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Abstract 

The Artificial Bee Colony (ABC) algorithm is an 

optimization algorithm inspired by the foraging behavior 

of bee swarms. Similar to some evolutionary algorithms, 

there is a main limitation in ABC, i.e., in many problems, 

ABC is good at exploration but poor at exploitation. Thus, 

in order to overcome this limitation and improve the 

performance of ABC when dealing with various kinds of 

optimization problems, we proposed a self-adaptive 

artificial bee colony algorithm with symmetry 

initialization (SABC-SI). In our SABC-SI algorithm, a 

novel population initialization method based on half 

space and symmetry is designed, and such method can 

increase the diversity of initial solutions. Besides, a self-

adaptive search mechanism and several new Candidate 

Solution Generating Strategies (CSGSes) have also been 

developed. Consequently, the evolutionary strategies can 

be selected dynamically according to their search 

performance. Moreover, the selection operator is 

improved by eliminating some of the poor solutions and 

making good use of the two best solutions in both the 

current and previous generations. The novel algorithm 

was tested on 25 different benchmark functions. The 

experimental results show that SABC-SI outperforms 

several state-of-the-art algorithms, which indicates that it 

has great potential to be applied to a wide range of 

optimization problems. 

Keywords: Artificial Bee Colony, Population initialization, 

Selection strategy, Self-adaptive 

1 Introduction  

Because the evolutionary algorithms (EAs) have few 

parameters and they can be easily applied to various 

problems, many researchers have devoted to the study 

of EAs over the last three decades. Compared with 

other traditional methods, EAs have become well-

established global optimization methods, and they all 

have high robustness and broad applicability. 

Possessing the characteristics of self-organizing and 

self-learning, EAs can deal with those challenging 

optimization problems which otherwise cannot be 

effectively solved by traditional optimization methods. 

The popular EAs, including genetic algorithm (GA) [1], 

particle swarm optimization (PSO) [2], differential 

evolution (DE) [3], ant colony optimization (ACO) [4] 

and artificial bee colony (ABC) [5], have excellent 

ability to handle many complex real-world problems.  

In addition to the above EAs, Karaboga proposed 

the ABC algorithm in 2005 [15]. The experimental 

results of ABC on numerical optimization problems 

indicate that ABC has distinctive characteristics when 

compared with other traditional optimization 

algorithms [5].  

Due to its simplicity, good efficiency and high 

robustness, ABC is a frequently used tool for solving 

many real-world optimization problems [6-9]. 

However, similar to other EAs, ABC also has its own 

limitations. Specifically, ABC sometimes cannot find 

the best solution and thus fall into premature 

convergence [10]. Therefore, some researchers have 

proposed several revised algorithms to overcome these 

disadvantages. 

To improve ABC’s solution search strategy, which 

is good at exploration but poor at exploitation, Zhu and 

Kwong developed the gbest-guided ABC (GABC) by 

incorporating the information of global best solution 

into the solution search equation with an aim to 

improve the exploitation [11]. Although the 

performance of GABC is enhanced through better use 

of information about the global best solution, GABC is 

also sometimes restricted by the current global best 

solution when solving some optimization problems. To 

further enhance the global convergence, Gao et al. 

proposed a modified population initialization method 

called chaotic and opposition-based learning method to 
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produce population [12]. But the initial population 

produced by the improved population method is 

sometimes redundant in the sense that identical 

individuals are generated. In addition, in order to use 

the parameters of ABC during the evolutionary process, 

Bansal et al. proposed an adaptive version of ABC 

where the step size in solution modification and the 

ABC parameter limit are determined adaptively based 

on the current fitness values [13]. Interestingly, 

Semwal proposed a deep learning approach and it 

described human push recovery data classification 

through the use of the features from intrinsic mode 

functions, and such features were obtained through 

empirical mode decomposition on different leg joint 

angles [14]. However, the idea of that paper was 

inspired by the body organs of biology, and the focus 

of our algorithm is self-adaptive biological behaviors. 

These are two different research aspects. 

In this paper, in order to overcome the limitations 

and further improve the performance of ABC on 

optimization problems, we propose a self-adaptive 

artificial bee colony algorithm with symmetry 

initialization (SABC-SI), which employs a novel self-

adaptive search mechanism as well as a new 

population initialization strategy. In this new self-

adaptive mechanism, several candidate solution 

generating strategies (CSGSes) can be dynamically 

selected in each generation according to their search 

performance. In addition, the novel population 

initialization method is proposed based on half space 

and symmetry method, and it can increase the diversity 

of solutions. The new initialization method can 

fundamentally guarantees the uniform distribution of 

the initial population. Furthermore, we also improve 

the solution selection operator by following the 

Darwin’s theory of evolution, that is, the superior 

solutions would be more likely to survive and the 

inferior solutions would be more likely to be 

eliminated during the evolution process. 

The rest of this paper is organized as follows. 

Section 2 summarizes the ABC algorithm. The self-

adaptive artificial bee colony algorithm based on 

symmetry initialization and optimal solution reserving 

selection operator is presented and analyzed in Section 

3. In Section 4, we report the experimental results, and 

this is followed by Section 5, which concludes the 

paper and explores future work.  

2 Related Work 

2.1 The Artificial Bee Colony Algorithm  

The idea of ABC for numerical optimization was 

first proposed by Karaboga in 2005 [15] and was 

described in detail in 2007 [5]. There are three 

different types of artificial bees in ABC: employed 

bees, onlooker bees, and scout bees. Employed bees 

are pioneers of the swarm and they have the ability to 

discover food sources and gather honey. According to 

the information shared by employed bees, the onlooker 

bees would choose the better food sources for 

exploitation. The function of the scout bees is that they 

abandon bad food sources and search for new ones. 

