
The Design and Case Study of the WSRush Platform 1625

The Design and Case Study of the WSRush Platform

Chun-Hsiung Tseng1, Yung-Hui Chen2, Yan-Ru Jiang3
,

Jia-Rou Lin4*

1 Department of Communications Engineering, Yuan Ze University, Taiwan
2 Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology, Taiwan

3 Department of Information Management, Yuan Ze University, Taiwan
4 Department of Information Management, Nanhua University, Taiwan

lendle_tseng@seed.net.tw, cyh@mail.lhu.edu.tw, treelazy821006@gmail.com, 10325209@nhu.edu.tw

*Corresponding Author: Yung-Hui Chen; E-mail: cyh@mail.lhu.edu.tw

DOI: 10.3966/160792642018091905033
1 https://en.wikipedia.org/wiki/SOAP
2 https://en.wikipedia.org/wiki/Representational_state_transfer

Abstract

The popularity of cloud computing makes developing

Web services a trend. In this research, we propose our

design of WSRush, a platform that can be used to

simplify the development of Web service applications.

The platform simplifies the development cycle of Web

service applications. The WSRush platform consists of

three layers: the core engine and service provider

interface, the Web interface, and the Web service utilities.

With the platform, developers can reuse or inherit from

the provided software modules to prevent re-inventing

the wheel. Two types of services: the script-based ones

and the static ones are supported by WSRush.

Furthermore, developers can even inherit from the core of

WSRush and build their own platforms.

Keywords: WebService, SOA, Platform

1 Introduction

The emerging of cloud computing issues causes

wide adoption of Web service technologies, which in

turn has demonstrated high impacts on software

development cycles. Protocols such as SOAP1 and

Restful2 are widely used in Web service applications

and they do help develop clear separations among

functionalities, data models, and user interfaces.

Furthermore, a Web service application is by nature

platform independent. Despite of its elegance, Web

service technologies are still considered difficult for

inexperienced programmers. As a teacher offering

programming courses, the researcher has tried several

methods to make students understand the concept of

Web service, however, only few of them can really get

familiar with the technology and even fewer of them

can utilize it in real world software projects. We

believe that it will be beneficial to help students and

inexperienced programmers get acquainted with them

as soon as possible, considering the importance of Web

service technologies. Therefore, the researchers built

WSRush, a Web service ready application platform.

Why is it a challenge to get acquainted with the

concept of Web service technologies? Perhaps a reason

is there are just too many concepts to learn. During the

development of Web service applications, usually,

developers will face the following issues:

(1) Choose an appropriate protocol. Web service

applications usually adopt the SOAP or the Restful

protocol, but there are numerous related protocols to

choose.

(2) Deal with the marshalling and unmarshalling of

input/output data properly. XML and JSON are two

frequently data formats adopted in Web service

applications, however, developers must be familiar

with a set of tools/technologies to cope with these data

formats.

(3) Figure out a seamless way to integrate Web

service technologies with their development

environment. Web service technologies themselves are

neutral to development environments, but developers

will need adequate integration to reduce the difficulties

of using Web service technologies in their projects.

But what are the core concepts of Service-Oriented-

Architecture (SOA)? According to Endrei et al.,

“Service-oriented architecture presents an approach for

building distributed systems that deliver application

functionality as services to either end-user applications

or other services.” [1] Therefore, the goal of the

proposed platform is to help users focus on wrapping

application functionality as services rather than dealing

with the above issues. Of course, there are already

tools such as NetBeans, Eclipse, and Visual Studio

aimed at helping developers handle the above issues.

However, the diversities of these tools cause additional

burdens for developers, not to mention the vendor-

lock-in problem.

The goal of this research is to reduce the

complexities of adopting Web service technologies by

providing a platform that has built-in Web service

1626 Journal of Internet Technology Volume 19 (2018) No.5

natures, requires no further integration, and keep the

neutrality. The platform has the following characteristics:

(1) The platform does not require developers to

handle the protocol part themselves. Instead,

developers simply inherit from a provided software

module (in the current stage, the platform is

implemented in Java, so developers have to extends

from a provided Java class) and then the platform will

automatically transform developer provided modules

into Restful based Web services.

(2) All input/output data will follow the JSON data

formats and the platform provides libraries to help

developers handle the encode and decode of JSON data.

