
Web API Discovery Using Semantic Similarity and Hungarian Algorithm 1657

Web API Discovery Using Semantic Similarity and

Hungarian Algorithm

Shang-Pin Ma1, Hsuan-Ju Lin1, Hsi-Min Chen2, Ying-Jen Chen1, Wen-Tin Lee3*

1 Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan
2 Department of Information Engineering and Computer Science, Feng Chia University, Taiwan

3 Department of Software Engineering, National Kaohsiung Normal University, Taiwan

albert@ntou.edu.tw, mis101bird@gmail.com, hsiminc@fcu.edu.tw, jane15751@gmail.com, wtlee@nknu.edu.tw

*Corresponding Author: Shang-Pin Ma; E-mail: albert@ntou.edu.tw

DOI: 10.3966/160792642018111906003

Abstract

Representational state transfer (REST) is the current

design standard for Web application programmable

interfaces (APIs). Unfortunately, existing Web API

search engines allow for only keyword or tag-based

searches. Furthermore, search engines do not take into

account the semantics and the interface compatibility.

This paper reports on a novel approach to RESTful

service discovery, referred to as Interface-Compatibility-

based Semantic Service Search (ICS
3
). ICS

3
 expands

terms in service documents using DBpedia and WordNet,

and then filters out services that are inapplicable to the

user query, in two steps: (1) calculating semantic

similarity between candidate services and the user query

and (2) calculating the degree of interface compatibility

between candidate services and the user query using the

Hungarian algorithm. Experiment results demonstrate

that ICS
3
 outperforms other Web APIs search methods in

terms of accuracy.

Keywords: Service discovery, RESTful service, Web

API, Term expansion, Interface compatibility

1 Introduction

Rapid advances in web technology, mobile

computing, and social networking have greatly

enhanced the importance of Web API (application

programmable interface) design. Google, Facebook,

Netflix, eBay, LinkedIn, Foursquare, Instagram, and

many others have published Web APIs, which can be

used by developers to avoid the costs and effort spent

associated with developing non-core functionalities.

The well-known website, ProgrammbleWeb [1], has

identified Representational State Transfer (REST) [2-3]

as the standard for API design [4]. An enormous

number of RESTful services [3] can be found on the

internet, including the 7,000+ RESTful services

published on ProgrammbleWeb. However, Web API

search engines, such as ProgrammbleWeb [1], apis.io

[5], and mashape [6], allow for only keyword or tag-

based searches, which makes it very difficult for users

to find suitable RESTful services. Furthermore, search

engines do not take into account semantics or other

characteristics of Web APIs, such as input parameters,

output data, or interface compatibility.

In this paper, we propose a novel approach to the

discovery of Web APIs, referred to as Interface-

Compatibility-based Semantic Service Search (ICS3).

ICS3 adopts two concepts from previous research on

service discovery and composition: interface matching

and semantic term expansion [7]. Interface is widely

applied in the retrieval of software components [8].

Service composition [9] relies on exact matching or

advanced subsumption matching [10] for I/O

(input/output) elements. The application of conventional

interface matching is generally impractical because

exact matching tends to hinder the retrieval of

semantically equivalent or similar services and

subsumption matching is limited in its ability to

improve performance by relaxing the matching of I/O

elements based on “IS-A” relationships. The

exhaustive matching of I/O elements between user

queries and all candidate services imposes excessive

computational complexity. To overcome these issues,

ICS3 uses DBpedia [11] and WordNet [12-13] to

perform semantic term expansion in service documents.

It also filters out services that are inapplicable to the

user query by calculating semantic similarity scores

between services and queries based on VSM (vector

space model) and estimating interface compatibility

using the Hungarian algorithm [14]. The integration of

Hungarian-based interface matching with semantic

term expansion increases the likelihood of finding

services that are semantically equivalent or similar to

the user request. It also reduces the time spent

associated with interface matching by filtering out

candidate service with low similarity scores.