Besides, these three kinds of colonies can be 

transformed into each other and they form an effective 

co-operative system. The main steps of ABC algorithm 

are briefly described as follows:  

In the initialization phase of ABC, a population 

(colony) is generated. The number of colony size is 

equal to the number of employed bees and onlooker 

bees. Besides, the number of food sources equals the 

half of the colony size. The initial population is 

generated by Equation (2.1). Then, the fitness values of 

these individuals are evaluated. 
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where 1,  2,  ... , psi = , and ps is the number of 

individuals in the population; 1,  2,  ... , Dj = , and D is 

the number of dimensions of the problem; rand  is a 

random number between 0 and 1, Lbound and 

Ubound  are the lower and upper bounds of a problem, 

respectively.  

After initialization, the ABC algorithm enters an 

iterative process in the employed bee phase. A new 

individual is generated as follows:  
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where G represents the number of current generation 

and G+1 is the next generation. K is a random integer 

in the range [1,  2,  ... , ]ps , 1,  2,  ... , Dj = , 

[ 1,1]rand∈ − . 
,i j

G
X  is the current individual and 

,

1

i j

G
X

+  

is the generated individual. 

If a generated value is out of the boundary, it will be 

shifted back to the boundary. Then, the fitness value of 

the new solution is calculated. If the new fitness value 

is better than the old one, the new solution would 

replace the previous one and the trial counter will be 

reset. Otherwise, the previous solution is reserved and 

its trial counter is increased.  

Before the onlooker bee stage, the selection 

probabilities of the candidate solutions are calculated 

through Equation (2.3). The candidate solutions with 

higher probabilities will be further optimized. Then, for 

the chosen individual, a new individual is generated by 

Equation (2.2) and its fitness value is calculated. If the 

new fitness value is better than the old one, the new 

solution would replace the previous one and the trial 

counter is reset. Otherwise, the previous solution is 

reserved and its trial counter is increased.  
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where 
i

fit  represents the fitness value of solution i and 

ps is the number of individuals. Pi is the selection 

probability of the current solution. 

In the scout bee stage, each individual has a trial 

counter. The solutions which could not be improved 

within a given number of trials are abandoned. If the 

solution whose trial counter exceeds the limitation, it 

would be abandoned and a new solution would be 

generated by Equation (2.4). Again, the correlative trial 

counter is reset. 
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X X rand X X= + − , (2.4) 

where 1,  2,  ... , psi = , 1,  2,  ... , Dj = , [0,1]rand∈ , 

max
X and 

min
X  are the lower and upper bounds of 

problems.  

After the above iterative process, all candidate 

solutions are generated. The ith optimal solution is 

found, whose fitness value is the best. Algorithm 1 

shows the detailed procedures of the original ABC. 

 

Algorithm 1. The main steps of the ABC algorithm 

Step (1) Initialization 

 Step (1.1) Generate ps individuals form the initial population 
1 2

{ , ,..., }
SN

x x x=X  randomly 

 Step (1.2) Calculate the fitness values of the ps individuals 

 Step (1.3) Initialize trial, limit, D and maxCycle 

Step (2) Employed Bee Stage 

 Step (2.1) For (i=1, i<ps, i++)…, ps, CONTINUE 

  Step (2.1.1) Use Formula (2.2) to generate a new solution 

  Step (2.1.2) Calculate fitness value of the new solution 

 Step (2.2) If find the better value, update the solution and trial=0, else trial=trial+1 

 End For 

Step (3) Calculate probability values by Formula (2.3) 

Step (4) Onlooker Bee Stage 

 Step (4.1) If rand < Pi  

  Step (4.1.1) Use Formula (2.2) to generate a new solution 

  Step (4.1.2) Calculate fitness value of the new solution 

  Step (4.1.3) If find the better value, update the solution and trial=0, else trial=trial+1 

 End If 

Step (5) Scout Bee Stage 

 If max(trial)>limit, produce new individuals through Formula (2.4) 

Step (6) Generate and record the best solution 

Step (7) If iterations>= maxCycle, output the optimal solution, else go to Step2 

 

2.2 The Improved ABC 

The ABC algorithm is a simple, effective, and robust 

evolutionary optimization method. Compared with the 

other EAs, the ABC algorithm is relatively young yet 

more efficient. Many researchers are interested in the 

ABC algorithm, because it has fewer control 

parameters and it is easier to use [5]. ABC has been 

widely applied to many real-world problems. For 

example, ABC has been applied to a loudspeaker 

design problem [16], and for the design of two-channel 

quadrature mirror filter banks [17]. Besides, ABC was 

used to minimize the makespan for the single machine 

batch processing problem when the sizes of the jobs 

are non-identical [18]. Horng also adopted ABC for a 

stochastic economic lot scheduling problem [19], and 

Pan solved the large-scale hybrid flow shop scheduling 

problem with ABC [20]. What is more, ABC has also 

been employed to solve an interest-based forwarding 

problem [21].  

As a result, ABC has emerged as a powerful tool for 

solving both local and global optimization problems 

[10-11]. However, there is no specific algorithm that 

can achieve the best solution for all optimization 

problems, the so-called no free lunch theorem. The 

ABC algorithm also has some disadvantages. For 

instance, it may sometimes stop approaching to the 

global optimum (or optima) even before the population 

converging to a local optimum, and it may suffer from 

extensive computation time due to its stochastic nature. 

Hence, it is necessary to continue to improve the 

efficiency of ABC when solving many problems. Gao 

and Liu proposed a chaotic and opposition-based 

learning method to produce initial population [22]. In 

this method, the initial population is first generated 

through the chaotic method. Then, the opposition-

based learning method is used to generate another 

population. It is worth to notice that the size of the 

former population is the same as the latter. Next, the 

fitness values of the two populations are evaluated. 
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Half of the whole populations whose fitness values are 

better than the others are reserved and they become the 

final initial population. Experimental results show that 

the ABC algorithm employing this initialization 

approach outperforms the original ABC algorithm [22]. 

Meanwhile, we also investigate an optimal solution 

reserving selection operator to make the full use of the 

previous optimum generated in each circulation. 

