
Enhancing Software Robustness by Detecting and Removing Exception Handling Smells: An Empirical Study 1603

Enhancing Software Robustness by Detecting and Removing

Exception Handling Smells: An Empirical Study

Chin-Yun Hsieh, You-Lun Chen, Zhen-Jie Liao*

Department of Computer Science and Information Engineering,

National Taipei University of Technology, Taiwan

hsieh@csie.ntut.edu.tw, {t103598008, t103598012}@ntut.edu.tw

*Corresponding Author: Chin-Yun Hsieh; E-mail: hsieh@csie.ntut.edu.tw

DOI: 10.3966/160792642018091905031

Abstract

We propose a systematic way to uncover and fix bugs

through detecting smells associated with exception

handling. First, code of software under improvement is

scanned for exception handling smells by a static analysis

tool. The smells are reviewed for confirming if they are

bugs by writing failing tests. Finally, code that contains

the smells is refactored until the failing test passes and

the smells are removed. We have also conducted an

empirical study to demonstrate the efficacy of the

proposed approach. In the empirical study, an open

source static analysis tool is applied to detect exception

handling smells in an open source web application. The

result shows that out of the 357 smells reported by the

tool, 124 are confirmed to be bugs that could affect the

robustness of the web application.

Keywords: Code smells, Robustness, Exception

handling, Refactoring, Software testing

1 Introduction

Robustness [1-2] of software is the capability for

software to continue to operate normally or degrade

gracefully in the presence of faults. While tactics at

both system and component levels are applicable to

achieve robustness, exception handling is a critical link

among them. For instance, in a system with shadow

redundancy, the secondary kicks in when failure of the

primary is detected or notified. The detection/notification

often involves exception handling. As another instance,

software that connects to the outside world often will

need to tolerate connection faults [3-4]. The fault

tolerance behavior depends on the software’s

capability to detect connection faults and intervene

with proper handling strategies such as retrying or

attempting an alternative connection.

For fault detection and handling [5-6] to work, code

in exception handling [7] must be written correctly.

However, previous empirical research has shown this

to be a challenging task for programmers, especially

for novices. Code that fails to meet the challenge is

often infested with smells, e.g., empty catch blocks that

ignore exceptions caught, catch blocks that

cosmetically handle exception without resolving the

fault, improper placement of resource cleanup that

leads to resource leak, and so on [8-9]. Thus, the

presence of smells around exception handling

constructs of try, catch and finally blocks is often a

good indicator of the presence of bugs. Furthermore,

bugs lurking behind incorrect code for exception

handling are not easily uncovered by testing since the

exception-handling behavior of a program is often the

least understood and poorly tested part [10].

In this paper, we present a systematic way to

improve the robustness of software through the

detection and removal of smells in code for exception

handling. In this approach, exception handling smells

are first detected through tool of static analysis [11-12].

The results are reviewed by developers. A detected

smell is confirmed to be a bug if a failing test can be

written to reproduce the manifestation of the bug. In

confirming with a failing test, an exception of a

specific type is injected at the designated points of the

program to set off the program’s exception handling

behavior, and the failing condition is captured in the

test. The developers then refactor exception handling

code to remove both the bug and the smell, the success

of which is marked by the passing of the previously

failing test [13]. The removal of smell is further

confirmed by applying static analysis yet again to show

the absence of smells. The process is repeated until no

smells are detected as illustrated in Figure 1.

Figure 1. Steps of the smells removal process

1604 Journal of Internet Technology Volume 19 (2018) No.5

The efficacy of the method is demonstrated with its

application for improving the robustness of the core of

ezScrum, an open source web application for Scrum

process support [14], which consists of more than

thirty thousand lines of code in Java. The results

confirm the conjecture that bugs tend to accompany

exception handling code that has smells. Using

Robusta, an open source static analysis tool for

detecting exception handling smells [15], 357

exception handling smells are reported. Within the 357

smells, 124 bugs are found and confirmed. We

demonstrate that the improvement process indeed helps

to expose many sublime bugs related to exception

handling that previously eschewed the developers of

ezScrum even though a substantial number of unit tests,

integration tests, and acceptance tests have been

accumulated and run in ezScrum’s daily build.

The rest of this paper is organized as follows.

Section 2 gives an overview of related work. Section 3

presents the results of applying the proposed method to

improve the robustness of ezScrum and elaborates on

two bugs that are found hiding behind code smells.

