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Abstract 

In-network caching, a typical feature of information 

centric networking (ICN) architecture, has played an 

important role on the network performance. Existing 

caching management strategies mainly focus on 

minimizing the redundancy content by exploiting either 

node data or content data respectively, which may not 

lead to effectively improve the caching performance, as 

there is no consideration on supplementary action of 

these two types of data. In this paper, the correlation 

between node data and content data brought by the big 

data are analyzed and mined to determine whether the 

selected content are cached in a few suitable nodes, and a 

Big data driven Adaptive In-network Caching 

management strategy (BAIC) is proposed. Driven by the 

current state of node and content, a novel 

multidimensional state attribution data model including 

network, node and content data is proposed. Based on the 

data model, the mapping relationship between the status 

data and the matching relationship value is further 

analyzed and mined. And then utilizing this mapping 

relationship function, the matching algorithm to predict 

the matching relationship between the node and the 

content in the next time period is proposed. The 

simulation experiments demonstrate that the proposed 

BAIC has significantly improved the network 

performance. 

Keywords: Information centric networking, Caching, 

Big data learning 

1 Introduction 

The initial invention of the Internet was to fulfill the 

users’ primary communication and resource sharing 

needs. However, according to Cisco’s report, the most 

popular function of the Internet is currently to access 

content. The traditional location-centric mode appears 

to be unsuited to deal with the change. Then a new 

Internet architecture, Information Centric Networking 

(ICN), has been proposed, such as Named Data 

Networking (NDN) /Content-Centric Networking 

(CCN) [1], Data-Oriented Network Architecture 

(DONA) [2], Network of Information (NetInf) [3], and 

Service Oriented Future Internet Architecture (SOFIA) 

[4], Content Mediator architecture for content-aware 

nETworks (COMET) [5]. 

Obviously, one of the essential characteristic of ICN 

is in-network caching. Although caching theories and 

techniques have been extensively studied, these works 

usually focused on specific applications with the lack 

of unique identification of content, such as P2P, CDN 

and Web [6]. However, ICN makes routing and 

caching decisions on unique content identification and 

makes the identification network-aware without 

authenticated by a specific host. These features make 

ICN is application-agnostic. Consequently, the 

previous caching theories and techniques are not 

suitable, new mechanisms and strategies are urgently 

required. 

As an infrastructure service, ICN has to cache 

massive amounts of content. However, different from 

traditional server nodes on the network edge such as 

CDN, the cache space of the routing node is limited [7]. 

To fully utilize the cache space, some new strategies 

have been developed. These strategies can be, in 

general, divided into two categories. The first category 

is based on node data to select important cache nodes. 

Cache nodes are chosen according to the topology of 

the network and the quality of routing nodes. The 

second category is based on content data to select 

important content, i.e., whether to cache or not depends 

on the content popularity. 

Although both categories of strategies do help 

improve the cache performance, they also have their 

own limitations. The former one cannot detect the 

content of different popularity on different demands for 

cache space, while the latter one is unable to evaluate 

the network performance and allocate the cache space 

fairly. Because of lack of effective exploiting the 

supplementary action of these two data, neither of the 
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strategies can be easily used to achieve the optimal 

usage of the cache space. To solve the above problem, 

the correlation between node data and content data 

should be taken into consideration. 

In recent years, the rapid network expansion and the 

fast development of the Internet applications have 

presented a huge challenge to the mutual awareness 

between node data and content data. The explosive 

data growth, however, has created golden opportunities 

for developing an awareness-based caching strategy. 

Previous researches indicate that the data correlation 

created by the big data can help allocate resources in a 

more effective way and in the most rewarding direction 

[8-9]. So, in this paper, the status data of node and 

content is taken as a resource. And the mapping 

relationship between the different states and the 

matching relationship value is investigated. Then a 

secure semi supervised support vector machine (S4VM) 

model is introduced to mine and predict the matching 

relationship between the node and the content. 

In this paper, an adaptive caching strategy is 

proposed based on big data. The big data from the node 

and the content is transformed as a driving force for 

self-adaption. The major contributions of this paper are 

as follows. 

(1) A novel multidimensional state attribution data 

mode of the nodes and the content driven by big data is 

proposed to identify and standardize the real-time 

status of the network, the nodes, and the content.  

(2) A new concept named as “viscosity” is proposed. 

It is used to describe the matching relationship between 

nodes and content. It can help determine whether a 

piece of content is suitable to be cached in a certain 

node. 

(3) In the process of matching, S4VM model based 

on the combination of labeled and unlabeled data is 

introduced. The model satisfies the precision and 

effectiveness requirement.  

(4) Extensive simulation experiments have been 

conducted to compare the proposed caching strategy 

with other four popular strategies under different 

scenarios. The validity and performance of the 

proposed caching strategy are examined and evaluated 

respectively. 

