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Abstract 

In complex data analysis or applications, it is often 

necessary to collect, aggregate and manipulate large 

amount of data from multiple sources. Data provenance 

and their approximated summarizations have been proven 

to be helpful for recording and understanding user 

behaviors in these aspects. The growing urgency for 

providing timely feedbacks and the increasing need to 

explore more possible summarization options create a 

much bigger new challenge: exploring more extensive 

state-space under shorter response time constraints and 

fulfilling more complex requirements at the same time. In 

this work, we propose that this can be achieved by 

relaxing the greedy strategy adopted by existing 

approaches and by introducing a more flexible 

optimization strategy based on incremental and adaptive 

sampling. Our evaluations show that, compared to 

existing approaches, summarization processes guided by 

our strategy may produce more flexible and satisfying 

service data provenance summarization results at smaller 

temporal and spatial resource costs. 

Keywords: Data provenance, Summarization, Urgency, 

Diversity, Incremental 

1 Introduction 

Collecting, aggregating and utilizing various sorts of 

user behavior data to provide helpful information has 

already become one of the most important missions for 

many online services. When using or maintaining these 

services, the generated results would often be much 

more assuring and easy to understand if users or 

service providers can know how a specific result 

generated by the service is derived, which data are 

contributing to that result and what roles each group of 

data plays in the derivation process. Data provenance 

[1-2] plays a centric role in the recording and 

understanding of such derivation process. However, 

the huge size of raw data provenance frequently 

prevents us from getting a quick and insightful 

understanding of the information they contain. To 

overcome this obstacle, approximated summarization 

of data provenance [3] was proposed to reduce the size 

of provenance expression to be presented, by grouping 

related raw provenance annotations into abstracted 

annotations according to some semantic similarity 

constraints. Such summarization achieves higher 

clarity and simplicity at the potential costs of possible 

errors in the results of analytics functions applied to the 

summarized data provenance expressions. It is because 

the grouped annotations can no longer provide 

distinctions between original data annotations in the 

provenance expression, which are necessary for some 

analytic functions, e.g. the provisioning use of data 

provenance expression [1]. The degree of such errors is 

quantitatively defined as the ‘distance’ of the 

summarization.  

Existing approaches assume that a size target and 

distance constraint will be provided by users as input in 

addition to the set of provenance expressions to be 

summarized. Given these inputs, the summarization 

process will try to reach the size goal by merging 

annotations in the provenance expressions while still 

meeting the distance constraint.  

Unfortunately, given non-trivial distance constraints, 

it is very hard (i.e. #P-hard) to find the exact smallest 

possible summarization [3] since the computation of 

accurate distance from the original provenance is 

already #P-hard. In [3], the state-of-art data provenance 

summarization algorithm adopts a greedy strategy to 

iteratively choose the pair of annotations with smaller 

summarization size or better distance performance 

among all candidate pairs for grouping until the target 

size is reached or any candidate annotation grouping 

operation would disrupt the distance constraint. 

However, as the number of provenance elements to be 

summarized increases, there will be more and more 

feasible candidate annotation mappings that need to be 

considered. This might introduce a heavier temporal 

cost for computing and comparing the error distance. 

On the other hand, following the greedy choice as the 

state-space expands also increases the likelihood of 

falling into the trap of local minima, which may highly 
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deteriorate the quality of the summarization.  

What is more, however, is that there exists real-

world requirements that implore us to explore more 

summarization possibilities so as to satisfy requirements 

that go beyond merely satisfying size and distance 

constraints. When trying to figure out why sometimes 

some rating results from a movie rating service seem to 

be abnormally high, providing summarizations of small 

sizes and small error distances alone may not be 

enough. Actually, it might be more helpful if the 

provenance elements that lead to abnormal results 

might be grouped together as abstracted annotations to 

describe their amount and common properties. 

However, this will imply that many more provenance 

expressions and possible solutions for provenance 

summarization need to be considered. The dilemma 

here is that given these additional requirements and 

workloads, users may want to have a real-time 

interactive experience with even shorter response delay.  

These examples suggest that data provenance 

summarization processes must evolve to cope with not 

only the distance and size constraints imposed on the 

end results, but also allow more flexible and cost-

efficient strategies for selecting candidate mappings 

during the summarization process so as to explore 

more possible choices and to deal with the enormous 

size of provenance expressions. On top of these, the 

summarization process should be capable of producing 

satisfactory results within short response times. As 

most existing approaches assume an absolute greedy 

strategy at each iteration, they become more prone to 

local minima trap and less suitable for meeting the 

above requirements as the size of provenance 

expressions expands and the user requirements get 

more complex.  