Section 4 demonstrates how to write tests for

confirming and exposing bugs with a keyword-driven

acceptance test written in Robot Framework [16] and

with an integration test written in Junit [17],

respectively. Section 5 shows how the bugs and smells

are removed by refactoring. Finally, Section 6 offers a

brief conclusion.

2 Backgrounds

In this section, the related information is given as

background, including exception handling smells in

Java, ezScrum, and AspectJ.

2.1 Exception Handling Smells in Java

Table 1 shows the names, definitions and effects of

the exception handling smells [8-9] that Robusta – the

static analysis tool used in this study – is able to detect

in a Java program.

2.2 ezScrum

ezScrum is a web application for supporting the

agile process Scrum and has been on SourceForge

since March, 2010 [14]. ezScrum is used by developers

to manage user stories, keep track of development

activities, and generate reports and analytics. ezScrum

allows developers from different place to work

together on the same Scrum team. To date, more than

ten thousand copies have been downloaded.

The development of ezScrum started 9 years ago

with a Scrum team consisting of 4-6 graduate student

developers each year ever since. The most recent

release has a size of 36,376 lines of code for the core

alone. The code base is covered by 1,010

unit/integration test cases with a coverage rate of up to

Table 1. Exception handling smells detectable by

Robusta

Smell Definition Effect

Empty Catch

Block

Nothing is done after

catching an exception.

A potential fault is

falsely ignored.

Dummy

Handler

An exception is

recorded or logged

only.

A potential fault

may not be resolved

as it should be.

Nested Try

Statement

A try-block is

contained in the try,

catch, or finally block

of another try

statement.

Complicates

program logic and

the debugging task.

Unprotected

Main Program

A main function that

has no enclosing try

block.

System may be

terminated even for

a minor error.

Careless

Cleanup

A resource may be

prevented from being

closed by a raised

exception.

May lead to

resource leak.

Exception

Thrown From

Finally Block

An exception is raised

in the finally block.

May overwrite an

exception thrown

previously in the try

block or any of the

catch blocks.

69%. There are also 90 acceptance test cases. All of the

tests are executed on a continuous integration system

running Jenkins in a daily build. So far, 116 bugs have

been fixed, which are either reported by users or found

by the developers. It is expected that ezScrum will

keep evolving for some time to further enrich the

functionality, improve the performance, and facilitate

its use.

ezScrum is chosen as the subject of this study both

because we are familiar with its design and because

ezScrum has attracted a number of users around the

world. Improving its robustness will make a good

contribution to the open source community.

2.3 AspectJ

AspectJ [18] is an Aspect-Oriented Programming (or

AOP for short) [19] extension to the Java language. It

allows the developer to inject new statements to a Java

program in runtime without changing the source code.

In this study, aspect functions are implemented to

throw an exception at a designated point in the code of

ezScrum so that the effect of a smell related to the

exception can be exposed.

Here we give a simple aspect code to elaborate a

little more, as shown in Figure 2. There are some

keywords used in AspectJ to help developers achieve

their goals, such as pointcut, call, target, withincode

and around, the usage of each of these keywords will

be explained based on the code in Figure 2. At line 10,

developers use pointcut and call to decide the target

method. It means that if the write function is invoked,

aspect code will be executed successively. At line 11,

target is used to distinguish a certain class of objects

Enhancing Software Robustness by Detecting and Removing Exception Handling Smells: An Empirical Study 1605

within the source code. However, in this paper, we

utilize it for another purpose. That is, we would need

the WritableWorkbook object to preserve the original

feature of the write function. With target, we can

invoke write function by using WritableWorkbook

object when there is no need of throwing an exception,

like line 18. At line 12, the withincode is used to limit

the target of aspect injection. Semantically, this line of

code means that only write function, which is invoked

in write Data To Temp File function of Exprot Stories

From Product Backlog Action object, will be injected.

Finally, around is used to decide when the program

will invoke aspect function. This keyword is special in

that it will overwrite the original feature of the target

method statement. Like line 14, it will overwrite the

feature of write function from writing information to

front-end to throwing exception. Therefore, it needs to

cooperate with target to keep the original feature when

there is no need to throw an exception. Once the setting

of these keywords is correctly done, this aspect

function will inject the exception to expose code smell

impact on software.

Figure 2. A sample of aspect code

3 Smells Detection and Analysis

The result of applying Robusta to scan ezScrum for

exception handling smells is shown in Table 2. It is

interesting to note that Dummy Handler and Careless

Cleanup together account for up to 96 percent of total

smells instances detected. In this section, two types of

examples are elaborated, respectively.