Due to the popularity of the JSON-format, this

characteristic should not cause limitations.

(3) The platform provides tools to manage global

resources such as database connections so system

resources can be effectively utilized and developers do

not have to deal with resource management.

(4) The platform itself integrates several industrial-

standard technologies such as jQuery3, Spring

Framework4, and Jersey5, etc. The popularity and

standardization of these technologies will reduce the

risk of vendor-lock-in

With these characteristics, the researchers believe

the proposed platform will help in-experienced

programmers and students manage the Web service

technology. Besides, experienced developers will also

benefit from the platform with its well integrated set of

technologies since they can focus on the business logic

part. In this research, we will at first give a detailed

introduction to the functionality and architecture of the

platform.234

2 Related Works

The importance of the service oriented architecture

(SOA) can never be overestimated. The definition of

SOA is explained in detail in [2]. Web service

standards are the central idea of SOA. In [3], Web

services are defined as the integration technology

preferred by organizations implementing service-

oriented architectures. The adoption of SOA is

extremely wide. Trkman and Kovačič discusses the

phases of SOA adoption [4]. The research of Luthria

and Rabhi [5] summarized factors influencing the

adoption of SOA: the perceived value of SOA to the

organization, the organizational strategy, organizational

context or culture, organizational structure, potential

implementation challenges, and given the current

environment of increasingly stringent regulations and

accountability requirements, the governance or the

management of such technology. Among them, our

research focuses on reducing the implementation

3 https://en.wikipedia.org/wiki/JQuery
4 https://en.wikipedia.org/wiki/Spring_Framework
5 https://en.wikipedia.org/wiki/Project_Jersey

challenges, especially for inexperienced developers

and students. As stated in the work of Lopez, Casallas,

and Villalobos, “providing environments where

students go beyond learning some concepts and

specific technologies to truly apprehend the complexity

involved in SOA is a major challenge [6].” The work

of Paik, Rabhi, Benatallah, and Davis designed a

dedicated virtual teaching and learning space for

students to learn SOA [7]. Spillner implemented

SPACEflight, which is a versatile live demonstrator

and teaching system for advanced service-oriented

technologies [8]. Furthermore, it is proved that using

Web services in introductory programming classes can

enhance students’ learning performance [9]. In [10], a

framework for measuring student learning gains and

engagement in a Computer Science 1/Information

Systems 1 programming course was described. The

results of the research showed that adopting Web

services is effective in student learning gains. In [11],

how and why teaching modern web services is an

important part of information systems curriculum, and

how they can be introduced at introductory levels were

discussed. According to the research result, Knowing

the workings of Web APIs is quickly becoming a vital

skill of programmers, tech entrepreneurs, and

managers of any kind. The work of Jakimoski

highlighted that in education systems, SOA can be

adopted to reduce the complexity of integrating

systems, but there is limited academic research work

on the domain [12]. Frameworks such as Spring

Framework65provide similar functionality with regards

to the creation of Web services. The uniqueness of the

proposed framework is its simplicity. Most

comparative frameworks are full-stack frameworks.

For example, Spring Framework covers many aspects

of the life cycle of a Web service such as controllers,

interceptors, and dependency injection technologies,

etc. The proposed framework is much simpler and

covers only the execution, management, and

input/output of Web services. The characteristic makes

it much easier to integrate the proposed framework

with other technologies. Note that this does not mean

that WSRush lacks important features and imposes

huge limitations on applications. WSRush is itself built

based on Spring Framework, so it in fact can achieve

every thing Spring Framework can achieve. Our point

is, for circumstances in which developers don’t need

advanced functionality such as dependency injection,

interceptors, and controllers, adopting WSRush will be

a lean solution. A more comparative framework is

JAX-WS7. 6 The framework is also a lightweight

framework and covers only the Web service part. In

fact, the current implementation of WSRush is built

based on JAX-WS. The issue of JAX-WS is that it

exposes too many details and offers too many degree

6 https://projects.spring.io/spring-framework/
7 https://jax-ws.java.net/

The Design and Case Study of the WSRush Platform 1627

of freedom to ordinary developers. For example, JAX-

WS allows developers to specify output formats via the

@Produce annotation while in most cases the JSON

format is assumed. Frameworks such as Zend

Framework8 and Ruby on Rails9 take a different

approach. They focus more on the adoption of the

MVC design pattern and they provide some very

advanced model construction tools. They are usually

regarded to as full-stack frameworks that are intended

to be used alone while WSRush is designed to allow

easy integration with other technologies. Other

frameworks, such as DeployR10 and Shiny11 are special

purpose frameworks. They are designed for integrating

the R technology into Web applications while WSRush

is a general purpose framework. Hayes et al. proposed

a platform-as-a-service method for building Web

services but only focused on healthcare [13].78910

3 WSRush Platform

The WSRush platform is a framework and tool set to

make develop Web service based applications simpler.

