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Abstract 

Representational state transfer (REST) is the current 

design standard for Web application programmable 

interfaces (APIs). Unfortunately, existing Web API 

search engines allow for only keyword or tag-based 

searches. Furthermore, search engines do not take into 

account the semantics and the interface compatibility. 

This paper reports on a novel approach to RESTful 

service discovery, referred to as Interface-Compatibility-

based Semantic Service Search (ICS
3
). ICS

3
 expands 

terms in service documents using DBpedia and WordNet, 

and then filters out services that are inapplicable to the 

user query, in two steps: (1) calculating semantic 

similarity between candidate services and the user query 

and (2) calculating the degree of interface compatibility 

between candidate services and the user query using the 

Hungarian algorithm. Experiment results demonstrate 

that ICS
3
 outperforms other Web APIs search methods in 

terms of accuracy. 

Keywords: Service discovery, RESTful service, Web 

API, Term expansion, Interface compatibility 

1 Introduction 

Rapid advances in web technology, mobile 

computing, and social networking have greatly 

enhanced the importance of Web API (application 

programmable interface) design. Google, Facebook, 

Netflix, eBay, LinkedIn, Foursquare, Instagram, and 

many others have published Web APIs, which can be 

used by developers to avoid the costs and effort spent 

associated with developing non-core functionalities. 

The well-known website, ProgrammbleWeb [1], has 

identified Representational State Transfer (REST) [2-3] 

as the standard for API design [4]. An enormous 

number of RESTful services [3] can be found on the 

internet, including the 7,000+ RESTful services 

published on ProgrammbleWeb. However, Web API 

search engines, such as ProgrammbleWeb [1], apis.io 

[5], and mashape [6], allow for only keyword or tag-

based searches, which makes it very difficult for users 

to find suitable RESTful services. Furthermore, search 

engines do not take into account semantics or other 

characteristics of Web APIs, such as input parameters, 

output data, or interface compatibility.  

In this paper, we propose a novel approach to the 

discovery of Web APIs, referred to as Interface-

Compatibility-based Semantic Service Search (ICS3). 

ICS3 adopts two concepts from previous research on 

service discovery and composition: interface matching 

and semantic term expansion [7]. Interface is widely 

applied in the retrieval of software components [8]. 

Service composition [9] relies on exact matching or 

advanced subsumption matching [10] for I/O 

(input/output) elements. The application of conventional 

interface matching is generally impractical because 

exact matching tends to hinder the retrieval of 

semantically equivalent or similar services and 

subsumption matching is limited in its ability to 

improve performance by relaxing the matching of I/O 

elements based on “IS-A” relationships. The 

exhaustive matching of I/O elements between user 

queries and all candidate services imposes excessive 

computational complexity. To overcome these issues, 

ICS3 uses DBpedia [11] and WordNet [12-13] to 

perform semantic term expansion in service documents. 

It also filters out services that are inapplicable to the 

user query by calculating semantic similarity scores 

between services and queries based on VSM (vector 

space model) and estimating interface compatibility 

using the Hungarian algorithm [14]. The integration of 

Hungarian-based interface matching with semantic 

term expansion increases the likelihood of finding 

services that are semantically equivalent or similar to 

the user request. It also reduces the time spent 

associated with interface matching by filtering out 

candidate service with low similarity scores. 

The remainder of this paper is organised as follows. 

Section 2 presents an overview of the background and 

related works. Section 3 outlines the details of the 
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proposed approach. Section 4 presents the experiments 

used for the evaluation of the proposed approach. 

Section 5 summarizes the benefits and features of the 

proposed approach. 

2 Related Work 

In this section, we outline related works, including 

the Hungarian algorithm, those involving SOAP 

service discovery, and various approaches to RESTful 

service discovery.  

2.1 Hungarian Algorithm 

The Hungarian algorithm [14], proposed by Harold 

Kuhn in 1955, is a combinatorial optimization 

algorithm based on work of Hungarian mathematicians, 

Dénes Kőnig and Jenő Egerváry. The algorithm is 

easier to describe if the problem of assignment in 

polynomial time is formulated using a bipartite graph, 

in which the vertices can be partitioned into two sets (A 

and B) with no edge, and with both endpoints in the 

same set. Thus, every possible edge that could connect 

the vertices in different sets forms part of the graph. 

