
An Energy-aware Method for Multi-domain Service Function Chaining 1727

An Energy-aware Method for Multi-domain Service Function

Chaining

Qi Xu, Deyun Gao, Huachun Zhou, Wei Quan, Wenfeng Shi*

School of Electronic and Information Engineering, Beijing Jiaotong University, China

{15111046, gaody, hchzhou, wquan, 14111038}@bjtu.edu.cn

*Corresponding Author: Qi Xu; E-mail: 15111046@bjtu.edu.cn

DOI: 10.3966/160792642018111906010

Abstract

As the fast increasing of multi-domain networks,

energy efficiency has been widely focused on and

become a critical issue in service function chaining (SFC).

In this paper, we propose an energy-aware method for

multiple SFC-enabled domain networks. Firstly, based on

hierarchical SFC (hSFC), we propose a hierarchical

control architecture to support the orchestration that

allows service chains across multiple domains. Secondly,

this paper proposes an energy-aware service function

chain placement (EA-SFCP) algorithm that minimizing

the power consumption of each service chain. Thirdly, we

also propose an energy-aware service function chain

migration (EA-SFCM) algorithm to improve the overall

energy efficiency of the network. Finally, we

implemented the proposed algorithms and conducted

comparison simulations with existing algorithm to

evaluate their performance. The results show that can

reduce power cost at least 33.3% over the candidate

algorithm.

Keywords: SFC, Energy-aware, Multi-domain networks,

SFC placement, SFC migration

1 Introduction

The ever-increasing services and applications bring

huge challenges for efficiently service delivery [1-2].

Service function chaining (SFC) provides a network

capability by steering traffic through a chain-ordered

set of service functions (SFs) to achieve the flexible

network management and service provision [3]. SFC is

not a new concept, which is originated from two

emerging technologies called software defined

networking (SDN) and network function virtualization

(NFV). On the one hand, SDN decouples the control

plane and the data one, and provides appropriate

programming abstractions to control traffics to

correctly traverse SFs in order. On the other hand,

NFV enables the virtualization of software-

implemented SFs which can be more efficiently and

dynamically chained. Thanks to the intertwinement

between SDN and NFV technologies, it makes the SFC

implementation feasible getting rid of the limitation of

the traditional network [4].

Energy consumption has currently become a critical

issue for the datacenters. In 2009, the datacenters in

China consumed over 36 TWh power consumption

occupying 1.2% of the total power consumption in

China. What’s more, the Figure further increased to 70

TWh in 2011 [5]. The worldwide datacenters

consumed 268 TWh power consumption in 2012 [6].

According to the study [7], even at the off-peak period,

idle servers still consumes about 60% of power,

resulting in energy waste. In such environment where

SFs are implemented as software on virtual machines

(VMs) which running on the physical servers, the

locations of service chains have an important impact

on the energy consumption in datacenter networks.

This paper provides a n energy-aware method for

multiple SFC-enabled domain networks based on

hSFC architecture. In this solution, we focus on two

points to reduce energy consumption, including service

chain placement and service chain migration. Both of

them have significant impacts on resource utilization

and energy efficiency. In particular, the service chain

placement refers to that the SFC-enabled network

needs to provision sufficient physical resources (eg.

SFs or link bandwidth) when receiving a service

request, and to release corresponding physical

resources when the request expires. The service chain

migration refers to re-orchestrate the service chains

that has been placed according to a certain

optimization goal. To the best of our knowledge, there

are few efforts toward the energy-efficiency problem in

multi-domain SFC-enabled networks. The main idea of

our proposed approach is to occupy as few physical

resources as possible to accommodate as many as

service requests and to turn off the lightly loaded

network equipment if possible. The main contributions

of this paper can be summarized as the following three

aspects. Firstly, a hierarchical control architecture is

proposed for hierarchical SFC (hSFC) that

compartmentalizes a large-scale network into multiple

administration domains [8]. Secondly, EA-SFCP

algorithm is designed to find an energy efficient

placement that minimizing power consumption of each

1728 Journal of Internet Technology Volume 19 (2018) No.6

service chain. Thirdly, EA-SFCM algorithm is also

proposed to reduce the total energy consumption of the

entire network. We implement the energy-aware

method by Microsoft Visual Studio and conduct

comparison simulations with existing algorithm

proposed in [9] to evaluate the performance. The

results show that our proposed algorithm can reduce

power cost at least 33.3% over the compared algorithm.

The rest of this paper is organized as follows. In

Section 2, we discuss related works. Then, a

hierarchical control architecture is presented in Section

3. In Section 4, we detail EA-SFCP algorithm and EA-

SFCM algorithm. The simulation results are presented

in Section 5. Section 6 concludes this paper.

2 Related Works

This section presents the background information

about service function chaining and service chain

placement approaches.

2.1 Service Function Chaining

SFC has been deployed by network operators for

many years. Many service functions such as firewall

are used by network operators in the delivery of

services to end users. The common SFs deployment is

to insert a specific dedicated device in the routing path

between communicating peers. Therefore, complex

modifications are involved into the network

configuration. What’s more, expensive devices make

traditional SFC has low scalability and availability.

The rise of SDN and NFV provides flexible traffic

steering and efficient SFs deployment. And several

research institutions have started to investigate service

function chaining from different aspects. In 2013, IETF

established the SFC Working Group to define the

architecture of SFC, the necessary protocols, several

use-cases, and the mechanisms for steering traffic and

so on [3]. ETSI NFV group focused on the

management and orchestration of virtualized network

functions (VNFs), and its VNF forwarding graph

concept is very relevant to SFC [10]. Moreover, the

SFC project in OpenDaylight foundation aims to

develop and apply service chains [11].

2.2 Service Chain Placement Approaches

There are many works with the discussion of the

placement problem of SFs and SFC. Ma et al. [12]

investigated the traffic changing effects of

middleboxes, and proposed an optimal solution to

deploy NFV middleboxes efficiently to achieve

optimal network performance. Sahhat et al. [13]

presented the idea of service decomposition which was

similar with the hierarchy of SFC, and proposed two

algorithms to embed network services to the shared

network infrastructure to minimize the mapping cost

by making appropriate decompositions of network

functions. Besides, three greedy algorithms are

presented in [14] to address the online virtual function

mapping and scheduling problem. Hirwe and Kataoka

[15] described an approach to address the VNF

placement problem, called LightChain. It utilized a

heuristic way to optimize the placement of VNFs

across service chains in the network in a polynomial

run time. However, only a few works discussed about

the placement problem of SFC in multi-domain

networks. Medhat et al. [9] proposed a near optimal SF

selection algorithm in a multi-datacenter environment.