It has a core library which can be easily extended to

address different environments and protocols, a

framework which can used for implementing business

logic for Web services, and some tools to simplify the

design and deploy tasks. The platform consists of three

layers: the core engine and service provider interface,

the Web interface, and the Web service utilities. The

core engine and service provider interface is the kernel

of the platform. It handles the life cycle of the platform,

manages the execution of services, and provides

resource management utilities. Besides, this part

includes application interfaces to allow extensions. The

Web interface implements the HTTP and HTTPS

processing layer. A version of Jersey, which is a

widely adopted implementation of the Restful protocol,

is deployed in this part. A Web service request will

first be intercepted by the Web interface and then

dispatched to the corresponding services registered in

the core engine. Additionally, a Web service utilities

layer is included. The layer provides utilities to be used

by developers to configure and access the platform. A

set of configuration files such as engines.xml for

registering services and global Resources.xml for

managing resources are included in this layer.

Furthermore, some JavaScript modules are also

included to assist developers.

The current version of WSRush is packaged as a

standard Java Web application. To use it, simply

deploy the package file (a standard zip file with

the .war file extension) to a Java-enabled environment

with JDK 7.0 or higher and a Java application server

8 https://framework.zend.com/
9 http://rubyonrails.org/
10 https://msdn.microsoft.com/en-us/microsoft-r/deployr-about
11 https://shiny.rstudio.com/

supporting Servlet 2.4 or higher. The current

implementation of WSRush has been tested against

Tomcat 7.0 and Glassfish 4.0, which are two certified

Java application servers. After copying the WSRush

package file to the application directory of the target

application server, the file will be automatically

unpackaged, and developers can start developing their

applications based on the unpackaged Web application

structure. Note that despite that WSRush itself is a

Web application, this does not impose restrictions on

the types of applications based on WSRush. As long as

the Restful protocol is adhered, WSRush can be

utilized in various types of applications.

The directory structure of WSRush is illustrated in

the figure below:

Figure 1. the directory structure of WSRush

To deploy a Web service, one has to at first

implement the Service interface, and then register the

Web service in the engines.xml configuration file. The

interface is shown in Figure 2. Note that developers are

required to realize the specific application logic of their

system only, the Web service protocol itself is handled

by the platform.

Figure 2. the Service interface

The code snippets below demonstrates the

implementation of a simple echo Web service:

1628 Journal of Internet Technology Volume 19 (2018) No.5

As shown in the code snippets, developers has to

extend from AbstractService, which handles the

fundamental operations such as parameter marshaling

and protocol decoding/encoding of a Web service, and

then override the execute and isAuthenticated Session

Required methods. In the execute method, developers

implement the business logic. The parameter argument

wraps the parameters in HTTP packets. The invocation

of the createExecution method will create the return

value adhering to the format defined by the Service

interface.

In WSRush, executions of Web service instances are

managed by engines. A engine is a software module

provides the run time execution environment for its

registered Web service instances. Three type of

engines are pre-bundled in the package file of WSRush:

the Simple Unsafe Engine Impl, the Simple Unsafe

Scriptable Engine Impl, and the SimpleEngineImpl.

Developers can implement engines for their own needs

by implementing the ilab.apprush.core.Engine interface,

but the pre-bundled engines should be enough in most

circumstances. The SimpleUnsafeEngineImpl is the

most simple one. As its name suggests, the type of

engine imposes no security support. Hence, services

registered with the type of engine is open to all

requests provided that the network settings allows it.

The Simple Unsafe Scriptable EngineImpl is similar

with the Simple Unsafe Engine Impl with the

difference that the type of engine supports script

languages. As a result, developers can register script-

based Web services with the type of engine. Although

the execution of scripts is slower than compiled

binaries, scripting-based Web services can be modified

on-line and is usually easier to develop. The

SimpleEngineImpl accepts both compiled and script

based Web services and additionally provides security

mechanisms. That is, user name and password can be

set to restrict the access to services.