Besides, we construct an adaptive strategy selection 

pool. One strategy could be chosen at a high 

probability during the evolutionary process. Then the 

strategy with the higher probability is more likely to be 

selected than the others and this could greatly improve 

the ability of solving different kinds of problems. 

3 Self-adaptive Artificial Bee Colony 

Algorithm Based on Symmetry 

Initialization and Optimal Solution 

Reserving Selection Operator 

3.1 The Symmetry Initialization Method 

Based on Half Space 

Population initialization is an important phase in 

EAs. A good initial population tends to lead to good 

solutions and accelerates the convergence speed. As 

mentioned in Section 2.2, a chaotic and opposition-

based learning method which is designed by Gao and 

Liu is used to produce the initial population [22]. The 

detailed steps are as follows. First, the chaotic method 

is used to generate the initial population. Next, another 

population is produced by the opposition-based 

learning method. The size of the two populations is the 

same. Then, their fitness values are calculated. The 

individuals are further compared with each other and 

the better ones are reserved. Finally, the final initial 

population is obtained. Experimental results show that 

this initialization approach is effective [22].  

However, this initialization approach also has 

several disadvantages: the individuals in the population 

which are generated by the chaotic system may be the 

same as those in the population which are generated 

through the opposition-based learning method. In this 

case, the efficiency will be affected. As shown in 

Figure 1(a), suppose the range of a given problem is 

[X1, X2] and the generated population is 
1 2 3 4

{ , , , }R R R R , 

which are produced by the chaotic method, where 

1 2
,X X R∈ , M = (X1+X2)/2. Obviously, the values 

generated through the opposition-based learning 

method are still 
1 2 3 4

{ , , , }R R R R . 

This means that the opposition-based learning 

method is invalid in this case. As a result, almost half 

of the initial population are redundant and its 

efficiency is thus affected in the algorithm. 

In order to overcome the above shortcoming, we 

propose a novel initialization approach named Half 

Space based Symmetry Initialization algorithm (HSSI). 

The detailed steps are as follows: The first and utmost 

step is to define the Half Range (HR) of a given 

problem and it is selected randomly. It is noted that the 

selection of HR is a further research problem. In this 

research we choose the front half range. After that the 

first part of the initial population is generated in HR 

randomly, the symmetry initialization approach is then 

used to produce the second part of the initial 

population in the rest of the range. Finally, the final 

population is generated by selecting the top half 

individuals with better fitness values from both 

populations. As shown in Figure 1(b), this method 

divides the solution space into N regions and each 

region is assigned to a solution every time by HSSI. In 

this research we set N=2. R1, R2, R3 and R4 are 

produced from [X1, M]. R1’, R2’, R3’, and R4’ are 

produced by the symmetry method. It essentially 

guarantees the uniform distribution of initialization. 

Obviously, the initial population produced by this 

approach is more comprehensive and efficient. The 

detailed steps of the HSSI algorithm are shown in 

Algorithm 2. 

3.2 The Optimal Solution Reserving Selection 

Operator 

During the evolution process in each generation, 

employed bees, onlooker bees and scout bees are 

employed alternatively. Thereafter, the best solution is 

recorded. For the last iteration of the loop, surely we 

only need to record the optimal solution. However, we 

may also need to deal with the other best solutions. 

Therefore, we consider how to make a better use of the 

previous optima if it is replaced by the current best 

solution. So we propose a selection operator which can 

researve optimal solutions. 

After the scout bee phase of the original ABC 

algorithm, the solutions of the current generation are 

generated. Then, the current optimum (bestFit) is 

compared with the previous optimum (gbestFit). If 

bestFit is better than gbestFit, the current best solution 

(bestSol) is retained. Otherwise, this step is skipped. 

Nevertheless, not only does the proposed selection 

operator complete the above steps, but also it is 

capable of abandoning bad solutions. Abandoning a 

few solutions is a direction in future research, and in 

this research we only consider the case of the worst 

solution. First, we compare the gbestFit with the 

current worst fitness (worstFit). If the worstFit is 

worse than the gbestFit, the worst solution is replaced 

by a random generated solution. Otherwise, this step is 

skipped. The advantage of this approach is that it can 

further enhance the diversity of the population and 

avoid getting trapped into local optima when solving 

the complex optimization problems. The fundamental 

reason is that those solutions which seldom or never 

evolve should be removed or die, which is known as 

“natural selection and survival of the fittest”. Besides, 
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the selection probability of the good population is 

increased and the superior population can also improve 

the overall efficiency of algorithms. The detailed steps 

of the optimal solutions reserving selection operator 

are shown in Algorithm 3. 

 

(a) 

 

(b) 

Figure 1. A comparisons between HSSI and rand initialization 

Algorithm 2. The detailed steps of the HSSI algorithm 

Step (1) Input: Population size ps; Number of dimension D; M is a certain value in HR 

Step (2) For i = 1 to ps 

     For j = 1 to D 

       P( i, j ) = Lbound(j) + rand(0,1)*( M − Lbound(j) ) 

     End for 

    End for 

Step (3) For i = 1 to ps 

     For j = 1 to D 

             Q(i, j) = Lbound(j) + Ubound(j) − P( i, j )  

     End for 

    End for 

Step (4) Select SN fittest individuals from collection { Q}P∪  as the actual initiali population PQ.  

