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Abstract 

As the fast increasing of multi-domain networks, 

energy efficiency has been widely focused on and 

become a critical issue in service function chaining (SFC). 

In this paper, we propose an energy-aware method for 

multiple SFC-enabled domain networks. Firstly, based on 

hierarchical SFC (hSFC), we propose a hierarchical 

control architecture to support the orchestration that 

allows service chains across multiple domains. Secondly, 

this paper proposes an energy-aware service function 

chain placement (EA-SFCP) algorithm that minimizing 

the power consumption of each service chain. Thirdly, we 

also propose an energy-aware service function chain 

migration (EA-SFCM) algorithm to improve the overall 

energy efficiency of the network. Finally, we 

implemented the proposed algorithms and conducted 

comparison simulations with existing algorithm to 

evaluate their performance. The results show that can 

reduce power cost at least 33.3% over the candidate 

algorithm. 

Keywords: SFC, Energy-aware, Multi-domain networks, 

SFC placement, SFC migration 

1 Introduction 

The ever-increasing services and applications bring 

huge challenges for efficiently service delivery [1-2]. 

Service function chaining (SFC) provides a network 

capability by steering traffic through a chain-ordered 

set of service functions (SFs) to achieve the flexible 

network management and service provision [3]. SFC is 

not a new concept, which is originated from two 

emerging technologies called software defined 

networking (SDN) and network function virtualization 

(NFV). On the one hand, SDN decouples the control 

plane and the data one, and provides appropriate 

programming abstractions to control traffics to 

correctly traverse SFs in order. On the other hand, 

NFV enables the virtualization of software-

implemented SFs which can be more efficiently and 

dynamically chained. Thanks to the intertwinement 

between SDN and NFV technologies, it makes the SFC 

implementation feasible getting rid of the limitation of 

the traditional network [4]. 

Energy consumption has currently become a critical 

issue for the datacenters. In 2009, the datacenters in 

China consumed over 36 TWh power consumption 

occupying 1.2% of the total power consumption in 

China. What’s more, the Figure further increased to 70 

TWh in 2011 [5]. The worldwide datacenters 

consumed 268 TWh power consumption in 2012 [6]. 

According to the study [7], even at the off-peak period, 

idle servers still consumes about 60% of power, 

resulting in energy waste. In such environment where 

SFs are implemented as software on virtual machines 

(VMs) which running on the physical servers, the 

locations of service chains have an important impact 

on the energy consumption in datacenter networks. 

This paper provides a n energy-aware method for 

multiple SFC-enabled domain networks based on 

hSFC architecture. In this solution, we focus on two 

points to reduce energy consumption, including service 

chain placement and service chain migration. Both of 

them have significant impacts on resource utilization 

and energy efficiency. In particular, the service chain 

placement refers to that the SFC-enabled network 

needs to provision sufficient physical resources (eg. 

SFs or link bandwidth) when receiving a service 

request, and to release corresponding physical 

resources when the request expires. The service chain 

migration refers to re-orchestrate the service chains 

that has been placed according to a certain 

optimization goal. To the best of our knowledge, there 

are few efforts toward the energy-efficiency problem in 

multi-domain SFC-enabled networks. The main idea of 

our proposed approach is to occupy as few physical 

resources as possible to accommodate as many as 

service requests and to turn off the lightly loaded 

network equipment if possible. The main contributions 

of this paper can be summarized as the following three 

aspects. Firstly, a hierarchical control architecture is 

proposed for hierarchical SFC (hSFC) that 

compartmentalizes a large-scale network into multiple 

administration domains [8]. Secondly, EA-SFCP 

algorithm is designed to find an energy efficient 

placement that minimizing power consumption of each 
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service chain. Thirdly, EA-SFCM algorithm is also 

proposed to reduce the total energy consumption of the 

entire network. We implement the energy-aware 

method by Microsoft Visual Studio and conduct 

comparison simulations with existing algorithm 

proposed in [9] to evaluate the performance. The 

results show that our proposed algorithm can reduce 

power cost at least 33.3% over the compared algorithm. 

The rest of this paper is organized as follows. In 

Section 2, we discuss related works. Then, a 

hierarchical control architecture is presented in Section 

3. In Section 4, we detail EA-SFCP algorithm and EA-

SFCM algorithm. The simulation results are presented 

in Section 5. Section 6 concludes this paper. 

2 Related Works 

This section presents the background information 

about service function chaining and service chain 

placement approaches. 

2.1 Service Function Chaining 

SFC has been deployed by network operators for 

many years. Many service functions such as firewall 

are used by network operators in the delivery of 

services to end users. The common SFs deployment is 

to insert a specific dedicated device in the routing path 

between communicating peers. Therefore, complex 

modifications are involved into the network 

configuration. What’s more, expensive devices make 

traditional SFC has low scalability and availability. 

The rise of SDN and NFV provides flexible traffic 

steering and efficient SFs deployment. And several 

research institutions have started to investigate service 

function chaining from different aspects. In 2013, IETF 

established the SFC Working Group to define the 

architecture of SFC, the necessary protocols, several 

use-cases, and the mechanisms for steering traffic and 

so on [3]. ETSI NFV group focused on the 

management and orchestration of virtualized network 

functions (VNFs), and its VNF forwarding graph 

concept is very relevant to SFC [10]. Moreover, the 

SFC project in OpenDaylight foundation aims to 

develop and apply service chains [11].  

