
A Comment-Driven Approach to API Usage Patterns Discovery and Search 1587

A Comment-Driven Approach to API Usage Patterns Discovery

and Search

Shin-Jie Lee1,2, Xavier Lin2, Wu-Chen Su3, Hsi-Min Chen4*

1 Computer and Network Center, National Cheng Kung University, Taiwan
2 Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan

3 Department of Clinical Sciences, University of Kentucky, USA
4 Department of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan

jielee@mail.ncku.edu.tw, XavierLinX@gmail.com, wuchen_sue@hotmail.com, hmchen@mail.fcu.edu.tw

*Corresponding Author: Shin-Jie Lee; E-mail: jielee@mail.ncku.edu.tw

DOI: 10.3966/160792642018091905030

Abstract

Considerable effort has gone into the discovery of API

usage patterns or examples. However, how to enable

programmers to search for discovered API usage

examples using natural language queries is still a

significant research problem. This paper presents an

approach, referred to as Codepus, to facilitate the

discovery of API usage examples based on mining

comments in open source code while permitting searches

using natural language queries. The approach includes

two key features: API usage patterns as well as multiple

keywords and tf-idf values are discovered by mining

open source comments and code snippets; and a

matchmaking function is devised for searching for API

usage examples using natural language queries by

aggregating scores related to semantic similarity,

correctness, and the number of APIs. In a practical

application, the proposed approach discovered 43,721

API usage patterns with 641,591 API usage examples

from 15,814 open source projects. Experiment results

revealed the following: (1) Codepus reduced the

browsing time required for locating API usage examples

by 46.5%, compared to the time required when using a

web search engine. (2) The precision of Codepus is 91%

when using eleven real-world frequently asked questions,

which is superior to those of Gists and Open Hub.

Keywords: API usage pattern, Code example, Code

search system

1 Introduction

The reuse of existing software is an important part

of software development: it saves on time and

resources, and improves the quality of the developed

software [1-7]. API usage examples are an important

source in this endeavour. Currently, there are several

sources from which a programmer can retrieve API

usage examples, including peers [8], API

documentation [9-10], websites with pre-collected

code examples [11-12], code search engines [13-15],

and web search engines, such as Google Search. When

learning programming, many individuals rely on

experienced peers to find code examples [8], while

others search for code examples in API documentation

[9-10]. In [16-17], code examples have been regarded

as an important factor in the design of API

documentation. A number of websites [11-12] provide

sets of pre-collected code examples. However,

managing sets of code examples relies heavily on

collection effort or content contributed by website

users. Code search engines enable programmers to

search for code snippets of open source code based on

file names, classes, methods, or structures using search

methods based on traditional keyword matching [13-

15].

Considerable effort has gone into the discovery of

API usage patterns or examples [18-25]. However,

how to enable programmers to search for discovered

API usage patterns or examples using natural language

queries is still a significant research problem. A

number of approaches are based on the assumption that

programmers know precisely what API methods they

are going to use [18-19, 21-22, 26] or the types of

input/output they require [27-28]. This would enable

them to use API method names as queries in the search

for relevant API usage patterns or code examples.

Unfortunately, this assumption limits the possibility of

discovering examples in cases where the programmer

is unaware of the relevant method names or

input/output types. In this study, we propose an

approach, referred to as Codepus, to facilitate the

discovery of API usage examples based on mining

comments in open source code while permitting

searches using natural language queries. The proposed

approach includes the following two features:

－ API usage patterns as well as multiple keywords and

tf-idf values are discovered by mining open source

comments and code snippets. In the proposed

approach, an API usage pattern is defined as an API

1588 Journal of Internet Technology Volume 19 (2018) No.5

usage sequence that appears recurrently in multiple

projects. A proposed algorithm enables the

extraction of code snippets and the associated

comments for use in discovering API usage patterns

and the related keywords and term frequency-

inverse document frequency (tf-idf) values.

－ A matchmaking function is devised to enable users

to search for API usage examples using free-form

natural language sentences or phrases. The

matchmaking function aggregates scores related to

semantic similarity, correctness, and the number of

APIs.

Figure 1 presents an overview of the proposed

approach, which can be divided into two parts: (1)

discovery of API usage examples and (2) search for

API usage examples. In the discovery process, the

source code of a number of open source projects is

parsed for extracting a large number of code snippets

as well as their related comments (see Section 3.1).

The extracted code snippets containing project-specific

code statements are then removed. The stop code

statements commonly used by programmers for

logging or debugging (with little or no effect on system

functionality) are also filtered out (see Section 3.2).

The API usage sequence of each extracted code snippet

is then specified. Finally, API usage patterns, examples,

related comments, and keywords are identified based

on the API usage sequences (see Section 3.3). In the

search for API usage examples, users are able to search

for API usage examples using free-form queries in

natural language. The code snippets related to each

query are ranked by a proposed matchmaking function

(see Section 3.4).

Extracting Code Snippets with

Related Comments (Sec. 3.1)

Removing Project Specific and

Stop Code Statements (Sec. 3.2)

Identifying API Usage Patterns

(Sec. 3.3)

Open Source

Projects

Searching API Usage Examples

through a Matchmaking

Function (Sec. 3.4)

Natural language

queries

Programmer

Filtered code snippets

with related comments

Code snippets with

related comments

API usage patterns with

examples, related

comments, and keywords

Figure 1. Overview of the proposed approach

The proposed approach is implemented as an

Eclipse plugin integrated with a developed web

application used in the search for code examples. The

efficacy of the proposed approach was evaluated in

three experiments: (1) We compared the performance

of Codepus with that of Google Search in terms of the

time required by programmers to browse search results

in order to locate required code snippets. Threats to

validity are also discussed in this paper. (2) We

compared the precision of Codepus with two existing

code search systems. (3) We evaluated the

performance of Codepus with regard to computation

time in the search for code examples.

The remainder of the paper is organized as follows:

Section 2 presents a review of related work. The

proposed approach is outlined in Section 3. Section 4

presents the results of experiments to evaluate the

proposed approach. Finally, Section 5 summarizes the

contributions provided by the proposed approach.

2 Related Work

Several approaches have been proposed for

discovering or searching code snippets/API usage

patterns.

Open Hub [15] is an on-line code search engine for

more than 20 billion lines of open source code. For a

natural language query with multiple terms, the search

engine returns a number of code snippets that contain

the query terms. In our approach, code snippets are

searched through a proposed matchmaking function. In

the experimental results, the precision of our approach

is statistically significantly superior to the one of Open

Hub.

Mandilin et al. [27] proposed an approach to

synthesizing code snippets for a query that is described

by the desired code in terms of input and output types.

The synthesized code snippets are ranked by their

lengths. The assumption of the approach is that a

programmer knows what type of object he needs but

does not know how to write the code to get the object.

Holmes et al. [18] proposed an approach to locating

relevant code in a code example repository based on

heuristically matching the structure of the code under

development as a query to the code examples. The

code examples that occur most frequently in the set

generated from applying all of the heuristics are

selected and returned to the programmer for the query.

Kim et al. [19] proposed a code example

recommendation system that provides API documents

embedded with high-quality code example summaries

mined from the Web. In the system, code examples

from an existing code search engine are summarized

into code snippets. Subsequently, the semantic features

of the summarized code snippets are extracted and the

most representative code examples will be

automatically identified while a user chooses an API

A Comment-Driven Approach to API Usage Patterns Discovery and Search 1589

from the API documents.

