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Abstract 

This paper presents an approach for perceiving GPS 

carrier behavior from GPS data only; hence, it is called 

perceptive GPS (PGPS). The proposed method first 

extracts behavior feature from GPS data to classify a 

carrier’s current state. The Newton Hidden Markov 

Model (NHMM), which integrates Newton’s laws of 

motion with a Hidden Markov Model, is then introduced 

to model a GPS carrier’s motion state. On the basis of the 

NHMM, the PGPS technique records the GPS carrier’s 

habitual behavior in a Transition Probability Matrix 

(TPM), which is then used to infer the behavior of the 

GPS carrier from the online received GPS data. This 

paper also presents a series of experiments that were 

conducted to validate the PGPS technique and to 

determine the proper parameters for the algorithm. By 

successfully perceiving GPS carrier behavior, the system 

can provide more friendly services such as improving the 

accuracy of GPS positioning, providing live view 

navigation, and detecting if the GPS carriers go astray 

during navigation. 

Keywords: Augmented reality, Context-aware, Hidden 

Markov Model, Entropy 

1 Introduction 

The rapid evolution of computing technology has 

been accompanied by the steady development and 

realizability of the pervasive environment envisioned 

by Mark Weiser [1]. In this regard, the key issue is how 

to enable the environment to be aware of the existence 

and behavior of human beings. Such perception 

techniques are collectively referred to as context 

awareness [2]. Studies on context awareness focus on 

enhancing the quality of human life by perceiving the 

intention of a user. The use of GPS for location-based 

services, such as those in GPS navigation devices, is 

the most well-known context-aware application [3]. 

The design of a context-aware service on the basis of 

hardware sensor data involves three key issues: context 

extraction, behavior modeling, and behavior perception 

[4]. 

The motion of users and their habitual behavior are 

two important clues for inferring a user’s status. 

However, the raw data from sensors only denote the 

relative signal strength between the user and the user’s 

environment. This data requires further extraction into 

feature data through a so-called context extraction 

process [5] to become useful information for inferring 

a user’s behavior. 

A human being always has a specific behavior 

pattern within a period of time, and the habitual 

behavior can be represented by a mathematical model 

[6-7]. Hence, the second task of a context-aware study 

is to find a mathematical model that can portray a 

user’s behavior pattern. However, human behavior 

patterns may change and be refined with time and 

variations in the environment. Hence, a good behavior 

model should be able to automatically adapt to the 

migration of the behavior pattern. 

With the help of a behavior model, we can infer a 

user’s intent from sensor data and his/her previous 

state. A proper service can then be pushed to the user 

automatically. However, the inference process should 

be sufficiently fast to cope with the continuously 

received sensor data. If the inference is too slow, the 

user may already switch to another state before the 

inference process is completed. 

Based on the above three issues, this paper presents 

a context-aware technique using GPS data on a mobile 

device. From the real-time collected GPS data, the 

proposed technique can interactively track the driving 

behavior of the GPS carrier. An important application 

of this technique is live view navigation [8], which 

provides a user-centric intuitive driving navigating 

service. Given that no digital map is used, the motion 

status of the vehicle, i.e., the GPS carrier, is the crucial 

information for tagging a stable augmented guiding 

arrow on the windsheld. Using the awareness of the 

vehicle’s current status during live view navigation, the 

system could also detect whether or not the driver has 

deviated from the scheduled route and is lost. Although 

several studies [9] have attempted to normalize driving 

behavior from the driving style, these studies utilized a 
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quantitative method to index different driving 

behaviors. The driving behavior is an essential clue to 

determine a driving style and can be used to elucidate a 

driving pattern. Hence, such a GPS-based driving 

behavior tracking technique can be helpful for 

supporting traffic safety norms such as speed limit 

enforcement for reducing the risk of possible accidents. 

When combined with an automobile insurance 

program, this driving behavior information could be 

used to assess driver’s insurance on the basis of driving 

habits and patterns [10]. The presented technique, 

based on the assumption that a GPS carrier is a rigid 

body, adopts Newton’s laws of motion to design a 

driver’s behavior model. A Hidden Markov Model is 

further used to capture the GPS carrier’s behavior and 

to infer its current state. Since the approach uses GPS 

data only to perceive the carrier’s habitual behavior, 

the presented technique is called Perceptive GPS 

(PGPS). 

2 Related Work 

Previous context-aware studies on modeling and 

reasoning a carrier’s behaviors from GPS data can be 

classified into time-series and state-space models [11-

14]. The time-series model is based on past temporal 

GPS raw data to profile human behaviors. For example, 

Patterson et al. [11] utilized joint conditional 

probabilities between GPS data of a user’s historical 

footprint and the geometry of terrain to predict the 

user’s transport behaviors and then infer the user’s 

location. In contrast to the time-series model, which is 

usually limited by the past finite GPS data and the 

inability to infer complicated environmental 

information, the state-space model classifies GPS data 

into abstract state space in order to model the user’s 

behavior and then infer the user’s location. The 

advantage of the state-space model approach is that it 

can reason a carrier’s behavior without being 

influenced by the fixed length of the GPS data. It can 

also easily couple with inertial data to dramatically 

reduce the computational complexity. For example, [12] 

applied a state-space model to GPS data collected from 

animals to observe animal behaviors. 

