
A Crawling Approach of Hierarchical GUI Model Generation for Android Applications 1613

A Crawling Approach of Hierarchical GUI Model Generation for

Android Applications

Chien-Hung Liu, Ping-Hung Chen*

Department of Computer Science and Information Engineering, National Taipei University of Technology, Taiwan

{cliu, t100599001}@ntut.edu.tw

*Corresponding Author: Chien-Hung Liu; E-mail:cliu@ntut.edu.tw

DOI: 10.3966/160792642018091905032

Abstract

As the number of Android applications has increased

dramatically, there is a rising concern about their quality

and reliability. In particular, the rich GUI interactions

supported by Android should be thoroughly tested in

order to ensure if the behavior of an Android application

is correct. However, manually creating a GUI state model

can be tedious and error-prone, especially for a nontrivial

application. This paper proposes a crawler that can

automatically generate the GUI state model for an

Android application. Particularly, a hierarchical state

model is employed to represent the intra- and inter-

activity GUI behavior of Android applications in order to

increase the model readability. Empirical experiments

were conducted to evaluate the proposed crawler and the

generated model. The results show that the state model

generated by the crawler has a promising coverage as

compared to the model created manually. The

hierarchical state model can greatly improve the model

readability to ease the GUI behavior analysis and

validation for Android applications.

Keywords: Android crawler, Android GUI model,

Android GUI testing

1 Introduction

In recent years, the number of Android applications

has increased dramatically. According to the statistics

[1], there have been over 2,100,000 Android

applications available on Google Play since April,

2016. In particular, Android applications have been

widely used in all aspects of our lives, such as doing

business, communicating with friends and families,

searching information, and playing games. Thus, it is

very important to ensure that the behaviors of Android

applications meet their design specifications and won’t

cause business loss, system outage, or any

inconvenience.

In particular, Android applications are usually

operated by using touch screen, as compared with

traditional desktop applications in which user

interactions are performed by using the keyboard and

mouse. The rich UI interactions supported by Android

through varied gestures, such as tapping, dragging,

sliding, pinching, and rotating, should be thoroughly

tested in order to ensure the correctness of Android

applications.

To test the GUI behavior of an Android application,

a promising approach is to model the application’s

GUI behavior using a finite state machine where the

states represent the possible GUI screens and

transitions represent the events that change the

properties of the screens. The test event sequences then

can be derived systematically by traversing the state

machine based on selected coverage criteria, such as

state or transition coverage. However, manually

extracting the GUI behavior and creating the

corresponding state machine may require considerable

efforts since the possible number of states and

transitions for a nontrivial Android application can be

large. Moreover, the resulting state model could be

incorrect and incomplete due to human errors.

To ease the problems of manually creating a GUI

state model for a nontrivial Android application, an

alternative method is to build the GUI state model

automatically using a crawler [2]. The basic idea of

such a crawler is to visit each reachable GUI state

automatically from a given initial GUI state by

attempting to invoke a list of potential triggerable

events systematically. The crawling process will

continue until the event list becomes empty or the

stopping criterion of the crawling is met.

The concept of crawler has been successfully

applied to web applications to explore different web

pages automatically for various purposes, including the

generation of GUI test model [3]. However, the GUI

structure and the event processing of Android

applications are quite different from those of web

applications. For example, an Android application

allows users to swipe left or right to move from one

fragment view to another (screen slide). The crawler

has to try both directions of the swipe event in order to

make the fragment view (screen) visible and to retrieve

and analyze the GUI information of the view for

further crawling. Thus, the development of Android

crawler needs to take into account the GUI

1614 Journal of Internet Technology Volume 19 (2018) No.5

characteristics introduced by Android.

Moreover, for an application with a large number of

states and transitions, the GUI state model generated

by a crawler can be hard to understand and difficult to

validate. To automatically extract the GUI behavior of

Android applications and increase the readability of the

generated model, this paper presents a hierarchical

GUI model generation approach based on the crawler.

Particularly, the proposed crawler can automatically

extract the GUI behavior of an Android application and

generate a GUI state model by taking into account the

rich GUI events supported by Android. In addition, a

hierarchical state model is employed to represent the

intra- and inter-activity GUI behavior of Android

applications in order to reduce the model complexity

and, hence, facilitate the model analysis and validation.
To evaluate the effectiveness of the proposed Android

crawler and hierarchical state model, several experiments

were conducted. The experimental results suggest that the

GUI state model generated by the proposed crawler can be

much more complete as compared to the state model created

manually. Besides, the readability of the hierarchical GUI

state model is much improved as compared to traditional

“flat” state machine.

The rest of the paper is organized as follows. Section

2 briefly reviews the related work. Section 3 presents

the hierarchical GUI state model and the crawling

algorithm for model generation. Section 4 depicts the

design and limitations of the crawler. Section 5

describes and discusses the experimental results.

Section 6 summarizes the conclusions and describes

possible future work.

2 Related Work

Although crawlers have been studied for many years,

most of the existing researches focused on web

crawling and its applications [4, 5]. Currently, there is

a few studies on the crawlers of Android applications

for GUI model generation. The following briefly

reviews several researches related to our work.

