
HODetector: The Hidden Objects Detection Based on Static Semantic Information Library Outside Virtual Machine 1393

HODetector: The Hidden Objects Detection Based on Static

Semantic Information Library Outside Virtual Machine

YongGang Li1, 2, ChaoYuan Cui1, BingYu Sun1, WenBo Li3*

1 Institute of Intelligent Machine, Chinese Academy of Sciences, China
2 School of Information Science and Technology, University of Science and Technology of China, China

3 Institute of Technology Innovation, Chinese Academy of Sciences, China

lygzr@mail.ustc.edu.cn, {cycui, bysun, wbli}@iim.ac.cn

*Corresponding author: ChaoYuan Cui; E-mail: cycui@iim.ac.cn

DOI: 10.3966/160792642018091905011

Abstract

With the spread of malwares, the security of virtual

machine (VM) is suffering severe challenges recent years.

Rootkits and their variants can hide themselves and other

kernel objects such as processes, files, and modules

making malicious activity hard to be detected. The

existed solutions are either coarse-grained, monitoring at

virtual machine level, or non-universal, only supporting

specific operating system with specific modification. In

this paper, we propose a fine-grained approach called

HODetector based on static semantic information library

(SSIL) to detect the hidden objects outside VM. We have

deployed HODetector prototype on Xen virtualization

platform and used it to detect the processes, files, and

modules hidden by rootkits. The experiment results show

that HODetector is effective for different rootkits and

general for Linux operating system with various kernels.

Keywords: Virtualization, Fine-Grained detection,

Semantic gap, Rootkit, Hidden objects

detection

1 Introduction

Virtualization technology [1, 19] is the most
important technical support for cloud computing. It can
significantly increase computing resource utilization.
Unfortunately, some new security challenges have
been proposed with the application of the virtualization
technology. A threat report from Rising [2] shows that:
the total number of new viruses is still upward trend,
and more than 43.27 million samples of new viruses
were intercepted in 2016. According to the report, the
security problem of virtualization has become
increasingly serious. Malware, especially rootkit, can
use various technologies to hide their and others
presence. As a result, it can bypass the detection of
anti-virus software leading to a significant threat to the
existed operating system (OS) such as Linux.
Therefore, it is very important to detect the hidden

objects for virtual machine security.
For virtualization security, the traditional secure

tools detecting malwares are placed into the guest VM
(GVM) that may be injected by computer viruses. So,
it’s possible that the secure tool will be bypassed or
cheated. For example, a rootkit named f00lkit can
bypass Chkrootkit and Rkhunter, the most popular anti-
malwares tools in Linux. Compared with the traditional
method, one mechanism called out-of-box [3] detecting
malwares out of VM is a better way, because the
secure tool is outside any span of malwares. Then
another problem appears: semantic gap [4]. The secure
tool needs to get high level semantic information of
GVM to judge if there exists intrusion. While the
secure tool is out of GVM, and what it gets all are
original contents of memory (0 and 1). So the key
technology of out-of-box is how to resolve the problem
of semantic gap.

Virtual machine introspection (VMI) [5] can
translate original memory contents of GVM into high-
level semantic information. It mainly solves the
problem of semantic gap. VMI has been adopted by a
great number of security system tools based on
virtualization technology and widely used in malware
detection [6], process detection [7], intrusion detection
[8], etc. The approaches of VMI are various and the
SSIL we proposed is also one kind of VMI tools that
can solve the semantic gap problem.

In this paper, we design HODetector to detect the
hidden objects including processes, files, and modules
based on SSIL. It can monitor different Linux OSes
outside VM without any specific modification to kernel,
which improves the generality. Through testing on
different rootkits, we found that the hidden objects can
be detected by HODetector and the time overhead is in
accptable range.

2 Related Works

Varieties of approaches have been proposed to
monitor and detect GVM recent years. The most

1394 Journal of Internet Technology Volume 19 (2018) No.5

popular method is placing secure tool outside VM.
Researches on how to bridge semantic gap and get the
running state of GVM effectively have been done
recent years.

DARKVFU [9] is a dynamic malware analysis
system detecting attacks in windows. It makes use of
Rekall [18] to parse the debug data provided by
Microsoft to establish a map of internal kernel
functions. Then, DARKVFU locates the kernel base
address in memory by reading registers FS and GS and
parsing _KPCR structure. After getting kernel base
address it can trap all kernel functions via break point
injection. Through monitoring the execution of specific
funtions (eg. allocating kernal heap and accessing files,
al.) and analysing kernal objects DARKVFU can find
malwares. Unfortunately, it incurs a larger performance
overhead for cpu and memory.