In response to these challenges, we propose the 

strategy of Flexible Annotation Sampling and Testing 

(FAST). Compared to absolute greedy strategies 

(which, however, can still be subsumed as special 

cases of FAST), the key feature of FAST is its 

flexibility in choosing candidate mappings according 

to customizable strategies (instead of evaluating all 

candidates every time) to fulfill a broader range of data 

provenance summarization functionalities and non-

functional goals in various scenarios and contexts. We 

will show that FAST is more realistic in scenarios 

where the sizes of provenance expressions are large 

and user requirements are less explicit but stricter and 

more complex. Furthermore, it turns out that by 

adopting a more flexible sampling and selection 

strategy, better size-distance performance can 

sometimes be achieved as the local minima trap can be 

avoided. 

To facilitate FAST to be more customizable and 

practical, we propose a data provenance summarization 

process framework that adopts an incremental 

approach to modify and refine the selection criteria of 

candidate annotation mappings to be analyzed and 

compared. With this framework, broader range of 

selection requirements and more urgent time response 

constraints can be supported to help the summarization 

process adopt to varying application contexts.  

The rest of this paper is organized as follows. After 

recalling some preliminaries about data provenance 

and approximated data provenance summarization in 

Section 2, we will first analyze the drawbacks of 

adopting an absolute greedy strategy and then 

introduce the concept of flexible data provenance 

summarization and the main components of Flexible 

Annotation Sampling and Testing in Section 3. Based 

on these components, we propose an incremental 

approximated data provenance summarization 

framework in Section 4 and discuss its possible 

applications in several representative use cases, 

including agile provenance summarization response 

and provenance stream summarization. Experiment 

evaluations are featured in Section 5. Section 6 

discusses related work and our contributions. Finally, 

Section 7 concludes the paper with discussions on 

possible venues of future work. 

2 Preliminaries 

We first recall the concepts of provenance semiring 

and the summarization of provenance semiring 

expressions [2-3].  

2.1 Provenance Semiring, Valuations and 

Provisioning 

In this paper, we assume the use and the notation of 

semiring provenance model. However, the approach 

proposed in this paper can be extended easily to other 

provenance models [4-5]. Semiring provenance model 

records provenance information with a finite set X of 

provenance annotations, which can be understood as 

the basic data items or elements. For example, an 

annotation may be used to symbolize a row or a field in 

database, a user of an information system, or a 

transaction recorded by a system. The provenance 

information of the operation histories of these items is 

recorded using the annotations as identifiers and 

organized as an algebraic structure called provenance 

semiring. Provenance semiring has been used to 

capture provenance for positive relational queries. The 

description format of aggregation functions also 

supports aggregation operators such as SUM, AVG, 

and MAX. 

Users analyze and interact with data provenance 

mainly through operations called provisioning, which 

is the operation of computing the changes to the results 

after applying certain modifications (specified by users) 

to the data items in the provenance semiring 

expressions. For example, when we suspect that some 

data items in the expression are contributed by 

malicious users, we may apply the provisioning 
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operation to remove these items from the expression 

according to certain scam detection rules and 

recalculate the end result, from which the influence of 

malicious users has been cancelled. This operation is 

implemented by assigning true / false valuations on 

each element in the expression, so as to control 

whether they might contribute to the final result or not. 

2.2 Summarization through Grouping and 

Mapping 

In order to cope with the increasing complexity and 

length the provenance expressions, and to help users 

better understand the key messages brought by these 

expressions, approximated summarization of data 

provenance was proposed in [3]. Instead of offering 

users the raw expressions, provenance expressions are 

reduced and transformed to highlight the key concept 

groups in the expressions only. Specifically, data 

provenance can be summarized by mapping multiple 

original annotations to abstract but meaningful 

annotations both to reduce the size of the expression 

and to convey a higher level message. Given an 

original provenance expression x, such mapping is 

denoted as h(x). However, during the summarization 

process, the distinction between original annotations 

will also be lost, and this might result in the 

deterioration of the quality of the provenance 

expression. 

To counterbalance and control the loss of quality, 

existing works propose size, distance and semantic 

relatedness to be the three considerations for 

provenance summarization. Since the number of 

annotations of a provenance expression largely 

determines its complexity, it has been taken to be the 

‘size’ of the provenance expression and included as 

part of the goal to be optimized for the summarization 

of provenance. To ensure the grouped annotations 

make sense instead of becoming a meaningless set of 

random annotations, only similar annotations pairs (e.g. 

sharing some common attributes or characteristics) will 

be considered for mapping. The third consideration is 

defined as the ‘distance’ between the original and 

summarized expression, which is in turn dependent on 

the specific provisioning use intended by the user. 

Given a set of user-specified intended provisioning 

uses, which are described fully by the valuation 

function VAL-FUNC and the combiner function φ (see 

[3] for detailed definition), the difference of the 

provisioning result of the original provenance 

expression and the summarized provenance expression 

can be evaluated and collected. For various instances 

of VAL-FUNC and choices of distance measures, we 

refer readers to [3]. 