Wang et al. [6] describe several challenges of

exploring the GUI of Android applications, including

the identification of Android GUI components,

generations of interacting GUI events, and the crawling

algorithm to achieve high coverage. A tool, called

DroidCrawler, has been implemented. Basically, the

DroidCrawler downloads the GUI information of the

target Android application using ADB (Android Debug

Bridge) [7] and identifies the corresponding GUI

components. It then simulates user actions using

Monkey [8] by triggering key and GUI events related

to the components of interest. A depth-first algorithm

is presented to automatically explore the GUIs of target

and generate a GUI tree where the nodes representing

the GUIs and the edges representing the trigger events

between the GUIs. A case study is presented to

illustrate the GUI coverage of the DroidCrawler.

Amalfitano et al. [9], propose a GUI crawling

method that can be used for crash testing and

regression testing of Android applications. The

proposed method basically explores the GUI of an

Android application by automatically simulating real

user events on the user interfaces and builds a GUI tree

model. Each node of the tree represents a user interface

of the application and each edge represents the event

causing the change between the user interfaces. Test

cases then can be derived from the tree model

systematically. A supporting tool, called Android

Ripper [10], has been implemented and a case study is

presented to illustrate the effectiveness of the method.

Moreover, based on the proposed method, [11]

presents a toolset to automate the generation of JUnit

test cases for testing the GUI of Android applications.

Takala et al. [12] present a model-based testing

(MBT) method for testing the GUI of Android

applications. They use state machine to model the GUI

of applications. In particularly, their model abstracts an

individual view of the GUI with two separate state

machines: an action machine and a refinement machine.

The action machine describes the high-level

functionality with action words and state verifications.

The refinement machine implements action words and

state verifications using keywords. Keyword-based test

cases then can be generated from the model

automatically through a supporting open source toolset,

called TEMA. A case study is presented to demonstrate

the effectiveness of the proposed method.

Yang et al. [13] propose an approach that combines

both static analysis and dynamic crawling techniques

to automate the GUI model generation for Android

applications. Specifically, the approach extracts the set

of user actions supported by each widget in GUI

screens from the source code of the Android

applications. The extracted user actions include the

action registered to an event-listener or inherited from

the event-handling method of an Android framework

component. A dynamic crawler is then used to exercise

the extracted actions systematically and generate a

compact GUI model. A tool, called ORBIT, is

implemented to support the proposed approach and

experiments were conducted to demonstrate the

efficiency of the proposed approach.

Machiry et al. [14] present a system, called

Dynodroid that can automatically generate relevant

inputs to Android applications for the support of

dynamic analysis and testing. The main principle of

Dynodroid is an observe-select-execute cycle. In the

observer stage, Dynodroid analyzes the widgets on the

current screen and computes a set of relevant UI and

system events. In the selector stage, Dynodroid will

select an event to execute from the set of relevant

events according to a randomized algorithm which

supports three different selection strategies. In the

executor stage, Dynodroid can execute the event

chosen by the system automatically or provided by

A Crawling Approach of Hierarchical GUI Model Generation for Android Applications 1615

users manually. Experimental results indicate that, as

compared with humans and Monkey, Dynodroid has

satisfactory code coverage and is more efficient in

generating input sequences.

Zhu et al. [15] present an approach called Cadage

(Context-Aware Dynamic Android Gui Explorer) to

generate a GUI model automatically for testing

Android applications. Similar to [14], the basic test

cycle of Cadage includes Inferencer, Selector,

Executor, and Modeler which are responsible to extract

fireable events of current GUI state, select an action

event, execute the chosen event, and construct the GUI

model, respectively. Particularly, the goal of the

approach is to explore the unexecuted events of the

Android application under test as quickly as possible

while constructing the approximate GUI model. To

achieve this and solve the non-determinism problem

introduced by the approximation of the model, a

probabilistic selection algorithm that can increase the

priority of unexecuted events is used when selecting an

event to execute. Evaluation is provided to show the

efficiency of the approach.

Choi et al. [16] propose a technique, called

SwiftHand, that can generate input sequences

automatically for testing Android applications. The

technique combines model learning with testing in

which a state-based model of an Android application is

learned as testing is performed. From the learned

model, test inputs are generated to explore unvisited

GUI states of the application in order to achieve better

coverage. Particularly, the proposed technique can

guide the learning and testing to avoid restarting the

applications so as to save testing time and to merge

equivalent GUI states for reducing the search state

space. The experimental results show that the

technique can achieve branch coverage quickly than

random and L*-based testing.

As compared with the aforementioned studies, our

work focuses on the automatic generation of GUI state

model for Android applications without source code.

Moreover, to facilitate analysis and testing, the

proposed approach aims to generate a visual GUI state

model and improve the readability and completeness of

the model. Table 1 shows the comparison of related

work with the proposed approach in terms of the

generation of GUI model, the crawling algorithm used

to explore the GUI states, the selection of events for

GUI exploration, and the support of event type and

user input data.

3 The GUI Model Generation Approach

This section describes the hierarchical GUI state

model and the crawling approach used to construct the

model automatically.