Most state-space model studies are based on 

environment types for predicting a subject’s motion 

state. [13] applied hierarchical Conditional Random 

Fields (CRFs) to sensor data collected from different 

vehicles to infer their respective transportation patterns. 

Owing to the lack of speed and acceleration 

information, this method is only feasible for monotonic 

or long-distance moving behaviors. However, the study 

did not consider the GPS carrier’s live motion states, 

which means that they are not applicable to an 

unprepared environment. 

According to the modeling method, state-space 

models can be broadly divided into two types: discrete 

and continuous [14]. Discrete state-space models use a 

predefined state model approach to perform prediction. 

A typical modeling approach for this type of model is a 

Kalman filter, which assumes that the modeled system 

is a linear noise system, to carry out state prediction 

and to fix sensor data errors. Although a nonlinear 

model for the Unscented Kalman filter method has 

been proposed to calibrate the sensor error, this model 

is too complicated and too difficult to implement on a 

mobile platform. Although precise motion states are 

expected, Interacting Multiple Model (IMM) [15] 

configurations with a bank of Kalman filters are often 

used to capture various motion states. For example, the 

Constant Velocity (CV) produces straight trajectories 

of the vehicle state. The Constant Acceleration (CA) or 

Coordinated Turn (CT) considers sharp turns and the 

accelerations of the vehicle state. These Kalman filter 

methods seldom have a systematic motion state 

modeling approach for all types of Newtonian 

mechanics. 

All of the models discussed above are based on the 

assumption of a known or prepared environment. The 

goal of this research is to perceive a carrier’s behaviors 

from GPS data alone without specifically observing 

them. To achieve this goal, a context-aware technique, 

as shown in Figure 1, is employed to explore the 

received NMEA-0183-formatted GPS data and to 

perceive a GPS carrier’s behavior accordingly. Since 

the GPS data represents a snapshot of the changes in 

the momentum of the carrier, the characteristics of user 

behavior are first extracted from the received GPS data, 

as shown in Figure 1 and discussed in Sec. 3.2. 

Newton’s laws of motion are then adopted to interpret 

the GPS data by classifying the user’s current possible 

state. This aspect is fully explored in Sec. 3.3. An 

enhanced Hidden Markov Model that integrates 

Newton’s laws of motion, called Newton Hidden 

Markov Model (NHMM), is designed to predict carrier 

behavior from GPS data that is explained in Sec. 3.4. 

The predicted state and classified user state are then 

cross-checked to determine the user’s most likely 

current state, which is called perceived state and is 

explained in Sec. 3.5. Finally, since the perception of 

GPS carrier’s behavior is based on NHMM, the 

information-theoretic approach used to capture such 

behavior is called Transition Probability Matrix (TPM). 

The TPM is a pre-trained user behavior matrix that we 

outline in Sec. 3.1 and will be amended online 

according to the user behavior changes, as discussed in 

Sec. 3.6. 
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Figure 1. PGPS process flow 

3 Rationale of PGPS 

3.1 The Rationale 

Before designing the behavior model of the GPS 

carrier, the assumptions of the model need to be 

discussed first. Since GPS data are, in essence, the 

position of a single point, the position information of a 

GPS carrier can be regarded as a snapshot of the 

trajectory of a rigid body. Furthermore, since the 

motion of the GPS carrier is much smaller than the 

speed of light, the mass of the carrier is unchanged 

during the movement. On the basis of the above two 

observations, we can safely assert that the movement 

of the GPS carrier follows Newton’s laws of motion, 

which become the basis of this study. 

By accounting the effects of Newton’s laws of 

motion on the rigid body, the states of a GPS carrier 

can be categorized into seven states including the 

Stationary state (Ss), Linear Cruise state (Slc), Veering 

Cruise state (Svc), Linear Acceleration state (Sla), 

Veering Acceleration state (Sva), Linear Deceleration 

state (Sld), and Veering Deceleration state (Svd). With 

these predefined seven states, i.e., S = {Ss, Sla, Slc, Sld, 

Sva, Svc, Svd}, the study is specifically limited to 

perceive if the carrier is in one of these seven states. 

Further, on the basis of Newton’s laws of motion, the 

state transition of a rigid body can be modeled as 

shown in Figure 2. 