To invoke Web services, simply issue HTTP

requests to WSRush instances. The endpoint of the

requests is in the following form:

http://host/ws/dispatcher?namespace=namespace&l

ocalName=localName

host, namespace, and localName are parameters.

Function parameters to be passed to Web services

should be encoded as a JSON map and embedded into

the POST packet to be sent. If the application relying

on WSRush is a Web application, some JavaScript

helper functions are shipped with WSRush to simplify

the invocation process. In application.js, which is a

JavaScript library included in WSRush, an

ApplicationClass class is defined. The class provides a

method

callAPI (namespace, localName, parameters, success

Callback, failCallback)

for Web service invocation. Using the method,

developers simply fill the required parameters, and the

successCallback and failCallback will automatically be

invoked when needed. Additionally, The method will

handle the authentication part if the invoked Web

service requires authentication. A very simplified

example of utilizing the JavaScript method is shown

below:

Figure 3. a JavaScript example

4 Design

WSRush is composed of three layers: the core

engine and service provider interface, the Web

interface, and the Web service utilities. The main

considerations are extensibility and separation of

concerns. The core engine and service provider

interface defines most core functionalities. The Web

interface layer deals with I/O between WSRush and

clients via the HTTP protocol. The Web service

utilities layer defines utility classes that can be used by

other layers.

4.1 The Core Engine and Service Provider

Interface Layer

The core engine and service provider interface layer

provides the definition and implementation of core

components. These core components form the basis of

the WSRush platform and make the platform

extensible and flexible. At this layer, no

communication protocol is assumed. The design

focuses on the management of services. To achieve this,

two central concepts are Engine and Service. A Service

is an implementation of a set of application logics. In

most cases, if a developer is using a concrete

implementation of WSRush, she/he only focuses on

writing services. On the other hand, an Engine is

responsible for providing an execution environment for

services managed by it. Therefore, for developers who

are extending WSRush or implementing their own

version of WSRush, they have to deal with the engine

part. The most fundamental methods of engines are

defined in the Engine interface:

(1) init: implement this method to initialize the

engine

(2) start: implement this method to handle the start

up of the engine

(3) stop: implement this method to handle the

shutdown procedure of the engine

(4) executeService: implement this method to handle

The Design and Case Study of the WSRush Platform 1629

clients’ requests of executing services

Some abstract classes are included to simplify

implementation and future extension. Figure 4 shows

the class hierarchy of engine classes. As shown in

Figure 4, there are various abstract engine classes to

simplify the implementation. Among them,

AbstractSimpleEngine and AbstractScriptableEngine

are two major classes. Developers who want to extend

the WSRush platform may want to start from these two

classes. AbstractSimpleEngine defines how engine

classes interact with service classes. It has an internal

service map which maintains a list of registered

services. Upon receiving a request, it dispatches the

request to corresponding services according to the

specified namespace and localName parameters.

AbstractScriptableEngine extends AbstractSimple

Engine by incorporating script interpreters, the VMs.

Figure 4. the class diagram of engine classes

Some additional classes deserve explaining are VM,

DaemonTask, and Context. VM implements the

concept of a virtual computing machine.

Implementations of AbstractScriptableEngine delegate

their computation tasks to VMs. A VM wraps one or

more scripting interpretors and provides a supporting

infrasture for these interpretors. Currently, JavaScript

and Beanshell scripting languages are supported. With

the design of VMs, developers can dynamically change

the implementation of their services and perform hot

deployment, which will further shorten the

development cycle. The definition of VM has the

following methods:

(1) getVMType: return the scripting language

supported

(2) getRootFolder: return the root folder (the

working directory) of the VM

(3) executeScriptAsService: execute the service

Currently, DefaultJavaScriptVMImpl and Default

Bean Shell VMImpl are provided to support JavaScript

and BeanShell respectively.

A DaemonTask is a background task that will be

automatically managed by WSRush. Unlike traditional

java.lang.Thread, which may left in system after the

termination of the main program and lock some

resources, a DaemonTask will automatically be

terminated once the main program is finished. To

implement a DaemonTask, one simply implements the

interface ilab.apprush.core.daemon.DaemonTask or

extends from the abstract class ilab.apprush.core.daemon.