Zhong et al. [21] developed a framework, called

MAPO, for mining API usage patterns from open

source repositories. API usage patterns are discovered

based on a frequent subsequence miner [29], and are

ranked based on the similarities between class and

method names containing the supporting snippets and

the ones containing the specified method to be used by

the programmer. The programmer can further exploit

the source code of each code snippet of an API usage

pattern.

Wang et al. [22] proposed an approach, called UP-

Miner, to mining succinct and high-coverage usage

patterns of API methods from source code. Given a

user-specified API method, UP-Miner can

automatically search for all usage patterns of an API

method and return associated code snippets as

candidates for reusing.

Chatterjee et al. [20] proposed a code search

technique, call SNIFF, that retains the flexibility of

performing code search in plain English. The key idea

of SNIFF is to combine API documentations with

publicly available Java code. It takes a large amount of

Java source code and annotates it by appending each

statement containing a method call with the description

of the method in Java API documentations (Javadoc).

The annotated source code are then indexed for free-

form query search.

Subramanian et al. [30] proposed an iterative,

deductive method of linking source code examples to

API documentation for increasing the timeliness of the

API documentation by providing valuable reference

links for source code examples. With an

implementation of the method, called Baker, a Stack

Overflow post is augmented with links to GitHub

source code and Android API documentations, and an

Android API documentation is augmented with code

examples of Stack Overflow posts.

In [31], Janjic et al. discussed the foundations of

software search and reuse, and provided the main

characteristics of reuse-oriented code recommendation

(ROCR) systems. Moreover, they provided an

overview of the architectural organization of a

recommender-enhanced IDE to automate a depicted

micro-process of software reuse. The micro-process

consists of the following key elements: decision to

search, description of request, search, recommendation

selection, and reuse and maintain. Our tool can be

considered as a ROCR system that is specifically

designed to assist users in reusing code by natural

language queries with support of auto-complementing

queries and recommending relevant queries.

GitHub Gists [32] is an on-line website where users

can share their code snippets in single files, parts of

files, or full applications. Users can search a number of

code examples with natural language queries. In this

work, the experimental results also show that the

precision of our approach is statistically significantly

superior to the one of Gists.

Code Recommenders [33] is an Eclipse plugin, and

one of its features is Snipmatch which provides a way

to search for code snippets. Each code snippet is

associated with a user-defined metadata including its

name, description, keywords, and tags. Code snippets

will be searched based on their metadata. Users can

share their own code snippets by submitting them to

the official repository. All submitted code snippets will

be manually reviewed for ensuring the quality and

usability. However, currently there are only 128 code

snippets available in the default repository. By contrast,

in the current implementation of our approach, 43,721

API usage patterns have been discovered through

mining 15,814 open source projects.

3 API Usage Patterns Discovery and

Search

This section introduces key activities involved in

discovering and searching API usage examples:

extracting code snippets and related comments

(Section 3.1), removing project specific and stop code

statements (Section 3.2), identifying API usage

patterns (Section 3.3), and searching API usage

examples through a proposed matchmaking function

(Section 3.4). Implementation details of the proposed

approach are also presented (Section 3.5).

3.1 Extracting Code Snippets and Related

Comments

In this activity, source code of multiple open source

projects are parsed and a large number of code snippets

with their related comments are extracted through a

proposed algorithm shown in Table 1. The basic

concept of the algorithm is to parse each source file in

open source projects, extract all comments from the

file, and find the following nearest code snippet for

each comment. After parsing a source file, the relations

between the extracted comments and code snippets will

be recorded. The algorithm consists of the following

steps.

First (lines 1-4), the source code files, denoted as F,

of all projects, denoted as P, are prepared. Two empty

sets S and C are declared in order to collect extracted

code snippets and the related comments, respectively.

Second (line 5), three functions cmt, file and prj are

defined for relating a code snippet with a comment, a

file and a project, respectively.

Third (lines 6-7), all comments in the bodies of the

methods in every source file f∈F of project p∈P are

extracted through parsing the source code. In this work,

Eclipse JDT API was used for parsing the Java source

files of the open source projects.

Fourth (lines 8-12), for each comment c, the code

block s that directly follows c is extracted. A code

block is a code snippet of the form statement {statement}.

1590 Journal of Internet Technology Volume 19 (2018) No.5

Table 1. Algorithm of Extracting Code Snippets with Related Comments

1: let P be a set containing all projects;

2: let F be a set containing all source code files of P;

3: let S = Ø; // to collect code snippets

4: let C = Ø; // to collect comments

5: let cmt: S → C, file: S → F, prj: S → P;

6: for each source code file f ∈F of project p∈P do

7: Extract all comments in the bodies of the methods in f;

8: for each comment c in f do

9: if there exists a code block s that directly follows c then

10:
 let { };S S s= ∪

11:
 let { };C C c= ∪

12: let cmt(s)=c, file(s)=f, prj(s)=p;

13: else

14: let nextCmt = The start line of the following nearest comment inside the blocks containing c;

15: let nextBlankLine = The following nearest blank line inside the blocks containing c;

16: let nextEndOfBlock = The following nearest end line of the block among the blocks containing c;

17:
 let s′ be a code snippet in between c and minLineNum(nextCmt, nextBlankLine, nextEndOfBlock);

18:
 let { };S S s′= ∪

19:
 let { };C C c= ∪

20:
 let cmt(s′)= c , file(s′)=f, prj(s′)=p;

21: end if

22: end for

23: end for

For example, in Table 2, lines 5-22 is a method

declaration code block, and lines 15-21 is an if-

statement code block. In this work, we said that a code

block directly follows a comment if the code block

follows the comment without any non-blank lines in

between them. In the example, only the method

declaration code block (lines 5-22 in Table 2) is

considered as a directly following code block of a

comment (lines 2-4 in Table 2), and it will be extracted

together with the related comment.

At last (lines 13-20), if there are no code blocks

directly following a comment, code snippets of non-

block type will be searched. In order to determine the

line number of the end of the following code snippet to

be extracted, code lines of the following three types

will be identified as boundaries:

1. The start line of the following nearest comment

inside the blocks containing the comment. For example,

for the comment of line 16 (//Parse data) in Table 2,

line 18 (//Show data) is considered as the following

nearest comment inside the same block (lines 15-21).

2. The following nearest blank line inside the blocks

containing the comment. For example, for the comment

of line 6 (//Read data from a given file. The f_name

should not be null), line 14 (a blank line) is considered

as the following nearest blank line inside the same

block (lines 5-22).

3. The following nearest end line of the block among

the blocks containing the comment. For example, for

the comment of line 18 (//show data), there are two

blocks, lines 15-21 and lines 5-22, containing the

comment, and line 21 is considered as the following

nearest end line of the comment.

Table 2. A Source Code Example

1: …

2: /*

3: * Show map data from file.

4: */

5: public void showMapData(String f_name) throws

IOException{

6: //Read data from a given file. The f_name should

not be null.