 

Algorithm 3. The optimal solution reserving selection operator 

Step (1) Find the best fitness bestFit and the worst fitness worstFit respectively, gbest represents the previous 

optimum, gbestFit represents the  fitness of  gbest 

Step (2) According to  bestFit and  worstFit, find the best solution bestSol and the worst solution worstSol  and its 

position worstPos 

Step (3) If bestFit < gbestFit 

        gbest  = bestSol 

        gbestFit = bestFit 

    End if 

Step (4) If worstFit > gbestFit 

        randomSol =  Lbound + rand(Ubound − Lbound) 

        populationworstPos =  randomSol  

    End if  

 

3.3 The Self-adaptive Mechanism  

In ABC algorithm, the employed bee phase and 

onlooker bee phase both need Candidate Solution 

Generating Strategies (CSGSes) to produce new 

individuals. An ideal CSGS should be able to not only 

solve different problems as many as possible, but also 

to be adapted to the global and local optimization 

during the evolutionary process. Many researchers 

developed various CSGSes and many of them have 

achieved good results [12, 23-25]. Obviously, one 

CSGS cannot satisfy the demand of solving various 

kinds of complex problems. For this reason, a self-

adaptive mechanism, combined with several CSGSes, 

is employed in our SABC-SI. The self-adaptive 

mechanism is described as follows: 
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At the initialization phase of the algorithm, each 

CSGS is assigned with the same initial selection 

probability value (P) and it is set as the reciprocal of 

the total CSGS. The number of adaptive CSGSes 

(straNum) is set to 8 since eight CSGSes are used in 

this paper, and the details of these eight CSGSes are 

presented in Section 3.4. LP is the cycle for adaptive 

update and it is set to 10. First, according to the initial 

P, each individual is given its own CSGS through the 

roulette wheel selection algorithm, which is selected 

from the eight CSGSes. The chosen strategy in the 

current generation is named curStra. Then, the new 

individual is produced through curStra and its fitness 

value is calculated. If the obtained fitness is better than 

the previous one, the strategy-success flag matrix 

(straFlagS) of curStra is updated. Otherwise, the 

strategy-failure flag matrix (straFlagF) is updated. The 

straFlagS and straFlagF of the other CSGSes are all 

set to 0 and it represents that these strategies are not 

selected in the current generation. After one generation, 

which means that all individuals have been evolved at 

least once, the data of straFlagS and straFlagF are 

transferred to the total-success flag matrix (totalFlagS) 

and total-failure flag matrix (totalFlagF), respectively. 

Meanwhile, straFlagS and straFlagF are set to zero in 

order to prepare for the next generation. When the 

number of above iterations reaches LP, the new 

selection probabilities of each CSGS will be calculated 

according to Equations (3.1) and (3.2).  
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where straFlagS represents the strategy-success flag 

matrix and straFlagF represents the strategy-failure 

flag matrix. 
1
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n
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n

n
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∑ represent 

the number of successful and failed strategies during 

the evolutionary process, respectively. Pq
’ represents 

the probability of successful strategies. ɛ  is a small 

number close to 0.  
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where G represents the number of current generation 

and G+1 is the next generation, r1, r2, r3 and r4 are 

random integers in the range of [1,  2,  ... , ]ps , 

1,  2,  ... , Dj = , [ 1,1]rand∈ − . 
,i j

G
X  is the current 

individual and 
,

1

i j

G
X

+  is the generated individual. 

The detailed steps of SABC-SI are described in 

Algorithm 4. 

3.4 The Candidate Solution Generating 

Strategy 

The CSGS greatly affects the efficiency of the 

SABC-SI algorithm. In general, the efficiency is better 

when the number of adaptive CSGS is bigger, but more 

strategies mean that the algorithm is more complex and 

the running time may be longer. After carefully 

weighing these factors, the straNum is set at 8. In order 

to avoid getting trapped into local optima, Zhu added 

the perturbation of global optimal solution and 

proposed GABC algorithm [11]. Furthermore, Gao 

enhanced the effect of best solution in the current 

generation and presented the ABC/best/1, ABC/best/2 

and MABC algorithms [12, 22]. Besides, Gao also 

proposed ABC/rand/1 algorithm for increasing the 

diversity of solution and the trial vectors are all 

generated from stochastic solutions [25].  

In order to solve multimodal problems by better 

approaches and make the strategy more comprehensive, 

inspired by the mutation strategies of DE [23-24], we 

proposed three mutation strategies for ABC, as listed 

by Equations (3.3), (3.4) and (3.5). They are termed as 

ABC/rand/2, ABC/current-to-best/1 and ABC/current-

to-best/2. 

The above 8 variant strategies form an adaptive 

strategy selection pool. According to the strategy 

selection probability P, one strategy could be chosen at 

a high probability during the evolutionary process. 

Then the strategy with a higher probability is more 

likely to be selected than the others, and this could 

greatly improve the ability of SABC-SI for solving 

different kinds of problems. 
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Algorithm 4. The proposed SABC-SI algorithm 

Step (1) Initialization 

  Step (1.1) Initialize the strategy selection probability PstraNum(q= 1, 2, ..., Q), where Q is the number of 

strategies, and straNum is the number of CSGSes; set the values of ps, LP, straFlagS, straFlagF, 

totalFlagS and totalFlagF. 

  Step (1.2) Algorithm 2 is used to generate ps individuals 

  Step (1.3) Calculate the fitness values of the ps individuals 

Step (2) Employed Bee Phase 

  Step (2.1) For (fitCount< MaxFES fitCounti++), 1, …, ps, CONTINUE 

   Step (2.1.1) Based on the related data gathered from evolution, the current strategy curStra can be selected 

by the roulette wheel algorithm. 

   Step (2.1.2) Use curStra from the candidate pool to generate a new solution and calculate the fitness value 

of the new solution. 

  Step (2.2) If a the better value is found, update the solution, else trial=trial+1 

  Step (2.3) Update the flag matrices straFlagS and straFlagF. 

Step (3) Update totalFlagS and totalFlagF 

Step (4) Calculate the probability values 

Step (5) Onlooker Bee Phase 

  Step (5.1) if rand< Pi 

   Step (5.1.1) Use curStra from the candidate pool to generate a new solution and calculate the fitness value 

of the new solution. 

   Step (5.1.2) If a better fitness value is found, update the solution, else trial=trial+1 

   Step (5.1.3) Update the flag matrices straFlagS and straFlagF. 