The remainder of this paper is organised as follows.

Section 2 presents an overview of the background and

related works. Section 3 outlines the details of the

1658 Journal of Internet Technology Volume 19 (2018) No.6

proposed approach. Section 4 presents the experiments

used for the evaluation of the proposed approach.

Section 5 summarizes the benefits and features of the

proposed approach.

2 Related Work

In this section, we outline related works, including

the Hungarian algorithm, those involving SOAP

service discovery, and various approaches to RESTful

service discovery.

2.1 Hungarian Algorithm

The Hungarian algorithm [14], proposed by Harold

Kuhn in 1955, is a combinatorial optimization

algorithm based on work of Hungarian mathematicians,

Dénes Kőnig and Jenő Egerváry. The algorithm is

easier to describe if the problem of assignment in

polynomial time is formulated using a bipartite graph,

in which the vertices can be partitioned into two sets (A

and B) with no edge, and with both endpoints in the

same set. Thus, every possible edge that could connect

the vertices in different sets forms part of the graph.

The Hungarian algorithm can be used to find the best

one-on-one mappings of A and B. As shown in Figure

1, the A vertices (circle points) connect to the B

vertices (square points) with edges, each of which has

the cost of connection. The Hungarian algorithm can

be used to formulate mappings {A0-B3, A1-B0, A2-B1,

A3-B2} and find the maximal outcome. In this paper,

we employed the Hungarian algorithm to facilitate the

mapping analysis of input and output parameters, in

order to assess interface compatibility between queries

and services.

Figure 1. Example of bipartite graph matching

2.2 Service Discovery Methods

Existing service discovery methods include text-

based searches, in which the similarity between a query

document and service documents is calculated using IR

(information retrieval) methods. Stroulia and Wang [15]

used term frequency/inverse document frequency (TF-

IDF) in conjunction with WordNet to calculate the

similarity between two WSDL documents based on

data format, service operation, and service content.

Dong et al. developed the Woogle [16] search engine

to calculate similarity between queries and service

operations based on term relationships built using a

clustering algorithm. Hao et al. presented an IR-based

service discovery and sorting method [17] that uses

relevance and importance of services as indicators to

enhance the precision of service discovery. Plebani et

al. proposed a service search method based on

Universal Description, Discovery, and Integration

(UDDI) [18], to analyze the structure and terms used in

WSDL documents in order to measure similarity

between multiple Web service interfaces. Their

approach also uses WordNet and domain ontology to

enhance precision.

Another approach to service discovery involves the

use of ontology to describe, search for, and compose

services based on semantics. Verma et al. [19] used an

annotation method (SAWSDL) to include semantics in

WSDL in order to improve accuracy in searching for

web services. Martin et al. utilized OWL-S [20] to

form semantic descriptions of web service capability

and store semantic information in UDDI [21]. A third

approach to service discovery is based on the quality of

service (QoS). Hu et al. [22] proposed a service

selection algorithm in which the preferences of

multiple users are aggregated according to criteria

derived from multiple providers, whereupon the most

suitable service provider is selected based on voting

results. J. Wu and Z. Wu [23] developed a suite of

methods to assess similarity among Web services to

facilitate matchmaking. They presented a conceptual

model for the classification of Web service properties

into Common Properties, Special Properties, Service

Interface, and QoS as well as a variety of methods

which could be used (together or individually) for the

assessment of similarity to facilitate web service

matchmaking. In [9], the method proposed in [23] were

used in conjunction with QoS and interface

compatibility in the application of the Hungarian

algorithm and lexical similarity to optimize I/O

mapping between component services. Note that the

issue of semantics was not considered in this approach

because service composition requires exact interface

matching. ICS
3 integrates Hungarian-based interface

matching with semantic term expansion to increase the

likelihood of retrieving candidate services capable of

fulfilling user requirements.