AbstractDaemonTask. Furthermore, unlike traditional

java.lang.Thread, a DaemonTask can be shutdown

programatically. To start a DaemonTask, one has to

invoke GlobalContext.requestDaemonExecution. Besides,

a convenient function, GlobalContext.terminateDaemons

is provided to shutdown all DaemonTask.

A Context encapsulates a set of environmental

parameters. Services are executed by WSRush, and

therefore, they have to acquire environment

information such as working directory from WSRush.

Three types of Contexts are defined: GlobalContext,

EngineContext, and ServiceContext. A running Service

has reference to its own ServiceContext. From the

context, it can obtain the directory structure relative to

the root path (the deployed path) of the Service.

Furthermore, it can acquire the corresponding

EngineContext and GlobalContext from the

ServiceContext. As their names suggest, EngineContext

provides engine-wide information while GlobalContext

provides global information. Additionally, by invoking

the executeService method defined in all types of

Contexts, a Service can even request the execution of

other services, which will make code-reuse easier.

4.2 The Web Interface Layer11

The Web interface layer handles HTTP and HTTPs

requests. The current implementation of this layer

assumes the adoption of the Java Servlet12 technology.

The popularity of the technology makes the assumption

reasonable. The core class in this layer is the

ilab.apprush.core.services.system.DispatcherService

class, which is a Restful endpoint implemented with

Jersey. Jersey is the Java implementation of the Restful

protocol and allows users to create Restful style Web

services by simply annotating a Java class. In WSRush,

Jersey is adopted for implementing the front controller

of Services. That is, DispatcherService is responsible

12 http://www.oracle.com/technetwork/java/index-jsp-135475.html

1630 Journal of Internet Technology Volume 19 (2018) No.5

for accepting Restful requests and wrap/unwrap

parameters in incoming and outgoing packets. For

convenience, DispatcherService accepts both GET and

POST requests. Note that since WSRush is packaged

as a software library, developers who needs detailed

control can simply extends DispatcherService. Original

request objects will be wrapped into Wrapped

HttpRequest objects to provide identical access

methods for the two types of requests. To allow

flexible confiurations, this layer also assumes the

adoption of the spring framework13. A sample

configuration file is listed below:12

In the configuration file, two engines, the

simpleEngine1 and the simpleScriptableEngine1, are

loaded. By modifying the list, developers can decide

the engines to be loaded into their WSRush instances.

Furthermore, two additional configurations, the

globalResources.xml and the engines.xml, are included.

The former is used for configuring global resources

such as connection pools while the latter is for

configuring engines. An example of globalResources.

xml is shown below:

The file declares a connection pool named as defaultdb

with some pooling configurations. The pool allows 5

concurrent database connections at max and will keep

at least 1 connection stay in the pool.

Additionally, a SpringConfigurator class is defined

to incorporate configurations loaded via Spring

13 https://projects.spring.io/spring-framework/

Framework configuration files. Developers can refer to

the injected instance of SpringConfigurator to access

the configured objects. The figure below demonstrates

the service dispatching flow:

Figure 5. the activity diagram

4.3 The Web Service Utilities Layer

For developers that do not want to extend or modify

the core of WSRush, they can simply deploy the

packaged version of WSRush. By default, WSRush is

most suitable for Web applications and a Web service

utilities layer is implemented to simplify the adoption.

In addition to the application.js module mentioned

earlier, a dynamic configuration file is included. The

file will automatically discover the IP address of

WSRush server and thus can be used for obtaining the

URL for the endpoint. With the dynamic configuration

file, it will be easier to maintain a WSRush instance.

The configuration file is only applicable for Web

applications. To use the file, simply use the following

statement:

Furthermore, for Web applications, an authentication

dialog will be generated automatically when needed.

To use the feature, a Keystore instance has to be

registered via the globalResource.xml configuration

file. The ilab.apprush.core.security.keystore.Keystore

interface declares methods for implementing a

Keystore:

(1) getKey: given a (user name, password) pair, the

method returns a temporarily valid key

(2) invalidateKey: disable the specified

(3) verifyKey: check whether the specified key is

valid or not

A simplified implementation of Keystore, the

The Design and Case Study of the WSRush Platform 1631

ilab.apprush.core.security.keystore.SimpleKeystoreImp

l is included in WSRush. To use SimpleKeystoreImpl,

a static user account list is needed. The list can be

registered in the globalResource.xml configuration file.