2.2 Service Chain Placement Approaches 

There are many works with the discussion of the 

placement problem of SFs and SFC. Ma et al. [12] 

investigated the traffic changing effects of 

middleboxes, and proposed an optimal solution to 

deploy NFV middleboxes efficiently to achieve 

optimal network performance. Sahhat et al. [13] 

presented the idea of service decomposition which was 

similar with the hierarchy of SFC, and proposed two 

algorithms to embed network services to the shared 

network infrastructure to minimize the mapping cost 

by making appropriate decompositions of network 

functions. Besides, three greedy algorithms are 

presented in [14] to address the online virtual function 

mapping and scheduling problem. Hirwe and Kataoka 

[15] described an approach to address the VNF 

placement problem, called LightChain. It utilized a 

heuristic way to optimize the placement of VNFs 

across service chains in the network in a polynomial 

run time. However, only a few works discussed about 

the placement problem of SFC in multi-domain 

networks. Medhat et al. [9] proposed a near optimal SF 

selection algorithm in a multi-datacenter environment. 

Zhang et al. [16] described a distributed computing 

algorithm for mapping a service function chain request 

in multi-domain networks. Chien et al. [22] proposed a 

service-oriented SDN-SFC load balance mechanism. 

The above work is either to discuss how to optimize 

the placement of SFs in a single domain or discuss how 

to implement service chains in multi-domain networks. 

None of these efforts take energy efficiency into 

consideration. Distinguishing from them, this paper 

aims to resolve the energy efficiency problem in 

multiple SFC-enabled domain networks.  

3 Hierarchical Control Architecture 

In this section, we introduce a hierarchical control 

architecture based on the hSFC architecture  

3.1 Hierarchical SFC 

For implementing service chains that across multi-

domain networks, Dolson et al. [8] initiated 

hierarchical SFC (hSFC) architecture in IETF SFC WG. 

As shown in Figure 1, hSFC divides a large-scale 

network into multiple level domains: top-domain is 

similar to a wide area network and connects multiple 

sub-domains. The data plane of each domain consists 

of four types of components, named service functions 

(SFs), classifiers (CFs), service function forwarders 

(SFFs) and internal boundary nodes (IBNs), 

respectively. In NFV, SFs are usually hosted in 

physical service nodes (SNs) as VMs and responsible 

for specific treatment of received packets. CFs are used 

to select which traffic enters an SFC-enabled domain 

by matching the classification rules. SFFs are 

responsible for forwarding traffic to one or more 

connected SFs, as well as SFFs. IBNs are located 

between top-domain and sub-domains, responsible for 

bridging packets. IBN has different meanings for 

different domains. It behaves as a SF to the higher 

level, but as a CF or SFF to the lower level. 

However, the standardization is still in progress and 

research on the control plane of the service chain is just 

the beginning. Boucadair [17] described requirements 

for exchanging information between SFC control plane 

and SFC data plane components, but it does not 

consider inter-domain problem. And Dolson et al. [8] 

discussed that each control plane manages a single  
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Figure 1. The hierarchical SFC architecture 

level domain so that to reduce the complexity of 

management and orchestration. As far as we know, 

there is not a specific scheme for SFC control plane, 

especially for control hierarchy. 

3.2 Hierarchical Control Architecture 

We present the hierarchical control architecture for 

hSFC, displayed in Figure 1. For the sake of clarity, it 

only consists of two levels of hierarchy. If desired, the 

SFs in sub-domain also could be an independent sub-

domain. All components in data plane are defined in 

IETF SFC architecture RFC [3], with the exception of 

Service Node (SN) that is able to host SF instances. 

The ingress and the egress are the gateways of the 

SFC-enable network, which play a role of the classifier. 

Moreover, there are four kinds of interface between 

control plane and data plane, namely C1, C2, C3, and 

C4 [17]. Due to IBN behaving as a SF to top-domain, it 

is controlled by interface C3 or C4. Besides, IBN acts 

as a classifier and a SFF of end-of-chains to sub-

domain, it exchanges information with sub-domain 

control plane via interface C1 and C2. In this 

architecture, each level of hierarchy of domains is 

independent, which means each control plane is only 

responsible for managing SFC of the local domain. 

Further, the orchestration of control plane in top-

domain is at a coarse level. Each SFC in top-domain 

consists of an order of complex SFs. Complex SF is a 

logic SF which is actually a SFC composed by more 

refined SFs within a certain sub-domain. Control plane 

in top-domain does not need to be responsible for 

orchestrating these SFCs within the sub-domains. 

When a complex SF is invoked by top-domain, it looks 

like that a sub-domain receives a service request from 

top-domain. Then, sub-domain executes fine-grained 

SFC orchestration to provide the requested service the 

complex SF should provide. 