Table 2. Exception handling smells detected in

ezScrum

Number of smell

instances
Percentage

Empty Catch Block 4 1.12%

Dummy Handler 264 73.95%

Nested Try Statement 6 1.68%

Unprotected Main Program 2 0.56%

Careless Cleanup 79 22.13%

Exception Thrown From Finally Block 2 0.56%

Total 357 100%

3.1 Verification of the Smells

The following presents the results in verifying all of

the detected smells regarding their impacts to ezScrum.

The verification involves three steps. First, we refer to

the smell report generated by Robusta to find the

location of a smell. Second, expose the impact of the

smell by throwing exception. Third, compare

ezScrum’s behavior which encounters exception with

its normal behavior.

A smell is considered as a bug if, after we expose

the impact of smell, it will make ezScrum function

improperly without showing any error message. As

such, users or developers would not be aware of the

issue. The result of the verification is given in Table3.

As shown in Table 3, some of the smells are not

considered as real bugs after the verification process.

These cases can be divided into three groups based on

their characteristics. The first group will not influence

ezScrum because the raised exception is simply

swallowed somewhere in propagation. The second

group is not considered as real bugs because, even

though they do make ezScrum function improperly, the

users or developers will be informed about the

situation to prevent it from getting worse. The third

group is special in nature as a case of Dummy Handler

shown in Figure 3. It perfectly fits into the definition of

a smell, i.e., nothing else is done in the catch block

except printing a message to the console (line 46).

However, the present case is not considered as a smell

because there is no other way to handle the issue other

than printing a message to the console and ignoring the

exception. In general, exceptions that are thrown from

closing resource function, such a strategy is acceptable.

Table 3. Exception handling smells and bugs

confirmed

Exception

handling smell

Number of

smell instances

(A)

Number of

bugs confirmed

(B)

B/A

(%)

Empty Catch

Block
4 1 25

Dummy Handler 264 116 43.9

Nested Try

Statement
6 0 0

Unprotected

Main Program
2 1 50

Careless Cleanup 79 5 6.3

Exception

Thrown From

Finally Block

2 1 50

Summary 357 124 34.7

Figure 3. A Dummy Handler that is acceptable

1606 Journal of Internet Technology Volume 19 (2018) No.5

3.2 A typical Example of Dummy Handler

In Scrum, an unplanned item is a user story or a task

that is not deliberated in sprint planning, but is

accepted by both the product owner and the Scrum

team of its urgency to justify its completion in the

current sprint. Figure 4 shows a code snippet of

method ShowEditUnplanItemAction for providing the

attributes of a selected unplanned item to the front-end.

The code snippet is marked to have a Dummy Handler

smell at line 54. According to Java API documentation,

an IOException may be raised at line 51 when the

getWriter() function is invoked on the response object.

The IOException will be caught by the catch-block at

line 53 and handled at line 54, which simply logs the

exception. In effect, this will cause the exception to be

ignored. Thus, it is reasonable to conjecture that a bug

is caused by a Dummy Handler smell.

Figure 4. Code segment of execute method in

ShowEditUnplanItemAction marked to have a smell.

The execution of the use case that confirms the

conjectured bug associated with the detected Dummy

Handler smell is as follows. In ezScrum, the user can

add a task as an unplanned item, which was not

scheduled during sprint planning. Once the unplanned

item is added, the user can modify it as necessary, e.g.,

to update the remaining hours until completion. To do

this, the user first selects the desired unplanned item

from the Unplanned Page and then clicks the Edit

Unplanned Item button. After that, the front-end will

send a request to the back-end to retrieve the attributes

of the selected unplanned item. When the request is

received by the back-end, method Show Edit Unplan

Item Action will be executed and an Edit Unplanned

Item window containing the retrieved attributes pops

up, as shown in Figure 5.

When submitting the modified unplanned item, the

front-end sends a request with identity number #1,

which is shown on Edit Unplanned Item window’s title,

to the back-end. At this point, the original unplanned

item stored in database will be updated. Once the

update is done, the Edit Unplanned Item window is

closed and the modified unplanned item is shown in

the Unplanned Item List, as shown in Figure 6.

However, if an IOException is thrown when

invoking response.getWriter(), the call to function

write(result.toString()) in line 51 will not be invoked.