3 Interface-compatibility-based Semantic

Service Search

In this chapter, we describe the pre-processing of

documents, introduce the proposed semantic RESTful

service search scheme, and outline the proposed

interface-compatibility-based semantic search.

Web API Discovery Using Semantic Similarity and Hungarian Algorithm 1659

3.1 Pre-processing of Documents

After obtaining a query document or service

document, ICS3 conducts preparatory tasks to facilitate

index building and semantic term extension. The

process includes the following procedures.

3.1.1 Stemming and Tokenization

The IR tool, Lucene Analysis API1, is used to chop a

service description up into tokens and to parse a

service description for the removal of stop words. We

collected terms generally used for RESTful services in

the construction of stop word lists, in order to enhance

search precision.

Many words are derivations from the same stem,

and therefore are subsumed under the same concept

(e.g., organize and organization). The fact that these

derivations are generated through appended affixes

(prefixes, infixes, and/or suffixes) means that we can

use the stemming algorithm, Porter Stemming

Algorithm [24], to strip away the suffixes from the

derived words. Obtaining the stems of the terms (e.g.,

organ) makes it possible to identify all of the related

words simply by matching stems, which are then stored

in a database.

3.1.2 Semantic Term Expansion

The discrepancies commonly encountered between

the query terms submitted by users and the terms

included in service descriptions can greatly undermine

the accuracy of service matching. In this paper, ICS3

performs term expansion for each service document.

When a parameter in a service document is annotated

as an ontology class or property, the annotated term is

expanded based on WordNet [12-13] and Dbpedia [11].

When a parameter in a service document is annotated

as a resource, the associated term is expanded based

only on WordNet. This expansion is detailed in

following sub-sections.

DBpedia-based term expansion. In service documents,

input and output parameters are annotated by Dbpedia

through a newly defined property, mappingType. For

example, in the Facebook Graph Search Place API, the

mappingType for the input parameter “name” is linked

to “DBpedia: ontology/Place”, and the mappingType

for the output parameter is linked to “DBpedia:

ontology/City”. ICS3 expands the annotated term of

each parameter in service documents to generate an

expansion bag. The expansion process includes the

following steps:

‧ If mappingType is annotated using a DBpedia class,

then we use the class to include its three-level super

classes and direct sub-classes in the bag.

1 https://lucene.apache.org/

‧ If mappingType is annotated using a DBpedia

property, then we find the class assigned to the range

and the class assigned to the domain, and include in

the bag the two classes as well as its three-level

super classes and direct sub-classes.

In this paper, we use the Edge Counting Method [25]

to calculate similarity between two terms. This method

takes into consideration the path length between terms

as well as the depth of the subsumer. The formula to

calculating simalrity is defined in Equation 1.

(1, 2)

()* ()

*

[0..1]

h h

l

h h

sim w w

f l f h

e e
e

e e

β β
α

β β

−

−

−

=

−
=

+

→

 (1)

where l is the shortest path length between w1 and w2,

and h is the depth of the subsumer, which is derived by

counting the number of levels between the subsumer

and the top of the hierarchy. To avoid the effects of

bias, we followed the suggestions in [25] wherein α is

set to 0.2 and β is set to 0.6 by default.

This approach method makes it possible to calculate

the degree of similarity between the original class and

the expanded class, over a range from 0 to 1. For

example, superclass “DBpedia:ontology/Settlement” is

a subclass of “DBpedia:ontology/City” with similarity

Sim(city, settlement) of 0.78.

Finally, only the terms with similarity values

exceeding
oe

θ are classified within the set of expanded

terms. For example, setting
oe

θ to 0.7 would result in

the inclusion of the term “settlement” within the set of

expanded terms. In subsequent processing, the

calculated similarity of the term becomes its weight.

