
A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1347

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry

Initialization

Yu Xue1,2,3, Jiongming Jiang1, Tinghuai Ma1, Jingfa Liu1, Wei Pang4,5*
1 School of Computer and Software, Nanjing University of Information Science and Technology, China

2 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, China
3 Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,

Nanjing University of Information Science & Technology, China
4 School of Natural and Computing Sciences, University of Aberdeen, UK

5 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, China

xueyu@nuist.edu.cn, jiongmingjiang@163.com, {thma, jfliu}@nuist.edu.cn, pang.wei@abdn.ac.uk

*Corresponding Author: Yu Xue; Email: xueyu@nuist.edu.cn

DOI: 10.3966/160792642018091905007

Abstract

The Artificial Bee Colony (ABC) algorithm is an

optimization algorithm inspired by the foraging behavior

of bee swarms. Similar to some evolutionary algorithms,

there is a main limitation in ABC, i.e., in many problems,

ABC is good at exploration but poor at exploitation. Thus,

in order to overcome this limitation and improve the

performance of ABC when dealing with various kinds of

optimization problems, we proposed a self-adaptive

artificial bee colony algorithm with symmetry

initialization (SABC-SI). In our SABC-SI algorithm, a

novel population initialization method based on half

space and symmetry is designed, and such method can

increase the diversity of initial solutions. Besides, a self-

adaptive search mechanism and several new Candidate

Solution Generating Strategies (CSGSes) have also been

developed. Consequently, the evolutionary strategies can

be selected dynamically according to their search

performance. Moreover, the selection operator is

improved by eliminating some of the poor solutions and

making good use of the two best solutions in both the

current and previous generations. The novel algorithm

was tested on 25 different benchmark functions. The

experimental results show that SABC-SI outperforms

several state-of-the-art algorithms, which indicates that it

has great potential to be applied to a wide range of

optimization problems.

Keywords: Artificial Bee Colony, Population initialization,

Selection strategy, Self-adaptive

1 Introduction

Because the evolutionary algorithms (EAs) have few

parameters and they can be easily applied to various

problems, many researchers have devoted to the study

of EAs over the last three decades. Compared with

other traditional methods, EAs have become well-

established global optimization methods, and they all

have high robustness and broad applicability.

Possessing the characteristics of self-organizing and

self-learning, EAs can deal with those challenging

optimization problems which otherwise cannot be

effectively solved by traditional optimization methods.

The popular EAs, including genetic algorithm (GA) [1],

particle swarm optimization (PSO) [2], differential

evolution (DE) [3], ant colony optimization (ACO) [4]

and artificial bee colony (ABC) [5], have excellent

ability to handle many complex real-world problems.

In addition to the above EAs, Karaboga proposed

the ABC algorithm in 2005 [15]. The experimental

results of ABC on numerical optimization problems

indicate that ABC has distinctive characteristics when

compared with other traditional optimization

algorithms [5].

Due to its simplicity, good efficiency and high

robustness, ABC is a frequently used tool for solving

many real-world optimization problems [6-9].

However, similar to other EAs, ABC also has its own

limitations. Specifically, ABC sometimes cannot find

the best solution and thus fall into premature

convergence [10]. Therefore, some researchers have

proposed several revised algorithms to overcome these

disadvantages.

To improve ABC’s solution search strategy, which

is good at exploration but poor at exploitation, Zhu and

Kwong developed the gbest-guided ABC (GABC) by

incorporating the information of global best solution

into the solution search equation with an aim to

improve the exploitation [11]. Although the

performance of GABC is enhanced through better use

of information about the global best solution, GABC is

also sometimes restricted by the current global best

solution when solving some optimization problems. To

further enhance the global convergence, Gao et al.

proposed a modified population initialization method

called chaotic and opposition-based learning method to

1348 Journal of Internet Technology Volume 19 (2018) No.5

produce population [12]. But the initial population

produced by the improved population method is

sometimes redundant in the sense that identical

individuals are generated. In addition, in order to use

the parameters of ABC during the evolutionary process,

Bansal et al. proposed an adaptive version of ABC

where the step size in solution modification and the

ABC parameter limit are determined adaptively based

on the current fitness values [13]. Interestingly,

Semwal proposed a deep learning approach and it

described human push recovery data classification

through the use of the features from intrinsic mode

functions, and such features were obtained through

empirical mode decomposition on different leg joint

angles [14]. However, the idea of that paper was

inspired by the body organs of biology, and the focus

of our algorithm is self-adaptive biological behaviors.