The color-dash line between states represents the 

transition possibility between two states. The black 

dashed line represents the state transition without any 

external force; the red dashed line represents the results 

of state transition with external positive force; the blue 

dashed line represents the transition react to external 

opposite force. However, such a transition is not 

directly observable from the GPS data; only a snapshot 

of the transition result is perceivable. Hence, the study 

adopts a Hidden Markov Model [16] to explore the 

transition probability among these seven states. The 

behavior model in Figure 2 is called an NHMM and 

becomes the perception model of PGPS.  

 

Figure 2. Newton Hidden Markov Model of PGPS 

As an NHMM delimits, a GPS carrier can transit 

from one state to any of the seven states at the next 

instance of time. Thus, a 7×7 probability matrix called 

the TPM is designed to model the habitual behavior of 

the GPS carrier. The TPM is pre-trained by a sequence 

of logged GPS data. Let Aij(t) be the transition 

probability from state i to state j at a discrete time t; 

then, TPM can be formulated by Eq. (1), where 

1
( ) ( | )

ij t t
A t P S j S i

−

= = = ,
 
and N is the number of states. 

 
1

TPM [ ( | )] = ( )
t t N N ij N N

P S j S i A t
− ×

×

⎡ ⎤= = = ⎣ ⎦  (1) 

Since a sequence of states represents the behavior of 

the GPS carrier in a specific period, different state 

sequences may train various TPMs. The study further 

adopts intentional motion learning and protection 

method [17] to identify if a TPM already reaches a 

stable condition in order to capture the habitual 

behavior of the carrier in that period of time. Hence, 

we define the differences between two consecutive 

TPMs as the entropy of the carrier’s momentum. The 

entropy is then formulated by Eq. (2), where t

ij
A  
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indicates the transition possibility from state i to state j 

in the observable state sequence Ot. 

 

( )
2

1

1

,

t t

t t t ij ij

i j

H TPM TPM A A
+

−

∀

= − = −∑  (2) 

The variation in the entropy can denote the changes 

in the carrier’s behavior. A lower entropy implies a 

close similarity between consecutive TPMs, which 

further implies the stability of the behavior of that 

specific period. However, we cannot immediately tell 

whether a system reaches its stable state at a specific 

moment by simply checking if its entropy, Ht, is lower 

than a threshold. If consecutive entropies are all within 

the same threshold, we can then claim that the carrier is 

reaching its local stable behavior. Hence, Eq. (3) is 

designed to detect the change in the entropy. 

 1
( )

t t
t H Hψ

−

= −

 
(3) 

Given a threshold value ε, when the entropy 

disparity, ( )tψ , approaches ε, it implies that the system 

is reaching a local stable behavior with the threshold 

value ε. At this moment, we define the average of 

TPMt, TPMt-1, and TPMt-2 as the Local Stable TPM, 

called LSTPMt, that represents the stable local 

behavior of the GPS carrier. LSTPMt is then used to 

predict the GPS carrier’s succeeding state until a new 

LSTPM is reached. The LSTPM is initially computed 

offline from a sequence of training data and is used to 

predict the user’s current state base on the user’s 

previous pose. 

Table 1. Summary of classification rules 
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(Unclassified state) 

| |
θ

θ αΔ > &
1

| |
i i x
x x α

−

Δ −Δ >  
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(Unclassified state) 

Group 5 

(Veering acceleration state) 
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(Veering deceleration state) 

| |
θ

θ αΔ > & | |
x

x αΔ ≤  
Group 0 

(Stationary state) 

Group X 

(Unclassified state) 

Group X 

(Unclassified state) 

 

3.2 Feature Extraction 

When GPS data are received, the PGPS mechanism 

begins by trying to classify a carrier’s behaviors from 

the received GPS data, as illustrated in Figure 1. At 

present, among the GPS data formats, NMEA 0183 is 

the most widely used standard. The NMEA 0183 

format regulates the longitude, latitude, speed, UTC 

time, orientation, satellite information, etc. into more 

than ten different sentences. On the basis of Newton’s 

laws of motion, a change in the momentum results 

from the exertion of an external force and causes 

changes in the position, velocity, and course between 

two consecutive GPS data points. Since the location 

information of the GPS data is in the form of latitude 

and longitude, the Haversine formula is adopted to 

compute the change in the position. Consequently, the 

displacement (Δx), velocity difference (Δv), and course 

difference (Δθ) of two consecutive GPS data points are 

extracted as the feature data to detect the change in the 

behavior of the GPS carrier. 

3.3 State Classification 

After the feature data are extracted, as shown in 

Figure 1, they are then used to “guess” the current state 

of the GPS carrier from the GPS data directly. The 

speculation is conducted by classifying feature data 

into categories that correspond to the seven predefined 

states, S = {Ss, Sla, Slc, Sld, Sva, Svc, Svd}, as depicted in 

Figure 2. The classification approach is carried out by 

defining the appropriate threshold values, αx, αv, and αθ, 
for Δx, Δv, and Δθ, respectively. However, the order of 

performing classification is also very important. 