As we know, there are no standard protocol for the 

communication between the control plane and the 

components on the data plane. In this paper, we focus 

on the required information to be conveyed between 

IBN and Top/Sub-domain control plane via interface 

C3/C1, and design a control protocol for it. In general, 

the communication mechanism between IBN and 

control plane is shown in Figure 2. It is important that 

the control protocol works well for the hierarchical 

control architecture of hSFC. In the procedure of 

hierarchical orchestration, once a complex SF is 

invoked by top-domain control plane, it will be 

happened that the relevant sub-domain control plane 

should carry out the SFC instantiation to provide the 

invoked complex SF for top-domain. Besides, for 

dynamic, an IBN acts as a SN in top-domain, maintains 

its resource information which could be the sum of all 

SNs in a sub-domain and updated by the sub-domain 

control plane. Thus, the availability of the invoked 

complex SF must be guaranteed. 

2.SF Request

3.SFC Request

6.SFC Ack

7.SF Ack

Control Plane 

of Top-domain

Control Plane 

of Sub-domain
IBN

4.SF Request

SN
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Figure 2. The delivery of signaling messages 

As shown in Figure 2, there are four kinds of 

message type between IBN and control plane. To our 

knowledge about the required information by 

hierarchical orchestration, we design their message 

formats are show in Figure 3. All kinds of message 

format contain a message header which is constituted 

by two fields, named by Request ID and Type 

respectively. Request ID is the identifier of a SFC 

request from user/IBN or a SF request from control 

plane. Type represents the type of message which is 

applied to distinguish these messages as follows: 

‧ 0: ACK message 

‧ 1: SFC request message 

‧ 2: SF request message 

(c) SFC request

(b) SF request

Type

SF Type Class of Capacity

Request ID

Service Path ID Service Index

(a) ACK

State

Length

TypeRequest ID

SF Type Class of Capacity

SF Type Class of Capacity

Request ID Type

... ...

 

Figure 3. The proposed signaling message format 

SFC request message consists of three part: (1) 

message header; (2) Length field that means the 

number of required SFs in the SFC; (3) SF Type fields 

and Class of Capacity fields. The length of the third 

part is variable, which is determined by the Length 
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field. SF Type field represents the type of the required 

SF (e.g. firewall, NAT). And the order of SF Type 

fields once be decided, it is fixed during the procedure 

of orchestration. Each SF Type field follows a Class of 

Capacity field, which stands for the resource 

requirement of the required SF.  

SF request message is a part of SFC request 

message, actually. It also consists of three part: (1) 

Message header; (2) SF Type field and Class of 

Capacity field; (3) SFP information which includes 

Service Path ID (SPI) field and Service Index (SI) field. 

The SFP information represents the SFC invokes the 

requested SF.  

ACK message contains a message header and a state 

field. The state field represents the result of a SF/SFC 

request, and it has two values: it equals to 1 if the 

request represented by the Request ID field succeeds, 

otherwise it equals to 0. 

4 Energy-aware Service Chain Method 

In this section, we describe the problem, and present 

the power consumption formula. Then we propose two 

heuristic algorithms, EA-SFCP and EA-SFCM, to 

improve the energy efficiency of network together. 

Finally, we detail the SFC placement in multi-domain 

networks. 

4.1 Problem Description 

As detailed in Section 3, each domain in the hSFC 

architecture is independent with other ones. 

Consequently, the multi-domain energy efficiency 

problem can be simplified into several independent 

single-domain sub-problems. This article tries to 

improve energy efficiency at two aspects: energy-

aware SFC placement and energy-aware SFC 

migration. The former one refers to that given a 

substrate network G with an amount of physical 

resource, finding a placement scheme for a given 

service request Gv that makes the additional power 

consumption minimum after deploying it. The latter 

one refers to migrating the workload on the light-load 

SN nodes to other SN nodes. 

4.2 Power Consumption Model 

We model the substrate network as an undirected 

weighted graph G = (N, L), where N and L denote the 

set of physical nodes and physical links, respectively. 

The physical nodes are divided into three categories 

according to their own role, denoted as NSN, NSFF, NCF, 

respectively. That is N = (NSN, NSFF, NCF). An 

assumption is made that one SFF only attaches one SN 

node. Besides, we also assume the amount of CPU 

resource as the constraint of SN node, and the 

bandwidth as the resource constraint of link. Each SN 

j SNn N∈  has residual CPU capacity described by Cj. 

Each physical link 
,j kl L∈  represents the connectivity 

between node j and node k, and its residual bandwidth 

capacity denoted as Bj,k. Similar to the substrate 

network, a service request is represented as a directed 

weighted graph Gv = (Nv, Lv), where Nv and Lv denote 

the set of required SFs and related virtual links, 

respectively. Here, Nv = (sf1, …, sfi), where sfi 

represents the ith SF in a given service request Gv. The 

resource requirements associated with relevant SFs and 

virtual links required by Gv, are denoted as ci and bi-1,i, 

respectively. 

The following is the formulas for calculating the 

energy consumption of each service chain in this 

article. 

Power cost of a service chain. The power cost of a 

service chain Gv is composed by the power cost of SNs 

and links, calculated as follows: 

 ( )
v SNs Links

P G P PΔ = Δ + Δ  (1) 

Service node power cost. The additional SN power 

cost for placing a requested SFC is calculated by: 

 
i i

SNs i N j N j jv SN
P x PN

∈ ∈
Δ = ∑ ∑ Δ  (2) 

where i
jPNΔ  denotes the additional power cost for 

placing a SF 
i v

sf N∈  on a SN j SNn N∈ , i
jx  is a 

binary variable indicates if the SF is successfully 

placed. 