Since it has been proven that computing an optimal 

summarization with respect to the above considerations 

is #P-hard (since even computing the accurate distance 

is already #P-hard), existing work often uses an 

approximated algorithm for computing the distance 

between two provenance expressions, and adopts an 

absolute greedy strategy to search for nearly optimal 

summarization with respect to the above three 

considerations (shown in Algorithm 1 below). 

Algorithm 1 uses greedy criteria at each iteration to 

select the currently best-ranking candidate annotation 

mapping for the summarization. As we will show in 

the next section, this strategy may not be flexible 

enough when the number of annotations in provenance 

expressions are large or when the user requirements for 

the data provenance summarization service become 

more complex. These serve exactly as the motivation 

of our study, to seek for a more flexible treatment of 

provenance summarization. 

 

 

Algorithm 1. Existing provenance summarization

process adapted from [3] 

Require: 
0
p  (original provenance epxression) Ann

(annotations in p ), ϕ  (the combiner

function), 
Ann

V  (VAL-FUNC function),

TSIZE, TDIST (size and distance bound) 

Return: Summary provenance expression 
1
p  

1 p′  = smallest equivalent from of
0
p  

2 while | p′ | > TSIZE or dist(
0
p , p′ , 

Ann
V )  

< TDIST do 

3             for every h∈ CandidateMapping ( p′ ) do 

4                :
cand
p = h ( p′ ) 

5                if CandidateScore (pcand)  is maximal  

               then 

6                      :
prev

p p′ ′=  

7                     :
cand

p p′ =  

8 if dist(
0
p , p′ , 

Ann
V ) then return 

prev
p′  

9 return p′  

 

In Algorithm 1, 
0
p  is first transformed to its 

smallest equivalent form (in terms of provisioning 

distance) [3] before other candidate annotation 

mappings are considered for summarization. A best-

ranking candidate annotation mapping will be chosen 

at each iteration and applied to reduce the size of the 

provenance expression, until either TSIZE is reached 

or the provisioning error distance exceeds TDIST. 

Here, a CandidateScore function is used to rank the 

candidate annotation mappings according to their sizes 

and distances with respect to the original provenance. 

In [3], a linear combination of these two considerations 

was proposed to mix them together according to some 

weights (wDist and wSize). 
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3 Problem Solution 

3.1 Requirements of Flexibility 

Three variants of provenance summarization 

problem have been studied in [3] using the algorithm 

shown in Section 2. Although the goals (target size or 

target distance) and strategies (heuristic weights) are 

specified in different ways, all three forms share the 

common characteristics of adopting an absolute and 

fixed greedy strategy throughout the summarization 

process. However, as the size of provenance 

expressions increases, adopting an absolute greedy 

strategy becomes more costly and less effective as 

there are more and more candidate annotation 

mappings that need to be considered at each iteration. 

And an absolute greedy strategy would be more likely 

to fall into the trap of local minima at an earlier stage. 

These consequences further lead to the deterioration of 

service quality of a summarization process. Users 

might feel restricted about the size of provenance 

expressions that they might input, and suffer from a 

longer response time before they may observe the 

feedback and prepare next requests accordingly. 

In order to explore possible alternative strategies for 

more flexible candidate annotations mapping 

evaluation and decision, we propose to relax the greedy 

selection criteria by allowing the summarization process 

to choose ‘non-optimal’ directions by some 

probabilities. By relaxing the greedy criteria, it 

becomes possible for users to achieve more “flexible” 

data provenance summarization in the following three 

ways. 

Flexible Search-space. By allowing the summarization 

process to choose candidates that are not locally-

optimal at early iterations of the summarization process, 

it allows a more extensive exploration of the search 

space of possible solutions. Thus we may avoid falling 

into the trap of local minima at an earlier stage. Similar 

observations and the strategy of “accepting the worse” 

has been found helpful in simulated annealing [6-7] 

and genetic algorithms [8]. 

Flexible workload capability. Once the absolute 

greedy criteria is removed, we could perform more 

flexible arrangement of summarization tasks to cope 

with heavier workload [9-10]. For example, we could 

reduce the number of candidate annotation mappings to 

be considered at each iteration by focusing on only 

some limited parts of data provenance at each iteration. 

In this way, the overall workload of the summarization 

process can be lowered significantly. In scenarios 

involving non-trivial workloads such as provenance 

repository summarization, which might consume a 

significant amount of computing and memory 

resources, such reduction would be very important. 

Flexible response time arrangement. As a 

consequence of the previous re-arrangement of 

workload, it becomes possible for us to provide users 

with summarization feedbacks within a shorter period 

of response time. We may also provide users with 

ongoing incremental results so that users may have a 

more continuous and real-time experience. As the 

response time decreases, users or automatic 

summarization processes can afford to perform 

multiple summarization attempts before deciding 

whether the summarization should be continued or 

stopped for strategy readjustment. 