Newton’s second law of motion tells us that a change 

in the momentum may be caused by an alteration of the 

mass or a variation in the velocity. Under the 

assumption that the GPS carrier is a rigid body, its 

mass is fixed, and the change in the momentum is 

dominated by the variation in the velocity. 

Consequently, ∆v should be the first key for classifying 

the GPS carrier’s behavior from the received GPS data. 

Further, there is no doubt that a GPS ranging error is 

indeed embedded in the value of the displacement ∆x, 

which naturally becomes the second classification key. 

Finally, the difference in the course, ∆θ, is the last 

component for classification. Hence, the feature data 

(∆v, ∆x, ∆θ) are used to classify the received GPS data 

into seven groups, which then become the hidden states 

of the GPS carrier. Hence, according to the predefined 

states in Figure 2, the following rules classify the GPS 

carrier’s states from the received GPS data into seven 
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groups: 

‧ Stationary state (Ss) group: when the GPS carrier is 

at a standstill at a fixed position, the displacement 

(∆x), and the change in the velocity (∆v) should be 

zero. However, owing to the GPS data drift error, 

received GPS data with feature data, ∆x and ∆v, less 

than their respective threshold values can be 

recognized to be in the stationary state, Ss. To 

facilitate the discussion in the rest of this paper, this 

group is called Group 0. 

‧ Linear Cruise state (Slc) group: when the GPS carrier 

is moving at a constant speed in a straight line, the 

displacement (∆x) should maintain a constant value, 

and the values of the velocity (∆v) and course (∆θ) 

should be zero. Owing to the GPS data drift error, 

consecutive values of ∆x cannot be guaranteed to be 

constant. Hence, if ∆v and ∆θ are less than their 

predefined thresholds and the absolute difference 

between two consecutive values of ∆x is less than 

the threshold, then the carrier is claimed to be in the 

Linear Cruise state, Slc. This group of states is called 

Group 1. 

‧ Linear Acceleration state (Sla) group: when the GPS 

carrier is acted upon by a constant force in a straight 

line, the displacement (∆x) and the change in the 

velocity (∆v) should be increased while its course 

(∆θ) remains zero. To accommodate the GPS data 

drift error, if the absolute difference between two 

consecutive values of ∆x and the value of ∆v are 

greater than their thresholds while ∆θ is less than a 

threshold, this situation can be defined as the GPS 

carrier being in the Linear Acceleration state, Sla. 

This group of states is denoted as Group 2. 

‧ Linear Deceleration state (Sld) group: when the GPS 

carrier is in a state with a constant reciprocal force 

that linearly decreases its speed, the displacement 

(∆x) should still be increasing while the change in 

the velocity (∆v) is decreasing, and the course (∆θ) 

is zero. To cope with the GPS data drift error, if the 

absolute difference between two consecutive values 

of ∆x and the absolute value of ∆v are greater than 

their threshold values, if ∆v is a negative value, and 

if ∆θ is less than its predefined threshold, the GPS 

carrier is said to be in the Linear Deceleration state, 

Sld. This group of states is called Group 3. 

‧ Veering Cruise state (Svc) group: when the GPS 

carrier is moving at a constant speed while changing 

its direction, the displacement (∆x) should be 

maintained at a constant value while the change in 

the velocity (∆v) should be zero and the absolute 

value of the course (∆θ) should remain nonzero. To 

deal with the GPS data drift error, if the absolute 

difference between two consecutive values of ∆x 

and the absolute value of ∆v are less than their 

threshold values and ∆θ is greater than its threshold, 

the GPS carrier is said to be in the Veering Cruise 

state, Svc. This group of states is called Group 4. 

‧ Veering Acceleration state (Sva) group: when the 

GPS carrier increases its speed and changes its 

direction simultaneously, both the displacement (∆x) 

and the change in the velocity (∆v) should increase, 

and the absolute value of the course (∆θ) should be 

nonzero. To adapt to the GPS data drift error, if the 

absolute difference between two consecutive values 

of ∆x, the value of ∆v, and the absolute value of ∆θ 

are greater than their thresholds, the GPS carrier is 

said to be in the Veering Acceleration state, Sva. This 

group of states is called Group 5 in the subsequent 

discussion. 

‧ Veering Deceleration state (Svd) group: when the 

GPS carrier is decelerating and changing its 

direction at the same time, the displacement (∆x) 

should be increasing, whereas the change in the 

velocity (∆v) should be decreasing, and the course 

(∆θ) should be nonzero. To deal with the GPS data 

drift error, if the absolute difference between two 

consecutive values of ∆x is greater than its threshold, 

if the absolute values of ∆v and ∆θ are greater than 

their thresholds, and if ∆v is negative, the GPS 

carrier is said to be in the Veering Deceleration sate, 

Svd. Hence, the set of GPS data recognized to be in 

the Veering Deceleration state is called Group 6. 