Fan et al. [18] had studied the power model at the 

machine level. They found the workload in CPUs made 

a major contribution to the power consumption of a 

server and the relationship between them was 

consistent with an empirical non-linear model. Thus, 

the additional power cost for placing a SF can be 

calculated as follows: 

 ( ) (2 )i r
j j idle busy idlePN P P P u uθΔ = ⋅ + − ⋅ −  (3) 

where Pidle represents the power cost of an idle server, 

Pbusy is the power cost of a busy one, u represents CPU 

utilization, and r is a parameter used to minimize the 

square error [19]. θ is a binary variable. If θ=1, service 

node SNj is inactive. 

Link power cost. The total link power cost for placing 

a requested SFC can be calculated as follows: 

 1, 1,
, ,1, ,

i i i i
Links l L l L j k j ki i v j k
P y PN

− −

∈ ∈
−

Δ = ∑ ∑ Δ  (4) 

Where 1,
,

i i
j kPL
−

Δ  denotes the additional power 

consumption for mapping a virtual link 1,i i v
l L
−

∈  on a 

physical link 
,

,j kl L∈  1,
,
i i
j ky
−  is a binary variable 

indicates if the virtual link is successfully mapped. 

In [20], the power cost of links is composed by a 

static contribution due to the line cards and by an 

additional term due to the repeaters. The additional 

power cost for mapping a virtual link is given by: 
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1,1,

,

,

( , )
( )

i ii i
j k r lc

j k

bDis j k
PL P P

BWρ

−

−

Δ = ⋅ + ⋅  (5) 

where Pr denotes the power consumption of a repeater, 

Plc is the power consumption of a line card, ρ 

represents the distribution density of repeaters on the 

link, and BWj,k means the total bandwidth capacity of 

the physical link connects node j with node k. 

4.3 Energy-aware SFC Placement Algorithm 

In the real network, service requests arrive and 

expire over time. They are usually temporary and 

dynamic, and can only exist for some time. The EA-

SFCP algorithm aims to resolve service chain 

placement problem in the real network. It is able to 

produce an energy-efficient placement scheme for each 

service request so that reducing the overall energy 

consumption of the network. The main idea of our 

proposed algorithm is to occupy as few physical 

resources as possible to accommodate as many SFCs 

as possible and to turn off the idle equipment of the 

network. Due to the dynamic nature of service requests, 

we defined three queues, namely Q, Qsuc and Qrun for 

purposes. Q is the queue of arrival service requests. 

The EA-SFC algorithm computes SFC placement 

scheme for service requests in the queue Q. Qsuc that is 

a subset of Q, denotes the queue of those service 

requests that succeeded to place on the network. At last, 

Qrun is a subset of subset Qsuc, and denotes the queue of 

those service requests that have been placed in the 

network and have not yet expired. During the 

procedure of SFC placement, we do not only consider 

SF resource constraint, but also satisfy link resource 

constraint. The pseudo-code of the energy-aware SFC 

placement algorithm is given as follows: 

 

 

Algorithm 1. EA-SFCP Algorithm 

Input: G, Q, η  

Output: Energy-efficient SFC placement solution sfp 

1  For 
v

G Q∈  do 

2    For 
i v

sf N∈  do 

3      Find the set of all available SNs .

i SN
n N∈  

4      Sort nj according to uj in nondecreasing order. 
5      For 

i SN
n N∈  do 

6        Compute 
i
jPNΔ  based on equation(1) 

7        For 
,j kl L∈  do 

8          If 
, ,

(1 )j k j kB BWη≤ − ⋅  then 

9            Set weight as INF. 
10        Else 

11          Set weight as 1,
,

i i
j kPL
−

Δ  based on equation (5) 

12        Compute the shortest weighted path Lshort.   
13      Goto Step 5 

14      Select nj with lowest 1,
,( ).i i i

j j kPN PL
−

Δ + Δ  

15      Return SFC_Placement_Faild 
16      Push Gv into Qsuc and Qrun. 

17      Update PΔ , sfp, and  residual network resources. 

18      If Gv expired then 

19        Release occupied resources. 

20        Push Gv out from Qrun. 

21    Goto Step 1 

22  Return SFC_Placement_Success 

 

When a service request arrives, its power cost PΔ  

can be calculated based on equation (1). EA-SFCP 

traverses all available SN nodes for placing a series of 

wanted SFs in the service request. Meanwhile, we use 

the Dijkstra algorithm to calculate the shortest 

weighted path for the virtual link between adjacent SFs. 

The weight of each physical link is different and 

represents its power consumption, calculated by 

equation (5). Obviously, the shortest path must connect 

the current SN node with the SN node hosts the 

previous SF. The sum of power cost by the SN node 

and power cost by the shortest path will be calculated. 