In this paper, we propose to realize the above ideas 

of flexible data provenance summarization by 

modifying the existing greedy algorithm given in 

Algorithm 1. Instead of always choosing the local 

optimal candidate annotation mapping, we attempt to 

both narrow down the scope of candidates to be 

considered at each iteration and also extend the state-

space to be explored by relaxing the greedy criteria. 

However, the removal of absolute greedy criteria 

also results in the possibility of missing out ‘good’ 

choices. Therefore, we still need to decide carefully on 

how we should select and compare which parts of 

provenance expressions to be focused on and how to 

refine our searching and optimization strategies 

adaptively. Admittedly, the best answers or solutions to 

these issues vary due to the selection of domain and 

context and there might not be a perfect solution that 

can be found once and for all. Yet, we believe that a 

reasonable flexible strategy can be achieved by 

considering issues in the next section. 

3.2 Quality Considerations beyond Distance 

and Size 

In [3], provenance size, semantic constraints and 

distance have been established as the main 

considerations of provenance summarization quality. 

To achieve more flexible and descriptive 

summarization requirements specification, we further 

propose to quantify and include the utility of the 

summarization results to the users. Here utility 

describes how helpful the content of the summarization 

will be to the users. For example, if users are interested 

in knowing more about how data provided by young 

male users is contributing to the derivation of a piece 

of query result, then it might be better for the 

summarization process to group together more 

annotations with male property and a relatively low 

average age value. A summary that includes more of 

this kind of summarized annotations may be of higher 

utilities to users in this example. Of course, 

considerations of utility should be combined with the 

quality constraints specified by the users in terms of 

the previously identified criteria of semantic 

relatedness, target size and upper limit of distance. 

Here, we introduce the notion of utility function to 

measure the utility of provenance summarization to the 

users. 

Definition 3.1 (Quality Score). Given some original 
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provenance p and summary ( )p h p′ = , we define 

( , ) (1 ) ( , )
| | ( , )

qual p p p p
p dist p p

α β
α β μ′ ′= − − ⋅ + +

′ ′
 

where 0 , 1α β≤ ≤  and 0 1α β≤ + ≤ , to be the overall 

quality evaluation of summarization p′  against 

original provenance p . Here, µ  is a function 

measuring the utility of summary p′  to users 

according to some application-specific charateristics of 

the annotations in p  and p′ . Weight parameters α  

and β  together control how each quality consideration 

may affect the outcome of quality score. 

There are many ways to quantitatively define μ for 

various scenarios. Here, we give some examples below. 

(1) Semantic Differences assess how different each 

summarized annotation is against others by summing 

up the quantity of their semantic differences. By 

achieving a higher semantic differences among 

summarized annotations, we may avoid trivial 

summarization solutions in which every annotation 

looks almost the same and does not tell much about 

how different kinds of items are contributing to the 

derivation result. Users may specify their preference 

level of semantic difference. 

(2) Target Attribute Percentage computes the 

percentage of occurrences of some user-specified 

attributes in summarized annotations. This may help 

users acquire summarized annotations that correspond 

to the attributes they are interested in. 

(3) Attribute Entropy measures the amount of 

uncertainty that the original attributes in each 

summarized annotations might have when compared to 

those of the original provenance. As summarized 

annotations grow larger, the type of entities each 

annotation represents becomes more ambiguous. 

Attribute Entropy can be introduced to minimize 

ambiguity of some attribute dimensions specified by 

the users. 

3.3 Sampling and Updating Policy 

Based on the above discussion on flexible 

summarization requirements and quality considerations, 

we define the key characteristics of our Flexible 

Annotation Sampling and Testing (FAST) strategy as 

follows. 

1. At each approximation iteration, only those 

candidate mappings that are related to a selected set of 

annotations Ann′  will be taken into consideration; 

2. Annotations in Ann′  are sampled from the full set 

of unmapped annotations Ann according to some 

sampling distribution F ; 

3. A best candidate is chosen from the selected 

candidate annotation mappings and will be included in 

the current summarization solution at each iteration 

based on the quality considerations described 

previously; 

4. Sampling distribution F  can be updated 

dynamically in order to fulfill certain requirements. 

By adopting FAST, the locally optimal candidate 

annotation mapping may not be taken into 

consideration if its related annotations are not selected 

as members of Ann’ (Characteristic 2) in the first place. 