Xie and Wang [10] proposed a rootkit detection
mechanism based on deep information extraction and
cross-vertification at hypervisor level. To locate the
target memory they extract kernel symbol table
“System.map” of GVM and find out the address of
process “init_task” in it. Starting with the address, the
process list of GVM can be acquired by traversing
doubly linked list. Files and network connections can
be reconstructed according to the association of kernel
objects. Cross-vertification between hypervisor and
GVM is the last step to find rootkit. Both information
extraction and cross-vertification depend on
“System.map” that may be changed after restarting
even during running by GVM. So the accuracy of
detection results cannot be guaranteed.

VMDriver [11] is a novel approach for virtualization
monitoring. It separates event sensor and semantic
construction in VMM and management domain.
VMDriver can list the information of all processes in
GVM. But VMDriver needs a third-party tool to
distinguish guest OS type and kernel version, which
limits its generality.

Libvmi [12] is modified based on Xenaccess [13]
and employs VMI technology to monitor VM. It can
monitor the guest OS out of VM, and overcome
semantic gap problem. However, the deployment needs
to configure the file Libvmi.conf manually for different
OSes, which may result in unexpected errors.

Compared with libvmi and [10], HODetector can be
deployed more easily, because there is no specific
modification and manual operation for OS or kernel to
be done. Different with VMDriver, HODetector
develops a naming protocol to distinguish guest OS
type and kernel version. Besides, HODetector has built
SSIL that can improve system generality and reduce
performance overhead. Another contribution of
HODetector is adopting message-passing mechanism
to reduce the impact of VM state inconsistency [14] on
results accuracy.

3 Designs

Figure 1 shows the overview of HODetector. It
mainly contains two parts: one resides in secure VM
(SVM) and another in guest VM (GVM). First,
Message Sender generates a message and a signal
simultaneously. The signal is used to wake up Memory
Locating Module in SVM. The message will be
transmitted to Message Receiver in GVM. After
receiving the message, Message Receiver also
generates a signal activating Back-end Module. As a
result, Memory Locating Module and Back-end
Module will take actions synchronously. Then Back-
end Module captures the current semantic view of
GVM (guest_view) by excuting instructions such as ls
and ps. At the same time Memory Locating Module
locates the virtual addresses of target objects of GVM.
Next, the targeted virtual addresses will be transfered
to Memory Mapping Module for memory reading and
translating. Both Memory Locating Module and
Memory Mapping Module need retrieve the semantic
information indexed by SSIL to get the semantic view
of SVM (secure_view). At last, secure_view and
guest_view are sended to Judge Module judging if
there exist hidden objects.

Xenstore

Hardware (Physical Memory, CPU, etc)

SSIL

Memory

Mapping

Module

Judge

Module

Secure VM Guest VM

secure_view

guest_view
Message Sender

Message

Receiver

 Hypervisor

Virtual

Memory

message message

signal

signal

esp

GVM_vaddr

Memory

Locating

Module

init

offset type

Back-end

Module

Processes

Files

Modules

Objects

ls, ps, lsmod

Figure 1. The overview of HODetector

3.1 The Message-Passing Mechanism

The problem of the inconsistency of the observed
VM state is an unavoidable problem in VMI technolgy.
Inconsistency appears during VMI tools introspecting a
live system while its state is changing in the observed
data structures. According to [14], inconsistencies can
be classified into two categories: intrinsic
inconsistencies and extrinsic inconsistencies. Any
inconsistency may lead to a misjudgement. For
example, a new process generated after having gotten
guest_view while the secure_view is not to be captured
will be treated as a hidden object. The message-passing
mechanism is designed to reduce the inconsistency
influence. It transmits message between SVM and
GVM through Xenstore. The mechanism can guarantee
secure_view and guest_view start to be generated at

HODetector: The Hidden Objects Detection Based on Static Semantic Information Library Outside Virtual Machine 1395

the same time point. As a result, the two semantic
views are almost consistent in space and time.