2 Related Work 

In the early proposal of ICN, CEE (cache everything 

everywhere) strategy [10] was introduced. Because the 

content is cached in every node they go through, lots of 

redundant content are produced and thus many cache 

space are wasted. In order to improve the utilization of 

the cache space, a strategy called LCD (leave copy 

down) [11] was proposed. In LCD, content is moved 

downwards from its hit node to the one below. In 

another similar strategy, i.e., the CLS (caching location 

and searching) strategy [12], the content is moved to 

the downstream node by a request or moved to the 

upstream node by the cache eviction, and then one 

content at most has a chance to be cached on the path 

between a server and a leaf router.  

Some other work has mainly focused on the 

importance degree of the node. In the betweenness-

based strategy [13], content is only cached at 

downstream nodes which have the biggest betweenness. 

A new measurement method is put forward in [14] to 

figure out the importance degree of all the network 

nodes. Similarly, the method in [15] is based on the 

node’s importance to the community. It measures the 

node’s importance to the community and makes 

content cached in those nodes where the users can 

easily access.  

To further meet flexibility in nodes selection, some 

other strategies based on probabilistic models are 

proposed. A simple strategy in [16], named RAC 

(random autonomous caching), caches the content in 

the node with a constant probability p. A probabilistic 

caching algorithm named ProbCache is proposed in 

[17-18]. The caching probability is computed by the 

distance between the node and its source node and the 

cache capacity. A weighted probability based caching 

strategy is suggested in [19]. The caching probability is 

inversely proportional to the distance between the 

requester and the content. An opportunistic caching 

strategy proposed in [20], the caching probability of 

the content is determined by the distance between the 

node and its source node, as well as its access 

frequency. A heuristic probability-based caching 

strategy in [21], called MBP (Max-Benefit Probability-

based Caching), the caching probability is proportional 

to the content popularity and the content placement 

benefit. 

In all the aforementioned strategies, node data are 

regarded as a primary consideration and the node 

location is regarded as a main factor. However, the 

content distribution is not uniform or optimized 

without considering content data impacting on the 

caching performance. 

Among the caching strategies based on content data, 

some of the studies focus on the content popularity. 

An-aged caching strategy is investigated in [22], in 

order to reduce network delay the popular content is 

cached in the network edge nodes. A WAVE strategy 

is proposed in [23]. It studies the correlation among 

different content, and the number of content cached in 

one node can be adjusted according to content 

popularity. Some work further studies the content 

popularity algorithm. The local popularity considering 

the total amount of request at that node are weighed 

and integrated into the overall popularity in [24]. The 

overall popularity is taken as a criterion for the node to 

decide whether to cache the content. The strategy in 

[25] called MPC (Most-Popular Content) computes the 

content popularity by the number of requests for the 

content. The strategy in [26], the utilities of the 

contents which are tracked by network nodes are used 
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to make the caching decisions. The strategy in [27], 

called StreamCache, is also a popularity-based policy. 

The strategy in [28], called PCC (Popularity-based 

Cache Consistency), guarantees the freshness of 

cached contents in ICN routers. The utility-driven 

caching strategy in [29], the utility function of each 

content is corresponding content hit probability. 

Because these caching strategies based on content data 

only discuss how to select the popular content and do 

not further discuss how to cache the popular content in 

the reasonable node, large number of nodes may cache 

the same popular content, the cost of the redundancy 

content will be high, so that when the popular peak 

passes, large amounts of the cached popular content 

will be erased at the same time, causing the 

unreasonable content oscillation.  

So far, a few research works have investigated the 

influence of the mutual awareness between node data 

and content data on the cache performance. Both the 

content popularity and the cache space are considered 

in [30], the popular content is cached only in some 

important nodes according to the user’s demand and 

the trend of content popularity. The CC-CCN (cache 

capacity-aware CCN) strategy in [31] is based on the 

knowledge of cache space. After analyzing the cache 

space of each node, the system can select the candidate 

cache nodes, and distribute the content fairly to each 

candidate node according to the popularity of the 

content. The MAGIC (MAx-Gain In-network Caching) 

strategy in [32] and the PPCCR (Popularity Prediction-

based Cooperative Cache Replacement ) in [33]are 

based on the product of the popularity degree and the 

distance between the node and the source node. In [34], 

the CRCache (CRoss-layer Caching) algorithm utilizes 

a cross-layer design to cache content in a number of 

selected nodes based on the correlation of content 

popularity and network topology. These researches 

provide a foundation for the investigation on adaptive 

caching, but they are incapable of presenting a 

complete picture of the correlation between these two 

types of data. In this paper, by analyzing the big data 

from these two data, the proposed BAIC strategy will 

determine an optimized caching deployment. 