When all the SN nodes have been traversed, the SN 

node and path with the lowest additional power cost 

will be selected to place the requested SF and its 

neighbor link. Above process will be repeated until all 

SFs in the service request are placed. Note that, for the 

first SF in a SFC, the shortest weighted path is 

calculated between the ingress node and the current 

selected node. For the last SF in a SFC, the shortest 

path is calculated between the service node that hosts 

previous SF and the current selected node in addition 

to the path between the current selected node and the 

egress node. When the service request expires, the 

corresponding occupied network resources should be 

released and the service request is pushed out from the 

queue Qrun. Furthermore, we define a parameter for 

each physical link called load balance factor η, which 

takes the value between 0 and 1. It determines the 

upper limit of the residual bandwidth resources Bj,k for 

physical link lj,k to reserve a certain amount of 

redundant bandwidth, so as not to exhaust total 

bandwidth and occur traffic congestion. When the 

residual bandwidth of a link is less than the redundant 

bandwidth, the weight of the link is set to infinity so 

that it is ignored when calculating the shortest 

weighted path. Thus, it provides a tradeoff between 

traffic load and energy efficiency. 

 

 

Algorithm 2. EA-SFCM Algorithm 

Input: G, Qrun 

Output: new placement solution sfp 

1  Find the set of all available SN nodes .j SNn N∈  

2    Sort nj according to the value of stress in  

          nondecreasing order. 

3    For j SNn N∈  do 

4      Find the already placed SF instances 
i SF

sf N∈  
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5      Sort ni according to resource capacity  

           in decreasing order. 

6       For 
i SF

sf N∈  do 

7          Update the physical resource record. 

8          Refind the suitable SN node nbest and links Lbest 

               with lowest PΔ  based on Algorithm 1. 

9          If Refind succeed 

10          Migrate sfi from nj to nbest and its relevant links

              Update sfp and the physical resource record. 

11          Else 
12             Recover the physical resource record. 
13             Goto Step 6  
14         End for 
15    Return SFC_Migration_Success 

16  End for 

4.4 Energy-aware SFC Migration Algorithm 

The main idea of EA-SFCP algorithm is to minimize 

the additional power consumption after mapping one 

service chain, thereby reducing the total power 

consumption of the entire network. However, there is a 

detail problem that is not taken into account. With the 

arrival of new service requests and the expiration of the 

old ones, the distribution of residual resource of 

substrate network is constantly changing. The 

placements of some service requests may produce the 

lowest power consumption at the beginning by using 

EA-SFCP algorithm. But after a period of time, the 

distribution of the residual resources has changed so 

that there may be much greener placements making the 

current ways is not so energy-efficient. Therefore, a 

desirable approach would be to remapping the SFCs 

that has already been mapped at regular intervals to 

gain more energy saving. In this section, we propose a 

heuristic algorithm to remapping the current already 

mapped service chains, called Energy-aware SFC 

Migration algorithm. EA-SFCM algorithm tries to 

migrate virtual resource requirements from one place 

to another much more appropriate place in the 

substrate network by the way of remapping. The 

optimization goal of EA-SFCM algorithm is to reduce 

the total power consumption of the entire network 

while keeping current SFCs has been placed to work 

properly. In this paper, we refer to the definition of 

stress in [21], which means the number of virtual 

instances mapped on it. 

The pseudo-code of EA-SFCM algorithm is detailed 

in Algorithm2. Once the EA-SFCM algorithm begins 

to execute, it will traverse all of the SN nodes in an 

increasing order according to their stress values. 

Specially, for each SN node, the group of SFs that have 

been placed on top of it are arranged in descending 

order according to the value of their computing 

resource requirements. This ensures that the service 

requests that occupy more virtual resources are 

processed first. EA-SFCM algorithm will them 

perform remapping operations on these SF requests 

and associated virtual links request in turn. The 

remapping operations are based on Algorithm 1. It will 

recalculate a new placement scheme for the virtual 

resource request. Then it compares the power 

consumption between the new placement and the old 

placement. If the new placement consumes less power, 

it migrates the SF request from the current SN node to 

the new SN node. If not, keep the current placement 

unchanged. 

Figure 4 shows a simple example of service 

migration. As shown in Figure 4a, there are three SFCs 

that have been placed in the substrate network. After 

executing EA-SFCM algorithm, the two SFs in SFC 3 

are remapped as shown in Figure 4a, and migrated to 

the new SN nodes as shown in Figure 4b. In such case, 

the idle SN nodes also can be shut down to save energy. 

Ingress

Egress

Migration

M
ig
ra
tio

n

SFC 1

SFC 2

SFC 3

Service Node

SF Forwarder

Physical links

virtual links

 

(a) 

Ingress

Egress

 

(b) 

Figure 4. Migration of an already placed SFC 

4.5 Multi-domain SFC Placement 

As mentioned above, the orchestration, provisioning 
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and migration of SFCs between different domains are 

independent in the hSFC architecture. Taking 

advantage of this feature, the problem of SFC 

placement in multi-domain can be simplifiedinto 

several independent sub-problems in a single domain.  

A clear example of SFC placement in multi-domain 

is given in Figure 5. In general, service requests in 

queue Q enter the SFC-enabled network through the 

ingress gateway. First, the top-domain is responsible 

for achieving coarse-grained placement. The EA-SFCP 

algorithm is executed to allocate the required network 

resources for received service request. Therefore, after 

being orchestrated, IBN1 and IBN2 are responsible for 

providing SF1 and SF2, respectively. Note that SF1 

and SF2 are logical service function, which actually are 

SFC in their own sub-domain. Second, the two IBNs 

split the service request received by the top-domain 

into two sub service requests, and deliver to the 

corresponding sub-domains. Third, sub-domains are 

responsible for achieving fine-grained placement for 

received sub service requests. The two sub-domains 

also execute the EA-SFCP algorithm on the requests. 