3.2 SSIL

SSIL is designed to improve HODetector’s
generality and resolve the problem of semantic gap. To
build SSIL, all prevalent kernel versions are collected
and analyzed. Every kernel version represents a subset
named as the corresponding kernel version in SSIL. It
contains crucial kernel information including some
data types and offsets of certain entries in specific data
structures such as task_struct and dentry. The offsets
are used to locate the virtual address of GVM, and the
data types are used to determin how many bytes to read
in physical memory and what high-level semantic
information should be reconstructed outside GVM.
Building SSIL is offline, so it would not affect the
running speed of VM.

In HODetector a protocol is defined: every VM must
be named as (Release Version@user):(Kernel Version).
For example, the linux OS ubuntu12.04-64 with kernel
3.2.0-23 may be named as ubuntu12.04-64@××:3.2.0-
23. As a result the kernel version can be extracted from
the VM name according to the name protocol. The
extracted kernel version will be used to retrieve
specific semantic information in SSIL for VMI.

3.3 Memory Locating Module

Memory Locating Module is designed to locate the
virtual addresses of the target objects of GVM. There
is a subset module called init module uesd for
initialization. Init module gets the context of VCPU of
GVM and extracts the esp register firstly. To get
starting address of kernel stack of current process, init
module excutes the code esp&~ (THREAD_SIZE - 1).
The executing result is the starting address of
thread_info whose first entry points to task_struct of
the current process. Memory Locating Module can get
the starting addresses of certain dada structures such as
dentry through reading memory content pointed by
corresponding pointers. Then it locates the viratual
address of targeted entry by adding starting address
and entry offset retrieved in SSIL according to entry
name.

3.4 Memory Mapping Module

Due to the isolation mechanism between VMs, every
operation about reading GVM memory in SVM should
be handled by Memory Mapping Module. It utilizes the
function map_page() containing xc_map_foreign

_range() and xc_translate_foreign_address() in the
library libxc for memory mapping. After mapping,
Memory Mapping Module reads specific amount
memory content according to data type retrieved in
SSIL. What it gets all are raw bits that is difficult to
describe the VM state. So Memory Mapping Module
translates them into high-level semantic information

according to corresponding data types.

3.5 Capture Process List

A process is an instance of a computer program that
is being executed. Every process in Linux is described
by a process control block defined as a data structure
called task_struct which contains process name, pid,
etc. All the running processes are linked by a doubly
linked list implemented as members next and prev in
task_struct. HODetector can capture all processes of
GVM by traversing the doubly linked list. Figure 2
shows the procedure.

prev next

task_struct

pid gid

mm

comm

……

top-down

growth

prev next

Current

task_struct

pid gid

mm

comm

esp

large-numbered

memory
Stack

thread_infosmall-numbered

memory

Figure 2. Process capture

3.6 Capture File Tree

In general, a complete Linux OS is composed of a
large number of files organized in the form of tree. In
addition to leaf nodes, all nodes of the tree represent
directory names. The virtual file system uses a data
structure defined as dentry to describe directory and
file. All files in the same directory are linked by a
doubly linked list named d_child. In dentry, the
subdirectory is pointed by d_subdirs and the parent
directory is pointed by d_parent. To get dentry several
data structures should be traversed. The procedure
shows in Figure 3. Along the pointer d_parent
HODetector searches up according to the principle of
depth first until getting the root directory. Next it
searches down level by level according to the principle
of breath first until getting the whole subtree specified
before searching. That is to say HODetector can get the
whole file tree via recursion method if it can get one
dentry.

comm(“init”)

prev next

pid gid

mm

mm_struct

mmap

mmlist

pgd

vm_area_struct

vm_start

vm_end

vm_file

f_uid

f_path

f_version

file

f_gid
dentry

mnt

path

d_parent

d_child

dentry

d_subdirs

d_iname

task_struct

Figure 3. The procedure of getting den try

1396 Journal of Internet Technology Volume 19 (2018) No.5

3.7 Capture Module List

Linux OS allocates a data structure defined as
module to describe kernel module. All kernel modules
are also stored in a doubly linked list shown as Figure
4. After getting a node address, HODetector can detect
all the kernel modules by traversing doubly linked list.
It gets a module starting address in a file named
System.map that is a kernel symbol table containing
kernel module address in the directory /boot in GVM.

struct module{

 …

 struct list_head list;

*next

*prev

char name[MODULE_NAME_LEN];

 …

};

Module 1

struct module{

 …

 struct list_head list;

*next

*prev

char name[MODULE_NAME_LEN];

 …

};

Module 2

struct module{

 …

 struct list_head list;

*next

*prev

char name[MODULE_NAME_LEN];

