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Abstract 

Considerable effort has gone into the discovery of API 

usage patterns or examples. However, how to enable 

programmers to search for discovered API usage 

examples using natural language queries is still a 

significant research problem. This paper presents an 

approach, referred to as Codepus, to facilitate the 

discovery of API usage examples based on mining 

comments in open source code while permitting searches 

using natural language queries. The approach includes 

two key features: API usage patterns as well as multiple 

keywords and tf-idf values are discovered by mining 

open source comments and code snippets; and a 

matchmaking function is devised for searching for API 

usage examples using natural language queries by 

aggregating scores related to semantic similarity, 

correctness, and the number of APIs. In a practical 

application, the proposed approach discovered 43,721 

API usage patterns with 641,591 API usage examples 

from 15,814 open source projects. Experiment results 

revealed the following: (1) Codepus reduced the 

browsing time required for locating API usage examples 

by 46.5%, compared to the time required when using a 

web search engine. (2) The precision of Codepus is 91% 

when using eleven real-world frequently asked questions, 

which is superior to those of Gists and Open Hub. 

Keywords: API usage pattern, Code example, Code 

search system 

1 Introduction 

The reuse of existing software is an important part 

of software development: it saves on time and 

resources, and improves the quality of the developed 

software [1-7]. API usage examples are an important 

source in this endeavour. Currently, there are several 

sources from which a programmer can retrieve API 

usage examples, including peers [8], API 

documentation [9-10], websites with pre-collected 

code examples [11-12], code search engines [13-15], 

and web search engines, such as Google Search. When 

learning programming, many individuals rely on 

experienced peers to find code examples [8], while 

others search for code examples in API documentation 

[9-10]. In [16-17], code examples have been regarded 

as an important factor in the design of API 

documentation. A number of websites [11-12] provide 

sets of pre-collected code examples. However, 

managing sets of code examples relies heavily on 

collection effort or content contributed by website 

users. Code search engines enable programmers to 

search for code snippets of open source code based on 

file names, classes, methods, or structures using search 

methods based on traditional keyword matching [13-

15]. 

Considerable effort has gone into the discovery of 

API usage patterns or examples [18-25]. However, 

how to enable programmers to search for discovered 

API usage patterns or examples using natural language 

queries is still a significant research problem. A 

number of approaches are based on the assumption that 

programmers know precisely what API methods they 

are going to use [18-19, 21-22, 26] or the types of 

input/output they require [27-28]. This would enable 

them to use API method names as queries in the search 

for relevant API usage patterns or code examples. 

Unfortunately, this assumption limits the possibility of 

discovering examples in cases where the programmer 

is unaware of the relevant method names or 

input/output types. In this study, we propose an 

approach, referred to as Codepus, to facilitate the 

discovery of API usage examples based on mining 

comments in open source code while permitting 

searches using natural language queries. The proposed 

approach includes the following two features: 

－ API usage patterns as well as multiple keywords and 

tf-idf values are discovered by mining open source 

comments and code snippets. In the proposed 

approach, an API usage pattern is defined as an API 
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usage sequence that appears recurrently in multiple 

projects. A proposed algorithm enables the 

extraction of code snippets and the associated 

comments for use in discovering API usage patterns 

and the related keywords and term frequency-

inverse document frequency (tf-idf) values. 

－ A matchmaking function is devised to enable users 

to search for API usage examples using free-form 

natural language sentences or phrases. The 

matchmaking function aggregates scores related to 

semantic similarity, correctness, and the number of 

APIs.  

Figure 1 presents an overview of the proposed 

approach, which can be divided into two parts: (1) 

discovery of API usage examples and (2) search for 

API usage examples. In the discovery process, the 

source code of a number of open source projects is 

parsed for extracting a large number of code snippets 

as well as their related comments (see Section 3.1). 

The extracted code snippets containing project-specific 

code statements are then removed. The stop code 

statements commonly used by programmers for 

logging or debugging (with little or no effect on system 

functionality) are also filtered out (see Section 3.2). 

The API usage sequence of each extracted code snippet 

is then specified. Finally, API usage patterns, examples, 

related comments, and keywords are identified based 

on the API usage sequences (see Section 3.3). In the 

search for API usage examples, users are able to search 

for API usage examples using free-form queries in 

natural language. The code snippets related to each 

query are ranked by a proposed matchmaking function 

(see Section 3.4).  

Extracting Code Snippets with 

Related Comments (Sec. 3.1)

Removing Project Specific and 

Stop Code Statements (Sec. 3.2)

Identifying API Usage Patterns 

(Sec. 3.3)

Open Source 

Projects

Searching API Usage Examples 

through a Matchmaking 

Function (Sec. 3.4)

Natural language 

queries

Programmer

Filtered code snippets 

with related comments

Code snippets with 

related comments

API usage patterns with 

examples, related 

comments, and keywords

 

Figure 1. Overview of the proposed approach 

The proposed approach is implemented as an 

Eclipse plugin integrated with a developed web 

application used in the search for code examples. The 

efficacy of the proposed approach was evaluated in 

three experiments: (1) We compared the performance 

of Codepus with that of Google Search in terms of the 

time required by programmers to browse search results 

in order to locate required code snippets. Threats to 

validity are also discussed in this paper. (2) We 

compared the precision of Codepus with two existing 

code search systems. (3) We evaluated the 

performance of Codepus with regard to computation 

time in the search for code examples.  

The remainder of the paper is organized as follows: 

Section 2 presents a review of related work. The 

proposed approach is outlined in Section 3. Section 4 

presents the results of experiments to evaluate the 

proposed approach. Finally, Section 5 summarizes the 

contributions provided by the proposed approach. 

2 Related Work 

Several approaches have been proposed for 

discovering or searching code snippets/API usage 

patterns.  

Open Hub [15] is an on-line code search engine for 

more than 20 billion lines of open source code. For a 

natural language query with multiple terms, the search 

engine returns a number of code snippets that contain 

the query terms. In our approach, code snippets are 

searched through a proposed matchmaking function. In 

the experimental results, the precision of our approach 

is statistically significantly superior to the one of Open 

Hub. 

Mandilin et al. [27] proposed an approach to 

synthesizing code snippets for a query that is described 

by the desired code in terms of input and output types. 

The synthesized code snippets are ranked by their 

lengths. The assumption of the approach is that a 

programmer knows what type of object he needs but 

does not know how to write the code to get the object.  