Zhang et al. [16] described a distributed computing

algorithm for mapping a service function chain request

in multi-domain networks. Chien et al. [22] proposed a

service-oriented SDN-SFC load balance mechanism.

The above work is either to discuss how to optimize

the placement of SFs in a single domain or discuss how

to implement service chains in multi-domain networks.

None of these efforts take energy efficiency into

consideration. Distinguishing from them, this paper

aims to resolve the energy efficiency problem in

multiple SFC-enabled domain networks.

3 Hierarchical Control Architecture

In this section, we introduce a hierarchical control

architecture based on the hSFC architecture

3.1 Hierarchical SFC

For implementing service chains that across multi-

domain networks, Dolson et al. [8] initiated

hierarchical SFC (hSFC) architecture in IETF SFC WG.

As shown in Figure 1, hSFC divides a large-scale

network into multiple level domains: top-domain is

similar to a wide area network and connects multiple

sub-domains. The data plane of each domain consists

of four types of components, named service functions

(SFs), classifiers (CFs), service function forwarders

(SFFs) and internal boundary nodes (IBNs),

respectively. In NFV, SFs are usually hosted in

physical service nodes (SNs) as VMs and responsible

for specific treatment of received packets. CFs are used

to select which traffic enters an SFC-enabled domain

by matching the classification rules. SFFs are

responsible for forwarding traffic to one or more

connected SFs, as well as SFFs. IBNs are located

between top-domain and sub-domains, responsible for

bridging packets. IBN has different meanings for

different domains. It behaves as a SF to the higher

level, but as a CF or SFF to the lower level.

However, the standardization is still in progress and

research on the control plane of the service chain is just

the beginning. Boucadair [17] described requirements

for exchanging information between SFC control plane

and SFC data plane components, but it does not

consider inter-domain problem. And Dolson et al. [8]

discussed that each control plane manages a single

An Energy-aware Method for Multi-domain Service Function Chaining 1729

SFF1 SFF2

SFF12

SFF11

SFF21

SFF22

Top-domain

Sub-1 Sub-2

Ingress
Egress

SN22

{sf3, sf4}

SN21

{sf5}SN11

{sf1}

SN12

{sf1, sf2}

IBN1

{SF1}
IBN2

{SF2}

Top-domain

Control plane

Sub-2

Control plane

Sub-1

Control plane

Figure 1. The hierarchical SFC architecture

level domain so that to reduce the complexity of

management and orchestration. As far as we know,

there is not a specific scheme for SFC control plane,

especially for control hierarchy.

3.2 Hierarchical Control Architecture

We present the hierarchical control architecture for

hSFC, displayed in Figure 1. For the sake of clarity, it

only consists of two levels of hierarchy. If desired, the

SFs in sub-domain also could be an independent sub-

domain. All components in data plane are defined in

IETF SFC architecture RFC [3], with the exception of

Service Node (SN) that is able to host SF instances.

The ingress and the egress are the gateways of the

SFC-enable network, which play a role of the classifier.

Moreover, there are four kinds of interface between

control plane and data plane, namely C1, C2, C3, and

C4 [17]. Due to IBN behaving as a SF to top-domain, it

is controlled by interface C3 or C4. Besides, IBN acts

as a classifier and a SFF of end-of-chains to sub-

domain, it exchanges information with sub-domain

control plane via interface C1 and C2. In this

architecture, each level of hierarchy of domains is

independent, which means each control plane is only

responsible for managing SFC of the local domain.

Further, the orchestration of control plane in top-

domain is at a coarse level. Each SFC in top-domain

consists of an order of complex SFs. Complex SF is a

logic SF which is actually a SFC composed by more

refined SFs within a certain sub-domain. Control plane

in top-domain does not need to be responsible for

orchestrating these SFCs within the sub-domains.

When a complex SF is invoked by top-domain, it looks

like that a sub-domain receives a service request from

top-domain. Then, sub-domain executes fine-grained

SFC orchestration to provide the requested service the

complex SF should provide.

As we know, there are no standard protocol for the

communication between the control plane and the

components on the data plane. In this paper, we focus

on the required information to be conveyed between

IBN and Top/Sub-domain control plane via interface

C3/C1, and design a control protocol for it. In general,

the communication mechanism between IBN and

control plane is shown in Figure 2. It is important that

the control protocol works well for the hierarchical

control architecture of hSFC. In the procedure of

hierarchical orchestration, once a complex SF is

invoked by top-domain control plane, it will be

happened that the relevant sub-domain control plane

should carry out the SFC instantiation to provide the

invoked complex SF for top-domain. Besides, for

dynamic, an IBN acts as a SN in top-domain, maintains

its resource information which could be the sum of all

SNs in a sub-domain and updated by the sub-domain

control plane. Thus, the availability of the invoked

complex SF must be guaranteed.

2.SF Request

3.SFC Request

6.SFC Ack

7.SF Ack

Control Plane

of Top-domain

Control Plane

of Sub-domain
IBN

4.SF Request

SN

5.SF Ack

Figure 2. The delivery of signaling messages

As shown in Figure 2, there are four kinds of

message type between IBN and control plane. To our

knowledge about the required information by

hierarchical orchestration, we design their message

formats are show in Figure 3. All kinds of message

format contain a message header which is constituted

by two fields, named by Request ID and Type

respectively. Request ID is the identifier of a SFC

request from user/IBN or a SF request from control

plane. Type represents the type of message which is

applied to distinguish these messages as follows:

‧ 0: ACK message

‧ 1: SFC request message

‧ 2: SF request message

(c) SFC request

(b) SF request

Type

SF Type Class of Capacity

Request ID

Service Path ID Service Index

(a) ACK

State

Length

TypeRequest ID

SF Type Class of Capacity

SF Type Class of Capacity

Request ID Type

... ...