 …

};

Module 3

Figure 4. Module List

3.8 Definition and Algorithm

Definition 1. Define the process list as P, the file list as
F, and the module list as M.
P = {(process1_pid, process1_name), (process2_pid,
process2_name) …}
F = {(file1_name, file1_path), (file2_name, file2_
path) …}
M= {(module1_name, module1_size), (module2_name,
module2_size) …}
Definition 2. Define the guest view as gV = {P, F, M |
acquired in guest VM}.
Definition 3. Define the secure view as SV = {P, F, M |
acquired in secure VM}.
Definition 4. Define the key entry in certain data
structure as

k
ϕ , define the offset of

k
ϕ in data

structure as
k

ζ , and define the type of
k

ϕ as
k

θ .
Definition 5. Define the certain data structure that
contains some entries as

1 1 1 2 2 2
{(,(,)),(,(,)),

m
ϕ ζ θ ϕ ζ θΓ =

..., (, (,)),...}
k k k

ϕ ζ θ .

Definition 6. Define the subset of SSIL as
n

Φ whose

name is kernel version.
1 2

{ , ,..., ,...}
n n

Φ = Γ Γ Γ .

Definition 7. Define the SSIL as SL=
1 2

{ , ,..., ,...}
n

Φ Φ Φ .
Algorithm 1 shows how HODetector detects the

hidden objects. First, it selects the matched subset of
SSIL with the index of VM name (lines 2-3). The
function get_content_of_entry() (line 4) is used to get
the high-level semantic of entry

k
ϕ . Second, HODetector

gets the starting address of task_struct through VCPU
context (lines 5-8). The function read_pointer() (line 8)
can read the address that is pointed by pointer entry in
data structure through address mapping. HODetector
gets the starting module address by executing specific
command in GVM (line 9). To get dentry six data
structures are traversed, which means calling
read_pointer() five times (line 10). Then HODetector
builds the secure view SV in SVM (lines 11-15).

Functions search_up() and search_down() adopt
recursive algorithm following the principle depth-first
and breath-first respectively. Line 16 gets the guest
view gV in GVM. At last, Jude Module judges if there
exist hidden objects through cross-view contrast (lines
17-19).

Algorithm 1. Detect the Hidden Objects
(1) Require: (,(,))

k k k m n
ϕ ζ θ ∈Γ ∈Φ ⊂ SL

(2) VM_name = get_dom_name_from_domID
(int domID)

(3)
n

Φ =get version from name (char * VM name)

(4) get_content_of_entry(base_addr,
k

ϕ){

(a)
k

ζ = search_entry_offset(
k

ϕ)

(b)
k

θ = search_entry_type(
k

ϕ)

(c) entry_addr=base_addr+
k

ζ
(d) entry_map_addr=map_page(entry_addr,

domID)
(e) data=(

k
θ *) read_mem (entry_map_addr,

sizeof(
k

θ))
(f) return data}

(5) vcpu_context=get_vcpu_context(int domID, int
vcpu)

(6) esp=vcpu_context→esp
(7) thread_info_addr= esp &~(THREAD_SIZE - 1)
(8) task_struct_addr=read_pointer(thread_info_addr)
(9) module_addr={$sed - n ‘/d modules $/p’ System.

map | command executed in GVM}
(10) dentry_addr= task_struct→mm→mmap

→vm_file→f_path→dentry
(11) get_secure_view(task_struct_addr,module_addr,

dentry_addr){
(12) Get P:

(a) do
(b) {task_struct_next=read_pointer(task_struct

_addr+procrss_next_offset)
(c) process_name= get_content_of_entry(task

_struct_next,comm)
(d) process_pid= get_content_of_entry(task

_struct_addr,pid)
(e) } while(task_struct_next!=task_struct_addr)

(13) Get F:
(a) file_name= get_content_of_entry(dentry

_addr,d_iname)
(b) root_dir=search_up(dentry_addr)
(c) mached_file=search_down(root_dir)

(14) Get M:
(a) do{module_next=read_pointer(module

_addr+module_next_offset)
(b) module_name=get_content_of_entry

(module_next,name)
(c) module_size=get_content_of_entry

(module_next,core_text_size)
(e) } while (module_next!=module_addr)

(15) SV = {P, F, M | acquired from above procedures}

HODetector: The Hidden Objects Detection Based on Static Semantic Information Library Outside Virtual Machine 1397

(16) gV = {P, F, M | acquired from commands
executed in GVM}

(17) if (object∈SV && object∉gV)
(18) Judge: the object is hidden
(19) end if

4 Experiments and Result

Xen [15] is an open-source virtual platform that

allows multiple guest operating systems to execute on
the same computer hardware with high performance
and strong resource isolation. The software architecture
of Xen consists of hypervisor and domains including
the only privileged domain named dom0 (SVM) and
unprivileged domains named domU (GVM). We
implement HODetector on Xen 4.1.2. Table 1. shows
the specific configuration of experimental environment.