WordNet-based term expansion. In addition to the

proposed ontological expansion, we also employ

WordNet for lexical expansion. WordNet [12-13] is a

large lexical database of the English language, in

which nouns, verbs, adjectives and adverbs are

grouped into sets of synsets, each expressing a distinct

concept. Using WordNet, we first obtain the synset of

each term, including synonyms, hypernyms, and

hyponyms. In WordNet, the synonym is on the same

level as the original term, hypernyms are more abstract,

and hyponyms are more concrete. We then calculate

the similarity between each term in the synset

(synonyms, hypernyms, hyponyms) and the original

term. Similar to DBpedia-based term expansion, only

the terms with similarity exceeding
we

θ (currently we

also set
we

θ to 0.7) are classified within the set of

expanded terms and passed to the next stage. We also

calculate the term frequency (TF) for each expanded

term, and multiply its weight by TF to emphasize the

importance of frequency in the occurrence of terms.

1660 Journal of Internet Technology Volume 19 (2018) No.6

Figure 2 demonstrates the result of term expansion.

The mappingType property is assigned to the ontology

class “dbpedia:ontology/City”. As mentioned previously,

if the mappingType is annotated as an ontology class,

the annotated term is expanded based on WordNet as

well as DBpedia. In DBpedia-based expansion, we

expand three terms from super classes and two terms

from direct subclasses. In WordNet-based expansion,

we expand two synonyms from WordNet, and then

calculate the weight for each expanded term.

Figure 2. Example of term expansion

3.2 VSM-Based Semantic Service Search

We obtain semantic information pertaining to

services in a two-stage process of expansion and then

store it in a database. When ICS3 first obtains a query

document, it begins by performing tokenization and

term stemming. It then conducts a comparison of terms

between the set of extracted tokens for the query

document and the set of expanded terms for each

published RESTful service. Finally, ICS3 calculates the

degree of similarity between the query and each

published service using the well-known IR

(information retrieval) method: VSM (vector space

model), and ranks the services accordingly. The

computation of similarity is detailed in the following.

In the proposed scheme, service and query

information is divided into three sets of terms:

descriptions (or titles), inputs, and outputs.

Furthermore, each term in these sets is assigned a

weight, which is the term frequency for the original

term or is the product of the term frequency and the

term similarity to the original term for an expanded

term. The query vector and service vector are built

based on these sets. A query vector Q = {dvq, ivq, ovq}

includes a query description vector dvq, query input

vector ivq, and query output vector ovq. A service

vector, S = {dvs, ivs, ovs} includes a service description

vector dvs, service input vector ivs, and service output

vector ovs.

We calculate the degree of similarity between the

query vector and the service vector using VSM, as

follows (Equation 2):

2 2 2 2 2 2

(,)

| | | | | | | | | | | |

q s q s q s

s s s i i i

SS Q S

dv dv iv iv ov ov

dv iv ov dv iv ov

⋅ + ⋅ + ⋅

=

+ + ⋅ + +

 (2)

Following the computation of similarity, candidate

services with similarity exceeding
ss

θ are passed on to

the next stage to undergo analysis of interface

compatibility. In this research, we set this to 0.5 to

filter out approximately half of the candidate services

based on the results of internal experiments.

3.3 Interface-compatibility-based Service Search

Ensuring the smooth integration of candidate

services with developer applications requires that the

interface of candidate services match the expectations

specified in the query document. In other words, the

invocation of candidate services requires only a subset

of the prepared input data. The output of the service

invocation generates data that contains the expected

output parameters. For example, if a user plans to find

services with m input parameters Ir and n output

parameters Or, then the number of input parameters (Is)

associated with a given candidate service should be

equal to or less than m (Is ⊆ Iq), and the number of

output parameters (Os) should be equal to or more than

n (Os
⊇ Oq).

We propose the IOC concept to ensure that (1) the

input parameters of the required service specifications

should cover published RESTful services, and (2) the

output parameters of published RESTful services

should cover the required service specifications. We

developed a novel approach to parameter mapping to

overcome the difficulties associated with word

approximations and synonyms.