Holmes et al. [18] proposed an approach to locating 

relevant code in a code example repository based on 

heuristically matching the structure of the code under 

development as a query to the code examples. The 

code examples that occur most frequently in the set 

generated from applying all of the heuristics are 

selected and returned to the programmer for the query.  

Kim et al. [19] proposed a code example 

recommendation system that provides API documents 

embedded with high-quality code example summaries 

mined from the Web. In the system, code examples 

from an existing code search engine are summarized 

into code snippets. Subsequently, the semantic features 

of the summarized code snippets are extracted and the 

most representative code examples will be 

automatically identified while a user chooses an API 
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from the API documents.  

Zhong et al. [21] developed a framework, called 

MAPO, for mining API usage patterns from open 

source repositories. API usage patterns are discovered 

based on a frequent subsequence miner [29], and are 

ranked based on the similarities between class and 

method names containing the supporting snippets and 

the ones containing the specified method to be used by 

the programmer. The programmer can further exploit 

the source code of each code snippet of an API usage 

pattern.  

Wang et al. [22] proposed an approach, called UP-

Miner, to mining succinct and high-coverage usage 

patterns of API methods from source code. Given a 

user-specified API method, UP-Miner can 

automatically search for all usage patterns of an API 

method and return associated code snippets as 

candidates for reusing.  

Chatterjee et al. [20] proposed a code search 

technique, call SNIFF, that retains the flexibility of 

performing code search in plain English. The key idea 

of SNIFF is to combine API documentations with 

publicly available Java code. It takes a large amount of 

Java source code and annotates it by appending each 

statement containing a method call with the description 

of the method in Java API documentations (Javadoc). 

The annotated source code are then indexed for free-

form query search.  

Subramanian et al. [30] proposed an iterative, 

deductive method of linking source code examples to 

API documentation for increasing the timeliness of the 

API documentation by providing valuable reference 

links for source code examples. With an 

implementation of the method, called Baker, a Stack 

Overflow post is augmented with links to GitHub 

source code and Android API documentations, and an 

Android API documentation is augmented with code 

examples of Stack Overflow posts. 

In [31], Janjic et al. discussed the foundations of 

software search and reuse, and provided the main 

characteristics of reuse-oriented code recommendation 

(ROCR) systems. Moreover, they provided an 

overview of the architectural organization of a 

recommender-enhanced IDE to automate a depicted 

micro-process of software reuse. The micro-process 

consists of the following key elements: decision to 

search, description of request, search, recommendation 

selection, and reuse and maintain. Our tool can be 

considered as a ROCR system that is specifically 

designed to assist users in reusing code by natural 

language queries with support of auto-complementing 

queries and recommending relevant queries. 

GitHub Gists [32] is an on-line website where users 

can share their code snippets in single files, parts of 

files, or full applications. Users can search a number of 

code examples with natural language queries. In this 

work, the experimental results also show that the 

precision of our approach is statistically significantly 

superior to the one of Gists. 

Code Recommenders [33] is an Eclipse plugin, and 

one of its features is Snipmatch which provides a way 

to search for code snippets. Each code snippet is 

associated with a user-defined metadata including its 

name, description, keywords, and tags. Code snippets 

will be searched based on their metadata. Users can 

share their own code snippets by submitting them to 

the official repository. All submitted code snippets will 

be manually reviewed for ensuring the quality and 

usability. However, currently there are only 128 code 

snippets available in the default repository. By contrast, 

in the current implementation of our approach, 43,721 

API usage patterns have been discovered through 

mining 15,814 open source projects. 

3 API Usage Patterns Discovery and 

Search 

This section introduces key activities involved in 

discovering and searching API usage examples: 

extracting code snippets and related comments 

(Section 3.1), removing project specific and stop code 

statements (Section 3.2), identifying API usage 

patterns (Section 3.3), and searching API usage 

examples through a proposed matchmaking function 

(Section 3.4). Implementation details of the proposed 

approach are also presented (Section 3.5). 

3.1 Extracting Code Snippets and Related 

Comments 

In this activity, source code of multiple open source 

projects are parsed and a large number of code snippets 

with their related comments are extracted through a 

proposed algorithm shown in Table 1. The basic 

concept of the algorithm is to parse each source file in 

open source projects, extract all comments from the 

file, and find the following nearest code snippet for 

each comment. After parsing a source file, the relations 

between the extracted comments and code snippets will 

be recorded. The algorithm consists of the following 

steps. 

First (lines 1-4), the source code files, denoted as F, 

of all projects, denoted as P, are prepared. Two empty 

sets S and C are declared in order to collect extracted 

code snippets and the related comments, respectively. 

Second (line 5), three functions cmt, file and prj are 

defined for relating a code snippet with a comment, a 

file and a project, respectively. 

Third (lines 6-7), all comments in the bodies of the 

methods in every source file f∈F of project p∈P are 

extracted through parsing the source code. In this work, 

Eclipse JDT API was used for parsing the Java source 

files of the open source projects.  

Fourth (lines 8-12), for each comment c, the code 

block s that directly follows c is extracted. A code 

block is a code snippet of the form statement {statement}. 
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Table 1. Algorithm of Extracting Code Snippets with Related Comments 

1: let P be a set containing all projects; 

2: let F be a set containing all source code files of P; 

3: let S = Ø;      // to collect code snippets 

4: let C = Ø;      // to collect comments 

5: let cmt: S → C, file: S → F, prj: S → P; 

6: for each source code file f ∈F of project p∈P do 

7:   Extract all comments in the bodies of the methods in f; 

8:   for each comment c in f do 

9:    if there exists a code block s that directly follows c then 

10: 
    let { };S S s= ∪  

11: 
    let { };C C c= ∪  

12:     let cmt( s )=c, file( s )=f, prj( s )=p; 

13:     else 

14:     let nextCmt = The start line of the following nearest comment inside the blocks containing c; 

15:     let nextBlankLine = The following nearest blank line inside the blocks containing c; 

16:     let nextEndOfBlock = The following nearest end line of the block among the blocks containing c; 

17: 
    let s′  be a code snippet in between c and minLineNum(nextCmt, nextBlankLine, nextEndOfBlock); 

18: 
    let { };S S s′= ∪  

19: 
    let { };C C c= ∪  

20: 
    let cmt( s′ )= c , file( s′ )=f, prj( s′ )=p; 

21:    end if 

22:   end for 

23: end for 

 
For example, in Table 2, lines 5-22 is a method 

declaration code block, and lines 15-21 is an if-

statement code block. In this work, we said that a code 

block directly follows a comment if the code block 

follows the comment without any non-blank lines in 

between them. In the example, only the method 

declaration code block (lines 5-22 in Table 2) is 

considered as a directly following code block of a 

comment (lines 2-4 in Table 2), and it will be extracted 

together with the related comment. 

