides, the result of Fischer and Lynch

[7], showing agreement, is impossible in an

asynchronous environment with even one processor

failure. Therefore, the BA problem is considered in a

synchronous network in this paper. In addition,

Lamport argues for the agreement problem under the

assumption of synchronous behavior BA, showing that

3fm+1 processors are allowed fm failures where fm is the

number of malicious faulty processors in the network

[10].

Traditionally, the BA problem was defined by

Lamport et al. [10], as follows:

� There are n (n>3) processors, of which at most one-

third of the total number of processors could fail

without breaking down a workable network;

� The message’s sender is always identifiable by the

receiver;

� An malicious faulty processor is chosen as a source,

and its initial value is broadcasted to other

processors and to itself to execute the protocol.

In general, a healthy source processor sends the

same inital value to all processors and malicious

processors cannot affect this inital value sent from the

healthy source processor. Therefore, the faulty

influence of this situation is easy to be solved.

However, the source processor, which has malicious

faults, may transmit different values to different

processors. This situation is the worst case of the BA

problem and is worth discussing. Therefore, we assume

the source processor is an malicious processor in (4).

Furthermore, the agreement is reached if the following

requirements are satisfied [1, 5, 16, 21]:

� (BA1) Agreement: All healthy service processors

shall agree on a common value v.

� (BA2) Validity: If the initial value of the source is vs,

and the source is fault-free, then all healthy service

processors shall agree on the value vs; i.e., v = vs.

Under these assumptions and requirements, several

protocols [1-2, 5-6, 10-13, 21] have been proposed for

solving such problems. The protocol in Lamport et al.

[10] indicates that fm+1 (fm ≤ ⎣(n-1)/3⎦) rounds (a round

denotes the interval of message exchange) of message

exchange are required to reach a common agreement in

a synchronous fully connected network where n is the

number of processors. Further, Fischer and Lynch [7]

point out that fm+1 rounds are the minimum number of

A Secure Service Agreement Underlying Cloud Computing Environment 1755

rounds needed for sufficient messages to achieve BA

in synchronous network. Therefore, we assume that the

bounds on the processing and communication delays of

healthy components are finite [6, 9].

Based on the reason above, this paper proposes an

efficient and suitable protocol to enhance the reliability

of cloud computing environment by using the

minimum round of message exchange. Besides, the

proposed protocol can still tolerate a maximal number

of faulty processors in a minimal number of message

exchanges under dual failure mode. The detail of

protocol is shown in next Section.

3 Protocol CSA

The Cloud Service Agreement (CSA) we proposed

to solve the BA problem under dual failure mode by

using minimal number of message exchange in cloud

computing environment is shown in Figure 2. The CSA

requires σ rounds of message exchange to reach an

agreement where n > ⎣(n-1)/3⎦+ 2fm+fd and c> 2fm+fd

and includes three phases: message collect phase,

decision-making phase, and secure relay phase. The

descriptions of workflow diagram and parameters are

shown in Figure 3 and Table 1. Besides, the related

explanation can be proven in Section 5.

Figure 2. The cloud computing environment with

faulty components

Figure 3. The workflow diagram of CSA protocol

Table 1. The description of parameter in our protocol

parameter description

n
The total number of service precessors in the

cloud computing environment.

()v s
The initial value of service precessor s

broadcasting to all other service precessors.

()v sc
The value ()v s is sent from the service

processor c.

m
f

The number of service processors with

malicious faults.

d
f

The number of service processors with dormant

faults.

λ
When a service processor is detected to be a

dormant service processor, the value is sent

from is replanced by λ .

c

The connectivity of the cloud computing

environment. Based on Menger’s theorem [3],

at least c disjoint paths must exist between any

pairs of service processors x and y when the

connectivity of the network is c.

i
T

An information collecting tree(ic-tree) of

service processor .

i
sp

i
d The decision value of service process or i.

()
sk i

sign d
The service processor i signs its decision value

i
d by using its signing key sk.

Φ The default value, and {0,1}.Φ∈

σ
The required rounds of message exchange

(1).(1)3nσ ≤ +−⎢ ⎥⎣ ⎦

The main work of the message collect phase is

collecting the service requirement and random key

from users. Subsequently, the received values are

exchanging and storing into corresponding ic-tree (an

information collecting; Ti) [2, 16, 20-22] for each

round. With regard to the ic-tree, it is a convenient tree

structure and is constructed from the accumulated the

messages. The vertex of an ic-tree is labeled with a list

of service processor names, and the value received

from the source processor is denoted as v(s) at the root

of the ic-tree. The service processor name list contains

the names of the service processors through which the

stored message has been transferred.