3 System Framework 

Based on the control plane and data plane separation 

mechanism in Software defined networking (SDN) 

[35], the system framework of the proposed BAIC 

strategy is shown in Figure 1. The control plane is the 

decision center. At the control plane, status data 

component is in charge of acquiring and counting the 

volume and variety of status data. These data include 

the network characteristics, node status and content 

attributes. The knowledge of the natural matching 

relationship between the nodes and the content and the 

mapping relationship between the status data and 

matching relationship value are derived from these data. 

In the matching relationship analysis component, the 

matching relationship value is labeled according to the 

matching degree, if the matching degree is greater than 

the threshold, the matching relationship value is 

labeled as 1, and it means that the node is suitable for 

caching the current content; otherwise, the value is 

labeled as-1, the node isn’t suitable for caching the 

content. The basic standard of judging the matching 

relationship is provided in this component. The 

matching domain knowledge contains the knowledge 

of all status data when the value is labeled as 1 or -1 

respectively. In the mapping relationship component, 

the status data impacting on the matching relationship 

value is analyzed and mined. The major function of 

this component is predicting in the next period what 

the matching relationship value is according to the 

status data and then deciding whether to cache the 

content. The data plane is used to cache content. 

 

Figure 1. The BAIC system framework 

4 Caching Strategy Based on 

Multidimensional Data Learning 

4.1 Extraction of Multidimensional State 

Attribution Data 

The ever-increasing network scale and the wide 

application of the present Internet lead to a lot of work 

on the performance measurement of the node and 

content. The measurement process produces big data, 

and the analysis of such big data is becoming a huge 

task. In order to reduce the analysis work on data and 

obtain the complete and high precision of the node and 

content description, some reasonable data sample 

objects need to be selected. Intuitively, the nodes 

which play more important roles should cache more 

content. Consequently, we need to define the degree of 



1680 Journal of Internet Technology Volume 19 (2018) No.6 

 

node importance. It has been shown that defining the 

degree of node importance only based on the graph-

related centrality properties, such as betweenness, 

closeness, cannot achieve a good gain on network 

performance [36]. And nodes have different working 

conditions at different times. So, the degree of node 

importance has to consider both the graph-related 

centrality properties and its own dynamic 

characteristics. From the perspective of data analysis, 

in this paper, data are analyzed and mined from 

following three dimensions, i.e., network dimension, 

node dimension, and content dimension. In the network 

dimension, some global statistics of the network 

including the node weight and the connect degree are 

analyzed. This dimension is used to decide the degree 

of node importance based on the graph-related 

centrality properties. In the node dimension, the cache 

ratio and cache replacement ratio are calculated for 

each node respectively. This dimension is used to 

select the available cache nodes based on the dynamic 

caching characteristics. In the content dimension, the 

local popularity and request viscosity of the content are 

defined. This dimension is used to select the contents 

that need to be cached. Through the persistent 

awareness of the above three dimensional data, the 

comprehensive and high precision data analysis about 

ICN can be achieved. 

4.1.1 Network Dimension 

In the network dimension, we analyze the effect on 

traffic and the range of direct force that the node 

applies to the adjacent nodes. 

The node weight is defined as .NW  

 
CSH

NW
USH

=  (1) 

Here, CSH  indicates the number of hops from the 

cache node to the server node in the path, and USH  

indicates the number of hops from the user node to the 

server node along the shortest path.  

The reasons for defining the variable CSH  are as 

follows. An example is shown in Figure 2, suppose the 

content requested by user 1 is responded and cached at 

node a2, and the content requested by user 2 is 

responded and cached at node b3, then ( 2) 2CSH a =  

and ( 3) 3.CSH b =  After that, assume that user 3 

requests the same content as previously requested by 

user 1, and user 4 requests the same content as 

previously requested by user 2. Because an important 

goal of the caching in ICN is to reduce the traffic flow, 

selecting node a2 can only eliminate the request to 

node a1, but selecting node b3 can reduce the traffic 

flow of two nodes b1, and b2. Therefore, to reduce the 

whole network traffic, the weight of node b3 should be 

bigger than the weight of node a2 in terms of being 

selected as the cache node.  

 

Figure 2. Illustration of the network dimension 

parameters 

For ,USH  the number of hops requested by user 1 is 

3, and the number of hops requested by user 2 is 5. 

Suppose the cache nodes are a2 and b3. From the 

perspective of traffic flow, the weight of node b3 

should be bigger than the weight of node a2 in terms of 

being selected as the cache node. However, from the 

user’s perspective, the requests from user 3 and 4 

should go through 1 and 2 hops respectively to reach 

the cache node. Because in ICN, the content is 

expected to be closer to the user, if we consider the 

hops only, the weight of selecting node a2 is bigger 

than the weight of selecting node b3. Therefore, in 

order to balance the relationship between the traffic 

flow and the number of hops, the node weight as NW  

is defined in this paper. The bigger the candidate 

node’s weight is, the more suitable the node is. 