An example is shown below:

Figure 6. a sample configuration file for Keystore

within two monthsMoreover, some Web based tools

have been provided for administrating a WSRush

instance. To enter the administration page, users have

to log into the following url:

http://host:port/WSRush/admin

Then, the user will be requested to enter the

administration username/password. After a successful

login, the user will be redirected to an online file

manager:

Figure 7. the online file manager of WSRush

Note the file manager is extended from an open source

project named as jsp File Browser14. With the file

manager, users can edit script-based services online.

The index page of the file manager lists the directory

structure of script-based engines. By navigating into

the corresponding folder, users can create/modify/

delete/show script-based services for specific engines.

The online editor is shown below:13

14 http://www.vonloesch.de

Figure 8. the online script-based service editor

4.4 The Composition of Web Services

In many cases, developers have to reuse or compose

existing Web services to achieve their tasks. The

current implementation of WSRush does not support

automatic composition. However, manual composition

is supported. In ilab.apprush.core.context.Context, a

method:

ExecutionResult executeService (String namespace,

String localName, ServiceRequestParameter parameter)

is defined. Developers simply invoke the function to

interact with other Web services registered in the same

WSRush instance. Note that WSRush itself keeps a

very lean design principle, so it can be integrated with

other orchestration or choreography technologies such

as BPEL.

5 Case Study

In this section, a case study is given to demonstrate

the adoption of WSRush. The research team adopts

WSRush in their own MOST project: “Cloud and

Crowd Supported Math Learning in Computer

Science.” In the project, we develop a method as well

as an e-learning system based on cloud technologies

and crowd intelligence to enhance students’ learning

performance of math in computer science. As

mentioned, we use WSRush to implement Web

services to augment the OLAT learning management

system. With WSRush, we can prototype the needed

services quickly by using the beanshell and javascript

scripting languages. Furthermore, team members don’t

need to study full-stack Web service frameworks such

as JAX-WS in advance. These characteristics result in

faster development. First, for version control, we

created a brached version of WSRush. Then, to load

WSRush related objcects, we add the default WSRush

listener via the standard web.xml configuration file:

To prevent the need of redeploy the Services, script-

based Services were preferred. On the other hand, there

were still Services that will not be affected by

experiments results, so static Services were used in

such cases for performance. Additionally, we added

two entries to globalResources.xml:

1632 Journal of Internet Technology Volume 19 (2018) No.5

The former entry, the properties bean was used for

specifying olat specific environment variables while

the latter entry was used for registering a database

connection pool to the olat database. Finally, we

changed its Web application name to MathWS and

deploy the resulting war file to a tomcat server.

We totally implemented 7 Web services. Among

them, two are script-based and four are static. The

following code snippets demonstrate a script-based

service:

As shown in the code snippets, to implement a

script-based service, developers have to complete two

functions: execute and is Authenticated Session

Required. The former defines the business logic of the

service while the latter controls whether an

authenticated session is required for accessing the

service. In the execute function, VMContext plays a

similar role with ServiceContext and Service Request

Parameter is a wrapper of parameters passed by the

program that invokes the service.

On the other hand, implementing a static service

takes a very similar approach:

In most cases, developers start by extending the

AbstractService and override two function: execute and

isAuthenticatedSessionRequired. With the help of

WSRush, students joining the project created all the

needed Web services within two months. Empirically,

most students are not good at server-side programming,

not to mention Web service programming. For

comparison, a course for JAX-WS on udemy takes

12.5 hours15, which will be mapped to a 3-5 weeks

course unit in universities.14

6 Conclusions and Future Work

In this manuscript, a Web service ready application

platform, the WSRush platform, is proposed. The

platform provides some ready-to-use infrastructures to

simplify the development of Web service applications.

With the proposed platform, developers can

concentrate on their application logic and simply leave

the protocol handling and resource management tasks

to WSRush. Furthermore, the platform is highly

extensible, developers can customize WSRush to their

needs by extending from the core classes.

The current implementation of WSRush is stable

and usable. In the future, we will improve WSRush in

the following ways:

(1) Graphical user interface: the current version is

packaged as a standard Web application, however, it

stills lacks GUI for system configuration and

management. In the next step, we will augment it with

GUI to enhance its usability.