The Hungarian algorithm can be used to find the best 

one-on-one mappings of A and B. As shown in Figure 

1, the A vertices (circle points) connect to the B 

vertices (square points) with edges, each of which has 

the cost of connection. The Hungarian algorithm can 

be used to formulate mappings {A0-B3, A1-B0, A2-B1, 

A3-B2} and find the maximal outcome. In this paper, 

we employed the Hungarian algorithm to facilitate the 

mapping analysis of input and output parameters, in 

order to assess interface compatibility between queries 

and services. 

 

Figure 1. Example of bipartite graph matching 

2.2 Service Discovery Methods 

Existing service discovery methods include text-

based searches, in which the similarity between a query 

document and service documents is calculated using IR 

(information retrieval) methods. Stroulia and Wang [15] 

used term frequency/inverse document frequency (TF-

IDF) in conjunction with WordNet to calculate the 

similarity between two WSDL documents based on 

data format, service operation, and service content. 

Dong et al. developed the Woogle [16] search engine 

to calculate similarity between queries and service 

operations based on term relationships built using a 

clustering algorithm. Hao et al. presented an IR-based 

service discovery and sorting method [17] that uses 

relevance and importance of services as indicators to 

enhance the precision of service discovery. Plebani et 

al. proposed a service search method based on 

Universal Description, Discovery, and Integration 

(UDDI) [18], to analyze the structure and terms used in 

WSDL documents in order to measure similarity 

between multiple Web service interfaces. Their 

approach also uses WordNet and domain ontology to 

enhance precision.  

Another approach to service discovery involves the 

use of ontology to describe, search for, and compose 

services based on semantics. Verma et al. [19] used an 

annotation method (SAWSDL) to include semantics in 

WSDL in order to improve accuracy in searching for 

web services. Martin et al. utilized OWL-S [20] to 

form semantic descriptions of web service capability 

and store semantic information in UDDI [21]. A third 

approach to service discovery is based on the quality of 

service (QoS). Hu et al. [22] proposed a service 

selection algorithm in which the preferences of 

multiple users are aggregated according to criteria 

derived from multiple providers, whereupon the most 

suitable service provider is selected based on voting 

results. J. Wu and Z. Wu [23] developed a suite of 

methods to assess similarity among Web services to 

facilitate matchmaking. They presented a conceptual 

model for the classification of Web service properties 

into Common Properties, Special Properties, Service 

Interface, and QoS as well as a variety of methods 

which could be used (together or individually) for the 

assessment of similarity to facilitate web service 

matchmaking. In [9], the method proposed in [23] were 

used in conjunction with QoS and interface 

compatibility in the application of the Hungarian 

algorithm and lexical similarity to optimize I/O 

mapping between component services. Note that the 

issue of semantics was not considered in this approach 

because service composition requires exact interface 

matching. ICS
3 integrates Hungarian-based interface 

matching with semantic term expansion to increase the 

likelihood of retrieving candidate services capable of 

fulfilling user requirements. 

3 Interface-compatibility-based Semantic 

Service Search 

In this chapter, we describe the pre-processing of 

documents, introduce the proposed semantic RESTful 

service search scheme, and outline the proposed 

interface-compatibility-based semantic search. 
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3.1 Pre-processing of Documents 

After obtaining a query document or service 

document, ICS3 conducts preparatory tasks to facilitate 

index building and semantic term extension. The 

process includes the following procedures. 

3.1.1 Stemming and Tokenization 

The IR tool, Lucene Analysis API1, is used to chop a 

service description up into tokens and to parse a 

service description for the removal of stop words. We 

collected terms generally used for RESTful services in 

the construction of stop word lists, in order to enhance 

search precision. 

Many words are derivations from the same stem, 

and therefore are subsumed under the same concept 

(e.g., organize and organization). The fact that these 

derivations are generated through appended affixes 

(prefixes, infixes, and/or suffixes) means that we can 

use the stemming algorithm, Porter Stemming 

Algorithm [24], to strip away the suffixes from the 

derived words. Obtaining the stems of the terms (e.g., 

organ) makes it possible to identify all of the related 

words simply by matching stems, which are then stored 

in a database. 