7: File in_file = new File(f_name);

8: int i = (int) in_file.length();

9: byte[] data = new byte[i];

10: FileInputStream fis = new

FileInputStream(in_file);

11: fis.read(data);

12: fis.close();

13: System.out.println(new String(data));

14:

15: if(!data.equals(“”)){

16: //Parse data

17: MapData map_data = new

MapData(data);

18: //Show data

19: MapGUI map_gui = new MapGUI();

20: map_gui.show(map_data);

21: }

22: }

23: …

Among the identified code lines of these three types,

the line with the minimal line number is selected as the

boundary. The code snippet starting from the next line

of the comment to the previous line of the boundary is

extracted and is identified to be related with the

A Comment-Driven Approach to API Usage Patterns Discovery and Search 1591

comment. For example, code snippets of lines 7-13,

line 17 and lines 19-20 will be extracted and related

with the comments of line 6, line 16 and line 18,

respectively. If there are no code lines of these three

types identified, no code snippet will be extracted to be

related with the comment.

Because we observed that not all of the sentences in

a comment are useful for searching API usage

examples, even some have negative impacts, only the

first sentence in the comment is retained. Additionally,

symbols in the first sentence are also removed. For

example, the comment of line 6 will be filtered as

“Read data from a given file”.

3.2 Removing Project Specific and Stop Code

Statements

As an API usage pattern is supposed to recurrently

appear across projects, it should not contain

invocations of the methods that are particularly written

for one project. In this work, a code statement is called

as a project specific code statement if it consists of

invocations of methods that are written in the same

project of the code statement. The extracted code

snippets containing one or more project specific code

statements will be removed.

For example, it is assumed that MapData and

MapGUI are classes in the project of the code snippet

in Table 2. As line 17 contains an invocation of the

constructor of MapData, the code snippet of the line is

considered as a project specific code statement and

hence will be removed from the set of extracted code

snippets. In the same way, the code snippet of lines 19-

20 will be removed due to the invocations of the

constructor and method show of MapGUI, and the

code snippet of lines 5-22 will be removed as well.

From the open source projects, we have observed

that there are some code statements that are extremely

common and are hardly considered as parts of an API

usage pattern. For example, the statement,

System.out.println (arguments), in line 13 of Table 2 is

often used by programmers for logging or debugging

and does not contribute to system functionalities in

most cases. In this work, these statements are called

stop code statements.

Through parsing the source code of 1,000 Java open

source projects from sourceforge.net, frequencies of

the code statements that satisfy both of the following

two criteria are collected:

－ The code statement describes an invocation of a

method in ignore of its arguments.

－ The object to be invoked in criteria 1 is not a local

variable.

The first criterion constrains that the code statement

describes an invocation of an API method, and the

second criterion ensures that the object to be invoked is

with the same identifier name in different projects.

Table 3 shows the top 5 frequent code statements. In

this work, these code statements are selected as stop

code statements. In order to increase the effectiveness

of discovering API usage patterns, the stop code

statements are removed from the extracted code

snippets. For example, line 13 in Table 2 is considered

as a stop code statement, and it will be removed from

the extracted code snippet of lines 7-13.

Table 3. Stop Code Statements

Code Statement Frequency

1 System.out.println 65,367

2 System.out.printf 54,801

3 System.err.println 16,389

4 System.out.print 6,173

5 System.exit 5,100

3.3 Identifying API Usage Patterns

Once the project specific and stop code statements

are removed, the API usage sequence of each extracted

code snippet will be specified. An API usage sequence

is defined as follows.

Definition 1 (API Usage Sequence). Given a code

snippet s∈S, the API usage sequence q of s is the

sequence of the APIs that are sequentially used in s,

which is denoted by the function seq(s) = q. Q denotes

the set containing the API usage sequences of all code

snippets in S.

Table 4 shows an extracted code snippet from the

source code example, its related comment, and an

identified API usage sequence. There are 5 APIs used

in the code snippet. Based on Definition 1, an API

usage pattern is defined as follows:

Table 4. An API Usage Sequence Example

Related Comment

1: Read data from a given file

Extracted Code Snippet

1: File in_file = new File(f_name);

2: int i = (int) in_file.length();

3: byte[] data = new byte[i];

4: FileInputStream fis = new FileInputStream(in_file);

5: fis.read(data);

6: fis.close();

API Usage Sequence

1: java.io.File.File

2: java.io.File.length

3: java.io.FileInputStream.FileInputStream

4: java.io.FileInputStream.read

5: java.io.FileInputStream.close

Definition 2 (API Usage Pattern). An API usage

pattern r is an API usage sequence that recurrently

appears in multiple projects. All API usage patterns

are denoted as a set AP = {r|r∈Q; and |
r
P |≥k}, where

r
P ={p|p∈P; p=prj(s); and s∈

r
S } is the set of projects

in which the pattern r appears.
r

S ={s|s∈S; and

seq(s)=r} denotes the set of code snippets related to r.

1592 Journal of Internet Technology Volume 19 (2018) No.5

s is called as an API usage example of r. k is the

minimum number of projects in which an API usage

pattern appears.

In order to better discover API usage patterns that

are frequently used by various programmers, an API

usage sequence is identified as an API usage pattern if

it recurrently appears in multiple projects (k is set to 2

by default). Because a code snippet may be copied and

pasted multiple times in the source code of the same

project by a programmer, duplicate appearances of an

API usage pattern in the same project is not considered

in the usage pattern identifications.

Once an API usage pattern r is identified, several

words will be identified as the keywords of the pattern

from the extracted comments through the following

steps:

1. Generate a document
r

d related to an API usage

pattern r by aggregating the comments of the code

snippets related to r. The document is formally defined

as
r

d ={c|c∈C; c=cmt(s); and s∈
r

S }, and the

documents for all of the API usage patterns are defined

as D={ | }
r

d r AP∈ .

2. Decompose compound words in document
r

d into

simple words based on a camel case mapping table.

For example, the compound word “InputStream” will

be mapped to two simple words “Input” and “Stream”.

In order to automatically split a compound word, the

mapping table is prepared through the following steps.

Firstly, all camel case compound words in all

comments of D are extracted. Secondly, if a camel case

compound word appears in multiple (more than a

threshold, and 3 by default) comments, it will be

decomposed into several simple words based on

commonly used camel case rules. At last, the

compound word together with its related simple words

will be added into the mapping table.

3. Remove stop words and stem the words in

document
r

d . Stop words are extremely common

words and are usually omitted in natural language

processing (NLP) systems [34]. Some stop words are

the, is, are, at, and below. Stemming a word is to

transform the word into its part of the word that is

common to all its inflected variants. For instance,

“creates” and “created” are stemmed as “creat”.

4. Calculate the tf-idf value of each word in
r

d . tf-

idf (term frequency-inverse document frequency)

formula is widely used to reflect the importance of a

word in a document. In this work, the formula serves

as a basis for identifying the keywords of an API usage

pattern. The term frequency of a term r

t in
r

d is

calculated as the raw frequency of r

t in
r

d divided by

the sum of the raw frequencies of all terms in
r

d :

(,)

(,)
r

r

r

t

w D r

f t d
tf

f w d
∈

=
∑

 (1)

The inverse document frequency of r

t is to measure

how the term is common or rare across all documents

in D, and is calculated by dividing the total number of

documents in D by the number of documents

containing r

t plus 1, and then taking the logarithm of

the quotient:

| |

log()
1 | : |

r
rt

D
idf

d D t d
=

+ ∈ ∈

 (2)

The tf-idf value of r

t is calculated by the following

equation:

r r r

t t t
tf id tf id= × (3)

5. Identify the terms of top p tf-idf values in
r

d as

the keywords of the API usage pattern r. The keywords

are denoted as a set { | ; -
r r

K t t d t is with a top p tf idf= ∈

}value . In this work, p is set to 8.