Figure 3. The proposed signaling message format

SFC request message consists of three part: (1)

message header; (2) Length field that means the

number of required SFs in the SFC; (3) SF Type fields

and Class of Capacity fields. The length of the third

part is variable, which is determined by the Length

1730 Journal of Internet Technology Volume 19 (2018) No.6

field. SF Type field represents the type of the required

SF (e.g. firewall, NAT). And the order of SF Type

fields once be decided, it is fixed during the procedure

of orchestration. Each SF Type field follows a Class of

Capacity field, which stands for the resource

requirement of the required SF.

SF request message is a part of SFC request

message, actually. It also consists of three part: (1)

Message header; (2) SF Type field and Class of

Capacity field; (3) SFP information which includes

Service Path ID (SPI) field and Service Index (SI) field.

The SFP information represents the SFC invokes the

requested SF.

ACK message contains a message header and a state

field. The state field represents the result of a SF/SFC

request, and it has two values: it equals to 1 if the

request represented by the Request ID field succeeds,

otherwise it equals to 0.

4 Energy-aware Service Chain Method

In this section, we describe the problem, and present

the power consumption formula. Then we propose two

heuristic algorithms, EA-SFCP and EA-SFCM, to

improve the energy efficiency of network together.

Finally, we detail the SFC placement in multi-domain

networks.

4.1 Problem Description

As detailed in Section 3, each domain in the hSFC

architecture is independent with other ones.

Consequently, the multi-domain energy efficiency

problem can be simplified into several independent

single-domain sub-problems. This article tries to

improve energy efficiency at two aspects: energy-

aware SFC placement and energy-aware SFC

migration. The former one refers to that given a

substrate network G with an amount of physical

resource, finding a placement scheme for a given

service request Gv that makes the additional power

consumption minimum after deploying it. The latter

one refers to migrating the workload on the light-load

SN nodes to other SN nodes.

4.2 Power Consumption Model

We model the substrate network as an undirected

weighted graph G = (N, L), where N and L denote the

set of physical nodes and physical links, respectively.

The physical nodes are divided into three categories

according to their own role, denoted as NSN, NSFF, NCF,

respectively. That is N = (NSN, NSFF, NCF). An

assumption is made that one SFF only attaches one SN

node. Besides, we also assume the amount of CPU

resource as the constraint of SN node, and the

bandwidth as the resource constraint of link. Each SN

j SNn N∈ has residual CPU capacity described by Cj.

Each physical link
,j kl L∈ represents the connectivity

between node j and node k, and its residual bandwidth

capacity denoted as Bj,k. Similar to the substrate

network, a service request is represented as a directed

weighted graph Gv = (Nv, Lv), where Nv and Lv denote

the set of required SFs and related virtual links,

respectively. Here, Nv = (sf1, …, sfi), where sfi

represents the ith SF in a given service request Gv. The

resource requirements associated with relevant SFs and

virtual links required by Gv, are denoted as ci and bi-1,i,

respectively.

The following is the formulas for calculating the

energy consumption of each service chain in this

article.

Power cost of a service chain. The power cost of a

service chain Gv is composed by the power cost of SNs

and links, calculated as follows:

 ()
v SNs Links

P G P PΔ = Δ + Δ (1)

Service node power cost. The additional SN power

cost for placing a requested SFC is calculated by:

i i

SNs i N j N j jv SN
P x PN

∈ ∈
Δ = ∑ ∑ Δ (2)

where i
jPNΔ denotes the additional power cost for

placing a SF
i v

sf N∈ on a SN j SNn N∈ , i
jx is a

binary variable indicates if the SF is successfully

placed.

Fan et al. [18] had studied the power model at the

machine level. They found the workload in CPUs made

a major contribution to the power consumption of a

server and the relationship between them was

consistent with an empirical non-linear model. Thus,

the additional power cost for placing a SF can be

calculated as follows:

 () (2)i r
j j idle busy idlePN P P P u uθΔ = ⋅ + − ⋅ − (3)

where Pidle represents the power cost of an idle server,

Pbusy is the power cost of a busy one, u represents CPU

utilization, and r is a parameter used to minimize the

square error [19]. θ is a binary variable. If θ=1, service

node SNj is inactive.

Link power cost. The total link power cost for placing

a requested SFC can be calculated as follows:

 1, 1,
, ,1, ,

i i i i
Links l L l L j k j ki i v j k
P y PN

− −

∈ ∈
−

Δ = ∑ ∑ Δ (4)

Where 1,
,

i i
j kPL
−

Δ denotes the additional power

consumption for mapping a virtual link 1,i i v
l L
−

∈ on a

physical link
,

,j kl L∈ 1,
,
i i
j ky
− is a binary variable

indicates if the virtual link is successfully mapped.

In [20], the power cost of links is composed by a

static contribution due to the line cards and by an

additional term due to the repeaters. The additional

power cost for mapping a virtual link is given by:

An Energy-aware Method for Multi-domain Service Function Chaining 1731

1,1,

,

,

(,)
()

i ii i
j k r lc

j k

bDis j k
PL P P

BWρ

−

−

Δ = ⋅ + ⋅ (5)

where Pr denotes the power consumption of a repeater,

Plc is the power consumption of a line card, ρ

represents the distribution density of repeaters on the

link, and BWj,k means the total bandwidth capacity of

the physical link connects node j with node k.

4.3 Energy-aware SFC Placement Algorithm

In the real network, service requests arrive and

expire over time. They are usually temporary and

dynamic, and can only exist for some time. The EA-

SFCP algorithm aims to resolve service chain

placement problem in the real network. It is able to

produce an energy-efficient placement scheme for each

service request so that reducing the overall energy

consumption of the network. The main idea of our

proposed algorithm is to occupy as few physical

resources as possible to accommodate as many SFCs

as possible and to turn off the idle equipment of the

network. Due to the dynamic nature of service requests,

we defined three queues, namely Q, Qsuc and Qrun for

purposes. Q is the queue of arrival service requests.