At last (lines 13-20), if there are no code blocks 

directly following a comment, code snippets of non-

block type will be searched. In order to determine the 

line number of the end of the following code snippet to 

be extracted, code lines of the following three types 

will be identified as boundaries:  

1. The start line of the following nearest comment 

inside the blocks containing the comment. For example, 

for the comment of line 16 (//Parse data) in Table 2, 

line 18 (//Show data) is considered as the following 

nearest comment inside the same block (lines 15-21). 

2. The following nearest blank line inside the blocks 

containing the comment. For example, for the comment 

of line 6 (//Read data from a given file. The f_name 

should not be null), line 14 (a blank line) is considered 

as the following nearest blank line inside the same 

block (lines 5-22). 

3. The following nearest end line of the block among 

the blocks containing the comment. For example, for 

the comment of line 18 (//show data), there are two 

blocks, lines 15-21 and lines 5-22, containing the 

comment, and line 21 is considered as the following 

nearest end line of the comment. 

Table 2. A Source Code Example 

1: … 

2: /* 

3: * Show map data from file. 

4: */ 

5: public void showMapData(String f_name) throws 

IOException{ 

6: //Read data from a given file. The f_name should 

not be null. 

7: File in_file = new File(f_name); 

8: int i = (int) in_file.length(); 

9: byte[] data = new byte[i]; 

10: FileInputStream fis = new 

FileInputStream(in_file); 

11: fis.read(data); 

12: fis.close(); 

13: System.out.println(new String(data)); 

14:   

15: if(!data.equals(“”)){ 

16: //Parse data 

17: MapData map_data = new 

MapData(data); 

18: //Show data 

19: MapGUI map_gui = new MapGUI(); 

20: map_gui.show(map_data); 

21: } 

22: } 

23: … 

 

Among the identified code lines of these three types, 

the line with the minimal line number is selected as the 

boundary. The code snippet starting from the next line 

of the comment to the previous line of the boundary is 

extracted and is identified to be related with the 
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comment. For example, code snippets of lines 7-13, 

line 17 and lines 19-20 will be extracted and related 

with the comments of line 6, line 16 and line 18, 

respectively. If there are no code lines of these three 

types identified, no code snippet will be extracted to be 

related with the comment. 

Because we observed that not all of the sentences in 

a comment are useful for searching API usage 

examples, even some have negative impacts, only the 

first sentence in the comment is retained. Additionally, 

symbols in the first sentence are also removed. For 

example, the comment of line 6 will be filtered as 

“Read data from a given file”. 

3.2 Removing Project Specific and Stop Code 

Statements 

As an API usage pattern is supposed to recurrently 

appear across projects, it should not contain 

invocations of the methods that are particularly written 

for one project. In this work, a code statement is called 

as a project specific code statement if it consists of 

invocations of methods that are written in the same 

project of the code statement. The extracted code 

snippets containing one or more project specific code 

statements will be removed. 

For example, it is assumed that MapData and 

MapGUI are classes in the project of the code snippet 

in Table 2. As line 17 contains an invocation of the 

constructor of MapData, the code snippet of the line is 

considered as a project specific code statement and 

hence will be removed from the set of extracted code 

snippets. In the same way, the code snippet of lines 19-

20 will be removed due to the invocations of the 

constructor and method show of MapGUI, and the 

code snippet of lines 5-22 will be removed as well. 

From the open source projects, we have observed 

that there are some code statements that are extremely 

common and are hardly considered as parts of an API 

usage pattern. For example, the statement, 

System.out.println (arguments), in line 13 of Table 2 is 

often used by programmers for logging or debugging 

and does not contribute to system functionalities in 

most cases. In this work, these statements are called 

stop code statements.  

Through parsing the source code of 1,000 Java open 

source projects from sourceforge.net, frequencies of 

the code statements that satisfy both of the following 

two criteria are collected: 

－ The code statement describes an invocation of a 

method in ignore of its arguments. 

－ The object to be invoked in criteria 1 is not a local 

variable. 

The first criterion constrains that the code statement 

describes an invocation of an API method, and the 

second criterion ensures that the object to be invoked is 

with the same identifier name in different projects. 

Table 3 shows the top 5 frequent code statements. In 

this work, these code statements are selected as stop 

code statements. In order to increase the effectiveness 

of discovering API usage patterns, the stop code 

statements are removed from the extracted code 

snippets. For example, line 13 in Table 2 is considered 

as a stop code statement, and it will be removed from 

the extracted code snippet of lines 7-13. 

Table 3. Stop Code Statements 

# Code Statement Frequency 

1 System.out.println 65,367 

2 System.out.printf 54,801 

3 System.err.println 16,389 

4 System.out.print 6,173 

5 System.exit 5,100 

3.3 Identifying API Usage Patterns 

Once the project specific and stop code statements 

are removed, the API usage sequence of each extracted 

code snippet will be specified. An API usage sequence 

is defined as follows. 

Definition 1 (API Usage Sequence). Given a code 

snippet s∈S, the API usage sequence q of s is the 

sequence of the APIs that are sequentially used in s, 

which is denoted by the function seq(s) = q. Q denotes 

the set containing the API usage sequences of all code 

snippets in S. 

Table 4 shows an extracted code snippet from the 

source code example, its related comment, and an 

identified API usage sequence. There are 5 APIs used 

in the code snippet. Based on Definition 1, an API 

usage pattern is defined as follows: 

Table 4. An API Usage Sequence Example 

Related Comment 

1: Read data from a given file 

Extracted Code Snippet 

1: File in_file = new File(f_name); 

2: int i = (int) in_file.length(); 

3: byte[] data = new byte[i]; 

4: FileInputStream fis = new FileInputStream(in_file); 

5: fis.read(data); 

6: fis.close(); 

API Usage Sequence 

1: java.io.File.File 

2: java.io.File.length 

3: java.io.FileInputStream.FileInputStream 

4: java.io.FileInputStream.read 

5: java.io.FileInputStream.close 

 

Definition 2 (API Usage Pattern). An API usage 

pattern r is an API usage sequence that recurrently 

appears in multiple projects. All API usage patterns 

are denoted as a set AP = {r|r∈Q; and |
r
P |≥k}, where 

r
P ={p|p∈P; p=prj(s); and s∈

r
S } is the set of projects 

in which the pattern r appears. 
r

S ={s|s∈S; and 

seq(s)=r} denotes the set of code snippets related to r. 
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s is called as an API usage example of r. k is the 

minimum number of projects in which an API usage 

pattern appears. 