With FAST, users can control the probability of 

accepting a worse-than-local-optimal candidate 

annotation mapping. For example, given an iteration 

where there are n annotations from which k 

annotations are selected by equal probabilities, there 

will be a probability of 
2

2

k

n

k

n

c
P

c

−

−

=  that a certain pair of 

annotations will be selected. In other words, suppose 

we select one optimal pair of annotations to be grouped 

together at each iteration (as is done in [3]) under the 

above assumptions, the probability of accepting a 

worse-than-local-optimal candidate mapping will be 
2

2
1 1

k

n

worse k

n

c
P P

c

−

−

= − = − . From this example, it is clear 

that as n increases or k decreases, 
worse
P  will get greater, 

which intuitively suggests that the origin greedy 

strategy is relaxed to a greater degree. Therefore, at the 

beginning stages of the summarization process, it 

would be likely to have a more relaxed strategy, as the 

total number of annotations n is larger. Such strategy 

may allow us to explore more extensive state-space at 

the early stages of the summarization process, but with 

less likelihood to fall into a local optimal trap. On the 

other hand, as the summarization process approaches 

towards the end, n decreases and 
worse
P  increases, so 

FAST will become more similar with the original 

greedy strategy. This is reasonable because at this stage, 

it will not be worth to risk getting worse results by 

dropping out of the local optimal trend. 

By adopting the sampling strategy, the number of 

candidate annotation mappings to be considered at 

each iteration is reduced and consequently there will be 

an efficiency boost to the summarization process. 

However, in order to control the loss of incomplete 

coverage, we may force that a certain percentage of 

annotations have to be included in the selected set. Of 

course, we can also include the considerations for 

summarization quality during the sampling. To do this, 

we may adaptively raise or lower the probability for 

certain annotations to be sampled according to user 

requirements. 

Furthermore, the dynamic manipulation of sampling 

distribution may also be adopted to re-use information 

produced by previous iterations. We could manipulate 

the distribution so that those annotations whose related 

annotation mappings have been observed to be less 

favorable (e.g. with lower over utility score or overall 

quality score) to be less likely to be sampled in the next 

iteration. By adopting these strategies, information 
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produced by each itereation can be passed onto the 

successive iterations. 

To wrap up all these, we define the concept of 

sampling policy as follows: 

Definition 3.2 (Sampling Policy). Given some 

provenance summarization quality score qual and 

original provenance p, we define 

 : ( , ) , ,qual p count Fσ δ→< >   

to be the sampling policy for original provenance p  

under the requirements described by qual. In this 

definition, count refers to the number of annotations to 

be sampled in the next iteration, F refers to the 

sampling distribution or bias for each annotation to be 

sampled, and δ  refers to the strategy for updating the 

sampling policy. 

4 Computing Data Provenance Summar-

ization Using FAST 

4.1 Example Summarization Problems and 

Strategies 

Equipped with Flexible Annotation Sampling and 

Testing technique, the original provenance 

summarization process can evolve to cope with more 

diverse and challenging scenarios in real-world 

applications. Below, we will present some examples 

where FAST can be applied. 

Relaxed Greedy Search As discussed in the last 

section, we could adopt FAST to relax the original 

greedy used in [3] to avoid falling into the trap of local 

minima at the earlier stage of summarzation process. In 

such cases, we need to carefully control our sampling 

rate in order to achieve a reasonable rate of accepting 

worse local solutions. 

Rapid Response In cases when a quick reponse is 

required, we may limit the number of candidate 

annotation mappings to be considered so as to reduce 

the computation time of each iteration significantly. As 

this might result in a more incomplete set of candidate 

mappings to be considered, it will be important to 

observe how such limitations may affect the quality 

and balance between short response time and better 

summarizatoin quality. 

Complex Quality Goal Optimization When trying to 

achieve a more complex quality goal that is made up of 

not only size-distance constraints but also some user-

specified utility goals, it would be useful if the utility 

information computed at each iteration of the 

summarization process could be passed on to the 

successive iterations by manipulating the sampling 

policy and probabilities accordingly. In this case, the 

design of the sampling probability feedback 

mechanism becomes one of the key issues that 

determines the quality and efficiency of the 

summarization outcome. 

Stream Compression We argue that FAST can be 

used to cope with large quantity of stream-like 

provenance data because we can flexibly choose when 

to perform compressions and what parts to focus on as 

the provenance information streams in. For example, 

we may drastically lower the workload of 

summarization by grouping only those annotations that 

arrive at neighbouring periods together, or having 

some other common attributes. These strategies can be 

specified conveniently by controlling the sampling 

policy used in FAST. 

From these examples, it is clear that the input of 

sampling / update policy and quality function 

description are the two major configurations that users 

need to provide. Moreover, similar to previous 

approaches, users may input their target size and 

distance to serve as the stopping criteria for the 

summarization process. In next subsection, we will 

discuss a general provenacne summarization 

framework based on FAST to support the above 

scenarios. 

4.2 Provenance Summarization Algorithm 

Using FAST 

The above discussion on flexible requirements and 

our FAST approach lead to Algorithm 2, a generic 

framework for provenance summarization based on 

FAST. 

Compared to Algorithm 1, Algorithm 2 takes the 

additional sampling policy σ and quality function qual  

as input. Users may still specify the original quality 

constraint of size (TSIZE) and distance (TDIST).  