The EA-SFC algorithm computes SFC placement

scheme for service requests in the queue Q. Qsuc that is

a subset of Q, denotes the queue of those service

requests that succeeded to place on the network. At last,

Qrun is a subset of subset Qsuc, and denotes the queue of

those service requests that have been placed in the

network and have not yet expired. During the

procedure of SFC placement, we do not only consider

SF resource constraint, but also satisfy link resource

constraint. The pseudo-code of the energy-aware SFC

placement algorithm is given as follows:

Algorithm 1. EA-SFCP Algorithm

Input: G, Q, η

Output: Energy-efficient SFC placement solution sfp

1 For
v

G Q∈ do

2 For
i v

sf N∈ do

3 Find the set of all available SNs .

i SN
n N∈

4 Sort nj according to uj in nondecreasing order.
5 For

i SN
n N∈ do

6 Compute
i
jPNΔ based on equation(1)

7 For
,j kl L∈ do

8 If
, ,

(1)j k j kB BWη≤ − ⋅ then

9 Set weight as INF.
10 Else

11 Set weight as 1,
,

i i
j kPL
−

Δ based on equation (5)

12 Compute the shortest weighted path Lshort.
13 Goto Step 5

14 Select nj with lowest 1,
,().i i i

j j kPN PL
−

Δ + Δ

15 Return SFC_Placement_Faild
16 Push Gv into Qsuc and Qrun.

17 Update PΔ , sfp, and residual network resources.

18 If Gv expired then

19 Release occupied resources.

20 Push Gv out from Qrun.

21 Goto Step 1

22 Return SFC_Placement_Success

When a service request arrives, its power cost PΔ

can be calculated based on equation (1). EA-SFCP

traverses all available SN nodes for placing a series of

wanted SFs in the service request. Meanwhile, we use

the Dijkstra algorithm to calculate the shortest

weighted path for the virtual link between adjacent SFs.

The weight of each physical link is different and

represents its power consumption, calculated by

equation (5). Obviously, the shortest path must connect

the current SN node with the SN node hosts the

previous SF. The sum of power cost by the SN node

and power cost by the shortest path will be calculated.

When all the SN nodes have been traversed, the SN

node and path with the lowest additional power cost

will be selected to place the requested SF and its

neighbor link. Above process will be repeated until all

SFs in the service request are placed. Note that, for the

first SF in a SFC, the shortest weighted path is

calculated between the ingress node and the current

selected node. For the last SF in a SFC, the shortest

path is calculated between the service node that hosts

previous SF and the current selected node in addition

to the path between the current selected node and the

egress node. When the service request expires, the

corresponding occupied network resources should be

released and the service request is pushed out from the

queue Qrun. Furthermore, we define a parameter for

each physical link called load balance factor η, which

takes the value between 0 and 1. It determines the

upper limit of the residual bandwidth resources Bj,k for

physical link lj,k to reserve a certain amount of

redundant bandwidth, so as not to exhaust total

bandwidth and occur traffic congestion. When the

residual bandwidth of a link is less than the redundant

bandwidth, the weight of the link is set to infinity so

that it is ignored when calculating the shortest

weighted path. Thus, it provides a tradeoff between

traffic load and energy efficiency.

Algorithm 2. EA-SFCM Algorithm

Input: G, Qrun

Output: new placement solution sfp

1 Find the set of all available SN nodes .j SNn N∈

2 Sort nj according to the value of stress in

 nondecreasing order.

3 For j SNn N∈ do

4 Find the already placed SF instances
i SF

sf N∈

1732 Journal of Internet Technology Volume 19 (2018) No.6

5 Sort ni according to resource capacity

 in decreasing order.

6 For
i SF

sf N∈ do

7 Update the physical resource record.

8 Refind the suitable SN node nbest and links Lbest

 with lowest PΔ based on Algorithm 1.

9 If Refind succeed

10 Migrate sfi from nj to nbest and its relevant links

 Update sfp and the physical resource record.

11 Else
12 Recover the physical resource record.
13 Goto Step 6
14 End for
15 Return SFC_Migration_Success

16 End for

4.4 Energy-aware SFC Migration Algorithm

The main idea of EA-SFCP algorithm is to minimize

the additional power consumption after mapping one

service chain, thereby reducing the total power

consumption of the entire network. However, there is a

detail problem that is not taken into account. With the

arrival of new service requests and the expiration of the

old ones, the distribution of residual resource of

substrate network is constantly changing. The

placements of some service requests may produce the

lowest power consumption at the beginning by using

EA-SFCP algorithm. But after a period of time, the

distribution of the residual resources has changed so

that there may be much greener placements making the

current ways is not so energy-efficient. Therefore, a

desirable approach would be to remapping the SFCs

that has already been mapped at regular intervals to

gain more energy saving. In this section, we propose a

heuristic algorithm to remapping the current already

mapped service chains, called Energy-aware SFC

Migration algorithm. EA-SFCM algorithm tries to

migrate virtual resource requirements from one place

to another much more appropriate place in the

substrate network by the way of remapping. The

optimization goal of EA-SFCM algorithm is to reduce

the total power consumption of the entire network

while keeping current SFCs has been placed to work

properly. In this paper, we refer to the definition of

stress in [21], which means the number of virtual

instances mapped on it.

The pseudo-code of EA-SFCM algorithm is detailed

in Algorithm2. Once the EA-SFCM algorithm begins

to execute, it will traverse all of the SN nodes in an

increasing order according to their stress values.

Specially, for each SN node, the group of SFs that have

been placed on top of it are arranged in descending

order according to the value of their computing

resource requirements. This ensures that the service

requests that occupy more virtual resources are

processed first. EA-SFCM algorithm will them

perform remapping operations on these SF requests

and associated virtual links request in turn. The

remapping operations are based on Algorithm 1. It will

recalculate a new placement scheme for the virtual

resource request. Then it compares the power

consumption between the new placement and the old

placement. If the new placement consumes less power,

it migrates the SF request from the current SN node to

the new SN node. If not, keep the current placement

unchanged.

Figure 4 shows a simple example of service

migration. As shown in Figure 4a, there are three SFCs

that have been placed in the substrate network. After

executing EA-SFCM algorithm, the two SFs in SFC 3

are remapped as shown in Figure 4a, and migrated to

the new SN nodes as shown in Figure 4b. In such case,

the idle SN nodes also can be shut down to save energy.