As a result, the front-end receives a response with

empty content after the user clicks Edit Unplanned

Item button, and ezScrum pops up a window without

attributes as a response, where the identity number on

window’s title does not show. Additionally, the Submit

button is disabled because the required field is empty,

as shown in Figure 7.

Figure 5. The Edit Unplanned Item window containing

an unplanned item’s attributes

Figure 6. Unplanned Item List showing an unplanned

item.

Figure 7. The Edit Unplanned Item window missing

some required information

Even if the user inputs the required information and

submits the modified unplanned item, the front-end

Enhancing Software Robustness by Detecting and Removing Exception Handling Smells: An Empirical Study 1607

will send a request without identity number. Thus, the

modifying unplanned item request will be rejected by

the back-end because it loses its identity number, as

shown in Figure 8. This is certainly a bug.

Figure 8. A request for modifying unplanned item that

fails due to the loss of identity number

3.3 A Typical Example of Careless Cleanup

For the code snippet in Figure 9, an IOException

may be raised when function write() is invoked on

object workbook (line 50). The exception prevents

workbook.close() at line 52 from being invoked. The

result is that the file resource ezScrumExcel, which is

created by the File object in line 38, will not be

released as planned. This is exactly a Careless Cleanup

as defined. A use case in ezScrum related to this is

presented below.

Figure 9. Code snippet of method getStreamInfo in

ExportStoriesFromProductBacklogAction.

In the Product Backlog Page of ezScrum, the user

can export all user stories in product backlog to a

Microsoft Excel file. It works in this way: a request

will be sent to the back-end when the Export Story

button (Figure 10) at the front-end is clicked; the

getStreamInfo function will be invoked in Export

Stories From Product Backlog Action when the request

is received by the back-end; and the front-end will

receive an excel file which contains all user stories in

product backlog when getStreamInfo finishes executing

(as shown in Figure 11).

Now consider what happens if an IOException is

raised when workbook.write() is invoked at line 50.

Apparently, the workbook.close() function at line 52

will not be executed. Consequently, the ezScrumExcel

file created at line 38 is not released, as shown in

Figure 12.

Figure 10. Export Story button in Product Backlog

page

Figure 11. Excel file downloaded after export

Figure 12. ezScrumExcel file shown to be unreleased

(shown with Unlocker [20].)

As a result, the ezScrumExcel file cannot be

removed by executing mTempFile.delete() function at

line 57. Note that an ezScrumExcel file will be

generated every time the user clicks the Export Story

button. The accumulated size of the non-deleted

ezScrumExcel files will certainly become a waste of

storage space. To prevent this from happening, the

workbook.close() function should be moved to the

finally-block.

4 Writing Tests for Confirming and

Exposing Bugs

To expose each of the two bugs behind the smells of

Section 3, a test case is written based on the respective

use case. An aspect function is used to throw an

exception at a designated point for both test cases.

Note that both the type of the exception and the

location where it occurs are readily found in Robusta.

These test cases will also be used in Section 5 to verify

the correctness of ezScrum’s behavior after smell

removal.

4.1 A Test Case for Testing the Typical

Example of Dummy Handler

Figure 13 shows the aspect function used to throw

an IOException (using the around option) when the

response.getWriter() at line 51 of Figure 4 is called.

1608 Journal of Internet Technology Volume 19 (2018) No.5

Figure 13. An aspect function for throwing an

IOException at the designated point

The test case, written in Robot Framework, is shown

in Figure 14. As described previously, if an

IOException is raised in executing response. Get

Writer(), an error message needs to be shown instead

of the Edit Unplanned Item window. Accordingly, the

test case is designed to check the correctness that, after

the Edit Unplanned Item button is clicked, an error

messages box instead of the Edit Unplanned Item

window is popped up. The error messages are “Server

Error” and “Sorry, fail due to internal server error.”

Figure 14. A Robot Framework test case for testing

the typical example of Dummy Handler

4.2 A Test Case for Testing the Typical

Example of Careless Cleanup

Figure 15 shows the aspect function used to throw

an instance of IOException when workbook.write() at

line 50 of Figure 9 is executed.

Figure 15. An aspect function for throwing an

IOException at the designated point

The test case, which is written in JUnit, is shown in

Figure 16. As described previously, the ezScrumExcel

file must be removed no matter if an IOException is

raised or not when workbook.write() is executed.

Accordingly, the test case is design to check that, after

the getStreamInfo method in Export Stories From

Product Backlog Action has finished executing,

ezScrum Excel file is no longer in use and is removed

from ezScrum.