To obtain optimal mappings for the analysis of

interface compatibility, we calculate the mapping for

each query parameter and service parameter, as

outlined in the following:

(1) Calculate unadjusted similarity (,)i jkus qt st

between the ith query parameter and the kth expanded

tokens for the jth original token. Expanded tokens

include the tokens extracted from the original service

parameter and semantically expanded terms.

(2) Multiply the unadjusted similarity (,)i jkus qt st

by the weight of the expanded term ()jkw st to compute

the weight-similarity, (,)i jks qt st .

(3) Derive the maximum adjusted similarity between

the query parameter and expanded terms for a service

parameter, and define it as the mapping similarity

between the service parameter
i

qt and the query

parameter
j

st .

After calculating the similarity between query and

service parameters, we must determine the optimum

combination of mappings. As mentioned above, the

input parameters of a required service specification

should cover the published RESTful services, and the

output parameters of published RESTful services

should cover the required service specifications. Thus,

from the perspective of inputs, we obtain the optimum

Web API Discovery Using Semantic Similarity and Hungarian Algorithm 1661

combination from the service input parameters by

deriving the maximum sum of weights. From the

perspective of outputs, we obtain the optimum

combination from the query output parameters.

As described in Section 2, the Hungarian algorithm

can be used to resolve the issue of finding the best

mappings. Based on the resulting combination of

mappings between the query and service, an IOC

scoring function (Equation 3) is derived to fulfil

interface compatibility, as follows:

(,)

(,) (,)
i j i j

in out

IOC R S

ms qit sit ms qot sot
w w

m n

∑ ∑
= ⋅ + ⋅

 (3)

where
i

qit is an input parameter of the service, and

j
sit is an input parameter of the query;

i
qot is an

output parameter of the query, and
j

sot is an output

parameter of the service; m is the number of input

parameters of the service, and n is the number of

output parameters of the query.
in

w and
out

w are the

weights indicating the importance of inputs and outputs

with a sum of 1. In this paper, they are both assigned a

value of 0.5.

The calculation of the input covering score is similar

to that of the output covering score. The difference lies

in the “direction” of mapping, wherein the mapping of

inputs is from service input parameters to the query

input parameters.

The above procedure is applied for the query and

each published service. After obtaining the IOC scores

between the query and all services, the ICS3 filter out

inappropriate services; i.e., those with IOC scores not

exceeding the IOC threshold
ioc

θ (set to 0.5) and treat

the remaining services as candidate services.

ICS3 then collects the SS scores and IOC scores of

the candidate services to calculate the final score using

the following equation:

3(,) (,) (,)
ss ioc

ICS Q S SS Q S w IOC Q S w= ⋅ + ⋅ (4)

where
ss

w and
ioc

w are the weights indicating the

importance of the semantic search and interface-

compatibility-based search with a sum of 1. They are

both assigned a value of 0.5 in this paper.

Each candidate service Sc is assigned a degree of

fitness with query Q using Equation 4. All candidate

services undergo ranking by 3 (,)
c

ICS Q S before being

returned to the user.

4 Experimental Evaluations

To demonstrate the feasibility of the proposed ICS3

scheme, we implemented a prototype system and

compared the performance with that of the IR-based

full-text method and semantic similarity of services

(SimSS) method.

4.1 Experimental Configurations

The experiment was setup as follows:

Submission of service and query documents to the

ICS
3
 prototype. Although there are thousands of

public RESTful APIs published in the Internet, it is

hard to derive the service title/description, input

parameters, and output parameters of all published

services since there is no standardized way to describe

the service interface. Meanwhile, the semantic

mappings from the service description to the global

ontology, such as DBpedia, are also lacking currently.

To conduct experiments and perform evaluations, we

collected a total of 200 RESTful services in various

domains from ProgrammableWeb, Mashape, and

APIs.io, and developed corresponding service

documents, including API descriptions, input and

output parameters, and semantic mapping information.

We also wrote 14 representative query documents in a

diversity of fields for use as a testbed. Query

documents include only the expected API title, input

parameters, and output parameters. Thus, Query

documents are similar to simplified service documents.