Figure 2 shows the relationships between API usage

patterns, code snippets, comments, and keywords.
1
r is

an API usage pattern. Code snippets 1 1

1
1
, ...,

r r

m r
s s S∈ are

examples of
1
r . 1 1

1

, ...,

r r

s sm
c c are comments that are

related to 1 1

1
, ...,

r r

m
s s , respectively. The comments are

aggregated as a document
1
r

d D∈ from which

keywords 1 1

1
, ...,

r r

p
t t with tf-idf values are identified.

Section 3.4 will introduce how to rank a code snippet

based on the comments and API usage pattern through

a proposed matchmaking function.

3.4 Searching API Usage Examples through a

Matchmaking Function

For a given query, each code snippet will be ranked

based on a proposed matchmaking function that

aggregates the scores on semantic similarity,

correctness, and API numbers (see Figure 2). The first

type of score is the semantic similarity between a query

and a code snippet. The score is calculated as follows.

Definition 3 (Score on Semantic Similarity). Let A

and B be two sets of terms with tf-idf values. The

cosine similarity between A and B is calculated as

, ,

2 2

, ,

()
(,)

t A B t A t B

t A t A t B t B

tf idf tf idf syn t
cosine A B

tf idf t tf idf

∈ ∪

∈ ° ∈

∑ × ×
=

∑ × ∑
. (4)

Let q be a natural language query consists of a set of

terms and
1
s be a code snippet. The score on semantic

similarity is calculated as

1

1
(,) (,),

q s
SSS q s cosine T T=

 (5)

where
q
T denotes the terms in q, and

1
s

T denotes the

terms in the comment related to
1
s .

A Comment-Driven Approach to API Usage Patterns Discovery and Search 1593

example of

related to

aggregated as

…

…

…

contains

associated withassociated with

…

Score on Semantic Similarity (SSS)

example of example of

related to

…

…

related to

generate matchmaking score for

contains

Score on Correctness (SC) Score on API Numbers (SAN)

contribute tocontribute to contribute to

aggregated by

associated with

Figure 2. Relationships between API usage patterns, code snippets, comments, and keywords

Because some synonyms may appear in the terms of

a query and a comment, an external system, WordNet,

was used for detecting the synonyms. In Equation 4, a

function ()syn t is introduced to adjust the weighting of

synonyms. If a term t appears both in A and B, the

value of ()syn t will be 1. If a term t in A is a synonym

of a term (also denoted as t in Equation 4) in B, the

value of ()syn t will be a real number in between 0 and

1 (the default value is 0.8).

The term frequencies (tf values) of terms in query

q
T and comment

1
s

T are calculated as the raw

frequencies of the terms in
q
T and

1
s

T divided by the

sums of the raw frequencies of all terms in
q
T and

1
s

T ,

respectively. The inverse document frequencies (idf

values) of the terms are calculated by Equation 2. An

SSS value ranges from 0 to 1.

The second type of score is on the correctness of the

semantic similarity score. Although every extracted

code snippet is with a related comment, some relations

between comments and code snippets may be incorrect.

For example, a comment “Need to recheck here!” is

directly followed by a code snippet on file copy, and a

relation built between the comment and the code

snippet would result in getting an inappropriate

semantic similarity score for matching the code snippet

with a query. Therefore, the second type of score is

devised to reflect the correctness of the semantic

similarity score and is calculated as follows.

Definition 4 (Score on Correctness). Let q be a

natural language query consisting of a set of terms,

and
1
r be an API usage pattern related to a code

snippet
1
s . The score on correctness is calculated as

1

1
(,) (,),

r
q kSC q s cosine T T= (6)

where
q
T denotes the terms in q, and

1r
k

T denotes the

keywords of
1
r .

Because the keywords of an API usage pattern are

the top important words related to the pattern, some of

them may frequently appear in the comments related to

the code snippets with the API usage pattern. If most of

the terms of the query do not appear in the keywords of

the API usage pattern of a code snippet, the score on

correctness would get a lower value. An SC value

ranges from 0 to 1.

The third type of score is API numbers. If two code

snippets are with the same scores on semantic

similarity and correctness, the system would like to

recommend the user the code snippet of larger code

volume for reuse than the smaller one.

Definition 5 (Score on API Numbers). Let q be a

natural language query consisting of a set of terms and

1
r be an API usage pattern related to a code snippet

1
s .

The score on API numbers is calculated as

1

1

1

(,)

|| ||
|| || _ _

_ _

1

SAN q s

r
if r API NUM BOUND

API NUM BOUND

else

=

⎧
<⎪

⎨
⎪
⎩

 (7)

where _ _API NUM BOUND is a constant, and

1
|| ||r denotes the number of the APIs in

1
r

In this work, _ _API NUM BOUND is set to 10.

For example, if there exists another code snippet with

only one line containing a constructor invocation,

FileInputStream fis = new FileInputStream(in_file),

1594 Journal of Internet Technology Volume 19 (2018) No.5

and its related comment is the same as the comment in

the example of Table 4, the system will give the code

snippet a lower SAN value 0.1 (
1

10
=) and a higher

one 0.5 (
5

10
=) for the code snippet in Table 4. An

SAN value ranges from 0 to 1. Based on the three

types of scores, a matchmaking function is defined as

follows.

Definition 6 (Matchmaking Function). Let q be a

natural language query consisting of a set of terms and

1
r be an API usage pattern related to a code snippet

1
s .

An overall score for
1
s is calculated by the following

matchmaking function:

1 1 1 2

1 3 1

(,) (,)

(,) (,),

matchmaking q s w SSS q s w

SC q s w SAN q s

= × + ×

+ ×

 (8)

where
1 2
,w w and

3
w are weights and 1 2 3

1w w w+ + = .

The matchmaking function aggregates the scores of

these three types and returns a value ranges from 0 to 1.

The default values of
1 2
,w w and

3
w are 0.4, 0.4 and

0.2, respectively.

3.5 Implementation Details

For discovering API usage patterns and examples,

we collected 15,814 open source projects from

SourceForge, Eclipse.org, Apache.org, and Google

Code. We developed a web crawler to obtain the

repository information of all projects listed in the four

web sites, and then automatically downloaded the

latest versions of the projects data in October 2014

through Git, Subversion, CVS and Hg Client libraries.

When a project repository was not available or could

not be downloaded, the project was skipped. Once the

projects data were downloaded, all of the files in the

data were scanned, and only Java source files were

parsed. After parsing the Java source files, 5,141,772

code snippets with comments were extracted, and

43,721 API usage patterns with 641,591 API usage

examples have been discovered. Table 5 shows the

numbers of API usage patterns categorized by number

of APIs in a pattern. A large number of API usage

patterns have a length of 2 APIs, and the average

number of APIs used in a pattern is 2.8.