In order to better discover API usage patterns that 

are frequently used by various programmers, an API 

usage sequence is identified as an API usage pattern if 

it recurrently appears in multiple projects (k is set to 2 

by default). Because a code snippet may be copied and 

pasted multiple times in the source code of the same 

project by a programmer, duplicate appearances of an 

API usage pattern in the same project is not considered 

in the usage pattern identifications. 

Once an API usage pattern r is identified, several 

words will be identified as the keywords of the pattern 

from the extracted comments through the following 

steps: 

1. Generate a document 
r

d  related to an API usage 

pattern r by aggregating the comments of the code 

snippets related to r. The document is formally defined 

as 
r

d ={c|c∈C; c=cmt(s); and s∈
r

S }, and the 

documents for all of the API usage patterns are defined 

as D={ | }
r

d r AP∈ . 

2. Decompose compound words in document 
r

d  into 

simple words based on a camel case mapping table. 

For example, the compound word “InputStream” will 

be mapped to two simple words “Input” and “Stream”. 

In order to automatically split a compound word, the 

mapping table is prepared through the following steps. 

Firstly, all camel case compound words in all 

comments of D are extracted. Secondly, if a camel case 

compound word appears in multiple (more than a 

threshold, and 3 by default) comments, it will be 

decomposed into several simple words based on 

commonly used camel case rules. At last, the 

compound word together with its related simple words 

will be added into the mapping table. 

3. Remove stop words and stem the words in 

document 
r

d . Stop words are extremely common 

words and are usually omitted in natural language 

processing (NLP) systems [34]. Some stop words are 

the, is, are, at, and below. Stemming a word is to 

transform the word into its part of the word that is 

common to all its inflected variants. For instance, 

“creates” and “created” are stemmed as “creat”.  

4. Calculate the tf-idf value of each word in 
r

d . tf-

idf (term frequency-inverse document frequency) 

formula is widely used to reflect the importance of a 

word in a document. In this work, the formula serves 

as a basis for identifying the keywords of an API usage 

pattern. The term frequency of a term r

t  in 
r

d  is 

calculated as the raw frequency of r

t  in 
r

d  divided by 

the sum of the raw frequencies of all terms in 
r

d :  

 
( , )

( , )
r

r

r

t

w D r

f t d
tf

f w d
∈

=
∑

 (1) 

The inverse document frequency of r

t  is to measure 

how the term is common or rare across all documents 

in D, and is calculated by dividing the total number of 

documents in D by the number of documents 

containing r

t  plus 1, and then taking the logarithm of 

the quotient: 

 
| |

log( )
1 | : |

r
rt

D
idf

d D t d
=

+ ∈ ∈

 (2) 

The tf-idf value of r

t  is calculated by the following 

equation: 

 
r r r

t t t
tf id tf id= ×  (3) 

5. Identify the terms of top p tf-idf values in 
r

d  as 

the keywords of the API usage pattern r. The keywords 

are denoted as a set { | ; -
r r

K t t d t is with a top p tf idf= ∈  

}value . In this work, p is set to 8. 

Figure 2 shows the relationships between API usage 

patterns, code snippets, comments, and keywords. 
1
r  is 

an API usage pattern. Code snippets 1 1

1
1
, ...,

r r

m r
s s S∈  are 

examples of 
1
r . 1 1

1

, ...,

r r

s sm
c c  are comments that are 

related to 1 1

1
, ...,

r r

m
s s , respectively. The comments are 

aggregated as a document 
1
r

d D∈  from which 

keywords 1 1

1
, ...,

r r

p
t t  with tf-idf values are identified. 

Section 3.4 will introduce how to rank a code snippet 

based on the comments and API usage pattern through 

a proposed matchmaking function. 

3.4 Searching API Usage Examples through a 

Matchmaking Function 

For a given query, each code snippet will be ranked 

based on a proposed matchmaking function that 

aggregates the scores on semantic similarity, 

correctness, and API numbers (see Figure 2). The first 

type of score is the semantic similarity between a query 

and a code snippet. The score is calculated as follows. 

Definition 3 (Score on Semantic Similarity). Let A 

and B be two sets of terms with tf-idf values. The 

cosine similarity between A and B is calculated as 

 
, ,

2 2

, ,

( )
( , )

t A B t A t B

t A t A t B t B

tf idf tf idf syn t
cosine A B

tf idf t tf idf

∈ ∪

∈ ° ∈

∑ × ×
=

∑ × ∑
. (4) 

Let q be a natural language query consists of a set of 

terms and 
1
s  be a code snippet. The score on semantic 

similarity is calculated as  

 
1

1
( , ) ( , ),

q s
SSS q s cosine T T=

 (5) 

where 
q
T  denotes the terms in q, and 

1
s

T  denotes the 

terms in the comment related to 
1
s . 
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Figure 2. Relationships between API usage patterns, code snippets, comments, and keywords 

Because some synonyms may appear in the terms of 

a query and a comment, an external system, WordNet, 

was used for detecting the synonyms. In Equation 4, a 

function ( )syn t  is introduced to adjust the weighting of 

synonyms. If a term t appears both in A and B, the 

value of ( )syn t  will be 1. If a term t in A is a synonym 

of a term (also denoted as t in Equation 4) in B, the 

value of ( )syn t  will be a real number in between 0 and 

1 (the default value is 0.8). 

The term frequencies (tf values) of terms in query 

q
T  and comment 

1
s

T  are calculated as the raw 

frequencies of the terms in 
q
T  and 

1
s

T  divided by the 

sums of the raw frequencies of all terms in 
q
T  and 

1
s

T , 

respectively. The inverse document frequencies (idf 

values) of the terms are calculated by Equation 2. An 

SSS value ranges from 0 to 1. 

The second type of score is on the correctness of the 

semantic similarity score. Although every extracted 

code snippet is with a related comment, some relations 

between comments and code snippets may be incorrect. 

For example, a comment “Need to recheck here!” is 

directly followed by a code snippet on file copy, and a 

relation built between the comment and the code 

snippet would result in getting an inappropriate 

semantic similarity score for matching the code snippet 

with a query. Therefore, the second type of score is 

devised to reflect the correctness of the semantic 

similarity score and is calculated as follows. 