Ingress

Egress

Migration

M
ig
ra
tio

n

SFC 1

SFC 2

SFC 3

Service Node

SF Forwarder

Physical links

virtual links

(a)

Ingress

Egress

(b)

Figure 4. Migration of an already placed SFC

4.5 Multi-domain SFC Placement

As mentioned above, the orchestration, provisioning

An Energy-aware Method for Multi-domain Service Function Chaining 1733

and migration of SFCs between different domains are

independent in the hSFC architecture. Taking

advantage of this feature, the problem of SFC

placement in multi-domain can be simplifiedinto

several independent sub-problems in a single domain.

A clear example of SFC placement in multi-domain

is given in Figure 5. In general, service requests in

queue Q enter the SFC-enabled network through the

ingress gateway. First, the top-domain is responsible

for achieving coarse-grained placement. The EA-SFCP

algorithm is executed to allocate the required network

resources for received service request. Therefore, after

being orchestrated, IBN1 and IBN2 are responsible for

providing SF1 and SF2, respectively. Note that SF1

and SF2 are logical service function, which actually are

SFC in their own sub-domain. Second, the two IBNs

split the service request received by the top-domain

into two sub service requests, and deliver to the

corresponding sub-domains. Third, sub-domains are

responsible for achieving fine-grained placement for

received sub service requests. The two sub-domains

also execute the EA-SFCP algorithm on the requests.

In this case, a full SFC placement in multi-domain

networks is successfully completed, and the service

request is pushed into the queue Qsuc and Qrun. Traffic

flow will be routed along the programed path and

service functions. When the service request expires,

each network domain needs to release the

corresponding occupied network resources and the

service request is pushed out from the queue Qrun.

Based on the SFC placement by performing EA-SFCP

algorithm, EA-SFCM algorithm is executed

periodically to re-orchestrate already placed SFCs in

the queue Qrun for improving energy efficiency. For

simplicity, in the following, we call it Green SFC (G-

SFC) algorithm that integrates EA-SFCP algorithm and

EA-SFCM algorithm.

Service Request:

SF1->SF2

Sub request

SF1:sf1->sf2

SFF1 SFF2

SFF12

SFF11

SFF21

SFF22

Top-domain

Sub-1 Sub-2

Ingress Egress

SN22

SN21

SN11

 SN12

IBN1

{SF1}
IBN2

{SF2}

Sub request

SF2 :sf3->sf4->sf5

sf1 sf2

sf3 sf4 sf5

Figure 5. An example of SFC placement in multi-

domain networks

5 Evaluations

In this section, we validate and evaluate our

proposed architecture and algorithms by conducting

simulations in realistic network, and perform

comparisons with existing algorithm.

5.1 Simulation Setup

The topology of the infrastructure network in our

simulation consists of one top-domain and 8 sub-

domains, as show in Figure 6. The network topology of

top-domain uses the topology of a real network, called

the China Education and Research Network

(CERNET), which includes 2 gateways as classifier

and 8 SFFs from SFF1 to SFF8. Each SFF in top-

domain is connected with an independent sub-domain

which includes one IBN, 4 SFFs and 4 SNs. The

number marked on the link indicates the length of the

link in kilometers. As mentioned above, each sub-

domain acts as a SN to top-domain and each SFC in

sub-domain acts as a complex SF to top-domain. The

traffic flow starts at the ingress, and leaves the network

from the egress after passing through several SFs.

1 300

240

0

6 7 8

2 3

2

54

410

180

310

280

290400

200

750

500

230

320

600

890

CF

CF

Egress

Ingress

IBN

5.1 5.2

5.3 5.4

SN4

SN1

SN3

SN2

Top-domain Sub-domain

IBN

Figure 6. The infrastructure network topology

With regard to the physical resource capacity of the

infrastructure network, we made the following

assumptions. We assume the CPU capacity as the

computing resource and the bandwidth as the link

resource. For the top-domain, the total capacity of CPU

of each sub-domain is equal to 400 units. The

bandwidth capacity of each link is equal to 400G in the

top-domain. The propagation delay is up to the total

distance of links through the traffic flow passes. For

example, the shortest distance between SFF1 and SFF3

is 710km. For each sub-domain, the CPU capacity of

each SN is equal to 100 units. And we assume that

each link of the sub-domains has enough bandwidth for

mapping a service request and the propagation delay in

sub-domain can be neglected. We predefined 4 types of

SFCs for every sub-domain to provide 4 types of

complex SFs for the top-domain. The value of

parameters used in our power consumption model is

summarized in Table 1.

1734 Journal of Internet Technology Volume 19 (2018) No.6

Table 1. Parameter used in the model

Parameter Description Value

Pidle The power cost of an idle server. 165W

Pbusy The power cost of an busy server. 166.5W

Pr The power cost of a repeater 1kW

Plc The power cost of a line card 100W

ρ The distribution density of repeaters

on the link
70km/per

Besides, in our simulation, 5,000 service requests

will be generated randomly, and consist of a given

number of SFs. We assume that the CPU resource

required by each SF is randomly among [0, 20]

memory units, and the bandwidth resource required by

each service request is randomly among [0, 20] Gbps.

Similar to most prior studies, the arrival and expiration

of the service request follow the Poisson process with

parameters α and β, respectively. The α determines the

time interval of service request arrival, and the β

determines the time interval of service request

expiration.

5.2 Compared Algorithm

We implemented our algorithm by Microsoft Visual

Studio and performed comparisons to the algorithms

that are summarized in Table 2. The work in [9]

proposed a near optimal SF selection algorithm in a

multi-datacenter environment, referred to herein as

NeO-SFC algorithm. NeO-SFC algorithm can make a

flexible tradeoff between the end-to-end delay

performance and the loads of SFs by adjusting a

parameter during the service chain placement phase.

EA-SFCP algorithm is our proposed solution without

the consideration of service migration. And the G-SFC

algorithm integrates the migration algorithm on the

basis of the EA-SFCP algorithm. These three

algorithms will compute the corresponding placement

for each service request. Furthermore, the G-SFC

algorithm also periodically performs EA-SFCM

Algorithm on the basis of EA-SFCP algorithm

calculation. In our simulation, every 100 service

requests, we let the G-SFC algorithm perform service

migration once.