The connection degree of a cache node is defined as 

,CD  which is the number of its adjacent links. 

Considering the topology in Figure 2, the connection 

degree of a2 is 4 and the connection degree of b3 is 3. 

It can be used to estimate the range of direct force that 

the node applies to the surrounding nodes in the 

network. The bigger the connection degree of a node, 

the stronger its force range is. As the content is cached 

at node a2, it can provide the caching service directly 

to the four neighboring nodes, while the caching 

service is only available to three neighboring nodes if 

the cache node is 3.b  

4.1.2 Node Dimension 

Node dimension is used to describe the load 

condition of a node during different time periods, 

through the cache ratio and the cache replacement ratio 

respectively.  

The node cache ratio is defined as CR . 

 0

( )

n

i

i

CCS

CR
CCS v

=

=

∑
. (2) 

Here, CCS  represents the size of cached content, n  

is the number of cached content within unit time, and 

( )CCS v  is the size of cache space of node v . The node 
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cache ratio can effectively describe the load level of 

the node whose cache space is not fully utilized. 

The node cache replacement ratio is defined as RR . 

 0

( )

n

i

i

RCS

RR
CSS v

′

=
=

∑
. (3) 

Here, RCS  represents the size of the replaced 

content, n′  is the number of replaced content within 

unit time. Assume that the network is in a stable state 

and some nodes have their cache spaces occupied. 

Then the cache replacement ratio can effectively 

describe the node load and the cache condition, 

reflecting the timeliness of different content in the 

node [37]. The combination of node cache ratio and 

node cache replacement ratio constitutes a set of the 

node condition. 

4.1.3 Content Dimension  

For any content, its popularity will experience a 

dynamic changing process, i.e., the rise, the peak, and 

the final attenuation. The popularity of content is also 

influenced by its location and its request ratio, thus 

even for the same content its popularity on different 

nodes may not be the same. In the content dimension, 

both temporal correlation and spatial correlation of the 

popularity are discussed herein. In the perspective of 

temporal correlation, the popularity is describing the 

dynamic changing trend of the number of content 

requests. In the perspective of spatial correlation, the 

viscosity is used to define the matching degree 

between the content of different popularity and the 

node at different position. Because ICN contains two 

kinds of packets, namely, interest packet and data 

packet, the request viscosity of the interest packet is 

the expectations of the correlation between the content 

and the nodes. 

The local popularity of the content is defined as 

vi
LP . 

 

1

vi

vi n

vi

i

IRN
LP

RN

=

=

∑

. (4) 

Here, 
vi

IRN  is the number of interest packet i  

requests within unit time according to the PIT table 

[38], n′  is the number of interest packet within unit 

time. 
1

n

vi

i

IRN

=

∑  is the total number of requests in this 

node within unit time. 

The network popularity of the content is defined as 

i
NP . 

 
1

m

i vi

v

NP LP

=

=∑ . (5) 

Here, m  is the total number of nodes. Since 
vi

LP  

computes the local popularity, the dynamic changes of 

content popularity in the network can be obtained by 

the statistical analysis of all the nodes. The popularity 

of the content is governed by Zipf distribution, i.e., the 

access requests to the top 20% popular content account 

for 80% of total network requests. The top 20% 

popular content by 
i

NP  is determined accordingly. 

During the peak time of the content, 
vi

LP  on many 

nodes is large. If the content happens to be cached in 

these nodes, many of the same content are in the 

network, the redundancy cost will be high. Intuitively, 

the popular content should be cached in the best-

matched nodes, different content should be cached in 

the different nodes. Consequently, a matching 

relationship between the content and the node is 

needed to be defined. 

The request viscosity of the content is defined as 

vi
RV . 

 log
( )

vi vi

m
RV LP

m i
= × . (6) 

Here, ( )m i  is the number of nodes sending interest 

packet i . log
( )

m

m i
 is a global factor of all nodes and 

describes the relative importance of interest packet i  to 

all nodes. It only relates to all nodes, regardless of any 

specific node. When more nodes send the same interest 

packet, the value becomes smaller, implying a lower 

correlation between the request and nodes. The request 

viscosity is proportional to the popularity of the 

content on the node, and is inversely proportional to 

the number of requesting nodes in the whole network. 

The bigger the viscosity value, the higher the 

correlation between content i  and node v  is, and the 

bigger the degree of matching expectations. 

4.2 Definition of Matching Relationship Value 

The matching relationship value checks whether the 

content i  matches the node v . 

The caching response ratio is calculated as: 

 

1

vi

vi n

vi

i

crn
CRN

crn

=

=

∑

, (7) 

where 
vi

crn  is response times to cached content i  in 

the current node v  within unit time according the CS 

table [38]. 