Figure 16.A JUnit test case for testing the typical

example of Careless Cleanup

5 Removing Smells by Refactoring and

Confirming Their Success

This section presents the refactoring for removing

the smells described in Section 3. In addition to

passing the previously failing test, the removal is

further confirmed by applying static analysis yet again,

which must show the absence of the detected smell

around the code.

5.1 Refactoring for Removing the Typical

Example of Dummy Handler

Figure 17 shows the new version of Show Edit

Unplan Item Action. It differs from the original version

in that the aforementioned IOException is rethrown

(line 55) after the exception message is recorded and

an error message is displayed at the front-end. This

enables the front-end to know that something has gone

wrong in the back-end.

Figure 17. A new ShowEditUnplanItemAction with

the Dummy Handler smell removed

In ezScrum, when an unhandled exception is raised

in ShowEditUnplanItemAction at the back-end, a

status named “internal server error” is returned to the

front-end. As shown in Figure 18, the front-end code

sends the modifying unplanned item request. When the

back-end receives the request, Show Edit Unplan Item

Action will be invoked by the program. If the program

executes Show Edit Unplan Item Action correctly, the

back-end will return a response with a status named

“OK”, so that the success function (line 212) will be

invoked. Then, the Edit Unplanned Item window will

pop up. On the other hand, if an exception is raised

during execution, the back-end will return a response

with a status named “internal server error”, hence

invoking the failure function (line 216). Then, an error

message is shown on the message box by invoking

onLoadFailure function (line 217). Consequently, a

message box with error messages is displayed, as

Enhancing Software Robustness by Detecting and Removing Exception Handling Smells: An Empirical Study 1609

shown in Figure 19.

Figure 18. The front-end code designed to trigger

ShowEditUnplanItemAction

Figure 19. An error message is displayed as expected

after the smell is removed by code refactoring

The revised code version has passed the previously

failing test as shown in Figure 20. The removal is also

confirmed by Robusta – the absence of a smell sign on

the left margin of the code (as shown in Figure 17).

Figure 20. The failing test is passed after removing the

Dummy Handler smell

5.2 Refactoring for Removing the Typical

Example of Careless Cleanup

The Careless Cleanup in the code snippet in Figure 9

can be removed by moving the workbook.close()

function to the finally block, as shown in Figure 21. By

doing so, it is assured that the ezScrumExcel file will

be released no matter if an IOException is thrown or

not when workbook.write() at line 50 is executed. In

other words, the ezScrumExcel file will always be

removed from ezScrum after the execution of the get

Stream Info function in Export Stories From Product

Backlog Action.

Figure 21. Test results showing the removal of the

Careless Cleanup

The revised code successfully passes the previously

failing test and the ezScrumExcel file is deleted as

expected, as shown in Figure 21. The removal is also

confirmed by Robusta (Figure 22).

Figure 22. A new version of the code snippet in Figure

9 with Careless Cleanup smell removed

Retrospectively, the detailed process of smell

confirmation and removal presented in Sections 3, 4

and 5 is illustrated in the flowchart of Figure 23.

Figure 23. Flowchart of smell confirmation and

removal process

1610 Journal of Internet Technology Volume 19 (2018) No.5

6 Conclusion

This paper shows that bugs that affect robustness of

software can often be found near code infested with

exception handling smells. A systematic way for

enhancing the robustness by detecting and removing

exception handling smells is proposed. A static

analysis tool is first applied to detect smells in a

program. The detected smells are reviewed by

developers. A failing test is then used to confirm if a

smell is really a bug. Source code associated with a

confirmed bug is refactored, required to pass the

original failing test, and reconfirmed by static analysis.

A good result is achieved in an empirical study

employing the proposed approach.

Although the proposed approach can help enhance

software robustness, the code review and failing tests

writing are time-consuming if the number of detected

smells is large. If there is a tool, which can generate

failing tests for verifying if a smell is a bug, the effort

needed will be greatly reduced. We leave this as our

future work.

Acknowledgements

The research was sponsored in part by the Ministry

of Science and Technology under the grant MOST104-

2221-E-027-007.

References

[1] J. C. Fernandez, L. Mounier, C. Pachon, A Model-Based

Approach for Robustness Testing, 17th IFIP TC6/WG 6.1

International Conference, Montreal, Canada, 2005, pp. 333-

348.

[2] J. W. Baker, M. Schubert, M. H Faber, On the Assessment of

Robustness, Structural Safety, Vol. 30, No. 3, pp. 253-267,

May, 2008.