Definition 4 (Score on Correctness). Let q be a 

natural language query consisting of a set of terms, 

and 
1
r  be an API usage pattern related to a code 

snippet 
1
s . The score on correctness is calculated as  

 
1

1
( , ) ( , ),

r
q kSC q s cosine T T=  (6) 

where 
q
T  denotes the terms in q, and 

1r
k

T  denotes the 

keywords of 
1
r . 

Because the keywords of an API usage pattern are 

the top important words related to the pattern, some of 

them may frequently appear in the comments related to 

the code snippets with the API usage pattern. If most of 

the terms of the query do not appear in the keywords of 

the API usage pattern of a code snippet, the score on 

correctness would get a lower value. An SC value 

ranges from 0 to 1. 

The third type of score is API numbers. If two code 

snippets are with the same scores on semantic 

similarity and correctness, the system would like to 

recommend the user the code snippet of larger code 

volume for reuse than the smaller one.  

Definition 5 (Score on API Numbers). Let q be a 

natural language query consisting of a set of terms and 

1
r  be an API usage pattern related to a code snippet 

1
s . 

The score on API numbers is calculated as 

1

1

1

( , )

|| ||
|| || _ _

_ _

1

SAN q s

r
if r API NUM BOUND

API NUM BOUND

else

=

⎧
<⎪

⎨
⎪
⎩

 (7) 

where _ _API NUM BOUND  is a constant, and 

1
|| ||r denotes the number of the APIs in 

1
r  

In this work, _ _API NUM BOUND  is set to 10. 

For example, if there exists another code snippet with 

only one line containing a constructor invocation, 

FileInputStream fis = new FileInputStream(in_file), 
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and its related comment is the same as the comment in 

the example of Table 4, the system will give the code 

snippet a lower SAN value 0.1 (
1

10
= ) and a higher 

one 0.5 (
5

10
= ) for the code snippet in Table 4. An 

SAN value ranges from 0 to 1. Based on the three 

types of scores, a matchmaking function is defined as 

follows. 

Definition 6 (Matchmaking Function). Let q be a 

natural language query consisting of a set of terms and 

1
r  be an API usage pattern related to a code snippet 

1
s . 

An overall score for 
1
s  is calculated by the following 

matchmaking function: 

1 1 1 2

1 3 1

( , ) ( , )

( , ) ( , ),

matchmaking q s w SSS q s w

SC q s w SAN q s

= × + ×

+ ×

 (8) 

where 
1 2
,w w  and 

3
w  are weights and 1 2 3

1w w w+ + = . 

The matchmaking function aggregates the scores of 

these three types and returns a value ranges from 0 to 1. 

The default values of 
1 2
,w w  and 

3
w  are 0.4, 0.4 and 

0.2, respectively.  

3.5 Implementation Details 

For discovering API usage patterns and examples, 

we collected 15,814 open source projects from 

SourceForge, Eclipse.org, Apache.org, and Google 

Code. We developed a web crawler to obtain the 

repository information of all projects listed in the four 

web sites, and then automatically downloaded the 

latest versions of the projects data in October 2014 

through Git, Subversion, CVS and Hg Client libraries. 

When a project repository was not available or could 

not be downloaded, the project was skipped. Once the 

projects data were downloaded, all of the files in the 

data were scanned, and only Java source files were 

parsed. After parsing the Java source files, 5,141,772 

code snippets with comments were extracted, and 

43,721 API usage patterns with 641,591 API usage 

examples have been discovered. Table 5 shows the 

numbers of API usage patterns categorized by number 

of APIs in a pattern. A large number of API usage 

patterns have a length of 2 APIs, and the average 

number of APIs used in a pattern is 2.8.  

Table 5. Numbers of Mined API Usage Patterns 

Number of APIs in a Pattern 1 2 3 4 5 6 7 8 9 10 11-63 Total 

Number of Patterns 6,899 16,593 10,363 5,089 2,368 1,119 603 252 145 66 224 43,721

 

For searching API usage examples of the discovered 

usage patterns, a system implementing the Codepus 

approach was developed. Figure 3 shows the snapshots 

of the Codepus Eclipse plugin. For example, when a 

user writes a comment “//read a file” in the source code 

editor, the user can press “Alt+d” to enable searching 

for code examples. The plugin will extract the sentence 

in the comment as a query with removals of special 

characters and send a request with the query to the web 

application hosted in the server side through a default 

Eclipse built-in browser. The search results will be 

shown below the source code editor in a split panel. 

The search results contain a list of ranked code 

snippets with their related comments and a set of 

recommended relevant comments for further search.  

Press “Alt+d”

Press “Alt+s”

The comment is automatically 

used as a query

Related 

comment
Code snippets

 

Figure 3. Snapshots of the Codepus Eclipse plugin for searching code examples 
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4 Experimental Evaluation 

This section presents the experimental evaluations of 

the proposed approach. We designed the experiments 

to answer the following research questions:  

－ RQ1: What is the performance of Codepus in terms 

of the time required by programmers to browse 

search results in order to locate the required code 

snippets? 

－ RQ2: What is the quality of the search results 

returned by Codepus in terms of precision? 

－ RQ3: What is the performance of Codepus with 

regard to computation time on searching code 

snippets?  

4.1 Browsing Time: A Comparison of 

Codepus and a Web Search Engine 

To answer RQ1, we conducted an experiment to 

evaluate the performance of Codepus in terms of the 

amount of time programmers spend on browsing 

search results to locate the code snippets to be adopted.  

4.1.1 Design of Experiment 

In the experiment, 11 real world Java questions are 

selected from a question and answer web site, Stack 

Overflow.  

Table 6 shows the selected questions. Each question 

is then formally modeled as a test problem in Java (see 

an example in Table 7). Each test problem has a main 

method and a problemMethod method. problemMethod 

is the method that needs to be implemented to solve the 

question, and the types of the input and output of 

problemMethod are determined based on the code 

shown in the answers of the question from Stack 

Overflow. In the main method, several comments are 

added to describe the problem. Basically, the 

comments describe the input and output of 

problemMethod. Because the keywords used in the 

queries for solving the problems would largely 

influence the quality of search results, we prevented 

using the keywords appearing in the web pages of the 

questions except proper nouns. 

Table 6. The Selected Top Frequently Asked Questions in Stack Overflow 

Q1. Read/convert an InputStream to a String 

Q2. How to get IP address of current machine using Java 

Q3. Reverse a string in Java 

Q4. File to byte[] in Java 

Q5. How do I remove repeated elements from ArrayList? 