At line 7, the algorithm starts the summarization 

process by selecting the first set of sampled 

annotations to be considered using the initial sampling 

policy σ . Starting from this initial set, the algorithm 

samples and tests candidate annotation mappings to be 

applied on the summarized provenance expression p’ 

iteratively. At line 5, the iteration condition asserts that 

the distance of p’ from p does not exceed the user-

specified TDIST. At line 10, we maintain the size of 

the set of provenance elements related to the sampled 

annotation Ann’, denoted as Size( ,p Ann′ ′ ) such that it 

does not exceed the user-specified TSIZE. By doing 

this, it is guaranteed that the final annotation size of the 

summarized provenance expression fits into TSIZE. 

Through the loop from line 10 to line 15, p’ is 

summarized iteratively using the available annotation 

mappings allowed by Ann’. We call an execution of 

this loop a sampling-summarization cycle. Once TSIZE 

is reached as a sampling-summarization cycle 

completes, we remove those ‘unused’ (i.e. not grouped 

by any annotation mapping) annotations among the 

latest sampled annotations Ann
σ

 from Ann’ and put 

them back to the sampling pool poolAnn  . Furthermore, 

we update our sampling policy (if necessary) each time 
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after we complete a sampling-summarization cycle and 

before the next cycle begins. The summarization 

process terminates once all annotations have been put 

into consideration. If the provisioning distance of the 

summarized provenance expression exceeds the user 

specified bound TDIST at the end of the iteration, the 

algorithm returns its last intermediate result that fits the 

TDIST bound. Otherwise, a successfully summarized 

provenance expression is returned. 
 

 

Algorithm 2. FAST Algorithm Framework 

Require: The original expression 
0
p with annotations

Ann , combiner function ϕ  and VAL-FUNC

function ,
Ann

V  sampling policy σ =<count,

F, δ> quality function qual, size bound

TSIZE, distance bound TDIST 

Return: Summary provenance expression 
1
p  

1 Ann′  := φ  

2 
poolAnn := Ann  

3 p′ :=
0
p  

4 :prevp p′ ′=  

5 while dist(
0
p , p′ ,

Ann
V ) < TDIST poolAnn φ∧ ≠

do 

6 :prevp p′ ′=  

7      select Annotations Ann
σ

 from poolAnn   

     according to σ  

8      remove Ann
σ

 from poolAnn  

9      Ann’:=Ann’ Ann
σ

∪  

10      while | Ann′ |>TSIZE do 

11             for every h∈ CandidateMapping( p′ )  

            related to Ann’ do 

12                :
cand
p = h ( p′ ) 

13                if qual (pcand)  is maximal then 

14                     : ( )p h p p
σ

′ ′= ∪  

15                      Update Ann′  according to h  

16                    if dist(
0
p , p′ ,

Ann
V ) > TDIST then  

                   return 
prev

p  

17     (optional) update σ  according to δ 

18 return p′  

 

Algorithm 2 is certainly not the only way of using 

FAST approach in data provenance summarization. 

Many other alternatives exist in terms of how the goal 

on distance constraint, sizes and user utilities are 

specified and optimized, how the size of Ann’ is 

controlled instead of reducing | |Ann′  to fit TSIZE 

every time, etc. Nonetheless, we believe that 

Algorithm 2 can serve as an illustrating example to 

show how FAST operations can be integrated together 

with our initial optimization goals. We also notice that 

Algorithm 2 actually becomes equivalent with the 

original algorithm when the utility requirement µ 

measures user utility by target size and the sampling 

policy σ  is to take all annotations at once. Thus, 

Algorithm 2 can demonstrate the difference in 

computational complexity before and after adopting 

FAST. 

As has been discussed previously, most of the 

computational costs of provenance summarization 

originate from the repetitive execution of the costly 

distance computing function. In Algorithm 2, this 

function is included as part of the quality score 

computation function qual. Therefore, we focus our 

analysis of temporal complexity on the execution of 

the qual function. 

Proposition 4.1 Let qual be the function to compute the 

quality score of provenance summarization p’=h(p) of 

some original provenance p. Given a provenance 

expression p containing n annotations, qual will be 

executed for 

 2( | | )O n k Ann′⋅ ⋅   

times in Algorithm 2, if the upper limit of the size of the 

selected set of annotations is O( | |Ann′ ) and at most k  

annotations are sampled according to σ  each time. 

Proof. Let us first consider the outer loop (line 5 to 

line 17). Since at each iteration, at least one annotation 

will be selected and removed from poolAnn , the loop 

from line 5 to line 17 will be executed for O(n) times. 