Table 5. Numbers of Mined API Usage Patterns

Number of APIs in a Pattern 1 2 3 4 5 6 7 8 9 10 11-63 Total

Number of Patterns 6,899 16,593 10,363 5,089 2,368 1,119 603 252 145 66 224 43,721

For searching API usage examples of the discovered

usage patterns, a system implementing the Codepus

approach was developed. Figure 3 shows the snapshots

of the Codepus Eclipse plugin. For example, when a

user writes a comment “//read a file” in the source code

editor, the user can press “Alt+d” to enable searching

for code examples. The plugin will extract the sentence

in the comment as a query with removals of special

characters and send a request with the query to the web

application hosted in the server side through a default

Eclipse built-in browser. The search results will be

shown below the source code editor in a split panel.

The search results contain a list of ranked code

snippets with their related comments and a set of

recommended relevant comments for further search.

Press “Alt+d”

Press “Alt+s”

The comment is automatically

used as a query

Related

comment
Code snippets

Figure 3. Snapshots of the Codepus Eclipse plugin for searching code examples

A Comment-Driven Approach to API Usage Patterns Discovery and Search 1595

4 Experimental Evaluation

This section presents the experimental evaluations of

the proposed approach. We designed the experiments

to answer the following research questions:

－ RQ1: What is the performance of Codepus in terms

of the time required by programmers to browse

search results in order to locate the required code

snippets?

－ RQ2: What is the quality of the search results

returned by Codepus in terms of precision?

－ RQ3: What is the performance of Codepus with

regard to computation time on searching code

snippets?

4.1 Browsing Time: A Comparison of

Codepus and a Web Search Engine

To answer RQ1, we conducted an experiment to

evaluate the performance of Codepus in terms of the

amount of time programmers spend on browsing

search results to locate the code snippets to be adopted.

4.1.1 Design of Experiment

In the experiment, 11 real world Java questions are

selected from a question and answer web site, Stack

Overflow.

Table 6 shows the selected questions. Each question

is then formally modeled as a test problem in Java (see

an example in Table 7). Each test problem has a main

method and a problemMethod method. problemMethod

is the method that needs to be implemented to solve the

question, and the types of the input and output of

problemMethod are determined based on the code

shown in the answers of the question from Stack

Overflow. In the main method, several comments are

added to describe the problem. Basically, the

comments describe the input and output of

problemMethod. Because the keywords used in the

queries for solving the problems would largely

influence the quality of search results, we prevented

using the keywords appearing in the web pages of the

questions except proper nouns.

Table 6. The Selected Top Frequently Asked Questions in Stack Overflow

Q1. Read/convert an InputStream to a String

Q2. How to get IP address of current machine using Java

Q3. Reverse a string in Java

Q4. File to byte[] in Java

Q5. How do I remove repeated elements from ArrayList?

Q6. How to append text to an existing file in Java

Q7. Renaming a file using Java

Q8. Convert InputStream to byte array in Java

Q9. Convert from byte array to hex string in java

Q10. How do you Programmatically Download a Webpage in Java

Q11. How can I increment a date by one day in Java?

Table 7. The Test Problem for Question 1 (Q1)

1: import java.io.FileInputStream;

2: import java.io.InputStream;

3: public class Problem01 {

4: static String problemMethod(InputStream inputStream) throws Exception {

5: // Implement the method

6: return null;

7: }

8: public static void main(String[] args) throws Exception {

9: // The content of the file “C:/testfiles/file01.txt” is “Hello World 01”.

10: InputStream inputStream = new FileInputStream(“C:/testfiles/file01.txt”);

11:

12: // The expected result is “Hello World 01”.

13: String result = problemMethod(inputStream);

14:

15: System.out.println(result);

16: /*

17: The output in the console should be:

18: Hello World 01

19: */

20: }

21:}

1596 Journal of Internet Technology Volume 19 (2018) No.5

In the experiment, 20 volunteers with 1-6 years of

experience in Java programming were involved and

acted as real users of Codepus and Google. They were

randomly separated into two groups, says Codepus

Group and Google Group, where the users in Codepus

Group used Eclipse IDE with Codepus to solve the test

problems, while the users in Google Group used

Eclipse IDE with Google Search (www.google.com) to

solve the same test problems. The experiment is

conducted with the following three steps: First, each

user reads the guideline document of the experiment.

Second, each user solves the pretest problems to get

familiar with the style of test problems. At last, each

user starts to solve the test problems.

4.1.2 Experiment Results

The section presents the experiment results and

elaborates strengths and weaknesses of Codepus. In the

experiment, the users gave a number of queries to

search for code snippets by Codepus or Google, and

the queries can be grouped into two types (see

Definition 7).

Definition 7 (Types of Queries). A query is defined as

a Type I query (query with adoption) 1
T

q if the user

who gave the query copied a code snippet shown in the

search result returned by Codepus or Google in

response to the query and pasted it into a test problem;

otherwise, the query is defined as a Type II query

(query without adoption) 2
T

q .

Figure 4 shows a scenario that a user used Codepus

to solve a test problem. At first, the user input a query

q1 to search for code snippets, and the search result

page was shown at 00:05 (1

1

q
α). The user started

browsing the search result, and then switched the

window to the code editor at 00:17 (1

1

q
β) to view the

test problem again. At 01:28 (1

2

q
α), the user switched

the window back to the search result page again and

continued browsing the search result. Thereafter, the

user selected and copied a code snippet. At 01:35 (1

2

q
β),

the user switched the window to the code editor again,

and then pasted (adopted) the code snippet into the test

problem. The user then used the code snippet to solve

the test problem. As a result, query q1 is considered as

a Type I query (query with adoption).

Figure 4. A scenario that contains a Type I query (q1) and a Type II query (q2)

In order to finish the test problem, the user input

another query q2 to search for code snippets, and the

search result page was shown at 03:52 (2

1

q
α). After the

user browsed the search result for nearly 6 seconds, the

user moved the mouse cursor to the search bar and

stopped on it at 03:58 (2

1

q
β), and then typed another

query to search for code snippets.

In this scenario, q1 and q2 are Type I query and the

Type II query, respectively. Furthermore, the time

spent on browsing the search result in response to a

query is formally defined in Definition 8.

Definition 8 (Browsing Time for a Query). Given a

query q, a time point q
α denotes the time at which a

search result is returned or the time at which the

current window is switched from a non-search result

page to a search result page, and a time point
q

β

denotes the time at which the user (a) switches the

current window from a search result page to a non-

search result page, or (b) moves and stops the mouse

cursor on the search bar to type another query. The

time
q
t spent on browsing the search result in response

to the query q is calculated as

1 1

1

()
n

q q

q

i

t β α
=

= −∑ . (9)

In this place, a search result page returned from

Google can be one of the web pages originally linked

from the returned web pages list. For example, if a user

clicked a link in a web pages list returned from Google,

the web page of the link was also viewed as a search

result page. In the scenario of Figure 4, the browsing

time for q1 is the sum of 1 1

1 1

q qβ α− (00:05~00:17) and

A Comment-Driven Approach to API Usage Patterns Discovery and Search 1597

1 1

2 2

q q
β α− (01:28~01:35), that is, 19 seconds; and the

browsing time for q2 is 2 2

1 1

q q
β α− (03:52~03:58), that

is, 6 seconds. Based on Definition 8, the time spent on

browsing search results in response to Type I and Type

II queries when a user was solving a test problem is

defined as Definition 9.