Table 1. Experimental environment

VM Dom0 Dom1 Dom2 Dom3 Dom4 Dom5
OS Ubuntu CentOS Ubuntu Ubuntu Ubuntu Ubuntu

Edition Desktop Server Server Desktop Server Server
Version 12.04-64 6.4-64 10.04-32 5.04-32 12.04-64 10.04-64
Kernel 3.2.16 2.6.32 2.6.32 2.6.10 3.2.0-23 2.6.32
CPU 4cores, 3.2GHz 1core, 2.2GHz 1core, 2.2GHz 1core, 2.2GHz 1core, 2.2GHz 1core, 2.2GHz

Memory 4G 1G 1G 1G 1G 1G

4.1 Rootkit

Rootkit is a set of program or code that stealthily
bypasses anti-virus and takes control of the computer.
Most existed rootkits can be classified into user-level
and kernel-level rootkit [16]. The former runs in user
space of OS and replaces critical system utilities with
modified versions to hide process, file, module, etc.
The latter runs in kernel space and modifies kernel for
hiding leading to a greater threat to OS. For example,
adore-ng [17], a kernel-level rootkit, infects the kernel
as a loadable kernel module (LKM). A user can use the

control program ava in adore-ng to hide process, file,
network connection, etc. Apart from adore-ng there are
kinds of rootkits such as modulerootkit and suterusu,
etc, and these rootkits will be tested in our experiment.

4.2 Detection

The rootkit detection results of HODetector are
shown in Table 2. The symbol “√” represents
HODetector can detect the hidden objects in
experiment; “×” represents it does not work; and “− ”
represents the rootkit has no this functionality.

Table 2. Detection results

Rootkit Adore-ng Modulekit Suterusu Wnps Kbeast F00lkit maK_it brootus Diamorphine
DomU Dom1 Dom1 Dom2 Dom3 Dom2 Dom4 Dom5 Dom2 Dom4

Process Detection √ − √ √ √ √ − √ √
File Detection √ − √ √ √ √ − √ √

Module Detection − √ − − × − × √ ×

No matter the VM is 32bit or 64bit, desktop version
or server version, even with different kernels,
HODetector can work well without any specific
modification. Because SSIL contains the semantic
information of all kinds of kernels shielding
implementation details in OS. However, through
experiments we also find HODetector cannot detect the
module that is hidden by removing from doubly linked
list (eg. Kbeast). HODetector traverses doubly linked
list to find all moules loaded in GVM. As a result, it
cannot find the hidden one removed from doubly
linked list. A possible solution is staring at the

instruction “insmod”. When “insmod” is executed, the
allocated memory will be recorded. The solution
feasibility will be verified in our future work.

Chekrootkit and rkhunter are the most popular
detection tools detecting rootkits in Linux. They are
selected for comparision with HODetector. Table 3
shows the detection results. The results show that
HODetector is more effective than Chekrootkit-0.49
and rkhunter-1.4.0. Different with Chekrootkit and
rkhunter, HODetector is implemented out of GVM
leading to stricter isolation, which makes it hard to be
bypassed or cheated.

Table 3. Detection result comparison

Rootkit adore-ng modulekit suterusu wnps kbeast f00lkit maK_it brootus Diamorphine
Chkrootkit-0.49 √ × × √ × × √ × ×
Rkhunter-1.4.0 × × √ √ √ × × √ ×

HODetector √ √ √ √ √ √ √ √ √

1398 Journal of Internet Technology Volume 19 (2018) No.5

4.3 Time Analysis

4.3.1 Time Percentage

HODetector mainly gets three kinds of objects
ouside GVM: process list, file tree, and module list.
The taken time of capturing 300 objects (100 processes,
100 files, and 100 modules) is recorded, and the time
percentage is shown in Figure 5.