Table 1. The comparison of the related work

Approach
GUI Model

Generation

Crawling

Algorithm

Event

Selection

Event

Type

Input

Data

Droid

Crawler

GUI Tree DFS random user

event

Yes

Android

Ripper

GUI Tree DFS-based random user/

system

event

Yes

MBT Labelled state

transition

system

N/A random user

event

Yes

ORBIT FSM FwdCrawl

(DFS-based)

systematic user

event

No

Dynodroid no support N/A random user/

system

event

No

Cadage Labelled state

transition

system

BFS priority,

random

user

event

No

Swift

Hand

FSM Learning-

based

random user/

system

event

Yes

Proposed

approach

Hierarchical

state model

BFS systematic user

event

Yes

3.1 The Hieratical GUI State Model

An Android application usually consists of multiple

activities that interact with each other. Each activity

provides a container for UI widgets, such as buttons

and text boxes. Users can interact with the application

by navigating different activities using the UI widgets

or physical keys of the mobile device. To represent the

possible user interaction behavior of Android

applications, a two-level hierarchical state model is

employed. Specifically, the top level of the state model

is called ATD (Activity Transition Diagram) that

represents the navigations between the activities. The

second level of the state model is called ASD (Activity

Substate Diagram) that abstracts the state changes

within an activity.

The ATD and ASD are finite state machines that can

be represented as a 5-tuple FSM = (Q, Σ, q0, δ, λ),

where Q is a finite set of states, Σ is a finite set of UI

and key events, q0 is the initial state, δ:Q×Σ→Q is a set

of transitions, and λ:Q→Σ is a mapping function. Thus,

let ATD be a FSM and ASDs be a finite set of FSMs,

then the proposed GUI state model is formally defined

as a triple G = (ATD, ASDs, µ), where µ:Q→ ASDs is a

mapping function that associates each state q∈Q of

ATD with a FSM in ASDs.

For illustrating the ATD and ASD, let’s consider a

trivial Android application shown in Figure 1. The

application has three activities: ItemList, About, and

Setting. The GUI of the ItemList activity contains two

buttons and a group of radiobuttons. The GUIs of two

others contain only one button, respectively. The

application allows users to navigate between the

ItemList and About activities or between the ItemList

1616 Journal of Internet Technology Volume 19 (2018) No.5

and Setting activities by clicking on the corresponding

buttons.

The inter-activity GUI behavior of the trivial

Android application can be modeled using ATD as

shown in Figure 2, where the state of the ATD

represents an activity, and the transition of the ATD

represents an event between the activities.

Figure 1. The activity snapshots of a trivial Android

app

Figure 2. The ATD of the trivial Android app

Notice that in the ItemList activity users can click

the corresponding radio buttons to select an item, such

as coffee, book, or tea. The selection of item can

change the GUI state of the trivial application as shown

in Figure 3. Although clicking on different radio button

can change the GUI state, it won’t cause the activity to

change. Thus, the trivial application remains at the

ItemList activity. Such intra-activity GUI behavior is

abstracted in the ASD shown in Figure 4, where the

state of the ASD represents the values of a set of GUI

properties within an activity, and the transition of the

ASD represents an event between the states.

3.2 The Crawling Algorithm of Model

Generation

To generate the proposed hierarchical GUI state

model automatically, a GUI crawling approach is

employed. The approach will explore the possible GUI

states of an Android application and generate the

corresponding ATD and ASDs dynamically. Figure 5

Figure 3. The snapshots of interacting radio buttons

Figure 4. The ASD corresponding to ItemList activity

shows the crawling algorithm. The algorithm is based

on the breadth-first search (BFS) traversal strategy to

explore the possible GUI states of an Android

application starting from the main activity.

In the crawling algorithm, each activity has a list of

exploring tasks (i.e., taskList). An exploring task is

composed of a GUI state and a list of events that can

be executed from the state. When the crawler visits the

GUI of an activity at the first time, the GUI state is

identified and a list of fireable events associate with

that GUI state is obtained. With the GUI state and

events, a task is then created and added into the

taskList of the activity. The crawler then explores the

possible GUI states by getting a task from the taskList

and firing the task’s events iteratively.

After firing an event, if the current activity is

changed to an activity unexplored before, a new GUI

state is identified and a new activity with an exploring

task for the identified GUI state is created. This new

activity is then added into the list of activities (i.e.,

activityList) and will be explored later. Moreover, if

the event execution changes the activity, this means

that there is an inter-activity GUI state change and the

ATD of the application will be updated accordingly.