Full-text API search method. We developed a search

method based on the conventional IR approach

(hereafter referred to as full-text), for use as a

comparison target. Unlike the ICS3 method, the IR-

based method does not divide query and service

documents into three vectors, and does not perform

term expansion based on DBpedia and WordNet. The

IR method proceeds through the following steps:

(1) Perform tokenization and stemming.

(2) Calculate similarities between the query and all

service documents using a VSM.

(3) Rank services according to calculated similarities.

SimSS search method. We established another search

method, SimSS, based on [9] for use as a comparison

target. This method takes into account the degree of

semantic association, service quality, and efficiency in

composition of web APIs. To enable a comparison

with ICS3, we made a number of modifications to the

SimSS to allow single service discovery. The modified

SimSS method proceeds through the following steps:

(1) Perform tokenization and stemming.

(2) Retrieve input and output parameters from query

and API documents.

(3) Calculate mapping similarities (SimCC) between

I/O parameter pairs (Equation 5).

 (,) (,)simIn Qi Sj SimOut Qi Sj
d

α

α

= =

+

 (5)

where d is the path length between terms and α is an

adjusted value, set to 0.6.

(4) Use Hungarian algorithm to identify the best

one-on-one mapping and calculate SimSS scores using

the following equation (Equation 6).

1662 Journal of Internet Technology Volume 19 (2018) No.6

(,)

1
(,)

1
(,)

in

out

SimSS Q S

SimIn Qi Sj w
n

SimOut Qi Sj w
m

= ∑ ⋅

+ ∑ ⋅

 (6)

where
in

w and
out

w are 0.5, n is the number of service

inputs, and m is the number of query outputs.

(5) Rank services according to SimSS scores.

Establishment of parameters for ICS
3
. Parameter

settings were based on the results of trial-and-error

experiments, as follows: 0.7, 0.7,
oe we

θ θ= = 0.5,
ss

θ =

0.5,
ioc

θ = 0.5,
ss

w = and 0.5.
ioc

w =

Application of evaluation indicators for verification.

Two indicators were used to evaluate the performance

of ICS3, the full-text method, and the SimSS method.

The indicators included Top-K precision (Equation 7)

and Top-K recall (Equation 8).

| () () |

()
| () |

K

K i i

i K

i

Rel Q Rank Q
Precision Q

Rank Q
=

∩
 (7)

| () () |

()
| () |

K

K i i

i

i

Rel Q Rank Q
Recall Q

Rel Q
=

∩
 (8)

where,
i

Q is the ith query, and ()K

i
Rank Q is the Top-

K retrieved services. ()
i

Rel Q is a set of relevant

services with
i

Q .

Top-K precision refers to the fraction of retrieved

Top-K services that are relevant to the user and Top-K

recall indicates the fraction of Top-K services that are

relevant to the retrieved queries. These two indicators

make it possible to determine the effectiveness of the

full-text method, SimSS, and ICS3.

We used 14 representative query documents in the

search for services. We then gathered the search results

and their rankings to calculate Top-K precision and

Top-K recall where K ranges 1 to 10. The indicators

were then used to evaluate the performance of ICS3

and compare it with that of the full-text and SimSS

methods.

4.2 Experiment Results

Average Top-K Precision is presented in Figure 3,

and Average Top-K Recall is presented in Figure 4.

These results illustrate how ICS3 clearly outperforms

the full-text and SimSS methods and clearly

demonstrates the ability of ICS3 to retrieve RESTful

services capable of satisfying user requirements.

Figure 3. Average Top-K Precision

Figure 4. Average Top-K Recall

From the perspective of the Precision, although all

three methods can accurately retrieve Top-1 service

and Top-2 services, ICS3 continues to keep the high

Precision (0.6) even for the Top-10 retrieved services.