The cache viscosity is defined as 
vi

CV . 

 log
( )

vi vi

m
CV CRN

m i
= ×

′
. (8) 

Here, ( )m i′  is the number of nodes caching content 
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.i  log
( )

m

m i′
 is the relative importance of cached 

content i  to all nodes. The matching degree between 

the cached content and the node is obtained by 

calculating the cache viscosity. The bigger the cache 

viscosity value, the greater the matching degree 

between the node and the content, and then the node is 

more suitable for the content. 

TH  is the matching degree threshold value, if the 

cache viscosity ,
vi

CV TH≥  this means that content i  

has a good matching degree on node v , meaning that 

content i  is suitable to be cached in node v , then the 

matching relationship value is labeled as 1, otherwise it 

is labeled as -1. 

4.3 Design of the Training Set and the Test set 

For each node, the attribute vector is used to 

describe the state attribute, and defined as: 

 
1 2 3 4 5 6

( , , , , , )

( , , , , , )

vi vi vi vi vi vi vi

vi vi vi vi vi vi

a NW CD CR RR LP RV

a a a a a a

=

=

 

The 6 element listed from left to right are node 

weight, connection degree, cache ratio, replacement 

ratio, local popularity, and request viscosity. 

11 12
( , )t

vi vi
A a a a= �  is the labeled data set. 

vi
A  is the 

set of t

vi
A  over a period of time 

0
T , where 

0
.t T∈  To 

simplify the representation of the data set, let 

1 1 2 1
( , ),t

vi
A X x x x= = �  where 

1 11
.x a=  The category 

set is 
1 1 2 1

( , ),Y y y y= �  in which { 1,1}jy ∈ − . 
1

X  and 

1
Y  constitute the training set. 

1 1 1 2 1
( , )

u u
X x x x

+ + +
= �  is 

unlabeled data set over a period of time 
0
T t+ Δ , the 

category set 
1 1 1 2 1

( , )
u u
Y Y Y x

+ + +
= �  is the unknown 

relationship value, and they are the test data set. 

4.4 Cache Resource Management System 

In this section, we present a resource management 

system architecture for controlling the routing 

processes as well as the cache resources in Figure 3. 

 

Figure 3. Resource management system architecture 

The parameters on the node dimension, like CR  and 

RR , can be calculated by analyzing the cache status in 

every node. Also, the original parameters on the 

content dimension, like ,
v

IRN  and 
v

crn  can be 

obtained by analyzing the Interest package. Then these 

parameters will be forwarded to the Cache Resource 

Manager Server as additional content of the Interest 

packet. Each Cache Resource Manager Server has 

knowledge of the network topology. NW  and ,CD  

which we need on network dimension can be 

calculated by analyzing the topology of the whole 

network in the Server. By the multidimensional data 

and the matching relationship value over a period of 

time 
0
T  that have been obtained, the Cache Resource 

Manager Server will learn and dig the matching 

relationship, then the matching results over a period of 

time 
0
T t+ Δ  will be learned and forwarded to the 

Information Server. The Data packet attached this 

matching results will be forwarded along the source 

path. Then each node will cache the corresponding 

contents based on the matching relationship. 

4.5 Semi-supervised Support Vector Machine 

S4VM Algorithm 

This paper aims to predict the value of 
u
y  in the 

subsequent time period. To this end, we formulate the 

question of whether to cache the current content as a 

Binary classification problem.  

The traditional classification method has the 

weakness of overfitting or performing poorly during 

the learning process of small samples. Support vector 

machine (SVM) is a traditional classification method 

based on VC (Vapnik-Chervonenkis) dimension theory 

and structural risk minimization principle. However, it 

is only suitable for the study of supervised learning, 

and it cannot effectively use the unlabeled data [39]. 

In ICN, it’s usually easy to acquire caching 

performance data of each node, but it is often very 

expensive to get all the labeled information about these 

performance data. If all the performance data is not 

labeled, the workload can be reduced, but the accuracy 

of the algorithm cannot be guaranteed because of the 

lack of priority knowledge of the labeled samples. 

Considering the above two factors, a secure semi 

supervised support vector machine (S4VM) [40] model 

based on the combination of labeled and unlabeled data 

is introduced. 

S4VM model focuses on exploiting multiple 

candidate low-density separators, the reason is that 

there usually exist more than one large-margin low-

density separators for a few labeled data and abundant 

unlabeled data, it’s hard to decide which one is the best 

separator based on the limited labeled data, a wrong 

selection may cause a bad matching degree on the 

content and the node and result in the provider’s 

economic losses and a degenerated performance.  

4.6 Adaptive Caching Strategy 

The basic idea herein is to analyze and mine the 
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historical multidimensional state attribution data. Then 

the matching relationship between nodes and content is 

figured out via the mapping function between the state 

attributes and the relationship values. In detail, the 

proposed strategy consists of two phases. 

Phase A: Gauss method [41] is used to normalize the 

historical data, so that the different dimensions of 

historical data are mapped to the same value space. 