A Crawling Approach of Hierarchical GUI Model Generation for Android Applications 1617

CrawlingAlgorithm (Input: config, App; Output: ATD, ASD)

begin

stoppingCriteria ← config

start(App)

a.activity ← App.MainActivity

task.state ← a.ATDState ←getGUIState() //get current GUI state

task.eventList ← all fireable events of task.state

a.taskList ← task

activityList ← a

while activityList ≠ null or isFalse(stoppingCriteria) do

ai ← get an activity from activityList

while ai.taskList ≠ null do

tj ← get a task from ai.taskList

if tj.state ≠ App.rootState // set crawler to target GUI state

restart(App) and forwardCrawling(ai, tj.state)

end if

while tj.eventList ≠ null do

ek ← get an event from tj.eventList

fire ek

s ← getGUIState() //get cuurent GUI state

if isChangeActivity(ai.activity, getActivity(s)) then

if isNewATDState(s) then

a.activity ← getActivity(s) // the new activity

a.ATDState ← s

t.state ← s

t.eventList ← all fireable events of s

a.taskList ← t

add a to activityList

end if

update ATD(ai.ATDState, ek, s) // update the ATD

// backtrack to previous state

restart(App) and forwardCrawling(ai, tj.state)

else

if isNewASDState(s) then

t.state ← s;

t.eventList ← all fireable events of s

add t to ai.taskList

end if

update ASD(ai, tj.state, ek, s) // update the ASD of ai

if s ≠ tj.state // backtrack to previous state

restart(App) and forwardCrawling(ai, tj.state)

end if

end if

remove ek from tj.eventList

end while

remove tj from ai.taskList

end while

remove ai from activityList

end while

return (ATD, ASD)

end

Figure 5. The crawling algorithm of model generation

Note that if the event execution results in a GUI

state change, the proposed crawler will backtrack to

previous GUI state in order to continue the crawling.

To backtrack to previous GUI state properly, the

crawler will restart the application and then forward

traverse to the previous GUI state using the

forwardCrawling(ai, s) function in Figure 5. This

function will change the GUI state of the application

from its initial GUI state to the GUI state s of activity

ai (i.e., the previous or target GUI state) by firing a

sequence of events after restarting the application.

If the event execution does not change the activity,

but it leads to a new GUI state of the same activity,

then an exploring task is created based on the new GUI

state and is added into the taskList of the current

activity. This means that there is an intra-activity GUI

state change and the ASD of the current activity is

updated accordingly. The crawler then restarts the

application again and backtracks to its previous GUI

state. However, if the event execution does not

introduce a new GUI state, then the crawler simply

updates the ASD based on the execution result.

If all the events of a task have been fired, the task

will be removed and the crawler will restart the

application and traverse to the GUI state of the next

task to be explored. The crawling process continues

until the events of each task for every activity have

been executed or the stopping criteria are satisfied.

Currently, the supported stopping criteria include the

timeout limit of crawling, the depth of the BFS, and the

number of GUI states or events explored.

4 Design and Implementation of the

Crawler

To support the proposed approach, a tool called

Android Crawler is developed. This section describes

the architecture design and implementation of the tool

and its current limitations.

4.1 The System Design and Implementation

Figure 6 shows the system architecture of the tool

that consists of four major subsystems, including the

GUI Extractor, Crawler Controller, Event Executor,

and Model Builder. The GUI Extractor is used to

extract and analyze the GUI information of an Android

application. It will identify the widgets of the GUI and

compute a list of fireable events. The Crawler

Controller will examine the current GUI state, control

the traversal of the crawler, and select an event to

execute. The Event Executor is responsible to fire the

selected event using Monkey with a configurable

default think time. The Model Builder will construct

the ATD and ASDs for the application dynamically.

Figure 6. The system architecture of Android Crawler

Notice that to obtain a list of fireable events for a

GUI state, the crawler will dump the GUI information

1618 Journal of Internet Technology Volume 19 (2018) No.5

using Uiautomator [17] and analyze the widgets of the

GUI. The fireable events corresponding to each widget

are identified, including click, double-click, long-click,

swipe, scroll, edit-text, menu key, and back key events.

The screen coordinates required to fire the events are

also computed. The number of coordinates and how to

compute the coordinates can be dependent of the event

types. For example, the scroll event requires the

beginning and ending coordinates. The gesture

directions of the event can scroll from right to left,

from left to right, from bottom to top, and from top to

bottom. The event coordinates can be computed using

the top-left and bottom-right corners of the screen.

Moreover, similar to web applications, an Android

application may require users to provide proper input

data in order to navigate to some GUI states. The

generation of such input data, such as user name and

password, may need human intelligence. To support

this, the tool allows to provide a list of name-value

pairs to guide the exploration of crawler.

Figure 7 shows the generated hierarchical GUI state

model for a small Android application, Taiwan Receipt

Lottery [18]. Particularly, Figure 7(a) is the ATD of the

application. It has two GUI states, activity-0 and

activity-1, denoting two activities. The transitions

represent the possible interactions between the

activities and are labeled by <source state, event, target

state>. Notice that the GUI of the activity-0 has two

buttons. When users clicking on different buttons, the

activity-1 will show different images of the lottery

numbers. However, the crawler cannot recognize the

difference of the images. Thus, these two images are

considered as the same GUI state.

Figure 7(b) shows the ASD of activity-0. It

illustrates that users can toggle between two GUI states

of activity-0 by clicking on the setting button

(“index=0”) at the top-right corner of the GUI screen

or by pressing the physical “menu” key. Similarly,

Figure 7(c) shows the ASD of activity-1. Although the

ASD has only one GUI state that is the same as its

corresponding ATD state, it depicts several transitions

within activity-1 which are shown in the ATD.