Q6. How to append text to an existing file in Java 

Q7. Renaming a file using Java 

Q8. Convert InputStream to byte array in Java 

Q9. Convert from byte array to hex string in java 

Q10. How do you Programmatically Download a Webpage in Java 

Q11. How can I increment a date by one day in Java? 

Table 7. The Test Problem for Question 1 (Q1) 

1: import java.io.FileInputStream; 

2: import java.io.InputStream; 

3: public class Problem01 { 

4:   static String problemMethod(InputStream inputStream) throws Exception { 

5:     // Implement the method 

6:     return null; 

7:    }   

8:  public static void main(String[] args) throws Exception { 

9:    // The content of the file “C:/testfiles/file01.txt” is “Hello World 01”. 

10:    InputStream inputStream = new FileInputStream(“C:/testfiles/file01.txt”);     

11:     

12:    // The expected result is “Hello World 01”. 

13:    String result = problemMethod(inputStream);     

14:    

15:    System.out.println(result); 

16:    /*   

17:      The output in the console should be: 

18:      Hello World 01 

19:    */ 

20:  } 

21:} 
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In the experiment, 20 volunteers with 1-6 years of 

experience in Java programming were involved and 

acted as real users of Codepus and Google. They were 

randomly separated into two groups, says Codepus 

Group and Google Group, where the users in Codepus 

Group used Eclipse IDE with Codepus to solve the test 

problems, while the users in Google Group used 

Eclipse IDE with Google Search (www.google.com) to 

solve the same test problems. The experiment is 

conducted with the following three steps: First, each 

user reads the guideline document of the experiment. 

Second, each user solves the pretest problems to get 

familiar with the style of test problems. At last, each 

user starts to solve the test problems. 

4.1.2 Experiment Results 

The section presents the experiment results and 

elaborates strengths and weaknesses of Codepus. In the 

experiment, the users gave a number of queries to 

search for code snippets by Codepus or Google, and 

the queries can be grouped into two types (see 

Definition 7). 

Definition 7 (Types of Queries). A query is defined as 

a Type I query (query with adoption) 1
T

q  if the user 

who gave the query copied a code snippet shown in the 

search result returned by Codepus or Google in 

response to the query and pasted it into a test problem; 

otherwise, the query is defined as a Type II query 

(query without adoption) 2
T

q . 

Figure 4 shows a scenario that a user used Codepus 

to solve a test problem. At first, the user input a query 

q1 to search for code snippets, and the search result 

page was shown at 00:05 ( 1

1

q
α ). The user started 

browsing the search result, and then switched the 

window to the code editor at 00:17 ( 1

1

q
β ) to view the 

test problem again. At 01:28 ( 1

2

q
α ), the user switched 

the window back to the search result page again and 

continued browsing the search result. Thereafter, the 

user selected and copied a code snippet. At 01:35 ( 1

2

q
β ), 

the user switched the window to the code editor again, 

and then pasted (adopted) the code snippet into the test 

problem. The user then used the code snippet to solve 

the test problem. As a result, query q1 is considered as 

a Type I query (query with adoption). 

 

Figure 4. A scenario that contains a Type I query (q1) and a Type II query (q2) 

In order to finish the test problem, the user input 

another query q2 to search for code snippets, and the 

search result page was shown at 03:52 ( 2

1

q
α ). After the 

user browsed the search result for nearly 6 seconds, the 

user moved the mouse cursor to the search bar and 

stopped on it at 03:58 ( 2

1

q
β ), and then typed another 

query to search for code snippets.  

In this scenario, q1 and q2 are Type I query and the 

Type II query, respectively. Furthermore, the time 

spent on browsing the search result in response to a 

query is formally defined in Definition 8.  

Definition 8 (Browsing Time for a Query). Given a 

query q, a time point q
α  denotes the time at which a 

search result is returned or the time at which the 

current window is switched from a non-search result 

page to a search result page, and a time point 
q

β  

denotes the time at which the user (a) switches the 

current window from a search result page to a non-

search result page, or (b) moves and stops the mouse 

cursor on the search bar to type another query. The 

time 
q
t  spent on browsing the search result in response 

to the query q is calculated as 

 
1 1

1

( )
n

q q

q

i

t β α
=

= −∑ . (9) 

In this place, a search result page returned from 

Google can be one of the web pages originally linked 

from the returned web pages list. For example, if a user 

clicked a link in a web pages list returned from Google, 

the web page of the link was also viewed as a search 

result page. In the scenario of Figure 4, the browsing 

time for q1 is the sum of 1 1

1 1

q qβ α−  (00:05~00:17) and 
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1 1

2 2

q q
β α−  (01:28~01:35), that is, 19 seconds; and the 

browsing time for q2 is 2 2

1 1

q q
β α−  (03:52~03:58), that 

is, 6 seconds. Based on Definition 8, the time spent on 

browsing search results in response to Type I and Type 

II queries when a user was solving a test problem is 

defined as Definition 9. 

Definition 9 (Browsing Time in Solving a Test 

Problem by a User). Let (1 11)
i
p i≤ ≤  be a test 

problem, (1 10)
j

u j≤ ≤  be a user, 1 1 1 1

, 1 2
{ , ,..., }

i j

T T T T

p u n
Q q q q=  

and 2 2 2 2

, 1 2
{ , ,..., }

i j

T T T T

p u m
Q q q q=  be the set of the Type I 

queries and Type II queries given by user 
j

u  when 

solving test problem 
i
p , respectively. The time spent 

on browsing the Type I queries and the Type II queries 

when solving the test problem 
i
p  by user 

j
u  are 

calculated as 
1 1 1 1

1 2,

T T T T
np ui j
qQ q q

t t t t= + + +� and
2 2

1,

T T

p ui j
Q q
t t=  

2 2

2

T T

m
qq

t t+ + +� , respectively. 

There is a need to know the difference between the 

time the two groups spent on browsing the search 

results of Type I queries as well as Type II queries. 

Definition 10 (Average Browsing Time in Solving a 

Test Problem by a User). For each problem 
i
p , the 

average time a user spent on browsing search results 

in solving the problem is calculated as 

 ,
|| ||

∑( )T T1 2
p ,u p ,ui j i j

i

10

Q Q
j=1

p

t + t

U
 (10) 

where 
i
p

U  is the set of users who gave at least one 

query when solving the problem 
i
p .  