For example, the statement v(sbc) represents the

service processor having received the value sb from

service processor c which was sent from source service

processor s to service processor b. The vertices having

repeated service processor names of ic-trees are

removed in order to avoid cyclical influences from the

faulty service processors. Therefore, the ic-tree (Ti) can

be used to store the received messages and to eliminate

the influence of faulty components, as shown as Figure

4.

1756 Journal of Internet Technology Volume 19 (2018) No.6

Figure 4. The ic-tree (Ti)

After the message collected phase, the function

VOTE [16, 22] is used to eliminate the influence of

faulty processors by taking a decision vector value

VOTE(s) of the root s of each healthy service

processor’s ic-tree. The decision vector value (dj)

includes the type of service requirement (service chip)

and key (Signsk). The service chip is constructed by

Walsh code [9, 14] to represent the type of service. In

general, each bit time is subdivided into m short

intervals called chips and each type of service is

assigned a unique m-bit code called a chip sequence.

The normalized inner product of any two distinct chip

sequences, S and T (written as S * T), is 0 due to all

chip sequence are pairwise. Based on binary chip

sequence, the represent of bipolar notation is used to

compute the normalized inner product of the received

chip sequence by equation (1). For example, the

service chip (1, 0, 0, 1) can be switched to (+1, -1, -1,

+1). As a result, a user can transmit a 1 bit for specific

type of service.

1

1
*

m

i i

i

S S S S
m

=

= ∑ (1)

However, the low-power service processor may be

exhausted in a cloud computing environment, the tasks

need to be dispatched to other service processor.

Besides, the user may keep to send the request to

server when it migrates to other region. For providing

efficient service, the following requirements need to be

served in local server processors. Therefore, we need

the extra phase, secure relay phase, to transfer the

unfinished works to appropriate service processors.

The service processor relay the package Signsk(task

message) to the service processor which is near to user

in this phase. After receiving Signsk(task message) and

task message, the receiver will verify the signature by

using the corresponding verification key. Eventually,

the neighboring service processor can take over the

unfinished works. The detail of protocol CSA is shown

in Figure 5.

Figure 5. Cloud Service Agreement (CSA) protocol

According to description above, the fm+1 (fm ≤ ⎣(n-

1)/3⎦) rounds of message exchange is necessary to

reach an agreement. Namely, all healthy service

processors can reach an agreement under a cloud

computing environment where n > ⎣(n-1)/3⎦+ 2fm+fd

and c> 2fm+fd.

4 Examples of Execution Procedure

In this section, an example of 8-service processors is

shown to illustrate the CSA protocol in Figure 6. Each

service processors can receive four kinds of service

requirements, the FTP, Email, Web, and DB Services.

Those services have its only chip number, FTP

(01000010), Email (00101110), Web (00011011), and

DB Services (01011100) respectively. Besides, the

service processors spa and spc are assumed as

malicious service processors and service processor spb

as the dormant service processor shown in Figure 6(a).

Basically, the user will send the requirement messages

A Secure Service Agreement Underlying Cloud Computing Environment 1757

including the service chip and random key to service

processors. The service chip can be used to represent

the type of service and then the secure transmission can

be achieved by this random key. Furthermore, the

results of healthy service processors are discussed in

this example to satisfy the requirement of A (BA1).

Besides, the results of faulty service processors are

ignored due to those are trivial thing [13, 16, 21].

(a) The user’s service requirement

(b) The received service requirements in preprocessing

(c) The spd’s ic-tree of in first round of message exchange phase

(d) The first vector value of spd’s ic-tree in second round

of message exchange phase

(e) The value v(d) of first vector value in spd’s ic-tree in

third round of message exchange phase

(f) A VOTE function of the decision-making phase is applied to first vector value in spd

Figure 6. The procedure of CSA in an example of 8-service processors

1758 Journal of Internet Technology Volume 19 (2018) No.6

At the beginning of the protocol, the user sends the

message to service processor to acquire the service in

preprocessing and shows in Figure 6(a). For example,

the user sends the service requirements (01101010)

including service chip (0110) and key (1010) to service

processors. Subsequently, the received service

processors broadcast this requirements to all service

processors. However, the malicious service processors

spa and spc send the different vector value to others, the

details of procedure are shown in Figure 6(b).