Note that, in the ASD, an event may cause a GUI

change from an ASD state of one activity to an ASD

state of another activity. To model such state change, a

dummy state is used in the ASD to represent the target

state of a transition that causes an ASD state change

across different activity. As shown in Figures 7(b) and

7(c), there is a dummy state “Activity_1” in the ASD

of activity-0 and a dummy state “Activity_0” in the

ASD of activity-1, respectively. Each dummy state is

represented by using an oval in the ASD. Further, to

distinguish a regular ASD transition that does not cross

different activity from a transition that leads to a

dummy or terminal state, in Figures 7(b) and 7(c) the

regular ASD transitions are shown in black color while

the ASD transitions crossing different activity or

leading to a terminal state are shown in red color.

(a) The ATD of the Taiwan Receipt Lottery application

(b) The ASD of activity-0

(c) The ASD of activity-1

Figure 7. An example of the generated hierarchical GUI state model

A Crawling Approach of Hierarchical GUI Model Generation for Android Applications 1619

4.2 The Limitations of the Crawler

Currently, the crawler still has several limitations.

One limitation is that the proposed approach defines a

GUI state with reference to the properties of UI

components on the GUI screen. Thus, the crawler takes

into account only the property value changes of UI

components, but not the content changes of images. As

a result, a change of an image is currently not

considered as a change of GUI state.

Besides, our crawler supports only UI and key

events for simulating user interactions with UI

components and physical keys. There are still other

types of events, such as system, multi-touch, and

sensor events, that are not supported in our crawler yet.

Moreover, currently the crawler compares all the

properties of UI components on the GUI screen to

determine whether two GUI states are equivalent. This

limits its ability for handling the state explosion

problem. Instead of using the stopping criteria to avoid

possible state explosion, one way to deal with this

problem in our crawler is to abstract similar GUI states

into an approximated state so as to reduce the size of

state search space.

5 Experiments

To evaluate the effectiveness of the proposed

crawler and the hierarchical GUI state model, the

following research questions are proposed.

RQ1. Is the GUI state model generated by the crawler

more complete as compared with the model

created manually?

RQ2. What is the time efficiency of the crawler as

compared with human?

RQ3. Does the hierarchical state model generated by

the crawler have a better readability than the

traditional flat state model?

The following experiments were conducted to address

each of the research questions. For the experiments, five

small to medium-sized Android applications are chosen

from different categories of Google Play. The computer

used for running the tool has an Intel Core i5-4210U CPU

(1.7GHz) and 4GB of memory. The device used for running

the Android applications is Samsung Galaxy S5. The

Android OS of the device is v4.4.2 and the device has a

2.5GHz CPU (Qualcomm Snapdragon 801) and 2GB of

memory.

5.1 Evaluation of the Crawler’s Coverage

To evaluate the correctness and completeness of the

generated GUI state model, we compare the GUI

models automatically generated by the crawler with the

referenced models manually generated by humans. To

minimize the bias, five applications are chosen for this

evaluation. The referenced GUI models of these five

applications are created by three graduate students

manually. They interact with the applications and

produce their own GUI models individually. They then

review the models and derive the referenced models

together according to the best of their understanding.

Table 2 lists several attributes of the selected

applications, such as the download number, version,

user rating, and the number of events and states.

Table 2. The selected applications in the experiments

Apps
Download

number

APK file

size
Version

User

Rating

Number of

Events

Number

of States

Notepad [19]
100,000 -

500,000
3.9 MB 1.4 3.9 261 15

Taiwan Receipt

Lottery [18]

100,000 -

500,000
4.3 MB 4.3 4.2 28 4

QR Code Reader

[20]

10,000,000 -

50,000,000
2.0 MB 1.7.4 4.4 42 8

Volume Booster

Pro [21]

1,000,000 -

5,000,000
1.9 MB 2.6.4 4.3 55 9

Magnifier [22]
1,000,000 -

5,000,000

202.4

KB
2.2.9 3.9 61 6

Table 3 shows the results of the coverage of the GUI

models generated by the crawler as compared with the

referenced models. The results indicate that the

average coverages of GUI states and transitions are

87.7% and 64.4%, respectively. The crawler seems to

have a better state coverage than transition coverage.

The causes of such experimental results can be varied.

One possible reason could be that the events currently

supported by the crawler are limited to some UI and

key events. The transitions introduced by unsupported

events, such as multi-touch and system events, are

unable to cover at the present time. For example, the

Magnifier application [22] allows users to zoom in/out

an image using multi-touch events which are

unsupported by the crawler yet.

Table 3. The coverage results of the Android crawler

Apps
Crawling Time

(hh:mm:ss)

Transition

Coverage

(%)

State

Coverage

(%)

Notepad 1:08:56 54.0% 100.0%

Taiwan Receipt

Lottery
0:07:58 69.2% 80.0%

QR Code Reader 0:33:28 76.7% 91.7%

Volume Booster

Pro
0:23:48 90.9% 100.0%

Magnifier 0:08:47 31.3% 66.7%

Average 64.4% 87.7%

Moreover, both Notepad [19] and QR Code Reader

[20] allow user to add and delete file records. However,

the deletion event cannot be enabled unless at least a

file record has existed before the deletion. Since the

crawler has no knowledge about the event semantic,

the crawler may not always create and add a file record

into storage before deleting it. If the crawler visits the

GUI of file deletion before exploring the GUI of file

1620 Journal of Internet Technology Volume 19 (2018) No.5

creation, some transitions associated to file deletion

events might not be covered. This could affect the

transition or state coverage. One way to avoid this

situation is to allow the applications to have several

records initially before starting the crawler.