Although the classification rules are derived from 

Newton’s laws of motion, owing to the GPS data 

ranging error, some classified states violate the laws of 

nature; hence, they are collectively called Group X. In 

order to differentiate the above classified states from 

the predicted states discussed in the next section, they 

are collectively called the Classified State (CS) of the 

GPS carrier. Note that the CS is one of the seven states 

depicted in Figure 2, and Table 1 summarizes the 

classification results. 

3.4 State Prediction 

Owing to the existence of a GPS ranging error, a CS 

cannot provide a reliable current state for the GPS 

carrier. Hence, the habitual behavior of a human being 

offers a clue for detecting the possible ranging error. 

According to the NHMM and entropy theory, this 

study uses an LSTPM to record the habitual behavior 

of the GPS carrier. Therefore, the PGPS mechanism 

employs an LSTPM to predict the GPS carrier’s 

current state, as shown in the State Prediction stage in 

Figure 1. 

This prediction is conducted by finding the 

maximum transition probability to all possible current 

states from a known prior states. To further increase the 

accuracy of the prediction, this research adopts two 

consecutive previous states i, j to predict the most 

likely current state k. Hence, the LSTPM is extended to 

a three-dimensional state transition matrix as 

 
2 1 , ,

LSTPM

[ ( | & )] = ( )t t t N N i j k N N N
P S k S i S j A t

− − ×
× ×

=

⎡ ⎤= = = ⎣ ⎦
 (4) 
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As a result, Eq. (5) is used to compute the maximum 

probability of the current state from the two previous 

states and LSTPM. That is, Eq. (5) computes the state 

that has the maximum value among Ai,j,k for all k with 

the two given consecutive previous states i and j. The 

state from Eq. (5) can be one of the seven states shown 

in Figure 2 and is generally called the Predicted State 

(PS) hereafter. 

 , ,

 ,

( | , , ) argmax{ }k i j i j k
given i j

P S LSTPM S S A k= ∀  (5) 

3.5 State Crosscheck 

Whenever GPS data are received, the CS is first 

computed from Table 1, and the PS follows from Eq. 

(5). As illustrated in Figure 1, these two states are then 

crosschecked to detect any GPS ranging error. Since 

the PS gives the predicted current state based on the 

LSTPM and the CS is the most likely current state 

from the received GPS data, both states are the GPS 

carrier’s possible current states from two different 

sources. Hence, the inconsistency between these two 

states can provide the clue for detecting the existence 

of the GPS ranging error. Note that the PS may not be 

fully relied upon. For example, when Ai,j,k is zero or the 

computed maximum probability is not a unique value, 

the result of Eq. (5) would become ambiguous. The 

other possible discrepancy between the PS and the CS 

is that both the CS and PS are correct, but the GPS 

carrier is currently changing its posture. Hence, when 

the PS is not equal to the CS, there is no absolute 

conclusion as to whether it means that the received 

GPS data have a ranging error or the prediction from 

Eq. (5) is incorrect. When the GPS signal has ranging 

errors caused by environmental effects, it implies that 

the CS does not follow Newton’s laws of motion. 

Hence, PGPS will then trust the PS as the most likely 

current state of the GPS carrier. 

A possible scenario in which the PS is incorrect may 

include the case where the GPS carrier is currently 

changing its behavior pattern or an ambiguous result is 

derived from Eq. (5). For example, for the first case, 

the GPS carrier may make a sudden change to the 

Linear Acceleration state (Sla) from the Linear Cruise 

state (Slc). In this case, since the LSTPM records the 

inertial behavior of the GPS carrier, the change in the 

GPS carrier’s inertia will also make the prediction from 

Eq. (5) incorrect. In order to distinguish this case from 

the GPS signal’s ranging error, a posture threshold 

mechanism is designed to detect the change in the 

inertial status of the GPS carrier. The mechanism uses 

the parameter 
pt

β  to record the number of consecutive 

state changes. If two consecutive computations of Eq. 

(5) are the same and both are different from the CS, the 

value of 
pt

β  is then increased by one. An inertial 

threshold value φ is further defined for the GPS carrier. 

When 
pt

β ϕ> , the system will then believe that the 

inertial behavior of the GPS carrier has changed and 

then trust the CS as the most likely current state. On 

the other hand, if 
pt

β ϕ≤ , we assume a GPS ranging 

error exists and trust the PS. 