As for the inner while loop, a total number of 

| | (| | 1)
( )

2

Ann Ann
O

′ ′ −

 candidate annotation pairs would 

be evaluated and compared during each iteration. Since 

it takes at most k  iterations before | |Ann′  is reduced 

to TSIZE ( | |Ann′  is reduced by at least 1 at each 

iteration), the inner loop will be executed for at most 

k  times. Consequently, the function qual will be 

executed for times. 

 2( | | )O n k Ann′⋅ ⋅   

Given Proposition 4.1, we may compare the 

difference in temporal complexity between Algorithm 

2 and Algorithm 1. As k  and | |Ann′ approach n , 

Algorithm 2 wil become the absolute greedy algorithm 

as Algorithm 1 is, and the costly qual would have been 

executed for 4( )O n  times. However, if k  and | |Ann′  

are relatively small constants that do not grow in 

accordance to the growth of n , the temporal 

complexity of Algorithm 2 can be treated as linear 

since 2( | | )O n k Ann′⋅ ⋅  can be simplified as ( )O n c⋅ , 

where 2| |C k Ann′= ⋅ . In the next section, we will 

demonstrate by experiments that when n  is large, the 

difference in temporal complexities between Algorithm 

2 and Algorithm 1 under natural configurations can be 
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very significant. 

5 Experiments 

In this section, we will investigate how FAST based 

provenance summarization algorithm performs with 

reference to the greedy provenance summarization 

algorithm (denoted as GREEDY) proposed in [3]. This 

investigation will be conducted in two different 

settings. First, since the GREEDY considers only size 

and distance as the optimization goal, we will compare 

FAST and GREEDY for their size-distance 

performance. We will also demonstrate the superiority 

of FAST in temporal efficiency when compared to 

GREEDY. In the second setting, we would like to 

investigate how cost-effective FAST could achieve 

user-specified utility requirements by comparing both 

the size-distance performance and utility score of the 

summarizations provided by GREEDY and FAST. 

The following experiments are all carried out using 

the widely used provenance repository of MovieLens 

[11], which is also one of the benchmarks used in [3] 

for provenance summarization quality evaluation. 

5.1 Size-Distance and Temporal Performance 

We first evaluate the size-distance performance of 

FAST by comparing with that of the existing 

GREEDY approach. The evaluation was performed for 

provenance expressions of various sizes, ranging from 

200 annotations to 2000 annotations. For clearer 

comparisons, we fixed the target size as 100 

annotations and observed the differences in distance 

when we use the GREEDY stragegy and FAST 

strategy with different incremental sample size k 

(number of annotations added at each iteration) 

configuration. 

Furthermore, we present the temporal performance 

of the FAST algorithm under different configurations 

and also compare them against those from the 

GREEDY. For the GREEDY approach, we chose the 

configuration of wDist = wSize = 0.5 as the heuristic 

weights when calculating the candidate score of 

distance and size respectively. This configuration was 

chosen because it seems to perform better than most 

other configurations in terms of the size-distance 

performance. Therefore, it should be a representative 

and reasonable choice for the GREEDY configuration. 

Note that in this part of the experiment, no user utility 

score was computed nor considered during the 

optimization, as this was not part of the considerations 

taken by the previous approach. 

From Figure 1, we can see that by adopting an 

incremental strategy, the FAST based algorithm incurs 

drastically much less temporal cost (one or two 

magnitudes smaller) than the existing approach 

(GREEDY). Moreover, it shows that the temporal cost 

of GREEDY grows polynomially whereas FAST 

grows linearly. This agrees with our complexity 

analysis in Proposition 4.1. Figure 2 shows the 

temporal costs of FAST under different configurations. 

From this figure, it can be concluded that smaller k 

(sample size) may result in smaller temporal cost. 

 

Figure 1. Time cost of FAST v. GREEDY 

 

Figure 2. FAST time costs under various sample sizes 

In terms of the distance performance, Figure 3 

shows that the FAST based approach produces less 

distance than GREEDY in most cases. This can be 

explained as the effect of the relaxed-greedy strategy 

which has been discussed in the previous sections. It is 

worth mentioning that different configurations of k 

have impacts on the distance of the outcome. The 

figure shows that the selection of k should not neither 

too high nor too low so as to achieve the best 

performance. This is reasonable since when k is too 

high, the greedy strategy cannot be relaxed enough to 

encourage more extensive state-space exploration 

whereas the risk of missing good candidate mappings 

will increase when k is too small. 