Table 2. Compared algorithms

Algorithm Description

EA-SFCP The algorithm 1 that proposed in this work

G-SFC
The energy-aware method that integrated

algorithm 1 and 2.

NeO-SFC Approach proposed in [9].

The performance metrics used in our simulation are

summarized below. Firstly, we use average

propagation delay to evaluate the hierarchical control

architecture. Secondly, referring to [19], we use

Blocking Ratio (BR), Real-time Power Consumption

(RtPC) and Average Power Consumption (APC) as

evaluation metrics. Finally, we analyze the effect of

service migration by the statistical data of occupied

CPU capacity and saved power.

5.3 Average Propagation Evaluation

As we know, there is certain delay in the process of

SFC placement, especially in multi-domain. It is

usually composed of calculate delay and propagation

delay. The calculation delay is generated by the

process of calculating SFC placement scheme for

service requests by the controller. The propagation

delay is the delay that signaling messages are routed

between different domains. Generally, the long

distance between different domains in multi-domain

networks makes the propagation delay much larger

than the calculation delay. Therefore, we evaluate the

propagation delay in hSFC architecture using EA-

SFCP algorithm to compute placement schemes for

5000 service requests. In this simulation, the controller

of top-domain is placed at the ingress node and the

controller of each sub-domain is placed as the IBN

node.

Here, we average the propagation delay for every

100 service requests. As shown in Figure 7, the

average propagation delay is gradually stabilized as

more requests arrives. This shows that the proposed

hierarchical control architecture is stable. In addition,

the average propagation delay increases as the number

of SFs increases. Due to one sub-domain only maps

one complex SF and each SN node of sub-domain only

maps one SF, adding a SF means the number of sub-

domains that the control plane of top-domain needs to

request will increase. Besides, the average propagation

delay is relevant to the placement of controllers.

Different locations of controllers, the average distance

between controller and the components of data plane

associated with the controllers are different.

Figure 7. Propagation delay of signaling messages

5.4 Blocking Ratio Evaluation

Due to the limited network resource, only a certain

An Energy-aware Method for Multi-domain Service Function Chaining 1735

number of service requests can be satisfied at the same

time. The blocking rate is an important indicator that

represents the efficiency of the SFC placement

algorithms, calculated as follows:

| |

(1) 100%
| |

suc
Q

BR
Q

= − × (6)

where |Q| and |Qsuc| respectively indicate the number of

service requests in its own queue. In our simulations,

these two parameters, α and β, are very important. On

the one hand, if the value of α is too large, a large

number of service requests cause the length of the

queue Q to grow rapidly in a short time. However, the

network cannot provide sufficient resources to so many

service requests at the same time, resulting in a

decrease in the number of service requests in the queue

Qsuc. The consequence of this case is an increase of BR.

On the other hand, when the value of α is too small, it

cannot make full use of network resources, resulting in

waste of resources. And the effect of expiration

frequency β on BR is similar to that of arrival

frequency. Therefore, it is very important for SFC

placement algorithm that satisfying as many service

requests as possible under the network resource

constraints. Moreover, for the next comparative

simulations, it is very critical to determine

appropriately the values of these two parameters. We

tried many different values of α and β, carried out a lot

of tests and finally selected some meaningful values to

compare. Here we give the results of three groups of

simulations (Set1: α=50, β=2; Set2: α=60, β=2; Set2:

α=60, β=1.4), shown in Figure 8, Figure 9 and Figure

10, respectively.

In each group of contrast simulation, we also make

load balance factor η as a variable to observe if the

change of η has an effect on the BR. The Simulation

results prove that the BR of these three algorithm is

deeply affected by parameter α, β, and η . From the

three simulation results, it can be clearly known that

the BR is negatively correlated with η . Furthermore,

let us look at the effect of the other parameters on the

BR. Comparing the results of Figure 8 and Figure 9, it

is concluded that the BR is positively correlated with

the arrival frequency α. And comparing the results of

Figure 9 and Figure 10, it is concluded that the BR is

also positively correlated with the expiration frequency

β. These results verifies our previous analysis. Then we

analyze the difference between these three algorithms

in BR. Firstly, regardless of whether the value of η is

0.6 or 0.8, the BR of NeO-SFC is significantly higher

than the others. Secondly, when the network is idle,

such as the case of Figure 8, the BR of G-SFC is lower

than that of EA-SFCP. However, when it is busy, such

as in Figure 10, EA-SFCP is better than G-SFC. Figure

9 shows exactly what the BR performance of the two

algorithms is similar, and their trend curves cross each

other. In general, in terms of blocking ratio, both of

EA-SFCP and G-SFC are superior than NeO-SFC

algorithm. Hereinafter, in order to compare the power

consumption, we make α equal to 60, and β to 2.

Figure 8. Blocking ratio evaluation (α =50, β =2)

Figure 9. Blocking ratio evaluation (α =60, β =2)

Figure 10. Blocking ratio evaluation (α =60, β =1.4)

1736 Journal of Internet Technology Volume 19 (2018) No.6

5.5 Power Consumption Evaluation

In this section, we study and analyze the energy

efficiency of three different algorithms with different

load balance factor η . Here, we refer to the definition

of APC and RtPC in [19]. The RtPC means the sum of

the power consumption of the requested services in the

queue Qrun. The APC is the average of the power

consumption of in the queue Qsuc. Their calculations

are as follows:

()

| |

v suc
G Q v

suc

P G
APC

Q

∈
∑ Δ

= (7)

 ()
v run

G Q vRtPC P G
∈

= ∑ Δ (8)

where ()
v

P GΔ is the power consumption that

produced by the requested service Gv, which is

calculated through equation (1).

Figure 11 shows the RtPC results of the three

approaches, and Figure 12 presents the results of APC.

The simulation results show that the RtPC and APC of

NeO-SFC algorithm are much larger than the results of

EA-SFC and G-SFC algorithm. Also, the EA-SFC and

G-SFC algorithm has almost the same result of APC.