3.6 Behavior Perception 

Most people will have the same habitual reaction to 

a similar scenario; thus, the LSTPM records the 

habitual behavior of a GPS carrier at that specific time 

frame. However, the habitual behavior of the GPS 

carrier may change along with the variation in its 

environment. At that instance, the LSTPM has to be 

updated, which is indicated by the dashed line from the 

Behavior Perception stage to the State Prediction stage 

in Figure 1, for follow-up inferences. Therefore, the 

key issue is when to replace the current LSTPM with a 

new one to respond to a change in the habitual 

behavior. According to the temporal locality of a 

motion pattern [18], the duration of a behavior is the 

major index for perceiving a change in a habitual 

behavior. Since this research is based on entropy theory 

to recognize the stability of a GPS carrier’s behavior, 

the entropy becomes the key factor for distinguishing 

different habitual behaviors. Given φ  as the tolerance 

value of the entropy, Eq. (3) is then further extended to 

Eq. (6) to detect if a local habitual behavior of a GPS 

carrier has changed, and the LSTPM should be updated 

for the follow-up inference. 

 | Hcurrent−Ht | ≥ φ  (6) 

In Eq. (6), Hcurrent is the entropy when the current 

LSTPM is computed, and Ht is the newly computed 

entropy from Eq. (2). In other words, different habitual 

behaviors will produce diverse LSTPMs, and the 

current LSTPM will be replaced if Eq. (6) is true. 

4 Experiments 

PGPS is a novel approach for perceiving a GPS 

carrier’s behavior from GPS data only. Other than the 

NHMM and entropy theory, the efficiency of PGPS 

depends upon the proper setting of various threshold 

values. Hence, a series of experiments were conducted 

to validate the correctness of PGPS and the setting of 

the threshold values.  

4.1 Thresholds for Classification 

The study focuses on applying GPS signal data in 

order to perform a context-aware perception. Therefore, 

the availability of a GPS signal must be confirmed 

prior to beginning the perception process. Based on the 

characteristics of the GPS receiver, reliable GPS data 

require accurate initialization of their parameters. 

Because GPS positioning is based on the principle of 

triangulation, a GPS receiver must receive signals from 

at least four satellites before its data becomes usable. 
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Thus, the PGPS mechanism must ensure that the 

aforementioned criteria are satisfied before the 

inference process is inititaed  

After initialization, the PGPS algorithm can then 

begin to classify the received GPS data in accordance 

with Table 1 to obtain a CS. The classification process 

is based on three threshold values (αx, αv, αθ). Because 

the classification result will significantly affect the 

subsequent state inferences, selection of the proper 

threshold values is the primary experiment of this study.  

Under reliable and stable GPS signal reception 

conditions, the state classification stage uses three 

threshold values (αx, αv, αθ) to realize Table 1 with the 

online received GPS data. Because αx represents a 

position shift between consecutive received GPS data 

points, the study utilizes this displacement to determine 

whether or not the carrier is stationary. According to 

Newton’s first law of motion, the value of αx is 

determined by the external force exerted on the GPS 

carrier. Since the experiment is carried out on a vehicle, 

we define αx as the shortest moving distance of a 

vehicle when an external force is applied to complete a 

full spin of its tires, i.e., the circumference of a tire. 

According to tire specifications, the circumference of 

an 18-inch tire is around 2 m. Hence, αx is set to 2 m.  

Furthermore, among the received NMEA0183 

format strings, the GPRMC statement contains the 

Speed Over Ground (SOG) value of the vehicle. 

Therefore, the difference between two consecutive 

SOG values could be considered to determine whether 

a GPS carrier is accelerated by any external force. In 

order to increase the discrimination of the driving 

parameter αv, the study follows the statistical analysis 

method proposed in [19] to perform a normally 

distributed computation on 10,000 sets of SOG 

differences and to obtain the standard deviation of the 

distribution as 0.318. This value is then set as the value 

of αv. The final αθ value indicates whether or not the 

GPS carrier changes its forward direction and could be 

derived from the Course Over Ground (COG) value in 

the GPRMC statement of the GPS data. Since a human 

is driving a car, the driver’s field of view is often 

narrowed to about 30°. Thus, the study uses 15° as the 

threshold value for determining whether or not the 

GPS carrier is changing direction. 

4.2 State Perception 

The PGPS algorithm infers the carrier’s current state 

by crosschecking the PS and CS. Hence, the next issue 

is to confirm whether the algorithm can correctly 

determine the current state of the GPS carrier. An 

experiment was conducted wherein a vehicle is first 

driven on a street and then enters the highway, as 

shown in Figure 3(a). Then, the vehicle returns to the 

street from the highway, as shown in Figure 3(b). The 

different colored dots in Figure 3(a) and Figure 3(b) 

indicate the carrier’s speed at each spot, and the circles 

mark the segments during which the carrier’s speed has 

significant changes. These segments are all curved 

roads. The colored dots reveal that the driver performs 

a series of decelerating, turning, and accelerating 

behaviors in these segments, and these behaviors are 

what the algorithm intends to perceive. The state 

perception results are shown in Figure 4(a) and Figure 

4(b), which correspond to Figure 3(a) and Figure 3(b), 

respectively. The horizontal axis of Figure 4 indicates 

the feature data obtained from consecutive GPS data 

points. The vertical axis indicates the perceived state 

from the State Crosscheck stage (Figure 1), the 

Stationary state (Ss), Linear Deceleration state (Sld), 

Linear Cruise state (Slc), Linear Acceleration state (Sla), 

Veering Deceleration state (Svd), Veering Cruise state 

(Svc), and Veering Acceleration state (Sva), respectively. 