In this case, a full SFC placement in multi-domain 

networks is successfully completed, and the service 

request is pushed into the queue Qsuc and Qrun. Traffic 

flow will be routed along the programed path and 

service functions. When the service request expires, 

each network domain needs to release the 

corresponding occupied network resources and the 

service request is pushed out from the queue Qrun. 

Based on the SFC placement by performing EA-SFCP 

algorithm, EA-SFCM algorithm is executed 

periodically to re-orchestrate already placed SFCs in 

the queue Qrun for improving energy efficiency. For 

simplicity, in the following, we call it Green SFC (G-

SFC) algorithm that integrates EA-SFCP algorithm and 

EA-SFCM algorithm. 

Service Request:

SF1->SF2

Sub request

SF1:sf1->sf2

SFF1 SFF2

SFF12

SFF11

SFF21

SFF22

Top-domain

Sub-1 Sub-2

Ingress Egress

SN22

SN21

SN11

  SN12

IBN1

{SF1}
IBN2

{SF2}

Sub request

SF2 :sf3->sf4->sf5

sf1 sf2

sf3 sf4 sf5
 

Figure 5. An example of SFC placement in multi-

domain networks 

5 Evaluations 

In this section, we validate and evaluate our 

proposed architecture and algorithms by conducting 

simulations in realistic network, and perform 

comparisons with existing algorithm. 

5.1 Simulation Setup 

The topology of the infrastructure network in our 

simulation consists of one top-domain and 8 sub-

domains, as show in Figure 6. The network topology of 

top-domain uses the topology of a real network, called 

the China Education and Research Network 

(CERNET), which includes 2 gateways as classifier 

and 8 SFFs from SFF1 to SFF8. Each SFF in top-

domain is connected with an independent sub-domain 

which includes one IBN, 4 SFFs and 4 SNs. The 

number marked on the link indicates the length of the 

link in kilometers. As mentioned above, each sub-

domain acts as a SN to top-domain and each SFC in 

sub-domain acts as a complex SF to top-domain. The 

traffic flow starts at the ingress, and leaves the network 

from the egress after passing through several SFs. 
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Figure 6. The infrastructure network topology 

With regard to the physical resource capacity of the 

infrastructure network, we made the following 

assumptions. We assume the CPU capacity as the 

computing resource and the bandwidth as the link 

resource. For the top-domain, the total capacity of CPU 

of each sub-domain is equal to 400 units. The 

bandwidth capacity of each link is equal to 400G in the 

top-domain. The propagation delay is up to the total 

distance of links through the traffic flow passes. For 

example, the shortest distance between SFF1 and SFF3 

is 710km. For each sub-domain, the CPU capacity of 

each SN is equal to 100 units. And we assume that 

each link of the sub-domains has enough bandwidth for 

mapping a service request and the propagation delay in 

sub-domain can be neglected. We predefined 4 types of 

SFCs for every sub-domain to provide 4 types of 

complex SFs for the top-domain. The value of 

parameters used in our power consumption model is 

summarized in Table 1. 
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Table 1. Parameter used in the model 

Parameter Description Value 

Pidle The power cost of an idle server. 165W 

Pbusy The power cost of an busy server. 166.5W 

Pr The power cost of a repeater 1kW 

Plc The power cost of a line card 100W 

ρ  The distribution density of repeaters 

on the link 
70km/per 

 

Besides, in our simulation, 5,000 service requests 

will be generated randomly, and consist of a given 

number of SFs. We assume that the CPU resource 

required by each SF is randomly among [0, 20] 

memory units, and the bandwidth resource required by 

each service request is randomly among [0, 20] Gbps. 

Similar to most prior studies, the arrival and expiration 

of the service request follow the Poisson process with 

parameters α and β, respectively. The α determines the 

time interval of service request arrival, and the β 

determines the time interval of service request 

expiration. 

5.2 Compared Algorithm 

We implemented our algorithm by Microsoft Visual 

Studio and performed comparisons to the algorithms 

that are summarized in Table 2. The work in [9] 

proposed a near optimal SF selection algorithm in a 

multi-datacenter environment, referred to herein as 

NeO-SFC algorithm. NeO-SFC algorithm can make a 

flexible tradeoff between the end-to-end delay 

performance and the loads of SFs by adjusting a 

parameter during the service chain placement phase. 

EA-SFCP algorithm is our proposed solution without 

the consideration of service migration. And the G-SFC 

algorithm integrates the migration algorithm on the 

basis of the EA-SFCP algorithm. These three 

algorithms will compute the corresponding placement 

for each service request. Furthermore, the G-SFC 

algorithm also periodically performs EA-SFCM 

Algorithm on the basis of EA-SFCP algorithm 

calculation. In our simulation, every 100 service 

requests, we let the G-SFC algorithm perform service 

migration once. 

Table 2. Compared algorithms 

Algorithm Description 

EA-SFCP The algorithm 1 that proposed in this work  

G-SFC 
The energy-aware method that integrated

algorithm 1 and 2. 

NeO-SFC Approach proposed in [9]. 