Definition 9 (Browsing Time in Solving a Test

Problem by a User). Let (1 11)
i
p i≤ ≤ be a test

problem, (1 10)
j

u j≤ ≤ be a user, 1 1 1 1

, 1 2
{ , ,..., }

i j

T T T T

p u n
Q q q q=

and 2 2 2 2

, 1 2
{ , ,..., }

i j

T T T T

p u m
Q q q q= be the set of the Type I

queries and Type II queries given by user
j

u when

solving test problem
i
p , respectively. The time spent

on browsing the Type I queries and the Type II queries

when solving the test problem
i
p by user

j
u are

calculated as
1 1 1 1

1 2,

T T T T
np ui j
qQ q q

t t t t= + + +� and
2 2

1,

T T

p ui j
Q q
t t=

2 2

2

T T

m
qq

t t+ + +� , respectively.

There is a need to know the difference between the

time the two groups spent on browsing the search

results of Type I queries as well as Type II queries.

Definition 10 (Average Browsing Time in Solving a

Test Problem by a User). For each problem
i
p , the

average time a user spent on browsing search results

in solving the problem is calculated as

 ,
|| ||

∑()T T1 2
p ,u p ,ui j i j

i

10

Q Q
j=1

p

t + t

U
 (10)

where
i
p

U is the set of users who gave at least one

query when solving the problem
i
p .

For example, in Table 8, the sum of the browsing

time in solving the test problem
i
p by all Codepus

users is
1 2
, ,

10

1

() 13 156 18 18 43 39T T

p u p ui j i j
Q Q

j

t t

=

+ = + + + + +∑

10 26 47 13 383,+ + + + = and there are 9 users who

gave at least one query when solving
i
p . Therefore,

the average browsing time in solving test problem
i
p

by a Codepus user is
383

42.6
9

= seconds.

Table 8. Average Browsing Time in Solving Each Test Problem by a User (in seconds)

1
p

2
p

3
p

4
p

5
p

6
p

7
p

8
p

9
p

10
p

11
p Average

Codepus Group 42.6 18.3 28 55.7 142 49.2 66.4 29.5 48.3 82.8 64 57.0

Google Group 81.8 73.3 34.8 107.9 81.8 58.5 46.8 105.1 163.8 75.2 66.1 81.4

As shown in Table 8, the average browsing time of

Codepus group are less than the ones of Google group

for 8 test problems out of 11, but are more than the

ones of Google groups for 3 test problems. The

average values of the browsing time in solving a

problem by a Codepus user and by a Google user are

57.0 and 81.4 seconds, respectively.

In summary, the experiment results show that the

chance of actually adopting code snippets by a user for

a search with Codepus is not significantly different

from the one with Google, but the average browsing

time a Codepus user spent on locating the code

snippets to be adopted for a search is 46.5% less than

the time a Google user spent. In addition, the average

time a Codepus user spent on browsing search results

in solving a problem are less than those of a Google

user in the most cases (8 out of 11 test problems).

4.1.3 Discussion

This section discusses the limitations of the current

implementation of Codepus. The limitations can be

best explored through investigating the reasons why

the average browsing time of Codepus group in solving

test problems p5, p7 and p10 are more than those of

Google group. We go into details on the users’

behavior in solving the three test problems, and

provide several insights of the limitations of the current

implementation of Codepus.

For problem p5, the corresponding question in Stack

Overflow is “How do I remove repeated elements from

ArrayList?”. The Codepus users who input more than

four Type II queries are u5, u7 and u9. In what follows,

the queries given for the problem by the three users are

discussed.

The Type II queries given by user u5 are “bucket

sort”, “list have”, “list check”, “list elements” and “list

elements count”, which are not the phrases commonly

used in the queries by the other users, such as “remove

repeated” or “delete duplicated”. Therefore, Codepus is

not likely to return the results that can help the user

solve this problem.

The Type II queries given by user u7 are “remove

the same element from list”, “no repucated element in

List”, “List element”, “convert List to set” and “set to

list”. For the first query, although the semantics of the

terms “the same” and “duplicate” are similar, the

former one is not included in the synonym database

(WordNet) used in Codepus system. The word

“repucated” in the second query can be considered as a

misspelling of “replicated”, but currently the

implementation of Codepus does not support spell

checking. Because the user could not get satisfactory

1598 Journal of Internet Technology Volume 19 (2018) No.5

results with the first two queries, the user then

attempted to search with some other queries and

wasted much time on them. Therefore, if Codepus can

return better results for the first two queries, the user

may be able to spend less browsing time for this

problem.

User u10 input the following queries: “delete

repeated elements from list”, “return unrepeated

elements from list”, “return unrepeated elements in

list”, “remove repeated elements in list”, “remove

repeated elements”, “remove repeated string” and

“remove duplicated string”. However, the code

snippets returned by Codepus for all of the queries

were not adopted by the user. After that the user input

a query “remove duplicate from list” and adopted a

code snippet from the result. Although the terms

“delete” and “repeated” are the synonyms of “remove”

and “duplicated”, respectively, the appropriate code

snippets are not ranked in the top 10 list with the

setting of the default value 0.8 for weighting synonyms

in calculating cosine similarities.

For problem p7, the corresponding question is

“Renaming a file using Java”, and 6 users used the

phrase “change file name” in the queries to search for

code snippets. Although the phrases “rename file” and

“change file name” have the same meaning, the latter

one does not in the comments of the code snippets

related to the problem, and the two phrases are not

contained in the synonym database.

For problem p10, the corresponding question is

“How do you Programmatically Download a Webpage

in Java”. Five users used the term “html” in the queries.

Because the term “html” does not appear in the

comments of the code snippets related to the problem,

the users had to spend more time on searching code

snippets with other words, such as “http” and “url”.

In summary, the current implementation of Codepus

can be further improved with the following directions:

(a) mining more open source projects to collect more

terms related to code snippets; (b) extending the

synonym database to include more synonyms, and

optimizing the parameters for weighting synonyms;

and (c) providing spell checking feature.

4.1.4 Threats to Validity

In this section, we discuss the potential threats that

may impact the validity of the experiment results.

Internal Validity. In the context of the evaluation of

the performance with regard to browsing time, the

main threat to internal validity is the difference

between the degrees of Java programming proficiency

of the Codepus and Google users. A programmer who

is proficient in Java programming may spend less time

on browsing code snippets, and therefore it is

important to divide the users into two groups with

approximately equal degrees of proficiency in Java

programming for conducting the experiment. In order

to minimize the threat, we randomly separated 20 users

into two groups and conducted an examination to

evaluate the proficiency degree of each user. The

questions of the examination are selected from Oracle

Certified Professional Java SE7 Programmer Exams

(OCJP) quizzes. With an independent samples t-test,

there is no significant difference between the average

scores of the two groups.

External Validity. The main threats to external

validity of the performance evaluation with regard to

browsing time are problems selection and formulation.