From the experiment, it can be confirmed that PGPS 

accurately identifies the GPS carrier’s state variation. 

 

(a) Trail from the city road to the highway 

 

(b) Trail from the highway to the city road 

Figure 3.  
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(a) State transition chart of Figure 3(a) 

 

(b) State transition chart of Figure 3(b) 

Figure 4.  

4.3 Posture Threshold Mechanism 

In addition to predicting user behavior from 

classified GPS data, the PGPS algorithm utilizes the 

carrier’s previous habitual behaviors to perceive its 

current state. Hence, the efficiency of the PGPS 

mechanism to project the carrier’s state from classified 

state and previous consecutive states requires 

validation. As depicted in Figure 1, the carrier’s current 

state is inferred from a crosscheck between the PS and 

CS. A discrepancy between these two states occurs in 

two situations: either the carrier changes his/her state 

in response to variations in the environment, or a 

misjudgment occurs as a result of the effect of GPS 

ranging errors. To distinguish these two situations, this 

study designs a posture threshold to detect a change in 

the carrier’s posture. Correct detection of the carrier’s 

posture affects the accuracy of perception. Thus, a third 

experiment is conducted to determine an appropriate 

posture threshold value. 

The state crosscheck stage (Figure 1) of PGPS 

further designs the posture threshold mechanism to 

detect if the GPS carrier is changing its inertial 

behavior. When the CS is different from the PS, the 

mechanism uses the duration of the GPS carrier that 

maintains the same CS value to detect if the GPS 

carrier is changing its current inertial behavior. Hence, 

the proper setting of the inertial threshold value φ 

determines the effectiveness of the mechanism. 

Because the GPS receiver receives data statements at 

one second intervals, the study takes one second as the 

posture threshold value unit. 

The setting of the inertial threshold value is related 

to Newton’s laws of motion. When the threshold value 

is 1, the state crosscheck stage does not consider the 

inertial behavior of the GPS carrier. On the basis of 

Newton’s first law of motion, objects remain in their 

previous states when no external forces are present. In 

other words, while objects remain in the Stationary 

state (Ss) or Linear Cruise state (Slc), they will not 

change without any external forces. On the other hand, 

the other five states in Figure 2 are assumed to occur 

when an external dynamic force is exerted. Hence, the 

inertial behaviors of Ss and Slc are more significant 

than other five states. Therefore, their posture threshold 

values should be greater than the others. Furthermore, 

after conducting a series of experiments, it was 

observed that the GPS ranging error would interfere 

with the persistence of the CS value when the GPS 

carrier is changing its state. Hence, for practical 

operation, when the number of consecutive differences 

between the PS and the CS is greater than the inertial 

threshold value, we will assume that the GPS carrier 

changes its behavior without considering if the CS 

maintains the same value during that period. 

Figure 5 shows a line chart of the states for the 

segment of the path in Figure 3(a) where the GPS 

carrier enters the highway from the interchange. In 

Figure 5(a), all states’ inertial threshold values are set 

as 1, meaning that we completely trust the CS directly 

from the GPS data. For comparison, the inertial 

threshold values of the Stationary state (Ss) and Linear 

Cruise state (Slc) are set as 2, and the other states 

posture threshold values are set as 1 in Figure 5(b). In 

Figure 5(a), the vehicle is switching into the Veering 

Cruise state (Svc) from the Linear Cruise state (Slc) 

between time sequences 2-6. This indicates that the 

GPS carrier is changing its behavior. However, the CS 

values jump between values of 1 and -3 owing to GPS 

ranging errors. In addition, because of the GPS ranging 

errors, state spikes are present between time sequences 

40-66 in Figure 5(a) while GPS carrier moves in a 

steady behavior. However, these spikes are eliminated 

in Figure 5(b). Hence, the inertial threshold setting in 

Figure 5(b) is adopted. 

4.4 Transition Matrix Stabilization 

Finally, this study records the carrier’s behaviors in a 

TPM based on Eq. (1) and further detects whether a 

carrier’s behavior has reached a local stable habitual 

behavior by using Eq. (2) and (3). Consequently, a 

fourth experiment is conducted to verify whether Eq. 

(2) and (3) can detect a carrier’s local stable habitual 

behavior and determine the appropriate threshold value 

ε. 

The study utilizes Eq. (2) and Eq. (3) to detect if the 

GPS carriers’ habitual behaviors have reached their 

local stability. Two issues are raised accordingly. The 

first issue is related to whether or not Eq. (2) and Eq. 