The purpose of this preprocessing step is to eliminate 

the influence of different data ranges on the mining 

algorithm. Specific steps are as follows: 

First, the normalized value of each attribute data p
via  

is defined as 

 0.5 ,
2*

p p
rp vi vi
vi p

vi

a a

a

aσ

−

= +

�

 (9) 

where p
via�  is the historic average of the attribute data 

p
via , and p

viσ  is the standard deviation of the historical 

data p
via . 

Then, if the data rp
via  is still outside the interval [0,1], 

the following formula is applied: 

 
0, 0

.
1, 0

rp
virp

vi rp
vi

a

a

a

⎧ <⎪
= ⎨

>⎪⎩
 (10) 

Phase B: The mapping algorithm is used to construct 

the relationship function between the multidimensional 

state attribute data and the matching relationship values. 

The mapping algorithm is summarized in Algorithm 1. 

At first, the algorithm judges whether node v  is 

suitable for caching content i  (line 4-5): if the cache 

viscosity 
vi

CV  is greater than the threshold TH , it 

means that content i  has a good matching degree on 

node v , and the relationship values is labeled as 1; 

otherwise, the relationship values is labeled as -1. Then, 

based on the normalized processing, the S4VM 

algorithm is used to mine and learn the mapping 

function between the state data and the relationship 

values (line 9-12). The mapping function f  is 

constructed according to the training set. Assume that 

the space of the state data is e

R , the space of the 

relationship values is g
R , then the mapping function is 

computed as follows: 

 : ( )e gf R R x w x bθ′→ = → +  (11) 

where ( )w x bθ′ +  is a set of mapping functions 

composed of g  sub functions 
1

{ ( ), ... ( )}
g

f x f x , and 

each sub function represents the mapping relationship 

between the state attribute values and the relationship 

value. The matching relationship values among the 

content and nodes can be predicted and labeled by 

inputting the state attribute values in the next period 

0
T t+ Δ  (line 15) to the mapping function .f  The 

calculation is conducted with the following formula: 

 ( )
u u
Y w X bθ′= +  (12) 

If the labeled relationship value is labeled as 1, and 

then the content is cached in the node, otherwise, the 

content isn’t cached in the node (line 16-19).  

 

 

Algorithm 1. Mapping algorithm 

Input: the state attribute value 
1

{ }lj jx
=

 and 
1

{ }l u

u l
x

+

+
, the 

threshold value TH , the relationship value 
1

{ }lj jy
=

, 

the cache viscosity 
1

{ }lj jCV
=

, the space of the state 

attribute value e

R , the space of the relationship values 
g

R . 

Output: the relationship value 1

1
{ } u

u l
y

+

+
 at the moment 

0
.T t+ Δ  

1:  Set N  be the number of all content; M  be the 

number of all nodes; ,j vix a=  ,j viK k=  

( 1)( 1) ,u v i
x a

+ +
=  i N∈  and ;v M∈  Set 

1
{ } 0;l

j jy
=

= Set 

T  be the time; 

2: if  
0

T T=  then 

3:     for  1j =  to l  do 

4:          if  jK TH≥ , then jy =1; 

5:          else jy  =0; 

6:        end if 

7:    end for 

8: end if 

9: for 1j =  to l  do 

10:    ( )j jy w x bθ′= + ; 

11 :     :
e g

j jf R R x y→ = → ; 

12: end for 

13:  if  
0

T T t= + Δ  then 

14:    for  1j l= +  to l u+  do 

15:        ( )
u u
Y w X bθ′= + ; 

16:        solving by the S4VM algorithm, if  
u
y  =1, then  

17:            cache the content i  in the node v ; 

18:        else 

19:            do not cache the content i  in the node v ; 

20:       end if 

21:    end for 

22: end if 

23: return 
1

{ }l u

u l
y

+

+
; 

5 Simulation and Analysis 

5.1 Performance Metrics and Experimental 

Setup 

The primary objectives of caching strategies are to: 

(1) reduce network operating cost, the amount of traffic, 
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the number of cached content and the number of 

requests to the server; (2) improve the quality of user 

experience so that users can quickly acquire various 

content from the nearly nodes. 

To quantify the above caching objectives, 

performance metrics are introduced for the network 

and the user, respectively. The network operation cost 

is analyzed from three aspects, i.e., the network, the 

routing nodes and the servers. In addition, the average 

link utilization, cache ratio and server load ratio are 

defined, respectively. To analyze the quality of the user 

experience, the cache hit ratio, delay, hop reduction 

ratio, and content diversity ratio are defined, 

respectively. In the following, we list the performance 

metrics defined in this paper and their brief explanation. 

Average link utilization: average value of all link 

utilization in the network within unit time. 

Cache ratio: the ratio of the number of cached 

content to the total number of request content. 