From the perspective of the Recall, ICS3 achieves 0.7+

Recall for the Top-10 retrieved services, whereas other

two methods merely yield about 0.5 Recall.

5 Conclusion

This paper reports on a novel approach to Web API

discovery, referred to as Interface-Compatibility-based

Semantic Service Search (ICS3), for the retrieval of

RESTful services according to user-defined criteria.

The main features of ICS3 are four-fold: (1) ICS3

expands service documents using DBpedia and

WordNet to increase the precision of service matching;

(2) ICS3 calculates semantic similarities between

services and queries to filter out irrelevant services; (3)

ICS3 analyses the compatibility of service and query

interfaces to filter out irrelevant services; and (4) ICS3

identifies the final service rankings based on the

semantic similarities and the degree of interface

compatibility. Experiment results demonstrate that

ICS3 achieves accuracy superior to that of the IR-Based

approach and SimSS method. Note that although the

proposed ICS3 approach is used in the domain of

RESTful services currently, it can be also applied to

traditional SOAP services or other service models.

Web API Discovery Using Semantic Similarity and Hungarian Algorithm 1663

The next stage of development will involve the

application of software testing techniques to further

improve the accuracy of Web API retrieval.

Acknowledgments

This research was sponsored by Ministry of Science

and Technology in Taiwan under the grant MOST 105-

2221-E-019-054-MY3.

References

[1] ProgrammableWeb, http://www.programmableweb.com/

[2] R. T. Fielding, R. N. Taylor, Principled Design of the Modern

Web Architecture, ACM Transactions on Internet Technology,

Vol. 2, No. 2, pp. 115-150, May, 2002.

[3] J.-M. Gil, J. Chung, Y.-S. Jeong, D.-S. Park, Organizing a

User-Created Computing Environment by RESTful Web

Service Open APIs in Desktop Grids, Journal of Internet

Technology, Vol. 15, No. 4, pp. 605-613, July, 2014.

[4] I. Gat, G. Succi, A Survey of the API Economy, Business

Agility & Software Engineering Excellence, http://www.

cutter.com/article/survey-api-economy-468936.

[5] APIs.io, http://apis.io/.

[6] mashape, https://www.mashape.com/.

[7] S.-P. Ma, C.-W. Lan, C.-H. Li, Contextual Service Discovery

Using Term Expansion and Binding Coverage Analysis,

Future Generation Computer Systems, Vol. 48, pp. 73-81,

July, 2015.

[8] A. M. Zaremski, J. M. Wing, Signature Matching: a Tool for

Using Software Libraries, ACM Transactions on Software

Engineering and Methodology, Vol. 4, No. 2, pp. 146-170,

April, 1995.

[9] C. Q. Jiang, W. Du, C. C. Yi, A Method of Web Service

Composition Based on Bipartite Graph Optimal Matching and

QoS, 2010 International Conference on Internet Technology

and Applications, Wuhan, China, 2010, pp. 1-5.

[10] M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, Semantic

Matching of Web Services Capabilities, The Semantic Web—

ISWC 2002, Sardinia, Italy, 2002, pp. 333-347.

[11] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R.

Cyganiak, S. Hellmann, DBpedia- A Crystallization Point for

the Web of Data, Web Semantics: Science, Services and

Agents on the World Wide Web, Vol. 7, No. 3, pp. 154-165,

September, 2009.

[12] G. A. Miller, WordNet: A Lexical Database for English,

Communications of the ACM, Vol. 38, No. 11, pp. 39-41,

November, 1995.

[13] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT

Press, 1998.

[14] R. Jonker, T. Volgenant, Improving the Hungarian Assignment

Algorithm, Operations Research Letters, Vol. 5, No. 4, pp.

171-175, October, 1986.

[15] E. Stroulia, Y. Wang, Structural and Semantic Matching for

Assessing Web-service Similarity, International Journal of

Cooperative Information Systems, Vol. 14, No. 4, pp. 407-

437, December, 2005.