 

Figure 3. Distance performance of FAST v. GREEDY 
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5.2 User Utility Case Study: Entropy 

Reduction 

In the second part of the experiments, we use 

entropy reduction as a use case to evaluate how well 

FAST based provenance summarization can respond to 

user utility requirements and can take balance between 

utility score and traditional quality (i.e. distance and 

size) considerations. Entropy reduction is about 

controlling the ‘purity’ of the type of items each 

annotation contains. Although semantic constraints 

have already been imposed such that only semantically 

similar or related annotations may be grouped together, 

the ‘purity’ of entities symbolized by each summarized 

annotations has so far not been quantified and 

considered as part of the optimization goal during 

provenance summarization. To quantitatively describe 

the ‘purity’ of each summarized annotation, we use the 

classic definition of entropy [12] to measure the 

amount of uncertainty in the set of attributes owned by 

each summarized annotation. Intuitively, when there is 

a higher variance among the attribute values contained 

in a grouped annotation, the entropy will become 

higher; and when the variance is lower (i.e. more 

‘pure’), the entropy should be lower and sometimes 

even close to zero.  

We have implemented entropy computation and 

ranking as the utility function µ, and include the 

ranking of entropy as part of the consideration in the 

quality function qual. The attribute dimension 

‘Occupation’ of the users is used as the target 

dimension while computing entropies. In other words, 

the utility score and in turns the quality score favors 

summarized annotations with pure Occupation 

attributes. We compare the performances of our 

proposed algorithm under various FAST configurations, 

as well as the special case when we sample all 

candidate annotations once and for all, i.e. when our 

FAST becomes equivalent with GREEDY except for 

the fact that additional utility considerations are 

considered in the optimization. In the following 

experiments, we use the SUM aggregation function 

and the “Cancel One Annotation” valuation. 

Figure 4 and Figure 5 show that by introducing 

attribute entropy as a utility consideration, entropy 

could be significantly reduced. As a trade-off, however, 

the distances become slightly greater than those 

produced by FAST when the entropy utility score is 

not considered. Furthermore, incremental FAST 

approach demonstrates far better temporal performance 

(as is shown in Figure 6). 

5.3 Discussions 

Based on the above observations, we can see that 

incremental summarization using FAST is a promising 

technique to reduce the time costs of summarization 

process. It also allows more extensive range of search 

possibilities for provenance summarization, which  

 

Figure 4. Entropy performance 

 

Figure 5. Distance performance 

 

Figure 6. Temporal performance 

responds to the flexibility requirements that we have 

identified at the earlier parts of this paper, i.e. Flexible 

Search-space, Flexible Workload Capability and 

Flexible Time-Arrangment. These new features are 

important to give nice and flexible user experience, 

which in turn will allow more user utility requirements 

and exploration possibilities to be considered in 

provenance summarization. However, there is still a 

large potential open space for investigatiom and 

exploration, e.g. the design of more dedicated sampling 

policy, the application of various utility score 

evaluation methods, etc. We believe that these would 

be important directions for future researches. 

6 Related Work 

Data provenance is related to various data structures 

and technologies proposed to record the generation 

process or the derivation process of a data item or 
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query results [13-14]. It has been successfully applied 

in areas such as compliance checking, data access 

control and estimation of trust [15-17]. A series of 

challenges have been identified [18-19] for the 

application of data provenance in real-world 

applications. In particular, the ever-growing size and 

complexity of provenance data make it more and more 

difficult for users to grasp the essential messages in 

provenance data in real time. In response to this 

challenge, researchers have looking for various 

methods to reduce the size or complexity of data 

provenance. In [20], the authors proposed that 

provenance data can be explored in an interactive way 

by presenting a limited part of provenance information 

at a time. This is quite similar to our incremental 

approach. However, no summarization or compression 

of data provenance is involved in [20]. In [21] lossless 

compression of provenance graph is proposed, but the 

drawback is that no high-level semantics of the 

underlying provenance data is considered or presented. 

Our work is most similar with the work in [3] from the 

viewpoint of the summarization of annotation mapping.  

The optimization techniques in FAST share some 

common characteristics with existing techniques such 

as simulated annealing and genetic algorithms. 

Provenance summarization can also be viewed as a 

special manifestation of multi-objective optimization 

problem [22-23]. However, our work differs from the 

existing optimization techniques in the sense that it is 

specially designed to satisfy the complex user needs in 

critical environment where heavy workload, complex 

requirements and short response time constraints are 

present [24-25]. In addition, the definition of utility 

score and sampling policy function, together with the 

analysis that addresses the service requirements of 

provenance summarization are the unique contributions 

of this paper. 

7 Conclusion 

Complex and in-time requirements from real-world 

applications require existing provenance 

summarization approaches to evolve and consider 

requirements beyond merely size and distance. 

Additional requirements such as workload handling 

capability, user utility optimization and agile response 

time are raised and addressed in this paper. A novel 

technique called Flexible Annotation Sampling and 

Testing to allow incremental and flexible provenance 

summarization so as to achieve the above requirements 

by relaxing the absolute greedy strategy adopted by 

existing approaches and allowing more flexible 

sampling and search strategies to be customized by 

users. Experiment results show that the proposed 

method is promising to achieve the requirements 

mentioned above. The design of more dedicated 

sampling policies and user utility heuristics for domain 

specific scenarios would be interesting directions of 

future work. 
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