3.1.2 Semantic Term Expansion 

The discrepancies commonly encountered between 

the query terms submitted by users and the terms 

included in service descriptions can greatly undermine 

the accuracy of service matching. In this paper, ICS3 

performs term expansion for each service document. 

When a parameter in a service document is annotated 

as an ontology class or property, the annotated term is 

expanded based on WordNet [12-13] and Dbpedia [11]. 

When a parameter in a service document is annotated 

as a resource, the associated term is expanded based 

only on WordNet. This expansion is detailed in 

following sub-sections. 

DBpedia-based term expansion. In service documents, 

input and output parameters are annotated by Dbpedia 

through a newly defined property, mappingType. For 

example, in the Facebook Graph Search Place API, the 

mappingType for the input parameter “name” is linked 

to “DBpedia: ontology/Place”, and the mappingType 

for the output parameter is linked to “DBpedia: 

ontology/City”. ICS3 expands the annotated term of 

each parameter in service documents to generate an 

expansion bag. The expansion process includes the 

following steps: 

‧ If mappingType is annotated using a DBpedia class, 

then we use the class to include its three-level super 

classes and direct sub-classes in the bag. 

 

                                                           

1 https://lucene.apache.org/ 

‧ If mappingType is annotated using a DBpedia 

property, then we find the class assigned to the range 

and the class assigned to the domain, and include in 

the bag the two classes as well as its three-level 

super classes and direct sub-classes. 

In this paper, we use the Edge Counting Method [25] 

to calculate similarity between two terms. This method 

takes into consideration the path length between terms 

as well as the depth of the subsumer. The formula to 

calculating simalrity is defined in Equation 1. 
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where l is the shortest path length between w1 and w2, 

and h is the depth of the subsumer, which is derived by 

counting the number of levels between the subsumer 

and the top of the hierarchy. To avoid the effects of 

bias, we followed the suggestions in [25] wherein α is 

set to 0.2 and β is set to 0.6 by default. 

This approach method makes it possible to calculate 

the degree of similarity between the original class and 

the expanded class, over a range from 0 to 1. For 

example, superclass “DBpedia:ontology/Settlement” is 

a subclass of “DBpedia:ontology/City” with similarity 

Sim(city, settlement) of 0.78. 

Finally, only the terms with similarity values 

exceeding 
oe

θ  are classified within the set of expanded 

terms. For example, setting 
oe

θ  to 0.7 would result in 

the inclusion of the term “settlement” within the set of 

expanded terms. In subsequent processing, the 

calculated similarity of the term becomes its weight. 

WordNet-based term expansion. In addition to the 

proposed ontological expansion, we also employ 

WordNet for lexical expansion. WordNet [12-13] is a 

large lexical database of the English language, in 

which nouns, verbs, adjectives and adverbs are 

grouped into sets of synsets, each expressing a distinct 

concept. Using WordNet, we first obtain the synset of 

each term, including synonyms, hypernyms, and 

hyponyms. In WordNet, the synonym is on the same 

level as the original term, hypernyms are more abstract, 

and hyponyms are more concrete. We then calculate 

the similarity between each term in the synset 

(synonyms, hypernyms, hyponyms) and the original 

term. Similar to DBpedia-based term expansion, only 

the terms with similarity exceeding 
we

θ  (currently we 

also set 
we

θ  to 0.7) are classified within the set of 

expanded terms and passed to the next stage. We also 

calculate the term frequency (TF) for each expanded 

term, and multiply its weight by TF to emphasize the 

importance of frequency in the occurrence of terms. 
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Figure 2 demonstrates the result of term expansion. 

The mappingType property is assigned to the ontology 

class “dbpedia:ontology/City”. As mentioned previously, 

if the mappingType is annotated as an ontology class, 

the annotated term is expanded based on WordNet as 

well as DBpedia. In DBpedia-based expansion, we 

expand three terms from super classes and two terms 

from direct subclasses. In WordNet-based expansion, 

we expand two synonyms from WordNet, and then 

calculate the weight for each expanded term. 