In addition, both Taiwan Receipt Lottery and

Magnifier have a relatively low state or transition

coverage as compared with others. One possible reason

for this result could be that the proposed crawler is

unable to identify a GUI state involved an image. In

the Taiwan Receipt Lottery application, some GUIs are

represented using the images of winning lottery

numbers. Although human can easily identify different

GUI states from those images, the proposed crawler is

unable to recognize the differences of the images at the

present time as mentioned in section 4.2. Hence, the

crawler considers different lottery images as the same

GUI state and won’t explore them further. Thus, the

coverage of the crawler can be affected.

Likewise, the Magnifier application allows users to

see, magnify, and freeze the images captured using

camera. Thus, the GUI states of Magnifier also involve

images and the crawler is unable to identify the

differences of such GUI states. Besides, the widgets

(i.e., buttons) of Magnifier are contained in a

HorizontalScrollView layout. This means that some

widgets of Magnifier won’t appear on the device

screen unless users scroll the widget container.

However, the proposed crawler currently has no

knowledge about the coordinates of a Horizontal Scroll

View. Thus, the crawler is unable to scroll the

horizontal widget container and find more Magnifier

widgets to explore. Consequently, Magnifier has

relatively poor state and transition coverages than

others.

Further, the proposed crawler can also be used as a

stress testing tool to test if an Android application will

crash while the crawler is building the GUI model of

the application. To evaluate the effectiveness of the

crawler, we compare the coverage of the crawler with

that of Monkey, a popular random stress testing tool

developed by Google for Android. The subject of the

experiment is Notepad and the experiment was

conducted 10 times. For the sake of fairness, the

execution time of Monkey is set to be about the same

as the crawling time required by the crawler. Two

event options of Monkey are used in the experiment.

One is the default option in which the percentage for

each type of event generated by Monkey is random.

The other option is that the percentage of generated

events for each event type is set to be equal.

Table 4 shows the average transition and state

coverage results for the crawler and Monkey. Both

transition and state coverages of the crawler are about

10 percent more than those of Monkey with different

event options. The results indicate that the crawler can

achieve a better coverage than Monkey. Such results

might be due to the fact that the crawler can use the

extracted GUI information and the knowledge of the

generated GUI state model for selecting events and

providing input data to explore the possible GUI states

of an Android application. On the other hand, Monkey

simply provides random events and has no knowledge

about the application. Thus, for a nontrivial application,

the crawler can achieve a better coverage than Monkey.

Table 4. The results of coverage comparison for

Notepad

Tool

Average

Execution

Time

(hh:mm:ss)

Average

Transition

Coverage

(%)

Average

State

Coverage

(%)

Monkey

(default option)
1:08:53 40.2% 90.9%

Monkey

(percentage of

event type is equal)

1:05:58 42.5% 90.9%

Android crawler 1:08:56 54.0% 100.0%

5.2 Evaluation of the Crawler’s Efficiency

To evaluate the efficiency of the crawler for model

generation, the average time required to construct a

GUI model manually and to generate a GUI model

using the crawler are computed. To minimize the bias,

the participants of this experiment are divided into two

groups. Each group has five participants. The group 1

will first create the GUI model manually and then

generate the model automatically using the crawler. On

the other hand, the group 2 will first generate the

model automatically using the crawler and then create

the GUI model manually. The subject of the

experiment is Notepad and both groups have no

previous experience in using the Notepad application.

The average time results to create the model for the

ten participants and the crawler are respectively shown

in Table 5. Although the results indicate that the

average time spent by human is far less than that

required by the crawler, the model created by human is

also much more incomplete than the model generated

by the crawler. The average state and transition

coverages of the manually created model are 48.2%

and 7.6% which are correspondingly outperformed by

the coverages of 100.0% and 54.0% obtained from the

model generated by the crawler.

Table 5. The results of efficiency comparison for

Notepad

Generation of

GUI state model

Crawling Time

(hh:mm:ss)

Transition

Coverage

(%)

State

Coverage

(%)

Manual model

creation
0:03:26 7.6% 48.2%

manual

operation

automatic

crawling

Automatic model

generation with

crawler 0:02:51 1:10:53

54.0% 100.0%

A Crawling Approach of Hierarchical GUI Model Generation for Android Applications 1621

The rationale behind these results may be because

most of the participants did not thoroughly analyze the

possible interacting events when creating the model.

This is not surprising because it requires non-trivial

efforts to manually identify the possible user

interactions for a medium-sized application like

Notepad. As a result, they miss a lot of potential GUI

states and transitions. One observation from the GUI

models manually created by the participants is that

humans often overlook the key events and, hence, may

fail to capture many possible GUI states and transitions.

5.3 Evaluation of the GUI Model’s

Readability

To evaluate if the hierarchical GUI model has a

better readability than the corresponding model

constructed using a flat finite state machine, the

average time required to search a GUI state from both

models are evaluated. The subject of the experiment is

Notepad again and four GUI states of Notepad are

randomly selected. Participants of the experiments are

required to find and locate these four GUI states from

both the hierarchical and flat state models of Notepad.