After preprocessing procedure, each service

processor broadcasts its a set of initial values (vector)

to each other. For clarity of this example, the result of

healthy service processor spd is illustrated to explain

the exchange process in message collect phase. It is

because that the same steps are required for the other

healthy service processors and the results of the faulty

service processors are not necessary to be discussed.

Subsequently, the spd stores the received vector values

into the root of its ic-tree respectively in the first round

of message collect phase, as shown in Figure 6(c). Due

to the malicious faulty service processor wants to

break-down the agreement, thus the transmitted vector

is changeable for each round. The faulty values are

marked by the shadow and italic.

Subsequently, each service processors exchanges the

received ic-trees with all service processors during the

second round of message collected phase. Similarly,

the first vector value of spd’s ic-tree in second round of

message collected phase is only shown in Figure 6(d)

to make it clear. The procedures of other vector values

are the same. In the third round of message collected

phase, each service processor exchanges the received

ic-trees and stored into the third level of their ic-trees.

Besides, the vertices having repeated processor names

of ic-trees are removed in order to avoid cyclical

influences. Due to the number of message is huge and

complicated, the value v(d) of first vector value in spd’s

ic-tree is also used to explain the result of third round

of message exchange in Figure 6(e).

Finally, the function VOTE is applied to root of first

vector value in spd’s ic-tree to obtain a common value

in the decision-making phase in Figure 6(f).

Subsequently, the other vector values can be required

during this phase, the common results of service

requirements in spd are (01101010). Subsequently, the

normalized inner product of the received chip sequence

can be computed by equation (1) as follows.

(0110) � (0, 0, +2, 0, +2, +4, -2, -2)�Based on

binpolar notation.

Ftp’s service chip = (-1, -1, -1, +1, +1, -1, +1,

+1)• (0, 0, +2, 0, +2, +4, -2, -2)/8=-1

Email’s service chip = (-1, -1, +1, -1, +1, +1, +1, -

1)• (0, 0, +2, 0, +2, +4, -2, -2)/8=1

Web’s service chip = (-1, +1, -1, +1, +1, +1, -1, -

1)• (0, 0, +2, 0, +2, +4, -2, -2)/8=1

DB’s service chip = (-1, +1, -1, -1, -1, -1, +1, -

1)• (0, 0, +2, 0, +2, +4, -2, -2)/8=-1

Based on the computation above, the requirements

of user are the Email and Web services. Subsequently,

the requirements can be transmitted to the

corresponding processors. Since all healthy service

processors will execute the same procedures, a set of

common vector values are also reached in spd, spe, spf,

spg, and sph. Therefore, the CSA protocol can make

each healthy service processor to enhance the

reliability of system even if a large number of service

processors in cloud computing environment.

5 The Correctness and Complexity of CSA

For clarity of this paper, the agreement and validity

property of BA can be proven to show the CSA is

optimal solution in this section.

5.1 Correctness of CSA

At first, this paper defined a vertex α as common [2,

20-22] if each healthy service processor computes the

same value for α. In other words, the value stored in

vertex α of each healthy service processor’s ic-tree is

common to all. Once each healthy service processor

has a common initial value from the source service

processor or user in the root of its ic-tree, an agreement

is reached since the root is common to all. Thus, the

agreement (BA1) and (BA2), can be rewritten as:

(BA1’): Root s is common, and

(BA2’): VOTE(s) = vs for each healthy service

processor, if the source is healthy.

The term common frontier [2, 20-22] is defined as

follows: “If every root-to-leaf path of the ic-tree

contains a common vertex, the collection of the

common vertices forms a common frontier.” In other

words, every healthy service processor collects the

same messages within a common frontier if a common

frontier exists in that healthy service processor’s ic-tree.

Subsequently, using the same voting function VOTE to

compute the root value of the ic-tree to eliminate the

influence of faulty service processor. Subsequently,

every healthy service processor can obtain the same

root value because they utilize the same input and the

same computing function. Due to the above concepts

can be used to prove the correctness of interactive/BA

problem, thus the CSA will follow this way to prove

the correctness.

Before proving the correctness of CSA, the term

correct vertex is defined as:

� Correct vertex: Vertex αi of a tree is a correct vertex

if service processor spi is healthy. In other words, a

correct vertex is a place to store values received

from healthy service processors.

� True value: For a correct vertex αi in the tree of a

healthy service processor spi, val(αi) is the true value

of vertex αi. Namely, the stored value is called the

A Secure Service Agreement Underlying Cloud Computing Environment 1759

true value.