 

Figure 2. Example of term expansion 

3.2 VSM-Based Semantic Service Search 

We obtain semantic information pertaining to 

services in a two-stage process of expansion and then 

store it in a database. When ICS3 first obtains a query 

document, it begins by performing tokenization and 

term stemming. It then conducts a comparison of terms 

between the set of extracted tokens for the query 

document and the set of expanded terms for each 

published RESTful service. Finally, ICS3 calculates the 

degree of similarity between the query and each 

published service using the well-known IR 

(information retrieval) method: VSM (vector space 

model), and ranks the services accordingly. The 

computation of similarity is detailed in the following.  

In the proposed scheme, service and query 

information is divided into three sets of terms: 

descriptions (or titles), inputs, and outputs. 

Furthermore, each term in these sets is assigned a 

weight, which is the term frequency for the original 

term or is the product of the term frequency and the 

term similarity to the original term for an expanded 

term. The query vector and service vector are built 

based on these sets. A query vector Q = {dvq, ivq, ovq} 

includes a query description vector dvq, query input 

vector ivq, and query output vector ovq. A service 

vector, S = {dvs, ivs, ovs} includes a service description 

vector dvs, service input vector ivs, and service output 

vector ovs. 

We calculate the degree of similarity between the 

query vector and the service vector using VSM, as 

follows (Equation 2): 

2 2 2 2 2 2

( , )

| | | | | | | | | | | |

q s q s q s

s s s i i i

SS Q S

dv dv iv iv ov ov

dv iv ov dv iv ov

⋅ + ⋅ + ⋅

=

+ + ⋅ + +

 (2) 

Following the computation of similarity, candidate 

services with similarity exceeding 
ss

θ  are passed on to 

the next stage to undergo analysis of interface 

compatibility. In this research, we set this to 0.5 to 

filter out approximately half of the candidate services 

based on the results of internal experiments. 

3.3 Interface-compatibility-based Service Search 

Ensuring the smooth integration of candidate 

services with developer applications requires that the 

interface of candidate services match the expectations 

specified in the query document. In other words, the 

invocation of candidate services requires only a subset 

of the prepared input data. The output of the service 

invocation generates data that contains the expected 

output parameters. For example, if a user plans to find 

services with m input parameters Ir and n output 

parameters Or, then the number of input parameters (Is) 

associated with a given candidate service should be 

equal to or less than m (Is ⊆  Iq), and the number of 

output parameters (Os) should be equal to or more than 

n (Os
⊇  Oq). 

We propose the IOC concept to ensure that (1) the 

input parameters of the required service specifications 

should cover published RESTful services, and (2) the 

output parameters of published RESTful services 

should cover the required service specifications. We 

developed a novel approach to parameter mapping to 

overcome the difficulties associated with word 

approximations and synonyms.  

To obtain optimal mappings for the analysis of 

interface compatibility, we calculate the mapping for 

each query parameter and service parameter, as 

outlined in the following: 

(1) Calculate unadjusted similarity ( , )i jkus qt st  

between the ith query parameter and the kth expanded 

tokens for the jth original token. Expanded tokens 

include the tokens extracted from the original service 

parameter and semantically expanded terms. 

(2) Multiply the unadjusted similarity ( , )i jkus qt st  

by the weight of the expanded term ( )jkw st  to compute 

the weight-similarity, ( , )i jks qt st . 

(3) Derive the maximum adjusted similarity between 

the query parameter and expanded terms for a service 

parameter, and define it as the mapping similarity 

between the service parameter 
i

qt  and the query 

parameter 
j

st . 

After calculating the similarity between query and 

service parameters, we must determine the optimum 

combination of mappings. As mentioned above, the 

input parameters of a required service specification 

should cover the published RESTful services, and the 

output parameters of published RESTful services 

should cover the required service specifications. Thus, 

from the perspective of inputs, we obtain the optimum 
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combination from the service input parameters by 

deriving the maximum sum of weights. From the 

perspective of outputs, we obtain the optimum 

combination from the query output parameters. 