For example, in Table 8, the sum of the browsing 

time in solving the test problem 
i
p  by all Codepus 

users is 
1 2
, ,

10

1

( ) 13 156 18 18 43 39T T

p u p ui j i j
Q Q

j

t t

=

+ = + + + + +∑  

10 26 47 13 383,+ + + + =  and there are 9 users who 

gave at least one query when solving 
i
p . Therefore, 

the average browsing time in solving test problem 
i
p  

by a Codepus user is 
383

42.6
9

=  seconds.  

Table 8. Average Browsing Time in Solving Each Test Problem by a User (in seconds) 

 
1
p  

2
p  

3
p  

4
p  

5
p  

6
p  

7
p  

8
p  

9
p  

10
p  

11
p  Average 

Codepus Group 42.6 18.3 28 55.7 142 49.2 66.4 29.5 48.3 82.8 64 57.0 

Google Group 81.8 73.3 34.8 107.9 81.8 58.5 46.8 105.1 163.8 75.2 66.1 81.4 

 

As shown in Table 8, the average browsing time of 

Codepus group are less than the ones of Google group 

for 8 test problems out of 11, but are more than the 

ones of Google groups for 3 test problems. The 

average values of the browsing time in solving a 

problem by a Codepus user and by a Google user are 

57.0 and 81.4 seconds, respectively. 

In summary, the experiment results show that the 

chance of actually adopting code snippets by a user for 

a search with Codepus is not significantly different 

from the one with Google, but the average browsing 

time a Codepus user spent on locating the code 

snippets to be adopted for a search is 46.5% less than 

the time a Google user spent. In addition, the average 

time a Codepus user spent on browsing search results 

in solving a problem are less than those of a Google 

user in the most cases (8 out of 11 test problems). 

4.1.3 Discussion 

This section discusses the limitations of the current 

implementation of Codepus. The limitations can be 

best explored through investigating the reasons why 

the average browsing time of Codepus group in solving 

test problems p5, p7 and p10 are more than those of 

Google group. We go into details on the users’ 

behavior in solving the three test problems, and 

provide several insights of the limitations of the current 

implementation of Codepus. 

For problem p5, the corresponding question in Stack 

Overflow is “How do I remove repeated elements from 

ArrayList?”. The Codepus users who input more than 

four Type II queries are u5, u7 and u9. In what follows, 

the queries given for the problem by the three users are 

discussed.  

The Type II queries given by user u5 are “bucket 

sort”, “list have”, “list check”, “list elements” and “list 

elements count”, which are not the phrases commonly 

used in the queries by the other users, such as “remove 

repeated” or “delete duplicated”. Therefore, Codepus is 

not likely to return the results that can help the user 

solve this problem.  

The Type II queries given by user u7 are “remove 

the same element from list”, “no repucated element in 

List”, “List element”, “convert List to set” and “set to 

list”. For the first query, although the semantics of the 

terms “the same” and “duplicate” are similar, the 

former one is not included in the synonym database 

(WordNet) used in Codepus system. The word 

“repucated” in the second query can be considered as a 

misspelling of “replicated”, but currently the 

implementation of Codepus does not support spell 

checking. Because the user could not get satisfactory 
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results with the first two queries, the user then 

attempted to search with some other queries and 

wasted much time on them. Therefore, if Codepus can 

return better results for the first two queries, the user 

may be able to spend less browsing time for this 

problem. 

User u10 input the following queries: “delete 

repeated elements from list”, “return unrepeated 

elements from list”, “return unrepeated elements in 

list”, “remove repeated elements in list”, “remove 

repeated elements”, “remove repeated string” and 

“remove duplicated string”. However, the code 

snippets returned by Codepus for all of the queries 

were not adopted by the user. After that the user input 

a query “remove duplicate from list” and adopted a 

code snippet from the result. Although the terms 

“delete” and “repeated” are the synonyms of “remove” 

and “duplicated”, respectively, the appropriate code 

snippets are not ranked in the top 10 list with the 

setting of the default value 0.8 for weighting synonyms 

in calculating cosine similarities. 

For problem p7, the corresponding question is 

“Renaming a file using Java”, and 6 users used the 

phrase “change file name” in the queries to search for 

code snippets. Although the phrases “rename file” and 

“change file name” have the same meaning, the latter 

one does not in the comments of the code snippets 

related to the problem, and the two phrases are not 

contained in the synonym database.  

For problem p10, the corresponding question is 

“How do you Programmatically Download a Webpage 

in Java”. Five users used the term “html” in the queries. 

Because the term “html” does not appear in the 

comments of the code snippets related to the problem, 

the users had to spend more time on searching code 

snippets with other words, such as “http” and “url”. 

In summary, the current implementation of Codepus 

can be further improved with the following directions: 

(a) mining more open source projects to collect more 

terms related to code snippets; (b) extending the 

synonym database to include more synonyms, and 

optimizing the parameters for weighting synonyms; 

and (c) providing spell checking feature. 

4.1.4 Threats to Validity 

In this section, we discuss the potential threats that 

may impact the validity of the experiment results. 

Internal Validity. In the context of the evaluation of 

the performance with regard to browsing time, the 

main threat to internal validity is the difference 

between the degrees of Java programming proficiency 

of the Codepus and Google users. A programmer who 

is proficient in Java programming may spend less time 

on browsing code snippets, and therefore it is 

important to divide the users into two groups with 

approximately equal degrees of proficiency in Java 

programming for conducting the experiment. In order 

to minimize the threat, we randomly separated 20 users 

into two groups and conducted an examination to 

evaluate the proficiency degree of each user. The 

questions of the examination are selected from Oracle 

Certified Professional Java SE7 Programmer Exams 

(OCJP) quizzes. With an independent samples t-test, 

there is no significant difference between the average 

scores of the two groups. 

External Validity. The main threats to external 

validity of the performance evaluation with regard to 

browsing time are problems selection and formulation. 

The first threat is that the selected problems for the 

experiment might not have been the representative 

ones in realistic development. We mitigated this threat 

by selecting 11 top frequently asked real world Java 

questions from a popular question and answer web site 

through a systematic selection process, and designing 

the corresponding test problems in Java. The second 

threat is that the terms appearing in the test problems 

might have influenced the users on inputting the words 

of queries. In practices, the vocabulary programmers 

can use for constructing queries is open ended. This 

threat was minimized by formulating each test problem 

as a Java class with a method to be implemented by the 

users and preventing using the keywords appearing in 

the web page of the corresponding question except 

proper nouns. 

4.2 Precision: A Comparison of Codepus and 

Code Search Systems 

In order to answer RQ2, the precisions of three code 

search systems, Codepus, Open Hub and GitHub Gists, 

were evaluated and compared. In the experiment, the 

11 selected top frequently asked questions in Stack 

Overflow (listed in Table 6) were used as queries to 

search code snippets with the three code search 

systems. For each query, every top one code snippet 

returned by each code search system was collected. 