(3) can faithfully capture GPS carrier’s habitual 

behavior changes. The second is how to find the 

threshold value ε for Eq. (3). Two experiments were  
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(a) State transition chart when the inertial threshold 

values for all states are set to 1  

 

(b) State transition chart when the inertial threshold 

values of Ss and Slc are set to 2 and all other states are 

set to 1 

Figure 5. State histogram of Figure 3(a) 

then conducted to resolve these issues. In these 

experiments, we grouped 150 records of consecutive 

GPS data sets as an observation segment. In other 

words, we use 150 consecutive states to build a TPM 

by Eq. (1). A series of entropy values is then calculated 

by Eq. (2). Finally, a sequence of entropy disparity 

values, ψ (t), which can detect the local stability of the 

carrier’s behavior, is then derived from Eq. (3). 

The track of the first experiment is shown in Figure 

6, where the labels A, B, …, G denote the segments of 

the GPS data using 150 records as a unit. Figure 7 

shows a line chart of the entropy values from Eq. (2). 

For example, the entropy value for segments A and B 

in Figure 6 is plotted at time segment 1. Figure 8 

shows a line chart of the entropy disparity values from 

Eq. (3) for Figure 6. In other words, for example, the 

entropy disparity value derived from segments A, B, 

and C in Figure 6 is plotted at time segment 1. A 

comparison of the line chart in Figure 8 and the 

colored dots in Figure 6 shows that a low entropy 

disparity value will be calculated from Eq. (3) when 

the behaviors of the GPS carrier within three 

consecutive segments are similar. The experiments 

demonstrate that Eq. (2) and Eq. (3) could obtain the 

changes in the GPS carrier’s habitual behavior directly 

from the GPS data. 

 

Figure 6. Track on the highway 

 

Figure 7. Line chart of the entropy values for Figure 6 

 

Figure 8. Line chart of the entropy disparity values for 

Figure 7 

To determine the threshold value of Eq. (3), the 

study was extended to other experimental paths to 

collect more GPS data for further analysis, as shown as 

Figure 9. There are over 6,000 records of GPS data, 

and the calculated entropy disparity values are 

displayed in Figure 10. More than 50% of these 

entropy disparity values are between 0.1-0.5; thus, the 

threshold values would lie between 0.1-0.5. If the 

threshold value is too small, it indicates that the GPS 

carrier’s behavior should remain consistent for a long 

period, which is not the case for the behavioral 

activities of human beings. On the contrary, if the 

threshold value is too high, it could not reveal the local 

stability of a GPS carrier’s behavior. After repeating 

the experiments several times, the study eventually 

determined a threshold value of 0.4. A summary of the 

threshold values from the experiments is listed in Table 

2. 
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Figure 9. Track of the experiment for analyzing proper 

threshold value 

 

Figure 10. Chart of the entropy disparity values for 

Figure 10 

Table 2. Summary of threshold values  

Threshold Value number of the equation 

αx 2 tire specifications 

αv 0.318 statistical analysis method 

αθ 15° driver’s field of view 

Inertial threshold 1 and 2 Newton’s laws of motion 

Entropy disparity 0.4 Eq. (2) and (3) 

5 Conclusion  

This paper presented an approach to interactively 

infer the behavior of a GPS carrier by utilizing a 

sequence of received GPS data only. Hence, the 

proposed approach is called PGPS. Although GPS 

signals are vulnerable to environmental effects, a 

behavior pattern still exists in the context of the 

received GPS data. PGPS is a novel approach that 

adopts GPS data as the feature evidence of a carrier’s 

behavior. A behavior perception model that combines 

Newton’s laws of motion and a Hidden Markov Model, 

called the NHMM, was presented in this paper. 

Furthermore, the TPM for the NHMM is a mechanism 

for recording the habitual behavior of the GPS carrier. 

Owing to the fact that human behavior may change in 

response to the environment, the entropy is introduced 

to compute the local stable behavior of the GPS carrier. 

A posture threshold is further designed to detect a 

change in the habitual behavior of the GPS carrier. 

Hence, with the predefined perception states of the 

GPS carrier, our experiments show that PGPS can 

successfully perceive a carrier’s status through the 

NHMM. 

The PGPS algorithm could further assist a Mobile 

Augmented Reality (MAR) browser to obtain a user’s 

current browsing intent. On the basis of the inferred 

intent, the MAR browser could dynamically adjust the 

size of the tagged contents on a screen and provide the 

appropriate visual effects to satisfy the user’s 

requirements [20]. Since PGPS is based on the 

assumption of the trajectory of a rigid body, PGPS can 

easily be extended to other sensors that also detect a 

single point of location. As a result, two research 

directions are currently under investigation. One is to 

explore PGPS for a user having a different momentum, 

such as pedestrian. The other is to extend the NHMM 

to other sensors to perceive human behavior and 

localisation [21]. 
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