As described in Section 2, the Hungarian algorithm 

can be used to resolve the issue of finding the best 

mappings. Based on the resulting combination of 

mappings between the query and service, an IOC 

scoring function (Equation 3) is derived to fulfil 

interface compatibility, as follows: 

 

( , )

( , ) ( , )
i j i j

in out

IOC R S

ms qit sit ms qot sot
w w

m n

∑ ∑
= ⋅ + ⋅

 (3) 

where 
i

qit  is an input parameter of the service, and 

j
sit  is an input parameter of the query; 

i
qot  is an 

output parameter of the query, and 
j

sot  is an output 

parameter of the service; m is the number of input 

parameters of the service, and n is the number of 

output parameters of the query. 
in

w  and 
out

w  are the 

weights indicating the importance of inputs and outputs 

with a sum of 1. In this paper, they are both assigned a 

value of 0.5. 

The calculation of the input covering score is similar 

to that of the output covering score. The difference lies 

in the “direction” of mapping, wherein the mapping of 

inputs is from service input parameters to the query 

input parameters. 

The above procedure is applied for the query and 

each published service. After obtaining the IOC scores 

between the query and all services, the ICS3 filter out 

inappropriate services; i.e., those with IOC scores not 

exceeding the IOC threshold 
ioc

θ  (set to 0.5) and treat 

the remaining services as candidate services. 

ICS3 then collects the SS scores and IOC scores of 

the candidate services to calculate the final score using 

the following equation: 

 

3( , ) ( , ) ( , )
ss ioc

ICS Q S SS Q S w IOC Q S w= ⋅ + ⋅  (4) 

where 
ss

w  and 
ioc

w  are the weights indicating the 

importance of the semantic search and interface-

compatibility-based search with a sum of 1. They are 

both assigned a value of 0.5 in this paper. 

Each candidate service Sc is assigned a degree of 

fitness with query Q using Equation 4. All candidate 

services undergo ranking by 3 ( , )
c

ICS Q S  before being 

returned to the user. 

4 Experimental Evaluations 

To demonstrate the feasibility of the proposed ICS3 

scheme, we implemented a prototype system and 

compared the performance with that of the IR-based 

full-text method and semantic similarity of services 

(SimSS) method. 

4.1 Experimental Configurations 

The experiment was setup as follows: 

Submission of service and query documents to the 

ICS
3
 prototype. Although there are thousands of 

public RESTful APIs published in the Internet, it is 

hard to derive the service title/description, input 

parameters, and output parameters of all published 

services since there is no standardized way to describe 

the service interface. Meanwhile, the semantic 

mappings from the service description to the global 

ontology, such as DBpedia, are also lacking currently. 

To conduct experiments and perform evaluations, we 

collected a total of 200 RESTful services in various 

domains from ProgrammableWeb, Mashape, and 

APIs.io, and developed corresponding service 

documents, including API descriptions, input and 

output parameters, and semantic mapping information. 

We also wrote 14 representative query documents in a 

diversity of fields for use as a testbed. Query 

documents include only the expected API title, input 

parameters, and output parameters. Thus, Query 

documents are similar to simplified service documents. 

Full-text API search method. We developed a search 

method based on the conventional IR approach 

(hereafter referred to as full-text), for use as a 

comparison target. Unlike the ICS3 method, the IR-

based method does not divide query and service 

documents into three vectors, and does not perform 

term expansion based on DBpedia and WordNet. The 

IR method proceeds through the following steps: 

(1) Perform tokenization and stemming. 

(2) Calculate similarities between the query and all 

service documents using a VSM.  

(3) Rank services according to calculated similarities. 

SimSS search method. We established another search 

method, SimSS, based on [9] for use as a comparison 

target. This method takes into account the degree of 

semantic association, service quality, and efficiency in 

composition of web APIs. To enable a comparison 

with ICS3, we made a number of modifications to the 

SimSS to allow single service discovery. The modified 

SimSS method proceeds through the following steps: 

(1) Perform tokenization and stemming. 

(2) Retrieve input and output parameters from query 

and API documents.  

(3) Calculate mapping similarities (SimCC) between 

I/O parameter pairs (Equation 5). 