To minimize the bias, the participants of this

experiment are divided into two groups again. Each

group has five participants. The group 1 will first use

the flat model and then use the hierarchical model to

search the GUI states. The group 2, on the contrary,

will first use the hierarchical model and then use the

flat model to search the GUI states. Both groups have

no previous experience in reading the hierarchical and

flat GUI models of Notepad. The time spent to search

each of the four states is recorded for each participant.

Table 6 shows the average time results for searching

the states. The results indicate that the hierarchical

state model has less search time than the flat state

model except only for the state C. The average search

time for the flat state and hierarchical models is

respectively 37.1 and 19.4 seconds. This may suggest

that the proposed hierarchical state model has a better

readability than the traditional flat state model.

Table 6. The average search time of the state models

State

Search time for the

flat state model

(sec)

Search time for the

hierarchical state model

(sec)

A 40.0 22.8

B 20.4 15.0

C 20.8 32.8

D 67.3 7.0

Average 37.1 19.4

5.4 Discussions of the Empirical Evaluations

From the experimental results of sections 5.1 and 5.2,

we can observe that the average state and transition

coverages of the generated GUI model are 87.7% and

64.4%, respectively. Besides, as compared with

Monkey, the crawler also can achieve better transition

and state coverages. This suggests that the proposed

crawler can extract a fairly large numbers of GUI states

and transitions correctly. The coverage of the

generated model can be largely dependent of the types

of events supported by the crawler and the event types

used by the Android applications. Moreover, the

average state and transition coverages of the manually

created model are 48.2% and 7.6%, respectively. This

shows that the manually created GUI model can be

error-prone, especially for nontrivial applications.

Thus, from the results of sections 5.1 and 5.2, the

answer to RQ1 is that “the GUI state model generated

by the proposed crawler is more complete as compared

with the model created manually.”

Moreover, from the experimental results of section

5.2, we can observe that the time spent by humans to

create the GUI model is far less than the time used by

the crawler. This result is not surprising because

human can directly derive a GUI model intuitively

when interacting with the application. In contrast, the

crawler needs to explore all possible events before

generating the model. Besides, the crawler needs to

restart the application frequently in order to backtrack

to previous state. A restart of an Android application

may take about 50 to 60 seconds, which can

significantly affect the efficiency of the crawler.

However, the model generation can be fully or

largely automated by using the crawler. As shown in

Table 5, the average time required to manually operate

the crawler is 2 minutes and 51 seconds (2:51) which is

less than the time (3 minutes and 26 seconds) needed

to create the GUI model manually. Thus, from the

results of section 5.2, the answer to RQ2 is that “the

time efficiency of the crawler would be acceptable if

only the manual effort is considered.”

Further, from the experimental results of section 5.3,

we can see that the average search time of the

hierarchical state model (19.4 seconds) is much less

than that of the traditional flat state machine (37.1

seconds). The rationale behind this result could be that

the GUI behaviors of intra- and inter-activity are

represented in different levels of the hierarchy using

the ATD and ASDs. This can greatly reduce the

complexity of the GUI state model and allow users to

find and understand some parts of the GUI model more

easily and, hence, can facilitate the model validation.

Overall, from the results of section 5.3, the answer

to RQ3 is that “the hierarchical state model generated

by the crawler can have a better readability than the

traditional flat state model.”

6 Conclusions and Future Work

This paper has presented a crawling approach to

automate the generation of GUI state model for

Android applications. In particular, a hierarchical state

model is proposed to represent the GUI behavior of

1622 Journal of Internet Technology Volume 19 (2018) No.5

Android applications for improving the model

readability. The proposed model consists of an ATD

and a set of ASDs which can be used to depict the

intra- and inter-activity GUI behavior, respectively. A

crawling algorithm that can automatically generate the

hierarchical GUI state model is described. A tool

taking into account the GUI characteristics of Android

is developed to support the proposed approach. Several

case studies were conducted to evaluate the proposed

crawler and the hierarchical GUI state model.

The experimental results show that the proposed

approach can be valuable. The GUI model generated

by the crawler has a promising coverage as compared

with the model created manually. Although the

developed crawler may require more time to generate a

GUI model than human does, the model generation can

be completely or largely automated and, hence, the

manual efforts required to generate the GUI state

model using the crawler can be ignored. Besides, the

evaluation results also indicate that the proposed

hierarchical state model can greatly improve the

readability of model and, hence, can facilitate the

model validation.

In the future, we plan to improve the efficiency of

the proposed crawler. A possible efficiency

improvement for the crawler is to minimize the number

of times to restart the Android applications when the

crawler requires to backtrack to previous GUI state.

Moreover, we plan to extend the crawler to support

more types of events. Further, we also plan to enhance

the algorithm of the crawler to improve its code

coverage and the ability to abstract GUI state

information.

Acknowledgments

This work was supported in part by the Ministry of

Science and Technology, Taiwan, under the grant No.

MOST 104-2221-E-027-009.