However, the RtPC of G-SFC algorithm is slightly

lower than the result of EA-SFC. In addition, the

power consumption of these three algorithms is

negatively correlated with the load balancing factor. In

Figure 12, we can clearly find that the APC of each

algorithm decreases as the load balance factor η

increases. Smaller the load balance factor is, the less

available bandwidth resource each link has. Thus, with

the reduction of load balance factor, the network has to

produce more power consumption to satisfy same

number of service requests. Besides, the G-SFC

produce lower RtPC than EA-SFC in Figure 11,

Although the APC results of EA-SFC and G-SFC are

almost same in Figure 12. Furthermore, compared to

the APC of NeO-SFC, the results of EA-SFCP and G-

SFC are far lower than it. Specifically, when η equals

to 1, the APC of NeO-SFC is stable at around 600W,

and the APC of other two approaches are about 400.

As a result, it saves about 33.3% of the average power

consumption. However, when η reduces to 0.8, the

APC of NeO-SFC reduces to about 550W and the APC

of other algorithms also reduce to about 355W. As a

result, it saves the APC nearly by 35.5%. Therefore,

load balancing factor also has an impact on the energy

saving capacity of our proposed approaches: the

smaller η , the stronger the energy saving capacity.

Similar conclusions can be drawn from the results

analysis of RtPC.

5.6 Service Migration Analysis

As servic requests arrive and expire over time, the

resource sage of each domain is in a state of constant

Figure 11. Real-time power consumption evaluation

Figure 12. Average power consumption evaluation

dynamic change. Using different SFC placement

algorithm can also result in changes in resource usage

for each domain. For analyzing the variation of

different algorithms, we sampled the occupied CPU

capacity of each subdomain randomly during the

simulation as shown in Figure 13. It is obviously

proved that the resource usages of each subdomain by

using three algorithms are different. By using NeO-

SFC algorithm, the resource usages are evenly

distributed among the subdomains of which the

occupied computing capacity fluctuates from 60 to 90.

On the contrary, it is not evenly by using EA-SFCP

and G-SFC algorithm. With EA-SFCP algorithm, a

number of computing resource of sub-domain 1/3/4 are

occupied. Only a few of computing resource of the

other subdomains, especially subdomain 5 and 8, are

occupied, which means the SN nodes in those

subdomains are in a light-load state. Furthermore, with

G-SFC algorithm, we can see the subdomain 5 and 8

are in a zero load state. Comparing the results of

subdomain 5 and 8, we can see that the virtual

instances are migrated from lightly-loaded subdomain

to the other appropriate ones. Thus, this proves that G-

An Energy-aware Method for Multi-domain Service Function Chaining 1737

SFC algorithm can consolidate network resource by

service migration.

Figure 13. The occupied CPU capacity of each domain

The following is an analysis of the energy efficiency

of our proposed service migration algorithm. Figure 14

shows the accumulated trend of power saving by

performing service migration. During the simulation

process, the service migration is performed every 100

service requests, and 50 times totally. Every time the

service migration is performed, the total power

consumption of entire network will be reduced.

Moreover, we also studied the effects of load balance

factor η on the energy efficiency of service migration.

When η equals to 0.6, every time resource

consolidation can reduce power consumption about

1721.514W. When the factor equals to 0.8, this number

drops to 994.922W. In general, the power consumption

can be reduced through service migration. Besides, the

effects of service migration are different for different

time, which depends on the current distribution of

residual resource. It is also affected by load balance

factor which determines the redundant link resources.

Figure 14. The saved power by service migration

6 Conclusion

In this paper, we studied the energy efficiency

problem in multi-domain service function chaining.

Specifically, we designed a hierarchical control

architecture based on the hSFC architecture to support

service chains across multi-domain networks. We also

proposed an energy-aware SFC placement algorithm

and an energy-aware SFC migration algorithm to

improve energy efficiency of network together.

Simulation results show that EA-SFCP algorithm can

provide an energy-efficient placement for each service

chain. Based on EA-SFCP, G-SFC, which integrates

EA-SFCM, can consolidate network resource and

further reduce the energy consumption of the network.

Compared to existing algorithms, our proposed method

not only have a lower blocking ratio, but also reduce at

least 33.3% power consumption for each service

request. In the future work, we will further study the

implementation of hierarchical control plane, and

verify our proposed control protocol.

Acknowledgments

This work was supported by NSFC under Grant No.

61232017, NSAF under Grant No. U1530118, National

High Technology of China (“863 program”) under

Grant No. 2015AA015702, and National Basic

Research Program of China (“973 program”) under

Grant No. 2013CB32910.

References

[1] F. A. Moghaddam, P. Lago, P. Grosso, Energy-efficient

Networking Solutions in Cloud-based Environments: A

Systematic Literature Review, ACM Computing Surveys

(CSUR), Vol. 47, No. 4, Article No. 64, July, 2015.

[2] T. Kaur, I. Chana, Energy Efficiency Techniques in Cloud

Computing: A Survey and Taxonomy, ACM Computing

Surveys (CSUR), Vol. 48, No. 2, Article No. 22, November,

2015.

[3] J. Halpern, C. Pignataro, Service Function Chaining (SFC)

Architecture, IETF RFC 7665, October, 2015.

[4] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A.

Manzalini, F. Risso, D. Staessens, R. Steinert, C. Meirosu,

Research Directions in Network Service Chaining, IEEE SDN

for Future Networks and Services (SDN4FNS), Trento, Italy,

2013, pp. 1-7.

[5] China Electronics Standardization Institute, Research Report

on Energy Efficiency of China Datacenters, June, 2015.

[6] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M.

Pickavet, P. Demeester, Trends in Worldwide ICT Electricity

Consumption from 2007 to 2012, Computer Communications,

Vol. 50, pp. 64-76, September, 2014.

[7] D. Meisner, B. T. Gold, T. F. Wenisch, PowerNap:

Eliminating Server Idle Power, ACM Sigplan Notices, Vol. 44,

No. 3, pp. 205-216, March, 2009.

[8] D. Dolson, S. Homma, D. Lopez, M. Boucadair, D. Liu, T.

Ao, V. Vu, Hierarchical Service Function Chaining, IETF

draft-ietf-sfc-hierarchical-01, September, 2016.