  End if 

  End for 

Step (6) Update totalFlagS and totalFlagF 

Step (7) Scout Bee Phase 

    If max(trial)>limit, generate one individual randomly 

Step (8) If the number of iterations for adaptive update achieves LP, calculate the new PstraNum 

Step (9) Use Algorithm 3 to generate best solutions and remove the worst previous solution 

Step (10) If FES>= MaxFES, output the optimal solution, else go to step2 

 

4 Computational Experiments and Result 

Comparisons 

4.1 The Orthogonal Design Method 

In this paper, the orthogonal design method is used 

to find out the best level of the main influential factors 

of a specific algorithm. The Population Size (PS), limit, 

and the fixed number LP are analyzed in this research. 

Each factor is set with three levels according to 

experience and they are shown in Table 1.  

Table 1. The three factors and their levels 

Factors Levels 

PS 60 120 180 

Limit 500 1000 1500 

LP 10 20 30 

 

In order to find the best level for each factor, we 

carry out a series of experiments for the combinations 

of all factor levels and select the best combination. In 

this experiment, the number of combinations is 

3*3*3=27. In general, we consider a situation where 

there exists A factors and B levels and the number of 

combinations is A*B. Obviously, when A, and B are 

very large, the combinatorial experiments for all 

factors may be intractable. Thus, we expect to provide 

a design method which can obtain the good 

combination based on fewer experiments. The 

orthogonal design is a very popular method which can 

deal with this problem. As shown in Table 2, 9 

orthogonal tests are designed according to the 

orthogonal array in this paper. 
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Table 2. Orthogonal design 

Combinations PS Limit LP Results 

M1 60 500 10 f1 

M2 60 1000 20 f2 

M3 60 1500 30 f3 

M4 120 500 20 f4 

M5 120 1000 30 f5 

M6 120 1500 10 f6 

M7 180 500 30 f7 

M8 180 1000 10 f8 

M9 180 1500 20 f9 

 

4.2 The Benchmark Functions and Parameter 

Settings 

The factor analysis on the 25 benchmark functions is 

recorded. Due to space limitation, we only list the data 

on function 1 as shown in Table 3. The optimal 

numbers of each level of each factor are shown in 

Table 4. Based on these results, we find that the best 

PS is 60 and it is exactly equal to the double of D. The 

best limit is 500 and it is approximately 10 times 

bigger than PS. The best LP is 10 or 20 and it tends to 

be smaller.  

Table 3. Factor analysis on function 1 

L1 (f1+ f2+ f3)/3=7.58E-14 (f1+ f4+ f7)/3=6.95E-14 (f1+ f6+ f8)/3=8.84E-14 

L2 (f4+ f5+ f6)/3=6.95E-14 (f2+ f5+ f8)/3=8.84E-14 (f2+ f4+ f9)/3=8.21E-14 

L3 (f7+ f8+ f9)/3=1.01E-13 (f3+ f6+ f9)/3=8.84E-14 (f3+ f5+ f7)/3=7.58E-14 

Sort 120 500 30 

Table 4. The results on the 25 test functions 

Parameter Optimal Number 

PS60 18 

PS120 12 

PS180 8 

Limit500 18 

Limit1000 9 

Limit1500 8 

LP10 13 

LP20 13 

LP30 11 

 

In the experiments, the number of dimensions D of 

the solution is set to 30 or 50. The particle numbers ps 

is equal to the double of D. That is to say, the number 

of employed bees is half of the population size. To 

make a fair comparison, the populations for these 

dimensions of all the compared algorithms were 

initialized with the same random seeds. The fixed 

integer of previous generations LP=10. The number of 

decision variables was set to the same for all the 25 test 

functions. For each algorithm on each function, 25 

independent runs were conducted with 500,000 

(Number of Fitness Evaluation, NFE) times of function 

evaluations being the termination criterion.  

All the algorithms involved in this research are 

tested on 25 benchmark functions. The individual 

functions are shown in Table 5 and Table 6. The 

functions are numbered from f1 to f25 and they can be 

grouped into three categories: f1 to f5 are unimodal 

functions, f6 to f14 are basic multimodal functions, and 

f15 to f25 are composition functions. A detailed 

description of these test functions can be found in [26].  

4.3 Performance Comparison between the 

HSSI Method and Random Initialization  

In order to investigate whether the convergence rate 

is greatly influenced by the quality of initial population 

in ABC and HSSI is better than random initialization, 

the performance of ABC-HSSI (ABC combines only 

with the HSSI algorithm) on 25 benchmark functions is 

compared with that of ABC using random initialization. 

Figure 2 shows the convergence performance of both 

ABC-HSSI and ABC with random initialization. In 

order to make the images clearer, we convert 

generation and fitness to log(generation) and 

relevantFitness respectively. So the horizontal axis and 

vertical axis represent the corresponding evolution 

generations and relevant fitness, respectively. The test 

functions of Figure 2 are from the three different types 

with different dimensions, and due to space limitation 

the other results are shown in the supplementary 

material. 
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Table 5. Benchmark functions f1 to f20 

Objection function Property Class Search Range 
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1 1

1
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D

i

i
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−  
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D i
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i j
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−  

1D

6 21
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1
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i

D

i

i

f X Z f bias
−

−

=
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D

−  

2

4 4

1 1

( ) ( ( ) )*(1 0.4 (0,1) ) _
D i

j

i j

f X Z N f bias
= =
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D
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}{5 5
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i i
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D
−  

1

2 2 2

6 1 6

1
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D

i i i

i
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−

+

=
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D
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DD
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Z Z
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i

−
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2

8
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8
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                20 _
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e f bias

π

= =

= − − − +

+ +

∑ ∑
 Basic Multimodal [ 32,32]

D
−  

2

9 9

1

( ) ( 10cos(2 ) 10) _
D

i i

i

f X Z Z f biasπ

=

= − + +∑  Basic Multimodal [ 5,5]
D

−  

2

10 10

1

( ) ( 10cos(2 ) 10) _
D

i i

i

f X Z Z f biasπ

=

= − + +∑  Basic Multimodal [ 5,5]
D

−  

11 11

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)] _
D kmax kmax

k k k k

i

i k k

f X a b Z D a b f biasπ π

= = =

= + − ⋅ +∑ ∑ ∑  Basic Multimodal [ 0.5,0.5]
D

−  

2

12 12

1

( ) (A B ( )) _
D

i i

i

f X x f bias
=

= − +∑  Basic Multimodal [ , ]
D

π π−  

13 1 2 2 3

1 13

( ) 8( 2( , )) 8( 2( , )) ...