These are two different research aspects.

In this paper, in order to overcome the limitations

and further improve the performance of ABC on

optimization problems, we propose a self-adaptive

artificial bee colony algorithm with symmetry

initialization (SABC-SI), which employs a novel self-

adaptive search mechanism as well as a new

population initialization strategy. In this new self-

adaptive mechanism, several candidate solution

generating strategies (CSGSes) can be dynamically

selected in each generation according to their search

performance. In addition, the novel population

initialization method is proposed based on half space

and symmetry method, and it can increase the diversity

of solutions. The new initialization method can

fundamentally guarantees the uniform distribution of

the initial population. Furthermore, we also improve

the solution selection operator by following the

Darwin’s theory of evolution, that is, the superior

solutions would be more likely to survive and the

inferior solutions would be more likely to be

eliminated during the evolution process.

The rest of this paper is organized as follows.

Section 2 summarizes the ABC algorithm. The self-

adaptive artificial bee colony algorithm based on

symmetry initialization and optimal solution reserving

selection operator is presented and analyzed in Section

3. In Section 4, we report the experimental results, and

this is followed by Section 5, which concludes the

paper and explores future work.

2 Related Work

2.1 The Artificial Bee Colony Algorithm

The idea of ABC for numerical optimization was

first proposed by Karaboga in 2005 [15] and was

described in detail in 2007 [5]. There are three

different types of artificial bees in ABC: employed

bees, onlooker bees, and scout bees. Employed bees

are pioneers of the swarm and they have the ability to

discover food sources and gather honey. According to

the information shared by employed bees, the onlooker

bees would choose the better food sources for

exploitation. The function of the scout bees is that they

abandon bad food sources and search for new ones.

Besides, these three kinds of colonies can be

transformed into each other and they form an effective

co-operative system. The main steps of ABC algorithm

are briefly described as follows:

In the initialization phase of ABC, a population

(colony) is generated. The number of colony size is

equal to the number of employed bees and onlooker

bees. Besides, the number of food sources equals the

half of the colony size. The initial population is

generated by Equation (2.1). Then, the fitness values of

these individuals are evaluated.

, ,

, ,

*

 ()

i j i j

i j k j

X Lbound rand

Ubound Lbound

= +

−

, (2.1)

where 1, 2, ... , psi = , and ps is the number of

individuals in the population; 1, 2, ... , Dj = , and D is

the number of dimensions of the problem; rand is a

random number between 0 and 1, Lbound and

Ubound are the lower and upper bounds of a problem,

respectively.

After initialization, the ABC algorithm enters an

iterative process in the employed bee phase. A new

individual is generated as follows:

, , , ,

1 ()
i j i j i j k j

G G G G
X X rand X X

+

= + − , (2.2)

where G represents the number of current generation

and G+1 is the next generation. K is a random integer

in the range [1, 2, ... ,]ps , 1, 2, ... , Dj = ,

[1,1]rand∈ − .
,i j

G
X is the current individual and

,

1

i j

G
X

+

is the generated individual.

If a generated value is out of the boundary, it will be

shifted back to the boundary. Then, the fitness value of

the new solution is calculated. If the new fitness value

is better than the old one, the new solution would

replace the previous one and the trial counter will be

reset. Otherwise, the previous solution is reserved and

its trial counter is increased.

Before the onlooker bee stage, the selection

probabilities of the candidate solutions are calculated

through Equation (2.3). The candidate solutions with

higher probabilities will be further optimized. Then, for

the chosen individual, a new individual is generated by

Equation (2.2) and its fitness value is calculated. If the

new fitness value is better than the old one, the new

solution would replace the previous one and the trial

counter is reset. Otherwise, the previous solution is

reserved and its trial counter is increased.

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1349

1

P
i

i ps

k

k

fit

fit
=

=

∑
, (2.3)

where
i

fit represents the fitness value of solution i and

ps is the number of individuals. Pi is the selection

probability of the current solution.

In the scout bee stage, each individual has a trial

counter. The solutions which could not be improved

within a given number of trials are abandoned. If the

solution whose trial counter exceeds the limitation, it

would be abandoned and a new solution would be

generated by Equation (2.4). Again, the correlative trial

counter is reset.