Figure 5. Time percentage

In Figure 5, we can find file capture is the most
time-consuming and module capture is the least one.
The cost time is mainly determined by the scanning
path. File capture must traverse six data structures to
get the file name while module capture traverses only
two. As a result, their cost time is different.

4.3.2 Time Stability

To observe the time stability of HODetector, we test
the taken time getting each kind of objects whose
counts are linearly for increases. Figure 6 shows the
test results. The results show that the taken time is also
linear growth, which turn out HODetector has good
stability in time. HODetector takes most time in getting
memory and parsing it. The taken time is proportional
to the amount of memory that is linear to the numbers
of processes. As a result, the taken time of HODetector
is linear to the numbers of processes.

4.3.3 Time Overhead of GVM

In this section, we evaluate the impacts of
HODetector on the performance of GVM. We choose
the application tar in GVM as a benchmark and
measure its execution time when the target objects
increase. The tar benchmark compresses a folder
whose size is 35.6 MB containing 2186 files into a
package. When the counts of objects are zero, it means
HODetector does not work and we set the time

Figure 6. Time stability

Figure 7. Time overhead of GVM

overhead is zero. Figure 7 shows the experimental
results. From the figure we find when we increase the
counts of objects, the overhead is increasing. However,
when each kind of objects are 1000, that is to say all
the three (processes, files, and modules) are 3000, the
overhead is less than 12%. In general, there are less
than 100*3 objects to be detected in GVM, which
means the overhead is only 2%. The time overhead of
GVM mainly comes from the impact on physical
hardware of HODetector. HODetector needn’t capture
kernel semantic information online reducing time
overhead, and SSIL can provide complete information
set whenever HODetector works. So it introduces very
low overhead in GVM.

4.3.4 Time Overhead of SVM

To evaluate the impact of HODetector on SVM, we
adopt nbench to test the performance of SVM when
HODetector detects different numbers of objects. The
test results of nbench mainly include three facts: MEM,
INT, and FP. MEM reflects the performance of
processor bus, CACHE and memory; INT represents
integer processing performance; FP reflects double-
precision floating-point performance. The test results
are represented as scores that are proportional to
system performence. Figure 8, Figure 9, and Figure 10
show the test results.

The test results show that the performance

HODetector: The Hidden Objects Detection Based on Static Semantic Information Library Outside Virtual Machine 1399

degradation of SVM will increase with the number of
target objects. When the target objects are 100*3,
MEM performance degradation is about 0.9%; INT
performance degradation is about 0.5%; FP
performance degradation is about 0.6%. The three
kinds of performance degradation will increase to 4.5%,
2.8%, and 2.9% respectively when the target objects
increase to 1000*3. The results show that HODetector
has little more impact on SVM storage performance.
Any operation about reading GVM memory shuould be
handled by Memory Mapping Module when
HODetector works. To read the memory of a process
in x86-64 architecture, a time of reading memory and
four times of memory mapping (corresponding four-
level page conversion in x86-64 architecture) will be
executed. Every memory mapping operation need set
permission to target memory and copy raw bits through
hypercall in SVM. All the above operations incure
more overhead to memory.

Figure 8. MEM test result

Figure 9. INT test result

Figure 10. FP test result

5 Conclusions

In this paper, we propose an approach to detect the
hidden objects in VM called HODetector. It detects
guest OS at process, file, and module level out of
GVM. HODetector can solve the semantic gap
problem and improve the generality through SSIL. The
detection results show that HODetector can detect the
hidden objects manipulated by rootkit except the
module hidden by removing itself from doubly linked
list. Through the analysis of cost time, we find
HODetector has good time stability, which is important
in large-scale cluster system. The overhead result
shows that HODetector is efficient to detect the hidden
object.

Acknowledgments

This project is supported by the National Nature
Science Foundation of China (No. 31371340), the
National Key Technology R&D Program (No.
2014BAD10B08) and the National Key Technologies
Research and Development Program of China under
Grant (No. 2016YFB0502604).

References

[1] R. Kumar, S. Charu, An Importance of Using Virtualization

Technology in Cloud Computing, Global Journal of

Computers & Technology, Vol. 1, No. 2, pp. 56-60, February,

2015.

[2] Rising, Information Security Report of China in 2016,

http://it.rising.com.cn/dongtai/18659.html

[3] X. Jiang, X. Wang, D. Xu, Stealthy Malware Detection and

Monitoring through VMM-based “out-of-the-box” Semantic

View Reconstruction, ACM Transactions on Information &

System Security, Vol. 13, No. 2, Article No. 12, February,

2010.