 

The performance metrics used in our simulation are 

summarized below. Firstly, we use average 

propagation delay to evaluate the hierarchical control 

architecture. Secondly, referring to [19], we use 

Blocking Ratio (BR), Real-time Power Consumption 

(RtPC) and Average Power Consumption (APC) as 

evaluation metrics. Finally, we analyze the effect of 

service migration by the statistical data of occupied 

CPU capacity and saved power. 

5.3 Average Propagation Evaluation 

As we know, there is certain delay in the process of 

SFC placement, especially in multi-domain. It is 

usually composed of calculate delay and propagation 

delay. The calculation delay is generated by the 

process of calculating SFC placement scheme for 

service requests by the controller. The propagation 

delay is the delay that signaling messages are routed 

between different domains. Generally, the long 

distance between different domains in multi-domain 

networks makes the propagation delay much larger 

than the calculation delay. Therefore, we evaluate the 

propagation delay in hSFC architecture using EA-

SFCP algorithm to compute placement schemes for 

5000 service requests. In this simulation, the controller 

of top-domain is placed at the ingress node and the 

controller of each sub-domain is placed as the IBN 

node.  

Here, we average the propagation delay for every 

100 service requests. As shown in Figure 7, the 

average propagation delay is gradually stabilized as 

more requests arrives. This shows that the proposed 

hierarchical control architecture is stable. In addition, 

the average propagation delay increases as the number 

of SFs increases. Due to one sub-domain only maps 

one complex SF and each SN node of sub-domain only 

maps one SF, adding a SF means the number of sub-

domains that the control plane of top-domain needs to 

request will increase. Besides, the average propagation 

delay is relevant to the placement of controllers. 

Different locations of controllers, the average distance 

between controller and the components of data plane 

associated with the controllers are different. 

 

Figure 7. Propagation delay of signaling messages 

5.4 Blocking Ratio Evaluation 

Due to the limited network resource, only a certain 
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number of service requests can be satisfied at the same 

time. The blocking rate is an important indicator that 

represents the efficiency of the SFC placement 

algorithms, calculated as follows: 

 
| |

(1 ) 100%
| |

suc
Q

BR
Q

= − ×  (6) 

where |Q| and |Qsuc| respectively indicate the number of 

service requests in its own queue. In our simulations, 

these two parameters, α and β, are very important. On 

the one hand, if the value of α is too large, a large 

number of service requests cause the length of the 

queue Q to grow rapidly in a short time. However, the 

network cannot provide sufficient resources to so many 

service requests at the same time, resulting in a 

decrease in the number of service requests in the queue 

Qsuc. The consequence of this case is an increase of BR. 

On the other hand, when the value of α is too small, it 

cannot make full use of network resources, resulting in 

waste of resources. And the effect of expiration 

frequency β on BR is similar to that of arrival 

frequency. Therefore, it is very important for SFC 

placement algorithm that satisfying as many service 

requests as possible under the network resource 

constraints. Moreover, for the next comparative 

simulations, it is very critical to determine 

appropriately the values of these two parameters. We 

tried many different values of α and β, carried out a lot 

of tests and finally selected some meaningful values to 

compare. Here we give the results of three groups of 

simulations (Set1: α=50, β=2; Set2: α=60, β=2; Set2: 

α=60, β=1.4), shown in Figure 8, Figure 9 and Figure 

10, respectively. 

In each group of contrast simulation, we also make 

load balance factor η  as a variable to observe if the 

change of η  has an effect on the BR. The Simulation 

results prove that the BR of these three algorithm is 

deeply affected by parameter α, β, and η . From the 

three simulation results, it can be clearly known that 

the BR is negatively correlated with η . Furthermore, 

let us look at the effect of the other parameters on the 

BR. Comparing the results of Figure 8 and Figure 9, it 

is concluded that the BR is positively correlated with 

the arrival frequency α. And comparing the results of 

Figure 9 and Figure 10, it is concluded that the BR is 

also positively correlated with the expiration frequency 

β. These results verifies our previous analysis. Then we 

analyze the difference between these three algorithms 

in BR. Firstly, regardless of whether the value of η  is 

0.6 or 0.8, the BR of NeO-SFC is significantly higher 

than the others. Secondly, when the network is idle, 

such as the case of Figure 8, the BR of G-SFC is lower 

than that of EA-SFCP. However, when it is busy, such 

as in Figure 10, EA-SFCP is better than G-SFC. Figure 

9 shows exactly what the BR performance of the two 

algorithms is similar, and their trend curves cross each 

other. In general, in terms of blocking ratio, both of 

EA-SFCP and G-SFC are superior than NeO-SFC 

algorithm. Hereinafter, in order to compare the power 

consumption, we make α equal to 60, and β  to 2. 

 

Figure 8. Blocking ratio evaluation (α =50, β =2) 

 

Figure 9. Blocking ratio evaluation (α =60, β =2) 

 

Figure 10. Blocking ratio evaluation (α =60, β =1.4) 
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5.5 Power Consumption Evaluation 

In this section, we study and analyze the energy 

efficiency of three different algorithms with different 

load balance factor η . Here, we refer to the definition 

of APC and RtPC in [19]. The RtPC means the sum of 

the power consumption of the requested services in the 

queue Qrun. The APC is the average of the power 

consumption of in the queue Qsuc. Their calculations 

are as follows: 

 
( )

| |

v suc
G Q v

suc

P G
APC

Q

∈
∑ Δ

=  (7) 

 ( )
v run

G Q vRtPC P G
∈

= ∑ Δ  (8) 

where ( )
v

P GΔ  is the power consumption that 

produced by the requested service Gv, which is 

calculated through equation (1). 