References

[1] AppBrain, http://www.appbrain.com/ stats/number-of-android-

apps.

[2] A. Memon, I. Banerjee, A. Nagarajan, GUI Ripping: Reverse

Engineering of Graphical User Interfaces for Testing,

Proceedings of the 10th Working Conference on Reverse

Engineering, Victoria, Canada, 2003, pp. 260-269.

[3] A. Mesbah, A. van Deursen, S. Lenselink, Crawling Ajax-

based Web Applications through Dynamic Analysis of User

Interface State Changes, ACM Transactions on the Web, Vol.

6, No. 1, pp. 1-30, March, 2012.

[4] F. Zaidi, Fuzzy Clustering and Visualization of Information

for Web Search Results” Journal of Internet Technology, Vol.

13, No. 6, pp. 939-952, November, 2012.

[5] S.-A. Lo, C.-C. Hsu, S.-M. Hsieh, W.-M. Chen, RankCloud:

A Cloud-Based Webometrics Ranking System, Journal of

Internet Technology, Vol. 14, No. 1, pp. 45-55, January, 2013.

[6] P. Wang, B. Liang, W. You, J. Li, W. Shi, Automatic

Android GUI Traversal with High Coverage, Proceedings of

the Fourth International Conference on Communication

Systems and Network Technologies (CSNT), Bhopal, India,

2014, pp. 1161-1166.

[7] Android Debug Bridge, http://developer.android.com/tools/

help/adb.html.

[8] Monkey, http://developer.android.com/tools/help/monkey.html.

[9] D. Amalfitano, A. R. Fasolino, P. Tramontana, A GUI

Crawling-based technique for Android Mobile Application

Testing, Proceedings of the Fourth IEEE International

Conference on Software Testing, Verification and Validation

Workshops (ICSTW), Berlin, Germany, 2011, pp. 252-261.

[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,

A. M. Memon, Using GUI Ripping for Automated Testing of

Android Applications, Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering

(ASE), Essen, Germany, 2012, pp. 258-261.

[11] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,

G. Imparato, A Toolset for GUI Testing of Android

Applications, Proceedings of the 28th IEEE International

Conference on Software Maintenance (ICSM), Trento, Italy,

2012, pp. 650-653.

[12] T. Takala, M. Katara, J. Harty, Experiences of System-Level

Model-Based GUI Testing of an Android Application,

Proceedings of the Fourth IEEE International Conference on

Software Testing, Verification and Validation (ICST), Berlin,

Germany, 2011, pp. 377-386.

[13] W. Yang, M. R. Prasad, T. Xie, A Grey-box Approach for

Automated GUI-Model Generation of Mobile Applications,

Proceedings of the 16th International Conference on

Fundamental Approaches to Software Engineering, Rome,

Italy, 2013, pp. 250-265.

[14] A. Machiry, R. Tahilizni, M. Naik, Dynodroid: An Input

Generation System for Android Apps, Proceedings of the 9th

Joint Meeting on Foundations of Software Engineering, Saint

Petersburg, Russian, 2013, pp. 224-234.

[15] H. Zhu, X. Ye, X. Zhang, K. Shen, A Context-Aware

Approach for Dynamic GUI Testing of Android Applications,

Proceedings of the 39th IEEE Annual Computer Software and

Applications Conference (COMPSAC), Taichung, Taiwan,

2015, pp. 248-253.

[16] W. Choi, G. Necula, K. Sen, Guided GUI Testing of Android

Apps with Minimal Restart and Approximate Learning,

Proceedings of the 2013 ACM SIGPLAN International

Conference on Object Oriented Programming Systems

Languages & Applications (OOPSLA’13), Indianapolis, Indiana,

2013, pp. 623-640.

[17] UI Automator, http://developer.android. com/tools/testing-

support-library/index.html#UIAutomator.

 [18] Taiwan Receipt Lottery, https://play.google.com/store/apps/

details?id=com.twecs&hl=zh-TW.

[19] Notepad, https://play.google.com/store/apps/details?id=notepad.

sisa.mobi&hl=zh-TW.

[20] QR Code Reader, https://play.google.com/store/apps/details?

A Crawling Approach of Hierarchical GUI Model Generation for Android Applications 1623

id=tw.mobileapp.qrcode.banner&hl=zh-TW.

[21] Volume Booster Pro, https://play.google.com/store/apps/

details?id=com.volume.sound.manager&hl=zh-TW.

[22] Magnify, https://play.google.com/store/apps/details?id=com.

appdlab.magnify&hl=zh_TW.

Biographies

Chien-Hung Liu is an assistant

professor of Computer Science and

Information Engineering Department

at National Taipei University of

Technology, Taiwan. He received his

Ph.D. degree in Computer Science

and Engineering from the University

of Texas at Arlington in 2002. His research interests

include software engineering, software testing, and

cloud computing.

Ping-Hung Chen is a Ph.D. candidate

of Computer Science and Information

Engineering Department at National

Taipei University of Technology,

Taiwan. He received his M.S. degree

from Graduate Institute of Computer,

Communication and Control Engineering at National

Taipei University of Technology in 2002. His research

interests include software development and testing.

1624 Journal of Internet Technology Volume 19 (2018) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