The first threat is that the selected problems for the

experiment might not have been the representative

ones in realistic development. We mitigated this threat

by selecting 11 top frequently asked real world Java

questions from a popular question and answer web site

through a systematic selection process, and designing

the corresponding test problems in Java. The second

threat is that the terms appearing in the test problems

might have influenced the users on inputting the words

of queries. In practices, the vocabulary programmers

can use for constructing queries is open ended. This

threat was minimized by formulating each test problem

as a Java class with a method to be implemented by the

users and preventing using the keywords appearing in

the web page of the corresponding question except

proper nouns.

4.2 Precision: A Comparison of Codepus and

Code Search Systems

In order to answer RQ2, the precisions of three code

search systems, Codepus, Open Hub and GitHub Gists,

were evaluated and compared. In the experiment, the

11 selected top frequently asked questions in Stack

Overflow (listed in Table 6) were used as queries to

search code snippets with the three code search

systems. For each query, every top one code snippet

returned by each code search system was collected.

Because Code Recommenders did not return any code

snippets for the 11 queries, it was not considered in the

experiment of precision evaluation.

Once all of the returns were collected, three experts

with over 15 years of experience in Java programming

were invited to review the returned code snippets.

While an expert reviewed a returned code snippet for a

query, the expert had to give a rating for the relevance

between the code snippet and the query. A rating is one

of the following two values:

－ Relevant: The code snippet is relevant to the query.

－ Irrelevant: The code snippet is irrelevant to the

query.

The precision of the search result for a query is

calculated by the following definition:

Definition 11 (Precision of Search Results). Given a

natural language query q, the precision of the search

result is calculated as

A Comment-Driven Approach to API Usage Patterns Discovery and Search 1599

|| ||

,
|| ||

n

Rel
Precision

Ret
= (11)

where Ret denotes top n returned code snippets, Rel

denotes the code snippets that belong to Ret and are

relevant to q. A code snippet is determined to be

relevant to a query if all of the experts give ratings of

relevant.

Table 9 shows the evaluation results of the

precisions of the three code search systems with

respective to their returned top-1 results. The average

precisions of the three systems for the 11 queries were

calculated as 9%, 45% and 91%, respectively. The t-

values for comparing the average precisions of

Codepus and Open Hub and for comparing the those of

Codepus and Gists are 6.708 and 2.887, respectively.

Both t-values are greater than 2.228 with 10 degrees of

freedom and 95% confidence level, which indicates

that the differences between the average precisions of

Codepus and Open Hub, and between those of

Codepus and Gists are significant. As there may be

more than one relevant results in Open Hub and Gists,

and the results cannot be directly accessed, the recalls

were not measured in the experiment.

Table 9. Comparison of the Precisions of Open Hub, Gists, and Codepus

 Open Hub Gists Codepus
Query

 || ||Ret || ||Rel
1

Precision || ||Ret || ||Rel
1

Precision || ||Ret || ||Rel
1

Precision

1
Read/convert an InputStream to a

String
 1 0 0.00 1 1 1.00 1 1 1.00

2
How to get IP address of current

machine using Java
 1 0 0.00 1 0 0.00 1 1 1.00

3 Reverse a string in Java 1 0 0.00 1 1 1.00 1 1 1.00

4 File to byte[] in Java 1 0 0.00 1 0 0.00 1 1 1.00

5
How do I remove repeated

elements from ArrayList?
 1 0 0.00 1 0 0.00 1 0 0.00

6
How to append text to an existing

file in Java
 1 0 0.00 1 0 0.00 1 1 1.00

7 Renaming a file using Java 1 0 0.00 1 1 1.00 1 1 1.00

8
Convert InputStream to byte array

in Java
 1 0 0.00 1 1 1.00 1 1 1.00

9
Convert from byte array to hex

string in java
 1 1 1.00 1 1 1.00 1 1 1.00

10
How do you Programmatically

Download a Webpage in Java
 1 0 0.00 1 0 0.00 1 1 1.00

11
How can I increment a date by

one day in Java?
 1 0 0.00 1 0 0.00 1 1 1.00

 Average Precision: 0.09 0.45 0.91

4.3 Computation Time

This section answers RQ3 by reporting the

computation time of Codepus tool for searching code

snippets. In the system, the turnaround time of a

request can be broken down into three portions: time of

transmitting the query string to the server, computation

time of processing the request, and time of transmitting

the search results back to the client. Because the sizes

of a request string and a search results page would not

be large in a normal case, we focused more on

optimizing the processing of a request. The

implementation of Codepus tool consists of the

following two optimizations.

Optimization 1. Most of the information for

matchmakings and recommendations are cached in

memory. The cached data include: keywords with tf-

idf values of each API usage pattern, terms with tf-idf

values, degree centrality of each extracted comment,

and API numbers of each API usage pattern.

Additionally, the relations between API usage patterns

and code snippet identifiers, and the relations between

code snippets and their related terms are also cached

and indexed using Java Hashtable API.

Optimization 2. For a query, all SC values (score on

correctness) for all API usage patterns are computed

before computing SSS (score on semantics similarity)

and SAN (score on API numbers) values. If the SC

value of an API usage pattern is computed as 0, the

code snippets related to the pattern will be ignored and

the remaining computations for SSS and SAN values

are omitted. Hence, not all of the SSS and SAN values

of all code snippets should be computed, and only a

relatively small portion whose SS values are greater

than 0 needs be calculated.

Table 10 shows the computation time of searching

code snippets for the 11 selected queries. The average

computation time is 1.546 seconds with standard

deviation of 0.843.

1600 Journal of Internet Technology Volume 19 (2018) No.5

Table 10. Computation Time of Searching Code Snippets for the 11 Queries (In Seconds)

Query# 1 2 3 4 5 6 7 8 9 10 11

Computation Time 2.125 1.156 1.093 1.250 3.109 2.063 0.954 1.719 2.547 0.594 0.391

Average time: 1.546 sec

5 Conclusion

This paper proposes an approach referred to as

Codepus for the discovery of API usage examples

based on mining comments in open source code using

natural language queries. The approach was

implemented as an Eclipse plugin tool integrated with

a developed code search web application. In a practical

application, the proposed approach discovered 43,721

API usage patterns with 641,591 API usage examples

from 15,814 open source projects. Experiment results

revealed the following: (1) Codepus reduced the

browsing time required for locating API usage

examples by 46.5%, compared to the time required

when using Google. (2) The precision of the search

results obtained by Codepus is 91% when using eleven

real-world frequently asked questions, which is

superior to those of Gists and Open Hub. (3) The

average computation time in the search for API usage

examples for the eleven queries was only 1.546

seconds with standard deviation of 0.843.

In the future, we will seek to improve the current

implementation of Codepus as follows: (1) We will

seek to mine a greater number of open source projects

for the selection of terms related to code snippets. (2)

We will extend the synonym database and optimize the

parameters used in the weighting of synonyms. (3) We

will include a spell checking feature.

Acknowledgements

This research is sponsored by Ministry of Science

and Technology under the grants 103-2221-E-006-218

and 105-2221-E-006-154-MY3 in Taiwan.

References

[1] W. B. Frakes, K. Kang, Software Reuse Research: Status and

Future, IEEE Transactions on Software Engineering, Vol. 31,

No. 7, pp. 529-536, July, 2005.

[2] T. Ravichandran, M. A. Rothenberger, Software Reuse

Strategies and Component Markets, Communications of the

ACM, Vol. 46, No. 8, pp. 109-114, August, 2003.