By the definition of a correct vertex, the stored value

in the ic-tree is received from healthy service processor,

and a healthy service processor always transmits the

same value to other service processors. Namely, the

root can be proven to be a common vertex (BA1’) due

to the existence of a common frontier, regardless of the

correctness of a source processor. Based on reasoning

above, an agreement among the root values is reached.

Subsequently, we will check the condition of (BA2’).

Based on (BA2’), we know that when the source

processor fails, the (BA2’) is true. This is because the

propositional logic P�Q indicates (NOT(P) OR Q),

then (NOT(P) OR Q) or (P�Q) is true when P is false;

where P implies “the source processor is healthy” and

(P�Q) implies BA2’. Conversely, root s is a correct

vertex by the definition of a correct vertex if the source

processor is healthy. If all correct vertices’ true values

can be computed by CSA, then the true value of the

root on ic-tree can be computed because the root is a

correct vertex. By definition, the true value of the root

is the initial value of the source processor if the source

processor is healthy. Namely, each healthy service

processor’s root value is the initial value of the source

processor; if the source processor is healthy, then BA2’

is true when the source processor is healthy. In short,

the BA1’ and BA2’ are both true whether the source

processor is healthy or fails, the interactive/BA

problem is solved.

Lemma 1. A dormant faulty service requirement can

detected by means of forwarding technique used in a

cloud computing.

Proof. The healthy destination service processor can

detect the message(s) from dormant faulty components

if the protocol appropriately encodes a transmitted

message by using the Manchester code [9] before

transmission. Besides, there are at most ⎣(n-1)/3⎦ non-λ

value in a vector due to the faulty components are less

than ⎣(n-1)/3⎦ in a cloud computing environment.

Theorem 1. A healthy service processor can detect the

dormant faulty processor in a cloud computing

environment.

Proof. In the protocol CSA, there are σ rounds of

message exchange in message collected phase, where

fm ≤ ⎣(n-1)/3⎦ and n>3, so there are at least two rounds

of message exchange in the message collected phase.

therefore, each processor can receive all other

processors’ messages in the network after two rounds

of message exchange. According to the Lemma 1, each

healthy service processor can detect the dormant faulty

processor in a cloud computing environment.

Lemma 2. All correct vertices of an ic-tree are

common.

Proof. After reorganization, no repeated vertices

remain in an ic-tree. At the level of fm +1 or above, the

correct vertex α have at least 2fm +1 children, out of

which at least fm +1 children are correct. The true value

of these fm +1 correct vertices is common, and the

majority value of vertex α is common. The correct

vertex α is common in the ic-tree if the level of α is

less than fm+1. As a result, all correct vertices of the ic-

tree are common.

Corollary 1. The root is common if a common frontier

exists in the ic-tree.

Theorem 2. The root of a healthy processor’s ic-tree is

common.

Proof. By Lemma 2 and Corollary 1, the theorem is

proven.

Theorem 3. Protocol CSA solves the interactive/BA

problem in cloud computing environment.

Proof. To prove the theorem, one must show that CSA

meets the constraints (BA1’) and (BA2’). (BA1’): Root

s is common. By Theorem 2, (Agreement’) is satisfied.

(BA2’): VOTE(s)=v for all healthy service processors,

if the initial value of the source is vs, say v=vs. Since

most of service processors are healthy, they transmit

the message to all others. As a result, each of the

correct vertices of the ic-tree is common (Lemma 2),

and its true value is v. By Theorem 2, this root is

common. The computed value VOTE(s) = v is stored

in the root for all healthy service processors. (Validity’)

is satisfied.

5.2 Complexity of CSA

The complexity of CSA is judged in terms of: (1) the

minimal number of rounds, (2) the maximum number

of allowable faulty components, and (3) the number of

exchanged messages.

Theorem 4. CSA requires σ rounds to solve the

consensus/BA problem by dual failure mode

(containing malicious and dormant faults) in cloud

computing environment if n>⎣(n-1)/3⎦+2fm + fd and

c>2fm + fd, where fm ≤⎣(n-1)/3⎦, and fm+1 (σ) are the

minimum number of rounds of message exchange.

Proof. Due to the fact that message passing is required

in the message exchange phase, it is very time-

consuming. Fischer and Lynch [7] pointed out that

fm+1 (fm ≤ ⎣(k-1)/3⎦) rounds are the minimum number

of rounds needed to obtain enough messages to achieve

interactive/BA. The unit utilized by Fischer and Lynch

[7] is the processor, so the number of required rounds

of message exchange in cloud computing environment

is σ (σ≤ ⎣(n-1)/3⎦+1). Thus, CSA requires σ rounds and

this number is the minimum.