             8( 2( , )) _
D

f X F F Z Z F F Z Z

F F Z Z f bias

= + + +

+

 Basic Multimodal [ 3,1]
D

−  

14 1 2 1 2 2 3

1 1 14

( ) ( , ,..., ) ( , ) ( , ) ...

               ( , ) ( , ) _

D

D D D

f X EF Z Z Z F Z Z F Z Z

F Z Z F Z Z f bias
−

= = + + +

+ +

 Basic Multimodal [ 100,100]
D

−  

15
:f

1 2
( ) : Rastrigin '  Functionf x s

−   3 4
( ) : Weierstrass Functionf x

−

 

       5 6
( ) : Griewank's Functionf x

−   7 8
( ) : Ackley's Functionf x

−

 

       9 10
( ) : Sphere Functionf x

−

 

Composition [ 5,5]
D

−  

16
:f  All settings are the same as f15 except Mi  Composition [ 5,5]

D
−  

17 17
( ) ( )*(1 0.2 | (0,1) |) _f X G x N f bias= + +  Composition [ 5,5]

D
−  

18
:f

1 2
( ) : '  Functionf x Ackley s

−  3 4
( ) : '  Functionf x Rastrigin s

−

 

       5 6
( ) :  Functionf x Sphere

−  7 8
( ) :  Functionf x Weierstrass

−

 

       9 10
( ) : '  Functionf x Griewank s

−

 

Composition [ 5,5]
D

−  

19
:f  All settings are the same as f18 exceptσ and λ Composition [ 5,5]

D
−  

20
:f  All settings are the same as f18 except O Composition [ 5,5]

D
−  
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Table 6. Benchmark functions f21 to f25 

Objection function Objection function Objection function 

21
:f

1 2
( ) :   Scaffer's F6 Functionf x Rotated Expanded

−     

      3 4
( ) : '  Functionf x Rastrigin s

−   

5 6
( ) : 8 2 Functionf x F F

−  

      7 8
( ) :  Functionf x Weierstrass

−   

9 10
( ) : '  Functionf x Griewank s

−

 

Composition [ 5,5]
D

−  

22
:f  All settings are the same as f21 except Mi Composition [ 5,5]

D
−  

23
:f  All settings are the same as f21 except xj and round Composition [ 5,5]

D
−  

24
:f

1
( ) :  Functionf x Weierstrass   

       
2
( ) : Rotated Expanded Scaffer '  F6 Functionf x s   

       3
( ) : F8F2 Functionf x  4

( ) : Ackley '  Functionf x s  

       
5
( ) : Rastrigin '  Functionf x s  

6
( ) : Griewank '  Functionf x s  

       7
( ) : Non-Continuous Expanded Scaffer '  F6 Functionf x s  

       
8
( ) : Non-Continuous Rastrigin '  Functionf x s   

       
9
( ) : High Conditioned Elliptic Functionf x   

       10
( ) : Sphere Function with Noise in Fitnessf x  

Composition [ 5,5]
D

−  

25
:f  All settings are the same as f24 except no exact search range set for this test 

function. 
Composition [2,5]

D  

 

f1 with D=30 

 

f1 with D=50 

 

f6 with D=30 

 

f6 with D=50 

 

f25 with D=30 f25 with D=50 

Figure 2. Convergence performance of ABC-HSSI and ABC 
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As shown in Figure 2, the convergence rate of ABC-

HSSI is better than ABC with random initialization on 

f1, f6, and f25. Although the performance of ABC-HSSI 

is a little poorer in the middle generations of the whole 

evolution process for f1, the results of ABC-HSSI are 

superior to the other one obviously. The case is similar 

on other test functions which are not shown in Figure 2. 

It benefits most from the HSSI and symmetric method 

which make the search more global-oriented and the 

initial population is distributed more uniformly. 

Obviously, the algorithm with a randomly initialized 

population could not get the results which are as good 

as ABC-HSSI. To sum up, the HSSI approach can 

produce better initial population and it is helpful for 

ABC to obtain better solutions. 

4.4 The Effect of the Optimal Solution 

Reserving Selection Operator 

To investigate the effectiveness of the novel solution 

selection operator, the performance on the 25 

benchmark functions of ABC-MS (ABC combined 

only with the modified optimal solution reserving 

selection operator) is compared with ABC with the 

original selection strategy. Figure 3 shows the 

convergence performance of ABC-MS and ABC. Same 

as above, the test functions of Figure 3 are also from 

three different types of different dimension and the 

results on other test functions are shown in the 

supplementary material. 

It can be observed from Figure 3 that the 

convergence performance of ABC-MS is better than 

ABC with the original selection operator when solving 

different kinds of benchmark functions.  

f2 with D=30 

 

f2 with D=50 

 

f9 with D=30 

 

f9 with D=50 

 

f15 with D=30 

 

f15 with D=50 

 

Figure 3. Convergence performance of ABC-MS and ABC 
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Table 7. The optimization results of GABC, ABC/best/1, NSHS and SABC-SI on 25 test functions with D=30 