1738 Journal of Internet Technology Volume 19 (2018) No.6

[9] A. M. Medhat, G. Carella, C. Lück, M.-I. Corici, T.

Magedanz, Near Optimal Service Function Path Instantiation

in a Multi-datacenter Environment, 11th International

Conference on Network and Service Management (CNSM),

Barcelona, Spain, 2015, pp. 336-341.

[10] ETSI, Network Functions Virtualization, http://www.etsi.org/

technologies-clusters/technologies/nfv

[11] OpenDaylight, Service Function Chaining: Main, Available:

https://wiki.opendaylight.org/view/Service_Function_Chaining:

Main

[12] W. Ma, C. Medina, D. Pan, Traffic-Aware Placement of NFV

Middleboxes, IEEE Global Communications Conference

(GLOBECOM), San Diego, CA, 2015, pp. 1-6.

[13] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M.

Pickavet, P. Demeester, Network Service Chaining with

Optimized Network Function Embedding Supporting Service

Decompositions, Computer Networks, Vol. 93, pp. 492-505,

December, 2015.

[14] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck,

S. Davy, Design and Evaluation of Algorithms for Mapping

and Scheduling of Virtual Network Functions, 1st IEEE

Conference on Network Softwarization (NetSoft), London,

UK, 2015, pp. 1-9.

[15] A. Hirwe, K. Kataoka, LightChain: A Lightweight

Optimisation of VNF Placement for Service Chaining in NFV,

IEEE NetSoft Conference and Workshops (NetSoft), Seoul,

South, Korea, 2016, pp. 33-37.

[16] Q. Zhang, X. Wang, I. Kim, P. Palacharla, T. Ikeuchi, Vertex-

centric Computation of Service Function Chains in Multi-

domain Networks, IEEE NetSoft Conference and Workshops

(NetSoft), Seoul, South Korea, 2016, pp. 211-218.

[17] M. Boucadair, Service Function Chaining (SFC) Control

Plane Components & Requirements, IETF draft-ietf-sfc-

control-plane-07, August, 2016.

[18] X. Fan, W. D. Weber, L. A. Barroso, Power Provisioning for

a Warehouse-sized Computer, ACM SIGARCH Computer

Architecture News, Vol. 35, No. 2, pp. 13-23, May, 2007.

[19] G. Sun, V. Anand, D. Liao, C. Lu, X. Zhang, N.-H. Bao,

Power-efficient Provisioning for Online Virtual Network

Requests in Cloud-based Data Centers, IEEE Systems Journal,

Vol. 9, No. 2, pp. 427-441, June, 2015.

[20] L. Chiaraviglio, M. Mellia, F. Neri, Minimizing ISP Network

Energy Cost: Formulation and Solutions, IEEE/ACM

Transactions on Networking (TON), Vol. 20, No. 2, pp. 463-

476, April, 2012.

[21] Y. Zhu, M. Ammar, Algorithms for Assigning Substrate

Network Resources to Virtual Network Components, 25th

IEEE International Conference on Computer Communications

(INFOCOM), Barcelona, Spain, 2006, pp. 1-12.

[22] W.-C. Chien, C.-F. Lai, H.-H. Cho, H.-C. Chao, A SDN-SFC-

based Service-oriented Load Balancing for the IoT

Applications, Journal of Network and Computer Applications,

Vol. 114, pp. 88-97, July, 2018.

Biographies

Qi Xu received the B.S. degree in

telecommunications engineering from

Beijing Jiaotong University in 2014,

and then entered National Engineering

Lab for Next Generation Internet

Interconnection Devices at BJTU.

Currently, he is pursuing the Ph.D.

degree in telecommunications and information system

at BJTU, China. His research interests include

Software Defined Network, Network Function

Virtualization, Service Function Chaining and 5G.

Deyun Gao received BEng and MEng

degrees in electrical engineering and a

PhD degree in computer science from

Tianjin University, China, in 1994,

1999, and 2002, respectively. He

spent one year as a research associate

with the Department of Electrical and

Electronic Engineering, Hong Kong

University of Science and Technology, Kowloon. He

then spent three years as a research fellow in the

School of Computer Engineering, Nanyang

Technological University, Singapore. In 2007, he

joined the faculty of Beijing Jiaotong University as an

associate professor of School of Electronics and

Information Engineering and was promoted to a full

professor in 2012. In 2014, he was a visiting scholar in

University of California at Berkeley, USA. His

research interests are in the area of Internet of Things,

vehicular networks and next-generation Internet.

Huachun Zhou received the B.S.

degree from the People’s Police

Officer University of China in 1986.

He received the M.S. in

telecommunication automation and

Ph.D. degrees in telecommunications

and information system from Beijing

Jiaotong University in 1989 and 2008, respectively. In

October 1994, he joined Institute of Automation

Systems, BJTU, where he is a lecturer. From Apr. 1999

- Sep. 2009, he was a senior engineer at School of

Electronic and Information Engineering, BJTU, and at

Network Management Research Center, BJTU. From

Oct. 2009 to now, he is a professor in National

Engineering Lab for Next Generation Internet

Interconnection Devices at BJTU. He has authored

more than 40 peer-reviewed papers and he is the holder

of 17 patents. His main research interests are in the

area of mobility management, mobile and secure

computing, routing protocols, network management

and satellite network.

An Energy-aware Method for Multi-domain Service Function Chaining 1739

Wei Quan received his Ph.D. degree

from Beijing University of Posts and

Telecommunications in 2014 and

currently works as a Lecturer at

Beijing Jiaotong University, Beijing,

China. His research interests include

future Internet, vehicular networks

and Internet of energy. He has published more than 20

research papers in international journals and

conferences, and also serves as the Associate Editor of

Journal of Internet Technology (JIT) and technical

reviewers in several journals including IEEE

Transactions on Parallel and Distributed Systems,

IEEE Communications Letters.

Wenfeng Shi received his Bachelor’s

degree from Taishan University,

Taian, China, in 2012. He is pursuing

his Ph.D. degree at School of

Electronic and Information

Engineering, Beijing Jiaotong

University, Beijing, China. His

research interests include next-

generation networks, delay/disruption tolerant

networks and satellite networks.

1740 Journal of Internet Technology Volume 19 (2018) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