Theorem 5. The total number of allowable faulty

components by CSA is fm malicious faulty processors

and fd dormant faulty processors, where n> ⎣(n-

1)/3⎦+2fm +fd and c>2fm +fd.

Proof. According to the constraints of the BA problem

for processors which was proposed by Siu et al. [13].

In this study, we use service processors to substitute

the unit of Siu et al., thus the constraints in our

protocol are n > [(n-1)/3] + 2fm +fd, c > 2fm+fd.. In the

worst-case scenario, the malicious faulty service

processors and dormant faulty service processor exist

1760 Journal of Internet Technology Volume 19 (2018) No.6

simultaneously, thus the total number of allowable

faulty components by the CSA is fm malicious faulty

service processors and fd dormant faulty service

processors.

Theorem 6. The total number of messages in the CSA

is cnσ.

Proof. The protocol CSA must use the ic-trees to reach

a set of common value. The ic-tree is constructed from

the message collected phase of each round, and thus

we have cnσ (c represents a constant) messages in each

ic-tree.

As a result, the CSA utilizes the minimum number

of rounds and tolerates the maximum number of faulty

processors of all systems in order to ensure that all

healthy service processors reach a common agreement.

The superiority of the protocol is thus proven.

6 Conclusion

In this study, the service chip and random key can

be used to recognize the type of service safely in a

cloud computing environment with respect to dual

failure mode in fallible processors. Besides, the

proposed protocol CSA is more adapting to

changeability of network than, such as the mobility of

processors than previous works [11, 13, 16, 22].

Furthermore, the loading of service processors may

overload with a large number of requirements. For

reducing workload of service processors, the service

requirements of user in this paper can be relocated and

dispatched to appropriate service processor safely and

efficiently after a service agreement is obtained.

Finally, the proposed protocol can tolerate a

maximal number of faulty processors in a minimal

number of message exchanges under dual failure mode

by using minimal number of message exchange. The

reliability of cloud computing environment is enhanced

and is more efficient than the others [7, 10-11, 13, 16,

18, 20-22].

However, the requests of users are allocated to

different places and are sent to processor at anytime. In

the future, the type of transmission medium failure will

be considered to enhance the reliability in a cloud

computing environment.

References

[1] I. Abraham, D. Dolev, Byzantine Agreement with Optimal

Early Stopping, Optimal Resilience and Polynomial

Complexity, Proceedings of the Forty-Seventh Annual ACM

on Symposium on Theory of Computing, Portland, Oregon,

2015, pp. 605-614.

[2] A. Bar-Noy, D. Dolev, C. Dwork, H. R. Strong, Shifting

Gears: Changing Algorithms on the Fly to Expedite

Byzantine Agreement, Information and Computation, Vol. 97,

No. 2, pp. 205-233, April, 1992.

[3] C. Cachin, S. Schubert, M. Vukolić, Non-determinism in

Byzantine Fault-tolerant Replication, arXiv preprint arXiv:

1603.07351, 2016.

[4] N. Deo, Graph Theory with Applications to Engineering and

Computer Science, Prentice-Hall, 1974.

[5] D. Dolev, R. Reischuk, Bounds on Information Exchange for

Byzantine Agreement, Journal of the ACM (JACM), Vol. 32,

No. 1, pp. 191-204, January, 1985.

[6] M. J. Fischer, The Consensus Problem in Unreliable

Distributed Systems (A Brief Survey), Proceedings of the

1983 International FCT-Conference on Fundamentals of

Computation Theory, Berlin, Heidelberg, 1983, pp. 127-140.

[7] M. J. Fischer, N. A. Lynch, A Lower Bound for the Time to

Assure Interactive Consistency, Information Processing

Letters, Vol. 14, No. 4, pp. 183-186, June, 1982.

[8] C. Gong, J. Liu, Q. Zhang, H. Chen, Z. Gong, The

Characteristics of Cloud Computing, Proceedings of the 39th

International Conference on Parallel Processing Workshops,

San Diego, CA, 2010, pp. 275-279.

[9] F. Halsall, Data Communications, Computer Networks and

Open Systems, 4th ed., Addison-Wesley, 1995.