Server load ratio: the ratio of the number of requests 

received by all servers to the number of requests sent 

by all users within unit time. 

Cache hit ratio: the ratio of the number of hit cache 

content to the total number of cached content. 

Hop reduction ratio: the ratio of the reduced number 

of hops from the client to the first node where a 

successful cache hit occurs to the number of hops from 

the client to the server. 

Delay: the time from sending interest packet to 

receiving data packet. 

Content diversity ratio: the ratio of the number of 

different content cached in the node to the total number 

of different content produced by the servers in the 

network. 

In this paper, real domain topology AS-1755 [42]
 

which is publicly available through Rocketfuel is 

resorted to. The requests for different content are 

generated based on Zipf-distribution with α=0.7. The 

average user request ratio is 100 packets per second. 

The total number of different content in the network is 

71,000. This paper has analyzed only about 14,500 

content which are in the top 20%. One content needs 

one cache space. The total cache space of the network 

is from 0.25G to 1.5G. The initial amount of cached 

content in each node is zero. To evaluate our proposed 

adaptive caching strategy BAIC, the performance 

evaluation is conducted with ndnSIM in which all the 

nodes are cache enabled. Four caching strategies, 

namely, CEE [9], LCD [10], Prob [16] and BETW [11], 

are compared with the proposed strategy. The nodes 

use the least frequently used (LFU) replacement 

algorithm [43]. 

During simulations, we repeat experiments 10 times 

and each time has 4000,000 request events. When the 

network enters into a steady state phase after 1000,000 

request events, we collect multidimensional state data 

and cache viscosity per 100 request event. After 

subsequent 1500,000 events, we labeled these cache 

viscosities as matching relationship values, and then 

these status data and relationship values constitute the 

training set. We implement BAIC strategy to mine the 

mapping relationship with the training set, then input 

the status data of the last 1500,000 request events as 

test data, the output is the matching relationship 

between the content and the node.  

5.2 Performance Evaluation 

5.2.1 Impact on the Network Operating Cost 

We firstly investigate the network operating cost 

gain of five cache strategies under different cache 

capacity. Figure 4 shows the average link utilization 

ratio with varying cache capacity. First and foremost, 

we can see that the link utilization ratio of every 

caching strategy decreases with the increase of the 

cache capacity. For example, when the cache capacity 

is 0.25G, the link utilization ratio of BAIC is nearly 

23%, when the cache capacity is 1.5G, the link 

utilization ratio of BAIC can be reduced to 14%. The 

reason is that with the increase of the cache capacity, 

the amount of cached content is also increased. The 

user can obtain the required content at the intermediate 

cache nodes, thus reducing the traffic flow from the 

cache nodes to the server, so the average link 

utilization is reduced as well. Further analysis shows 

that the performance of BAIC strategy is better than 

the other three. For a 1.5G cache capacity, BAIC 

reduces the link utilization ratio by about 30% 

compared to LCD and about 40% compared to CEE, 

Prob0.5 and BETW. Although a large amount of 

content is cached in the nodes under the other four 

strategies, they don’t consider the matching 

relationship between the content and the nodes. If the 

content does not meet the user needs, the users still 

need to get the required content from the server.  

 

Figure 4. The average link utilization ratio under 

different cache capacities 

Figure 5 shows the cache ratio under the five 

different caching strategies within unit time. From the 

figure, we can see that with the increase of the cache 

capacity, the performance of all strategies is 

significantly improved, except LCD. For example, 

when the cache capacity is 0.25G, more than 20% of 

the content should be cached in the network with BAIC. 
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However, when the cache capacity is 1.5G, the cache 

ratio can be reduced to 8%. However, in LCD strategy, 

it is required to cache not only a large amount of new 

content but also cache the content from the upstream 

nodes to the downstream nodes, so the change trend is 

different from the other three strategies at the sampling 

time. Moreover, BAIC strategy significantly 

outperforms the other four strategies. For a 1.5G cache 

capacity, in terms of the cache ratio, BAIC reduced the 

cache ratio by about 66% compared to BET and 

Prob0.5 and about 78% compared to CEE and LCD.  

 

Figure 5. The cache ratio under different cache 

capacities 

Figure 6 shows the server load ratio under the five 

caching strategies within unit time. BAIC strategy 

decreases the server load ratio by about 14.1%-39.3% 

compared to CEE, about 16.8%-40.5% compared to 

BETW, 19.2%-64% compared to Prob0.5 and about 

28.6%-55.7% compared to LCD. As mentioned 

previously, in BAIC strategy, it caches the popular 

content in the matching nodes. As a result, the request 

has a higher chance of hitting the desired content in the 

routing nodes than in other strategies. 