(2) Further extend WSRush to support other

usecases. For example, the research teach already has a

plan to adopt WSRush to build a wrapper of Cordova,

which is a very popular APP development framework.

15 https://www.udemy.com/java-web-services/

The Design and Case Study of the WSRush Platform 1633

References

[1] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P.

Krogdahl, M, Luo, T. Newling, Patterns: Service-oriented

Architecture and Web Services, IBM Corporation, 2014.

[2] T. Erl, Service-Oriented Architecture (SOA) Concepts,

Technology and Design, Prentice Hall, 2005.

[3] T. Erl, Service-oriented Architecture: A Field Guide to

Integrating XML and Web Services, Prentice Hall, 2004.

[4] P. Trkman, A. Kovačič, A. Popovič, SOA Adoption Phases,

Business & Information Systems Engineering, Vol.3, No. 4, pp.

211-220, July, 2011.

[5] H. Luthria, F. Rabhi, Service Oriented Computing in Practice:

An Agenda for Research into the Factors Influencing the

Organizational Adoption of Service Oriented Architectures,

Journal of Theoretical and Applied Electronic Commerce

Research, Vol. 4, No.1, pp. 39-56, April, 2009.

[6] N. Lopez, R. Casallas, J. Villalobos, Challenges in Creating

Environments for SOA Learning, SSDSOA’07: ICSE

Workshops 2007, Minneapolis, MN, 2007, pp. 9-9.

[7] H. Y. Paik, F. A. Rabhi, B. Benatallah, J. Davis, Service

Learning and Teaching Foundry: A Virtual SOA/BPM

Learning and Teaching Community, Business Process

Management Workshop: BPM 2010 Intenational Workshops

and Eucation Track, Hoboken, NJ, 2010, pp. 790-805.

[8] J. Spillner, SPACEflight: A Versatile Live Demonstrator and

Teaching System for Advanced Service-oriented

Technologies, Microwave and Telecommunication

Technology (CriMiCo), Sevastopol, Ukraine, 2011, pp. 455-

456.

[9] B. Hosack, B. Lim, W. P. Vogt, Increasing Student

Performance through the Use of Web Services in Introductory

Programming Classrooms: Results from a Series of Quasi-

experiments, Journal of Information Systems Education, Vol.

23, No. 4, pp. 373-384, December, 2012.

[10] B. Lim, B. Hosack, P. Vogt, Student Assessment of Learning

Gains in an Introductory Computing Course Integrated with

Web Services Technology, Engineering and Technology

(ICCIET’2014), Phuket, Thailand, 2014, pp. 18-20.

[11] T. Olsen, K. Moser, Teaching Web APIs in Introductory and

Programming Classes: Why and How, SIGED: IAIM

Conference, Boston, MA, 2013.

[12] K. Jakimoski, Challenges of Interoperability and Integration

in Education Information Systems, International Journal of

Database Theory and Application, Vol. 9, No. 2, pp. 33-46,

June, 2016.

[13] G. Hayes, H. Khazaei, K. El-Khatib, C. McGregor, J. M.

Eklund, Design and Analytical Model of a Platform-as-a-

service Cloud for Healthcare, Journal of Internet Technology,

Vol. 16, No. 1, pp. 139-149, January, 2015.

Biographies

Chun-Hsiung Tseng received his B.S.

in computer science from National

ChengChi University, and received

M.S. and Ph.D. in computer science

from National Taiwan University. He

is a faculty member of Department of

Communications Engineering, YuanZe University. His

research interests include big data analysis, crowd

intelligence, e-learning systems, and Web information

extraction.

Yung-Hui Chen is an associate

professor in Department of Computer

Information and Network of

LungHwa University of Science and

Technology. He received the B.S.

degree in Computer Science

Information Engineering from

Tamkang University in 1997, and the M.S. and Ph.D.

in Information Engineering from the TamKang

University.

Yan-Ru Jiang received her bachelor

degree from department of

information management in Nanhua

university. She is specialized in

programming and is a member of the

IMSofa lab.

Jia-Rou Lin is currently studying in

Nanhua university and is majored in

Information Management. She is

specialized in programming and is a

member of the IMSofa lab.

1634 Journal of Internet Technology Volume 19 (2018) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