[10] L. Lamport, R. Shostak, M. Pease, The Byzantine Generals

Problem, ACM Transactions on Programming Languages

and Systems, Vol. 4, No. 3, pp. 382-401, July, 1982.

[11] A. Mostéfaoui, H. Moumen, M. Raynal, Signature-free

Asynchronous Binary Byzantine Consensus with t < n/3, O(n2)

Messages, and O(1) Expected Time, Journal of the ACM

(JACM), Vol. 62, No. 4, Article No. 31, August, 2015.

[12] P. K. Sangdeh, M. Mirmohseni, F. Poursabzi, Applying the

Byzantine Agreement in Wireless Sensor Networks Based on

Clustering, 2015 IEEE 23rd Iranian Conference on Electrical

Engineering, Tehran, Iran, 2015, pp. 619-624.

[13] H. S. Siu, Y. H. Chin, W. P. Yang, A Note on Consensus on

Dual Failure Modes, IEEE Transactions on Parallel and

Distributed Systems, Vol. 7, No. 3, pp. 225-230, March, 1996.

[14] A. S. Tanenbaum, Computer Networks, 4th ed., Prentice-Hall,

2003.

[15] L. M. Vaquero, L. R. Merino, J. Caceres, M. Lindner, A

Break in the Clouds: Towards a Cloud Definition, ACM

SIGCOMM Computer Communication Review, Vol. 39, No. 1,

pp. 50-55, January, 2009.

[16] S. S. Wang, S. C. Wang, The Consensus Problem with Dual

Failure Nodes in a Cloud Computing Environment,

Information Sciences, Vol. 279, pp. 213-228, September,

2014.

[17] S. S. Wang, K. Q. Yan, S. C. Wang, An Optimal Solution for

Byzantine Agreement under a Hierarchical Cluster-oriented

Mobile Ad-hoc Network, Computers and Electrical

Engineering, Vol. 36, No. 1, pp. 100-113, January, 2010.

[18] S. C. Wang, S. S. Wang, K. Q. Yan, L. H. Chang, C. P.

Huang, Reaching Fast Agreement in a Generalized Cloud

Computing Environment, Journal of Internet Technology,

Vol. 11, No. 7, pp. 975-984, December, 2010.

[19] S. C. Wang, K. Q. Yan, C. L. Ho, S. S. Wang, The Optimal

Generalized Byzantine Agreement in Cluster-based Wireless

Sensor Networks, Computer Standards & Interfaces, Vol. 36,

No. 5, pp. 821-830, September, 2014.

A Secure Service Agreement Underlying Cloud Computing Environment 1761

[20] S. C. Wang, K. Q. Yan, S. S. Wang, G. Y. Zheng, Reaching

Agreement among Virtual Subnets in Hybrid Failure Mode,

IEEE Transactions on Parallel and Distributed Systems, Vol.

19, No. 9, pp. 1252-1262, September, 2008.

[21] K. Q. Yan, S. C. Wang, Grouping Byzantine Agreement,

Computer Standards & Interfaces, Vol. 28, No. 1, pp. 75-92,

July, 2005.

[22] K. Q. Yan, S. S. Wang, S. C. Wang, Reaching an Agreement

under Wormhole Networks within Dual Failure Component,

International Journal of Innovative Computing, Information

and Control, Vol. 6, No. 3(A), pp. 1151-1164, March, 2010.

[23] S. Zhang, S. Zhang, X. Chen, X. Huo, Cloud Computing

Research and Development Trend, Proceedings of Second

International Conference on Future Networks, Sanya, Haina,

China, 2010, pp. 93-97.

[24] Amazon, Amazon Elastic Compute Cloud, http://aws.amazon.

com/ec2.

[25] Gartner, Gartner Says Cloud Computing Will Be As

Influential As E-business, http://www.gartner.com/it/page.

jsp?id=707507/.

[26] Google, Google App Engine, http://code.google.com/appengine/.

[27] IBM, IBM Blue Cloud Project [URL], http://www03.ibm.

com/ press/us/en/pressrelease/22613.wss/.

[28] Microsoft, Windows Azure, http://www.microsoft.com/

windowsazure/windowsazure/

Biography

Mao-Lun Chiang received the Ph.D.

degree in Department of Computer

Science from National Chung-Hsing

University, Taiwan. He is an

associate professor in the Department

of Information and Communication

Engineering at the Chaoyang

University of Technology, Taiwan. His current

research interests include mobile computing, fault

tolerant computing, and cloud computing.

1762 Journal of Internet Technology Volume 19 (2018) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