GABC ABC/best/1 NSHS SABC-SI 
Functions 

Mean SD Mean SD Mean SD Mean SD 

f1 1.09E-02 6.33E-03 1.97E-12 1.93E-13 2.42E-02 3.71E-03 5.68E-14 0.00E+00 

f2 2.99E+04 6.02E+03 3.55E+04 1.96E+03 3.16E+03 1.03E+03 3.10E+03 1.53E+03 

f3 4.88E+07 7.10E+06 5.28E+07 9.41E+06 8.39E+06 3.92E+06 1.31E+06 3.04E+06 

f4 4.60E+04 1.95E+03 5.06E+04 5.02E+03 9.47E+03 1.59E+03 3.08E+03 1.61E+03 

f5 1.09E+04 2.90E+02 9.34E+03 5.34E+02 2.64E+03 4.72E+02 6.36E+03 7.31E+02 

f6 1.44E+03 7.37E+02 1.86E+02 4.11E+01 2.22E+02 9.14E+01 4.04E-01 3.26E-01 

f7 4.70E+03 8.97E-01 4.70E+03 5.15E-02 3.96E+02 8.75E+00 3.52E+03 5.25E-13 

f8 2.09E+01 9.03E-02 2.09E+01 1.10E-02 2.10E+01 2.59E-02 2.09E+01 3.34E-02 

f9 3.64E+01 4.88E+00 2.03E-12 2.02E-12 7.07E-01 9.18E-01 5.68E-14 0.00E+00 

f10 3.11E+02 9.17E+00 2.82E+02 1.14E+01 1.90E+02 8.94E+00 1.45E+02 1.47E+01 

f11 3.36E+01 3.98E-01 3.32E+01 1.45E+00 4.03E+01 6.19E-01 2.50E+01 1.16E+00 

f12 8.10E+04 2.49E+04 8.82E+04 1.61E+04 9.22E+03 3.18E+03 7.84E+03 2.92E+03 

f13 7.58E+00 4.75E-01 7.59E+00 7.45E-01 2.24E+00 2.59E-01 9.69E-01 9.99E-02 

f14 1.32E+01 1.04E-01 1.33E+01 3.39E-02 1.36E+01 6.68E-02 1.26E+01 7.88E-02 

f15 3.36E+02 1.19E+02 3.29E+02 1.45E+02 3.08E+02 8.66E-01 1.63E+02 2.31E+02 

f16 3.66E+02 4.10E+01 3.17E+02 1.11E+01 2.98E+02 7.86E+01 2.63E+02 1.34E+02 

f17 4.65E+02 2.36E+01 4.25E+02 8.83E+00 3.62E+02 5.82E+01 2.89E+02 2.69E+01 

f18 9.24E+02 2.32E+00 9.21E+02 2.16E+00 8.70E+02 2.84E+00 8.58E+02 2.06E+00 

f19 9.32E+02 1.76E+00 9.21E+02 1.73E+00 8.98E+02 1.75E+00 8.64E+02 1.64E+00 

f20 9.27E+02 9.21E-01 9.23E+02 3.07E+00 8.67E+02 2.40E+00 8.50E+02 2.93E-01 

f21 5.14E+02 1.62E+00 5.07E+02 5.87E-01 5.00E+02 9.01E-04 5.00E+02 8.63E-13 

f22 1.07E+03 1.04E+01 1.04E+03 1.60E+01 9.37E+02 1.70E+00 9.37E+02 7.09E+00 

f23 6.99E+02 1.49E+00 6.12E+02 2.13E+01 5.34E+02 1.50E-04 5.12E+02 3.38E-04 

f24 1.18E+03 1.79E+01 1.07E+03 3.25E+01 2.00E+02 4.05E-04 1.01E+02 0.00E+00 

f25 1.71E+03 3.65E+00 1.68E+03 5.07E+00 1.64E+03 2.20E+00 1.63E+03 3.93E+00 

“Mean” and “SD” refer to the average values and standard deviation of the corresponding functions respectively. 

Table 8. The optimization results of GABC, ABC/best/1, NSHS and SABC-SI on 25 test functions with D=50 