[3] V. R. Basili, L. C. Briand, W. L. Melo, How Reuse Influences

Productivity in Object-Oriented Systems, Communications of

the ACM, Vol. 39, No. 10, pp. 104-116, October, 1996.

[4] S. Haefliger, G. von Krogh, S. Spaeth, Code Reuse in Open

Source Software, Management Science, Vol. 54, No. 1, pp.

180-193, January, 2008.

[5] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,

M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers,

M. B. Rosson, G. Rothermel, M. Shaw, S. Wiedenbeck, The

State of the Art in End-User Software Engineering, ACM

Computing Surveys, Vol. 43, No. 3, pp. 21:1-21:44, April,

2011.

[6] O. Hummel, W. Janjic, C. Atkinson, Code Conjurer: Pulling

Reusable Software out of Thin Air, IEEE Software, Vol. 25,

No. 5, pp. 45-52, September-October, 2008.

[7] F. H. Mbuba, W. Y. C. Wang, Software as a Service

Adoption: Impact on IT Workers and Functions of IT

Department, Journal of Internet Technology, Vol. 15 No. 1,

pp. 103-114, January, 2014.

[8] A. J. Ko, B. A. Myers, H. H. Aung, Six Learning Barriers in

End-User Programming Systems, Proceedings of the 2004

IEEE Symposium on Visual Languages - Human Centric

Computing, Rome, Italy, 2004, pp. 199-206.

[9] Java API, http://docs.oracle.com/javase/7/docs/api/.

[10] MSDN Library, http://msdn.microsoft.com/en-us/library.

[11] http://www.java2s.com/

[12] Microsoft Developer Network, http://code.msdn.microsoft.

com/

[13] Krugle Search, http://opensearch.krugle.org/

[14] Merobase Component Finder, http://www.merobase.com/

[15] Black Duck, Open Hub, https://www.openhub.net/.

[16] W. Maalej, M. P. Robillard, Patterns of Knowledge in API

Reference Documentation, IEEE Transactions on Software

Engineering, Vol. 39, No. 9, pp. 1264-1282, Setpember, 2013.

[17] M. P. Robillard, What Makes APIs Hard to Learn? Answers

from Developers, IEEE Software, Vol. 26, No. 6, pp. 27-34,

November, 2009.

[18] R. Holmes, R. J. Walker, G. C. Murphy, Approximate

Structural Context Matching: An Approach to Recommend

Relevant Examples, IEEE Transactions on Software

Engineering, Vol. 32, No. 12, pp. 952-970, Deccmber, 2006.

[19] J. Kim, S. Lee, S.-W. Hwang, S. Kim, Enriching Documents

with Examples: A Corpus Mining Approach, ACM

Transactions on Information Systems, Vol. 31, No. 1, pp. 1-

27, January, 2013.

[20] S. Chatterjee, S. Juvekar, K. Sen, SNIFF: A Search Engine

for Java Using Free-Form Queries, Proceedings of the 12th

International Conference on Fundamental Approaches to

Software Engineering, York, UK, 2009, pp. 385-400.

[21] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei, MAPO: Mining

and Recommending API Usage Patterns, Proceedings of the

23rd European Conference on ECOOP - Object-Oriented

Programming, Genoa, Italy, 2009, pp. 318-343.

[22] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, D. Zhang,

Mining Succinct and High-Coverage API Usage Patterns

from Source Code, Proceedings of the Tenth International

Workshop on Mining Software Repositories, San Francisco,

CA, 2013, pp. 319-328.

A Comment-Driven Approach to API Usage Patterns Discovery and Search 1601

[23] M. P. Robillard, R. J. Walker, T. Zimmermann,

Recommendation Systems for Software Engineering, IEEE

Software, Vol. 27, No, 4, pp. 80-86, August, 2010.

[24] T. T. Nguyen, H. A. Nguyen, N. H. Pham, Graph-based

Mining of Multiple Object Usage Patterns, Proceedings of the

the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, Amsterdam,

Netherlands, 2009, pp. 383-392.

[25] F. Lv, H. Zhang, J Lou, S. Wang, D. Zhang, J. Zhao,

CodeHow: Effective Code Search Based on API

Understanding and Extended Boolean Model, 2015 30th

IEEE/ACM International Conference on Automated Software

Engineering, Lincoln, NE, 2015, pp. 260-270.

[26] N. Sahavechaphan, K. Claypool, XSnippet: Mining for

Sample Code, Proceedings of the 21st Annual ACM

SIGPLAN Conference on Object-oriented Programming

Systems, Languages, and Applications, Portland, OR, 2006,

pp. 413-430.

[27] D. Mandelin, L. Xu, R. BodíK, D. Kimelman, Jungloid

Mining: Helping to Navigate the API Jungle, Proceedings of

the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, Chicago, IL, 2005, pp.

48-61.

[28] S. Thummalapenta, T. Xie, Parseweb: A Programmer

Assistant for Reusing Open Source Code on the Web,

Proceedings of the Twenty-second IEEE/ACM International

Conference on Automated Software Engineering, Chicago, IL,

2007, pp. 204-213.

[29] J. Ayres, J. Flannick, J. Gehrke, T. Yiu, Sequential Pattern

Mining Using a Bitmap Representation, Proceedings of 8th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Alberta, Canada, 2002, pp. 429-

435.

[30] S. Subramanian, L. Inozemtseva, R. Holmes, Live API

Documentation, Proceedings of the International Conference

on Software Engineering (ICSE), Hyderabad, India, 2014, pp.

643-652.

[31] W. Janjic, O. Hummel, C. Atkinson, Reuse-Oriented Code

Recommendation Systems, in: M. P. Robillard, W. Maalej, R.

J. Walker, Th. Zimmermann (Eds.), Recommendation Systems

in Software Engineering, Springer, Berlin, 2014, pp. 359-386.

[32] Git Hub Gist, https://gist.github.com/

[33] Code Recommenders, http://eclipse.org/ recommenders/

[34] J. Leskovec, A. Rajaraman, J. D. Ullman, Mining of Massive

Datasets, Cambridge University Press, 2011.

Biographies

Shin-Jie Lee is an associate professor

in Computer and Network

Center/Department of CSIE at

National Cheng Kung University in

Taiwan. His research interests include

software engineering and service-

oriented computing. He received his Ph.D. degree in

Computer Science and Information Engineering from

National Central University in Taiwan in 2007.

Xavier Lin is a graduate student in

Department of Computer Science and

Information Engineering at National

Cheng Kung University in Taiwan.

His research interests include software

development and programming.

Wu-Chen Su holds a Master of

Information Management from

National Cheng Kung University,

Taiwan (2007). He is currently a

research staff at Department of

Clinical Sciences at the University of

Kentucky, USA. His main research interests are

software engineering, consumer health informatics and

clinical informatics.

Hsi-Min Chen is an Assistant

Professor in the Department of

Information Engineering and

Computer Science at Feng Chia

University, Taiwan. His research

interests include software engineering,

software architecture, service

computing and distributed computing. Chen received

his Ph.D. in computer science and information

engineering from National Central University, Taiwan.

1602 Journal of Internet Technology Volume 19 (2018) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