[3] P. A. Lee, T. Anderson, Fault Tolerance: Principles and

Practice, Springer-Verlag Wien, 1990.

[4] K. Whisnant, Z. Kalbarczyk, R. K. Iyer, A Foundation for

Adaptive Fault Tolerance in Software, 10th IEEE

International Conference and Workshop on the Engineering

of Computer-Based Systems, Oxford, UK, 2003, pp. 252-260.

[5] W. Jiang, D. Ma, Y. Zhao, Strategy-based Fault Handling

Mechanism for Composite Service, 2013 Third International

Conference on Intelligent System Design and Engineering

Applications, Hong Kong, China, 2013, pp. 1297-1301.

[6] M. Steinegger, A. Zoitl, M. Fein, G. Schitter, Design Patterns

for Separating Fault Handling from Control Code in Discrete

Manufacturing Systems, IECON 2013- 39th Annual

Conference of the IEEE Industrial Electronics Society,

Vienna, Austria, 2013, pp. 4368-373.

[7] S. Sinha, M. J. Harrold, Analysis and Testing of Programs

with Exception Handling Constructs, IEEE Transactions on

Software Engineering, Vol. 26, No. 9, pp. 849-871, September,

2000.

[8] C. T. Chen, Y. C. Cheng, C. Y. Hsieh, I. L. Wu, Exception

Handling Refactorings: Directed by Goals and Driven by Bug

Fixing, Journal of Systems and Software, Vol. 82, No. 2, pp.

333-345, February, 2009.

[9] C. Y. Hsieh, H. H. Chen, Y. F. Chen, On the Evaluation of

Performance and Cost Saving of Exception Handling Smells

Detection through Static Code Analysis, Journal of Systems

and Software, Vol. 115, May, 2016.

[10] S. Sinha, M. J. Harrold, Criteria for Testing Exception-

handling Constructs in Java Programs, Proceedings of the

IEEE 15th International Conference on Software Maintenance,

Oxford, UK, 1999, pp. 265-274.

[11] B. A. Wichmann, A. A. Canning, D. L. Clutterbuck, L. A.

Winsbarrow, N. J. Ward, D. W. R. Marsh, Industrial

Perspective on Static Analysis, Software Engineering Journal,

Vol. 10, No. 2, pp. 69-75, May, 1995.

[12] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, W.

Pugh, Using Static Analysis to Find Bugs, IEEE Software,

Vol. 25, No. 5, pp. 22-29, September, 2008.

[13] J. Shore, Fail Fast, IEEE Software, Vol. 21, No. 5, pp. 21-25,

September, 2004.

[14] ezScrum at SourceForge, https://sourceforge.net/projects/

ezscrum/.

 [15] Robusta at Eclipse Marketplace, https://marketplace.eclipse.

org/content/robusta-eclips e-plugin.

[16] Robot Framework, http://robotframework.org/.

[17] Junit, http://junit.org/junit4/.

[18] AspectJ at Eclipse, https://eclipse.org/aspectj/.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J. M. Loingtier, J. Irwin, Aspect-oriented Programming,

Proceedings of the 11th European Conference on Object-

Oriented Programming, Jyväskylä, Finland, 1997, pp. 220-

242.

[20] Unlocker 1.9.2, http://filehippo.com/download_unlocker/.

Biographies

Chin-Yun Hsieh is a Professor at the

Department of Computer Science and

Information Engineering of the

National Taipei University of

Technology, Taiwan. He received his

MS and Ph.D. degrees from the

University of Mississippi and the University of

Oklahoma, respectively, both in Computer Science.

His research interests include pattern languages and

software testing.

You-Lun Chen was born in Taoyuan,

Taiwan, in 1991. He received the

master degree in computer science and

information engineering from the

National Taipei University of

Technology, Taipei, Taiwan, in 2016.

His current research interests include

Enhancing Software Robustness by Detecting and Removing Exception Handling Smells: An Empirical Study 1611

AspectJ, eclipse plugin developing and code quality.

He is presently working as a quality assurance engineer

for a software company.

Zhen-Jie Liao was born in Taipei,

Taiwan, in 1992. He received the

master degree in computer science and

information engineering from the

National Taipei University of

Technology, Taipei, Taiwan, in 2016.

His current research interests include

exception handling, testing automation developing and

CI/CD. He is presently working as a quality assurance

engineer for a private company.

1612 Journal of Internet Technology Volume 19 (2018) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