 

Figure 6. The server load ratio under different cache 

capacities 

5.2.2 Impact on the Quality of User Experience 

We investigate the quality of user experience gain of 

five cache strategies under different cache capacity. In 

Figure 7, BAIC strategy improves the cache hit ratio 

by nearly 40% compared to CEE, Prob0.5, BETW and 

also remarkably exceeds LCD when the cache capacity 

is 1.5G. The reason is analyzed as follows. In CEE 

strategy, there are a large number of redundant content 

which does not match the nodes, so the cache hit ratio 

is relatively low. Meanwhile, due to limited cache 

space, content is constantly being replaced which 

further affects the cache hit ratio. In BETW strategy, 

content is cached only at those more “important” nodes 

along the paths, therefore a relatively limited number 

of content can be cached in these “important” nodes. 

Similar to BETW, in Prob strategy, only some content 

can be cached. In LCD, the number of cached content 

is less than the number in any other strategy, and thus 

the cache hit ratio is the lowest. 

 

Figure 7. The cache hit ratio under different cache 

capacities 

Figure 8 shows the hop reduction ratio under the 

five different caching strategies. For each of them, the 

hop reduction ratio increases with the increase of cache 

capacity. Moreover, BAIC strategy significantly 

outperforms the other four strategies. For a 1.5G cache 

capacity, BAIC improves the hop reduction ratio 

nearly by 30% compared to the other three. And with 

the increase of the cache capacity, the performance gap 

between BAIC and the other strategies is widened.  

 

Figure 8. The hop reduction ratio under different cache 

capacities 

Figure 9 shows the access delay under the five 

different caching strategies. When the user is able to 

obtain the required content directly from the cache 

node, the hop count is reduced and the access delay is 

reduced as well.  
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Figure 9. The delay under different cache capacities 

Figure10 shows the content diversity ratio of the five 

strategies under different cache capacities. In order to 

analyze the diversity of the cache content, the 

horizontalaxis represents content diversity ratio, and 

the vertical axis represents the percentage of the 

number of nodes. We can see that to the same strategy 

the distribution of the content diversity is roughly 

similar under different cache capacities. In Figure 10 

(a), (b) and (c), to BAIC strategy, about 40% of the 

network nodes have the content diversity ratio less than 

40%, about 80% of the network nodes have the 

percentage of total content less than 60%, and nearly 

all the network nodes have the content diversity ratio 

less than 80%. While in Figure 10(d), (e) and (f), the 

content diversity ratio of BAIC is reduced. The reason 

is that the matching degree or the cache viscosity is 

inversely proportional to the number of nodes caching 

content i  in the whole network, with the increase of 

the cache capacity, the number of nodes caching 

content i  is increased, then in the training process, the  

  

(a) cache capacity=0.25GB (b) cache capacity=0. 5GB 

(c) cache capacity=0.75GB (d) cache capacity=1GB 

  

(e) cache capacity=1.25GB (f) cache capacity=1. 5GB 

Figure 10. The content diversity ratio under different cache capacities 
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number of matching degree greater than the threshold 

is reduced, it means that only the content which 

matching degree with the nodes are strong are suitable 

to be cached in the current nodes. In the test process, 

the number of content cached in the node is reduced 

under this strong matching constraint.  

5.2.3 Impact of Zipf  Parameter (α) 

Figure 11 shows the cache hit ratio under BAIC 

strategy of difference cache capacity for difference 

values of Zipf parameter α. With the increasing of 

Zipf parameter, the content with higher popularity will 

be cached on more nodes, then the cache hit ratio 

increases. 

 

Figure 11. cache hit ratio vs Zipf parameter 

5.2.4 Impact of Replacement Algorithm 

Figure 12 shows the cache hit ratio under BAIC 

strategy of difference cache capacity for difference 

replacement algorithm. From the figure, we can see 

that with the increase of the cache capacity, the 

performance of two replacement algorithms is 

significantly improved. The reason why LFU algorithm 

always performs worse than LRU is because when a 

content is received again after a deletion, it can be 

deleted easily since it has a low reference frequency 

compared with other content. Therefore once a content 

is deleted from the cache on the node, it’s difficult to 

be cached again, and the request has a hardly chance of 

hitting the desired content in this node. 

 

Figure 12. cache hit ratio for LRU and LFU 

replacement algorithm 

6 Conclusion 

In this paper, the cache management strategy in ICN 

architecture is investigated. In order to cache the 

content in the suitable nodes, BAIC strategy is 

proposed to predict the matching relationship between 

the nodes and content. The big data learning process is 

built upon analyzing and mining the historical big data 

of multidimensional state attribution, i.e., the network, 

node and content. Then, the prediction is conducted by 

the mapping function between the state attributes data 

and the caching relationship values with S4VM. 

Experimental results show that this caching strategy 

has significantly reduced the network operating cost 

and improved the user experience quality. We 

conclude that by fully analyzing and mining the 

correlation of node data and content data, cache 

performance could be significantly enhanced. 
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