Because Code Recommenders did not return any code 

snippets for the 11 queries, it was not considered in the 

experiment of precision evaluation. 

Once all of the returns were collected, three experts 

with over 15 years of experience in Java programming 

were invited to review the returned code snippets. 

While an expert reviewed a returned code snippet for a 

query, the expert had to give a rating for the relevance 

between the code snippet and the query. A rating is one 

of the following two values: 

－ Relevant: The code snippet is relevant to the query. 

－ Irrelevant: The code snippet is irrelevant to the 

query. 

The precision of the search result for a query is 

calculated by the following definition: 

Definition 11 (Precision of Search Results). Given a 

natural language query q, the precision of the search 

result is calculated as  



A Comment-Driven Approach to API Usage Patterns Discovery and Search 1599 

 

 
|| ||

,
|| ||

n

Rel
Precision

Ret
=  (11) 

where Ret denotes top n returned code snippets, Rel 

denotes the code snippets that belong to Ret and are 

relevant to q. A code snippet is determined to be 

relevant to a query if all of the experts give ratings of 

relevant. 

Table 9 shows the evaluation results of the 

precisions of the three code search systems with 

respective to their returned top-1 results. The average 

precisions of the three systems for the 11 queries were 

calculated as 9%, 45% and 91%, respectively. The t-

values for comparing the average precisions of 

Codepus and Open Hub and for comparing the those of 

Codepus and Gists are 6.708 and 2.887, respectively. 

Both t-values are greater than 2.228 with 10 degrees of 

freedom and 95% confidence level, which indicates 

that the differences between the average precisions of 

Codepus and Open Hub, and between those of 

Codepus and Gists are significant. As there may be 

more than one relevant results in Open Hub and Gists, 

and the results cannot be directly accessed, the recalls 

were not measured in the experiment. 

Table 9. Comparison of the Precisions of Open Hub, Gists, and Codepus 

 Open Hub Gists  Codepus 
# Query 

 || ||Ret  || ||Rel  
1

Precision || ||Ret || ||Rel  
1

Precision   || ||Ret  || ||Rel
1

Precision  

1 
Read/convert an InputStream to a 

String 
 1 0 0.00 1 1 1.00  1 1 1.00 

2 
How to get IP address of current 

machine using Java 
 1 0 0.00 1 0 0.00  1 1 1.00 

3 Reverse a string in Java  1 0 0.00 1 1 1.00  1 1 1.00 

4 File to byte[] in Java  1 0 0.00 1 0 0.00  1 1 1.00 

5 
How do I remove repeated 

elements from ArrayList? 
 1 0 0.00 1 0 0.00  1 0 0.00 

6 
How to append text to an existing 

file in Java 
 1 0 0.00 1 0 0.00  1 1 1.00 

7 Renaming a file using Java  1 0 0.00 1 1 1.00  1 1 1.00 

8 
Convert InputStream to byte array 

in Java 
 1 0 0.00 1 1 1.00  1 1 1.00 

9 
Convert from byte array to hex 

string in java 
 1 1 1.00 1 1 1.00  1 1 1.00 

10
How do you Programmatically 

Download a Webpage in Java 
 1 0 0.00 1 0 0.00  1 1 1.00 

11
How can I increment a date by 

one day in Java? 
 1 0 0.00 1 0 0.00  1 1 1.00 

 Average Precision:   0.09   0.45    0.91 

 

4.3 Computation Time 

This section answers RQ3 by reporting the 

computation time of Codepus tool for searching code 

snippets. In the system, the turnaround time of a 

request can be broken down into three portions: time of 

transmitting the query string to the server, computation 

time of processing the request, and time of transmitting 

the search results back to the client. Because the sizes 

of a request string and a search results page would not 

be large in a normal case, we focused more on 

optimizing the processing of a request. The 

implementation of Codepus tool consists of the 

following two optimizations. 

Optimization 1. Most of the information for 

matchmakings and recommendations are cached in 

memory. The cached data include: keywords with tf-

idf values of each API usage pattern, terms with tf-idf 

values, degree centrality of each extracted comment, 

and API numbers of each API usage pattern. 

Additionally, the relations between API usage patterns 

and code snippet identifiers, and the relations between 

code snippets and their related terms are also cached 

and indexed using Java Hashtable API. 

Optimization 2. For a query, all SC values (score on 

correctness) for all API usage patterns are computed 

before computing SSS (score on semantics similarity) 

and SAN (score on API numbers) values. If the SC 

value of an API usage pattern is computed as 0, the 

code snippets related to the pattern will be ignored and 

the remaining computations for SSS and SAN values 

are omitted. Hence, not all of the SSS and SAN values 

of all code snippets should be computed, and only a 

relatively small portion whose SS values are greater 

than 0 needs be calculated.  

Table 10 shows the computation time of searching 

code snippets for the 11 selected queries. The average 

computation time is 1.546 seconds with standard 

deviation of 0.843. 
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Table 10. Computation Time of Searching Code Snippets for the 11 Queries (In Seconds) 

Query# 1 2 3 4 5 6 7 8 9 10 11 

Computation Time 2.125 1.156 1.093 1.250 3.109 2.063 0.954 1.719 2.547 0.594 0.391

Average time: 1.546 sec 

 

5 Conclusion 

This paper proposes an approach referred to as 

Codepus for the discovery of API usage examples 

based on mining comments in open source code using 

natural language queries. The approach was 

implemented as an Eclipse plugin tool integrated with 

a developed code search web application. In a practical 

application, the proposed approach discovered 43,721 

API usage patterns with 641,591 API usage examples 

from 15,814 open source projects. Experiment results 

revealed the following: (1) Codepus reduced the 

browsing time required for locating API usage 

examples by 46.5%, compared to the time required 

when using Google. (2) The precision of the search 

results obtained by Codepus is 91% when using eleven 

real-world frequently asked questions, which is 

superior to those of Gists and Open Hub. (3) The 

average computation time in the search for API usage 

examples for the eleven queries was only 1.546 

seconds with standard deviation of 0.843. 

In the future, we will seek to improve the current 

implementation of Codepus as follows: (1) We will 

seek to mine a greater number of open source projects 

for the selection of terms related to code snippets. (2) 

We will extend the synonym database and optimize the 

parameters used in the weighting of synonyms. (3) We 

will include a spell checking feature. 
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