 ( , ) ( , )simIn Qi Sj SimOut Qi Sj
d

α

α

= =

+

 (5) 

where d is the path length between terms and α is an 

adjusted value, set to 0.6.  

(4) Use Hungarian algorithm to identify the best 

one-on-one mapping and calculate SimSS scores using 

the following equation (Equation 6). 
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1
( , )

1
( , )

in

out

SimSS Q S

SimIn Qi Sj w
n

SimOut Qi Sj w
m

= ∑ ⋅
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 (6) 

where 
in

w  and 
out

w  are 0.5, n is the number of service 

inputs, and m is the number of query outputs. 

(5) Rank services according to SimSS scores. 

Establishment of parameters for ICS
3
. Parameter 

settings were based on the results of trial-and-error 

experiments, as follows: 0.7, 0.7,
oe we

θ θ= =  0.5,
ss

θ =  

0.5,
ioc

θ = 0.5,
ss

w = and 0.5.
ioc

w =  

Application of evaluation indicators for verification. 

Two indicators were used to evaluate the performance 

of ICS3, the full-text method, and the SimSS method. 

The indicators included Top-K precision (Equation 7) 

and Top-K recall (Equation 8). 

 
| ( ) ( ) |

( )
| ( ) |

K

K i i

i K

i

Rel Q Rank Q
Precision Q

Rank Q
=

∩
 (7) 

 
| ( ) ( ) |

( )
| ( ) |

K

K i i

i

i

Rel Q Rank Q
Recall Q

Rel Q
=

∩
 (8) 

where, 
i

Q  is the ith query, and ( )K

i
Rank Q  is the Top-

K retrieved services. ( )
i

Rel Q  is a set of relevant 

services with 
i

Q . 

Top-K precision refers to the fraction of retrieved 

Top-K services that are relevant to the user and Top-K 

recall indicates the fraction of Top-K services that are 

relevant to the retrieved queries. These two indicators 

make it possible to determine the effectiveness of the 

full-text method, SimSS, and ICS3.  

We used 14 representative query documents in the 

search for services. We then gathered the search results 

and their rankings to calculate Top-K precision and 

Top-K recall where K ranges 1 to 10. The indicators 

were then used to evaluate the performance of ICS3 

and compare it with that of the full-text and SimSS 

methods. 

4.2 Experiment Results 

Average Top-K Precision is presented in Figure 3, 

and Average Top-K Recall is presented in Figure 4. 

These results illustrate how ICS3 clearly outperforms 

the full-text and SimSS methods and clearly 

demonstrates the ability of ICS3 to retrieve RESTful 

services capable of satisfying user requirements. 

 

Figure 3. Average Top-K Precision 

 

Figure 4. Average Top-K Recall 

From the perspective of the Precision, although all 

three methods can accurately retrieve Top-1 service 

and Top-2 services, ICS3 continues to keep the high 

Precision (0.6) even for the Top-10 retrieved services. 

From the perspective of the Recall, ICS3 achieves 0.7+ 

Recall for the Top-10 retrieved services, whereas other 

two methods merely yield about 0.5 Recall. 

5 Conclusion 

This paper reports on a novel approach to Web API 

discovery, referred to as Interface-Compatibility-based 

Semantic Service Search (ICS3), for the retrieval of 

RESTful services according to user-defined criteria. 

The main features of ICS3 are four-fold: (1) ICS3 

expands service documents using DBpedia and 

WordNet to increase the precision of service matching; 

(2) ICS3 calculates semantic similarities between 

services and queries to filter out irrelevant services; (3) 

ICS3 analyses the compatibility of service and query 

interfaces to filter out irrelevant services; and (4) ICS3 

identifies the final service rankings based on the 

semantic similarities and the degree of interface 

compatibility. Experiment results demonstrate that 

ICS3 achieves accuracy superior to that of the IR-Based 

approach and SimSS method. Note that although the 

proposed ICS3 approach is used in the domain of 

RESTful services currently, it can be also applied to 

traditional SOAP services or other service models. 
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The next stage of development will involve the 

application of software testing techniques to further 

improve the accuracy of Web API retrieval. 
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