GABC ABC/best/1 NSHS SABC-SI 
Functions 

Mean SD Mean SD Mean SD Mean SD 

f1 1.08E+00 7.42E-01 6.33E-11 1.10E-11 2.58E-01 4.77E-02 1.71E-13 4.64E-14 

f2 9.92E+04 3.74E+03 1.06E+05 1.22E+04 4.32E+04 8.78E+03 3.92E+04 4.22E+03 

f3 2.20E+08 1.68E+07 1.84E+08 4.77E+07 6.08E+07 3.39E+07 2.70E+07 6.45E+06 

f4 1.48E+05 1.68E+04 1.31E+05 7.70E+03 7.69E+04 1.15E+04 6.32E+04 1.46E+04 

f5 2.64E+04 6.50E+02 2.47E+04 1.20E+03 6.08E+03 9.11E+02 6.84E+03 1.92E+03 

f6 2.19E+04 2.09E+03 3.24E+03 1.33E+03 4.70E+02 1.05E+02 6.83E-01 1.22E-01 

f7 6.24E+03 1.39E+01 6.22E+03 1.85E+00 6.20E+03 3.01E+01 3.55E+03 1.29E-12 

f8 2.11E+01 9.00E-03 2.11E+01 1.82E-02 2.12E+01 1.34E-02 2.11E+01 6.88E-02 

f9 1.10E+02 9.04E+00 2.97E-12 6.18E-13 6.03E+00 5.28E-01 2.08E-13 2.68E-14 

f10 8.28E+02 1.14E+01 6.61E+02 1.17E+01 3.58E+02 8.52E+00 3.40E+02 8.47E+01 

f11 6.39E+01 6.58E-01 6.46E+01 6.63E-01 7.48E+01 1.61E+00 5.33E+01 3.85E+00 

f12 4.65E+05 8.09E+04 4.69E+05 4.79E+03 4.45E+04 2.20E+04 3.26E+04 2.32E+03 

f13 2.12E+01 1.75E+00 1.82E+01 1.90E+00 5.09E+00 7.52E-02 2.58E+00 6.77E-02 

f14 2.30E+01 2.00E-01 2.31E+01 2.34E-01 2.34E+01 6.74E-03 2.24E+01 4.16E-01 

f15 3.93E+02 6.88E+01 3.17E+02 8.96E+01 3.43E+02 4.07E+01 1.87E+02 3.81E+01 

f16 4.26E+02 3.91E-01 4.27E+02 1.37E+00 2.65E+02 1.08E+01 2.63E+02 1.14E+01 

f17 8.52E+02 3.51E+01 7.56E+02 3.98E+01 3.80E+02 6.43E+01 3.75E+02 2.69E+01 

f18 9.89E+02 2.07E+01 9.71E+02 9.33E+00 9.65E+02 1.41E+01 9.29E+02 1.86E+01 

f19 9.91E+02 8.55E+00 9.68E+02 1.30E+00 9.70E+02 3.40E+00 9.22E+02 1.99E+01 

f20 9.91E+02 7.74E+00 9.75E+02 3.36E+00 9.42E+02 1.33E+01 9.37E+02 2.07E+01 

f21 1.04E+03 1.86E+00 1.04E+03 1.16E+00 5.00E+02 3.38E-03 5.00E+02 7.03E-13 

f22 1.20E+03 5.75E+00 1.13E+03 2.46E+01 9.44E+02 1.32E+01 9.43E+02 1.94E+01 

f23 1.06E+03 3.30E+00 1.04E+03 3.69E+00 5.65E+02 4.55E-03 5.39E+02 1.88E-04 

f24 1.40E+03 1.46E+01 1.36E+03 5.29E+00 2.00E+02 3.02E-03 1.17E+02 9.62E+01 

f25 1.90E+03 4.63E+00 1.85E+03 9.93E+00 1.67E+03 5.52E+00 1.65E+03 9.32E+00 

“Mean” and “SD” refer to the average values and standard deviation of the corresponding functions respectively. 
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f1 with D=30 f1 with D=50 

 

f6 with D=30 f6 with D=50 

 

f13 with D=30 f13 with D=50 

 

f14 with D=30 f14 with D=50 

 

f15 with D=30 f15 with D=50 

 

Figure 4. Convergence performance of GABC, ABC/best/1, NSHS and SABC-SI 
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Albeit the quality of the solutions produced by 

ABC-MS are close to that of the others at the 

beginning of the evolution, the optimal solution 

reserving selection operator plays an important role in 

the later stage and the convergent rate is greatly 

accelerated. The final results of ABC-MS are better 

than those of the other. Thus, we can draw a 

conclusion that at least the optimal solution reserving 

selection operator can improve the efficiency of ABC 

and get better quality solutions. 

4.5 The Performance Comparison between 

SABC-SI and Other Algorithms 

To verify the effectiveness and superiority of the 

proposed algorithm, the performance of SABC-SI is 

compared with other state-of-the-art algorithms, 

including GABC [11], NSHS [27] and ABC/best/1 

[12]. These algorithms are applied to solve unimodal, 

multimodal, and composite benchmark functions in 

this research. Table 7 and Table 8 show the mean and 

SD of the computational results on different 

dimensions, respectively. On the whole, the solutions 

of all functions on all dimensions generated by SABC-

SI are better than the others except for f5. The reason is 

that SABC-SI employs the adaptive strategy selection 

mechanism and each function can be greatly solved by 

the best strategy. In addition, SABC-SI could find the 

most accurate solutions when solving f1 and f9. 

Meanwhile, we can also observe that GABC, NSHS 

and ABC/best/1 cannot find the precise solutions on f1 

and f9. This means that these two types of problems 

cannot be easily solved by the above algorithms but 

they can be perfectly settled by SABC-SI. It is 

interesting to see that not only does SABC-SI discover 

the best solution for f8, but also it is found by GABC 

and ABC/best/1. Both SABC-SI and NSHS find the 

same solution on all dimensions when solving f21. As 

shown in Table 7 and Table 8, the solutions of f15 to f25 

which belong to composition functions are not 

satisfactory. In order to meet the future need of EAs, it 

is required to study and solve the class of problems 

more effectively. Overall, we can draw a conclusion 

that SABC-SI is better than the other algorithms in 

terms of the precision of solutions. 

The convergence performance of the search 

processes when solving the three different types of 

functions is shown in Figure 4. The convergence 

performance of SABC-SI is similar to that of 

ABC/best/1 on f1 when D=30, but SABC-SI 

outperforms ABC/best/1 significantly on f1 when D=50. 

Although the efficiency of SABC-SI is comparable to 

NSHS at the beginning of f13, the latter easily falls into 

local optimum and NSHS is better than the other 

algorithms significantly at the end of evolution. The 

convergence performance of SABC-SI is better than 

the others through the observation and analysis of these 

graphs shown in Figure 4 and the results demonstrate 

that the modified strategies are very effective. 

5 Conclusion & Future Work 

In this research we proposed a novel artificial bee 

colony algorithm SABC-SI. SABC-SI employs an 

improved population initialization method called HSSI, 

which fundamentally guarantees the uniform 

distribution of initialization. In addition, the optimal 

solution reserving selection operator follows the 

Darwin’s theory and the solutions of higher quality can 

be evolved through this selection operator. Moreover, 

we also develop a novel self-adaptive mechanism to 

choose candidate strategies automatically. All of the 

above enables SABC-SI to effectively deal with 

different kinds of optimization problems. Experimental 

results on 25 different benchmark functions 

demonstrate that SABC-SI performs better than several 

state-of-the-art algorithms. Hence, SABC-SI is a 

promising algorithm which can effectively deal with 

different kinds of optimization problems. 

However, there is still room for improvement for 

SABC-SI. It can be seen from Table 7 that the quality 

of the solution of SABC-SI on f5 is not the best. So 

SABC-SI is still worth to be further studied in serval 

aspects, such as the selection of HR and appropriately 

abandoning solutions in the solution selection strategy. 

These will become our future work. In addition, the 

practical applications of the proposed approach to a 

wider range of problem domains will also be further 

investigated, for instance, in the future we will 

consider exploring the potential of SABC-SI on a 

number of data classification [28-29], clustering [30- 

31], and other applications [32-34]. In particular, we 

will be very interested in studying how the proposed 

novel selection operator and population initialization 

method affect the performance of ABC when solving 

the above problems. 
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