[4] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, R. Sion, SoK:

Introspections on Trust and the Semantic Gap, 2014 IEEE

Symposium on Security and Privacy, San Jose, CA, 2014, pp.

605-620.

[5] H. W. Baek, A. Srivastava, J. V. D. Merwe, CloudVMI:

Virtual Machine Introspection as a Cloud Service, IEEE

International Conference on Cloud Engineering, Boston, MA,

2014, pp. 153-158.

[6] M. Vlad, H. P. Reiser, Towards a Flexible Virtualization-

Based Architecture for Malware Detection and Analysis,

2014 25th International Workshop on Database and Expert

Systems Applications, Munich, Germany, 2014, pp. 303-307.

[7] M. A. A. Kumara, C. D. Jaidhar, Virtual Machine Introspection

based Spurious Process Detection in Virtualized Cloud

Computing Environment, 2015 International Conference on

Futuristic Trends on Computational Analysis and Knowledge

Management (ABLAZE), Noida, India, 2015, pp. 309-315.

[8] J. Saxon, B. Bordbar, K. Harrison, Introspecting for RSA Key

1400 Journal of Internet Technology Volume 19 (2018) No.5

Material to Assist Intrusion Detection, IEEE Cloud

Computing, Vol. 2, No. 5, pp. 30-38, September-October,

2015.

[9] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S.

Vogl, A. Kiayias, Scalability, Fidelity and Stealth in the

DRAKVUF Dynamic Malware Analysis System, Proceedings

of the 30th Annual Computer Security Applications

Conference, New Orleans, LA, 2014, pp. 386-395.

[10] X. Xie, W. Wang, Rootkit Detection on Virtual Machines

through Deep Information Extraction at Hypervisor-level,

IEEE Conference on Communications and Network Security,

National Harbor, MD, 2013, pp. 498-503.

[11] G. Xiang, H. Jin, D. Zou, X. Zhang, S. Wen, F. Zhao,

VMDriver: A Driver-Based Monitoring Mechanism for

Virtualization, IEEE Symposium on Reliable Distributed

Systems, New Delhi, India, 2010, pp. 72-81.

[12] H. Xiong, Z. Liu, W. Xu, S. Jiao, Libvmi: A Library for

Bridging the Semantic Gap between Guest OS and VMM,

IEEE 12th International Conference on Computer and

Information Technology, Chengdu, China, 2012, pp. 549-556.

[13] A. TaheriMonfared, M. G. Jaatun, Handling Compromised

Components in an IaaS Cloud Installation, Journal of Cloud

Computing, Vol. 1, No. 1, pp. 1-21, August, 2012.

[14] S. Suneja, C. Isci, E. De Lara, V. Bala, Exploring VM

Introspection: Techniques and Trade-offs, ACM Sigplan

Notices, Vol. 50, No. 7, pp. 133-146, July, 2015.

[15] Xen Project, Linux Foundation Collaborative Project,

https://www.xenproject.org/

[16] S. A. Musavi, M. Kharrazi, Back to Static Analysis for

Kernel-Level Rootkit Detection, IEEE Transactions on

Information Forensics & Security, Vol. 9, No. 9, pp. 1465-

1476, September, 2014.

[17] Y. Ding, H.-Y. Fu, Y.-Z. Li, Research on VFS Layer Rootkit

Technique in Linux, Computer Engineering, Vol. 36, No. 8,

pp. 161-162, April, 2010.

[18] Rekall Forensics, Rekall Memory Forensic Framework,

http://www.rekall-forensic.com/

[19] M. Sato, T. Yamauchi, VMM-Based Log-Tampering and

Loss Detection Scheme, Journal of Internet Technology, Vol.

13, No. 4, pp. 655-666, July, 2012.

Biographies

Yonggang Li, born in 1988, Ph.D.
Candidate. His current research
interests include operating system
security, virtualization and cloud
computing.

Chaoyuan Cui, born in 1972. Ph.D.,
associate professor. His main
research direction includes system
virtualization, architecture of cloud
computing, information and
communication security.

Bingyu Sun, born in 1974. Ph.D.,
professor. His main research direction
includes, data mining and machine
learning.

Wenbo Li, born in 1979. Ph.D.,
associate professor. His current
research interests include information
technology, water resource, remote
sensing, and intelligent decision.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