[16] X. Dong, J. Madhavan, A. Halevy, Mining Structures for

Semantics, ACM SIGKDD Explorations Newsletter, Vol. 6,

No. 2, pp. 53-60, December, 2004.

[17] Y. Hao, Y. Zhang, J. Cao, Web Services Discovery and Rank:

An Information Retrieval Approach, Future Generation

Computer Systems, Vol. 26, No. 8, pp. 1053-1062, October,

2010.

[18] P. Plebani, B. Pernici, URBE: Web Service Retrieval Based

on Similarity Evaluation, IEEE Transactions on Knowledge

and Data Engineering, Vol. 21, No. 11, pp. 1629-1642,

November, 2009.

[19] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S.

Oundhakar, J. Miller, METEOR-S WSDI: A Scalable P2P

Infrastructure of Registries for Semantic Publication and

Discovery of Web Services, Information Technology and

Management, Vol. 6, No. 1, pp. 17-39, January, 2005.

[20] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D.

McDermott, D. McGuinness, B. Parsia, T. Payne, M. Sabou,

M. Solanki, N. Srinivasan, K. Sycara, Bringing Semantics to

Web Services: The OWL-S Approach, the First International

Workshop on Semantic Web Services and Web Process

Composition (SWSWPC 2004), San Diego, CA, 2004, pp. 26-

42.

[21] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M.

Paolucci, K. Sycara, D. L. McGuinness, E. Sirin, N,

Srinivasan, Bringing Semantics to Web Services with OWL-S,

World Wide Web, Vol. 10, No. 3, pp. 243-277, September,

2007.

[22] J. Hu, X. Chen, Y. Cao, L. Zhu, A Comprehensive Web

Service Selection Algorithm on Just-in-Time Scheduling,

Journal of Internet Technology, Vol. 17, No. 3, pp. 495-502,

May, 2016.

[23] J. Wu, Z. Wu, Similarity-based Web Service Matchmaking,

2005 IEEE International Conference on Services Computing

(SCC’05) Vol-1, Orlando, FL, 2005, pp. 287-294.

[24] M. Porter, The Porter Stemming Algorithm, http://www.

tartarus.org/~martin/PorterStemmer/.

[25] Y. Li, Z. A. Bandar, D. McLean, An Approach for Measuring

Semantic Similarity between Words Using Multiple

Information Sources, IEEE Transactions on Knowledge and

Data Engineering, Vol. 15, No. 4, pp. 871-882, July- August,

2003.

Biographies

Shang-Pin Ma received his Ph.D.

degree in Computer Science and

Information Engineering from

National Central University, Taiwan,

in 2007. Dr. Ma is currently an

associate professor in the Department

of Computer Science and Engineering

at National Taiwan Ocean University. His research

interests include service-oriented computing, software

engineering, mobile computing, and semantic web.

1664 Journal of Internet Technology Volume 19 (2018) No.6

Hsuan-Ju Lin is currently a graduate

student in in Computer Science and

Information Engineering of National

Taiwan Ocean University. Her

research interests include service-

oriented computing and software

engineering.

Hsi-Min Chen is an Assistant

Professor in the Department of

Information Engineering and

Computer Science at Feng Chia

University, Taiwan. His research

interests include software engineering,

software architecture, service

computing and distributed computing. Chen received

his Ph.D. in computer science and information

engineering from National Central University, Taiwan.

Ying-Jen Chen received her Bachelor

(2013) and Master’s (2015) degrees

from the Department of Computer

Science and Engineering, National

Taiwan Ocean University, Taiwan.

Her research interests include

information retrieval, test-driven

development, and service-oriented computing.

Wen-Tin Lee received his Ph.D.

degree in Computer Science and

Information Engineering from

National Central University, Taiwan,

in 2008. Lee is currently an associate

professor in the Department of

Software Engineering and Management at National

Kaohsiung Normal University. His research interests

include software engineering, service-oriented

computing and software process management.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