Figure 11 shows the RtPC results of the three 

approaches, and Figure 12 presents the results of APC. 

The simulation results show that the RtPC and APC of 

NeO-SFC algorithm are much larger than the results of 

EA-SFC and G-SFC algorithm. Also, the EA-SFC and 

G-SFC algorithm has almost the same result of APC. 

However, the RtPC of G-SFC algorithm is slightly 

lower than the result of EA-SFC. In addition, the 

power consumption of these three algorithms is 

negatively correlated with the load balancing factor. In 

Figure 12, we can clearly find that the APC of each 

algorithm decreases as the load balance factor η  

increases. Smaller the load balance factor is, the less 

available bandwidth resource each link has. Thus, with 

the reduction of load balance factor, the network has to 

produce more power consumption to satisfy same 

number of service requests. Besides, the G-SFC 

produce lower RtPC than EA-SFC in Figure 11, 

Although the APC results of EA-SFC and G-SFC are 

almost same in Figure 12. Furthermore, compared to 

the APC of NeO-SFC, the results of EA-SFCP and G-

SFC are far lower than it. Specifically, when η  equals 

to 1, the APC of NeO-SFC is stable at around 600W, 

and the APC of other two approaches are about 400. 

As a result, it saves about 33.3% of the average power 

consumption. However, when η  reduces to 0.8, the 

APC of NeO-SFC reduces to about 550W and the APC 

of other algorithms also reduce to about 355W. As a 

result, it saves the APC nearly by 35.5%. Therefore, 

load balancing factor also has an impact on the energy 

saving capacity of our proposed approaches: the 

smaller η , the stronger the energy saving capacity. 

Similar conclusions can be drawn from the results 

analysis of RtPC. 

5.6 Service Migration Analysis 

As servic requests arrive and expire over time, the 

resource sage of each domain is in a state of constant  

 

Figure 11. Real-time power consumption evaluation 

 

Figure 12. Average power consumption evaluation 

dynamic change. Using different SFC placement 

algorithm can also result in changes in resource usage 

for each domain. For analyzing the variation of 

different algorithms, we sampled the occupied CPU 

capacity of each subdomain randomly during the 

simulation as shown in Figure 13. It is obviously 

proved that the resource usages of each subdomain by 

using three algorithms are different. By using NeO-

SFC algorithm, the resource usages are evenly 

distributed among the subdomains of which the 

occupied computing capacity fluctuates from 60 to 90. 

On the contrary, it is not evenly by using EA-SFCP 

and G-SFC algorithm. With EA-SFCP algorithm, a 

number of computing resource of sub-domain 1/3/4 are 

occupied. Only a few of computing resource of the 

other subdomains, especially subdomain 5 and 8, are 

occupied, which means the SN nodes in those 

subdomains are in a light-load state. Furthermore, with 

G-SFC algorithm, we can see the subdomain 5 and 8 

are in a zero load state. Comparing the results of 

subdomain 5 and 8, we can see that the virtual 

instances are migrated from lightly-loaded subdomain 

to the other appropriate ones. Thus, this proves that G-
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SFC algorithm can consolidate network resource by 

service migration.  

 

Figure 13. The occupied CPU capacity of each domain 

The following is an analysis of the energy efficiency 

of our proposed service migration algorithm. Figure 14 

shows the accumulated trend of power saving by 

performing service migration. During the simulation 

process, the service migration is performed every 100 

service requests, and 50 times totally. Every time the 

service migration is performed, the total power 

consumption of entire network will be reduced. 

Moreover, we also studied the effects of load balance 

factor η on the energy efficiency of service migration. 

When η equals to 0.6, every time resource 

consolidation can reduce power consumption about 

1721.514W. When the factor equals to 0.8, this number 

drops to 994.922W. In general, the power consumption 

can be reduced through service migration. Besides, the 

effects of service migration are different for different 

time, which depends on the current distribution of 

residual resource. It is also affected by load balance 

factor which determines the redundant link resources. 

 

Figure 14. The saved power by service migration 

6 Conclusion 

In this paper, we studied the energy efficiency 

problem in multi-domain service function chaining. 

Specifically, we designed a hierarchical control 

architecture based on the hSFC architecture to support 

service chains across multi-domain networks. We also 

proposed an energy-aware SFC placement algorithm 

and an energy-aware SFC migration algorithm to 

improve energy efficiency of network together. 

Simulation results show that EA-SFCP algorithm can 

provide an energy-efficient placement for each service 

chain. Based on EA-SFCP, G-SFC, which integrates 

EA-SFCM, can consolidate network resource and 

further reduce the energy consumption of the network. 

Compared to existing algorithms, our proposed method 

not only have a lower blocking ratio, but also reduce at 

least 33.3% power consumption for each service 

request. In the future work, we will further study the 

implementation of hierarchical control plane, and 

verify our proposed control protocol. 
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