, , , ,

()
i j min j max j min j

X X rand X X= + − , (2.4)

where 1, 2, ... , psi = , 1, 2, ... , Dj = , [0,1]rand∈ ,

max
X and

min
X are the lower and upper bounds of

problems.

After the above iterative process, all candidate

solutions are generated. The ith optimal solution is

found, whose fitness value is the best. Algorithm 1

shows the detailed procedures of the original ABC.

Algorithm 1. The main steps of the ABC algorithm

Step (1) Initialization

 Step (1.1) Generate ps individuals form the initial population
1 2

{ , ,..., }
SN

x x x=X randomly

 Step (1.2) Calculate the fitness values of the ps individuals

 Step (1.3) Initialize trial, limit, D and maxCycle

Step (2) Employed Bee Stage

 Step (2.1) For (i=1, i<ps, i++)…, ps, CONTINUE

 Step (2.1.1) Use Formula (2.2) to generate a new solution

 Step (2.1.2) Calculate fitness value of the new solution

 Step (2.2) If find the better value, update the solution and trial=0, else trial=trial+1

 End For

Step (3) Calculate probability values by Formula (2.3)

Step (4) Onlooker Bee Stage

 Step (4.1) If rand < Pi

 Step (4.1.1) Use Formula (2.2) to generate a new solution

 Step (4.1.2) Calculate fitness value of the new solution

 Step (4.1.3) If find the better value, update the solution and trial=0, else trial=trial+1

 End If

Step (5) Scout Bee Stage

 If max(trial)>limit, produce new individuals through Formula (2.4)

Step (6) Generate and record the best solution

Step (7) If iterations>= maxCycle, output the optimal solution, else go to Step2

2.2 The Improved ABC

The ABC algorithm is a simple, effective, and robust

evolutionary optimization method. Compared with the

other EAs, the ABC algorithm is relatively young yet

more efficient. Many researchers are interested in the

ABC algorithm, because it has fewer control

parameters and it is easier to use [5]. ABC has been

widely applied to many real-world problems. For

example, ABC has been applied to a loudspeaker

design problem [16], and for the design of two-channel

quadrature mirror filter banks [17]. Besides, ABC was

used to minimize the makespan for the single machine

batch processing problem when the sizes of the jobs

are non-identical [18]. Horng also adopted ABC for a

stochastic economic lot scheduling problem [19], and

Pan solved the large-scale hybrid flow shop scheduling

problem with ABC [20]. What is more, ABC has also

been employed to solve an interest-based forwarding

problem [21].

As a result, ABC has emerged as a powerful tool for

solving both local and global optimization problems

[10-11]. However, there is no specific algorithm that

can achieve the best solution for all optimization

problems, the so-called no free lunch theorem. The

ABC algorithm also has some disadvantages. For

instance, it may sometimes stop approaching to the

global optimum (or optima) even before the population

converging to a local optimum, and it may suffer from

extensive computation time due to its stochastic nature.

Hence, it is necessary to continue to improve the

efficiency of ABC when solving many problems. Gao

and Liu proposed a chaotic and opposition-based

learning method to produce initial population [22]. In

this method, the initial population is first generated

through the chaotic method. Then, the opposition-

based learning method is used to generate another

population. It is worth to notice that the size of the

former population is the same as the latter. Next, the

fitness values of the two populations are evaluated.

1350 Journal of Internet Technology Volume 19 (2018) No.5

Half of the whole populations whose fitness values are

better than the others are reserved and they become the

final initial population. Experimental results show that

the ABC algorithm employing this initialization

approach outperforms the original ABC algorithm [22].

Meanwhile, we also investigate an optimal solution

reserving selection operator to make the full use of the

previous optimum generated in each circulation.

Besides, we construct an adaptive strategy selection

pool. One strategy could be chosen at a high

probability during the evolutionary process. Then the

strategy with the higher probability is more likely to be

selected than the others and this could greatly improve

the ability of solving different kinds of problems.

3 Self-adaptive Artificial Bee Colony

Algorithm Based on Symmetry

Initialization and Optimal Solution

Reserving Selection Operator

3.1 The Symmetry Initialization Method

Based on Half Space

Population initialization is an important phase in

EAs. A good initial population tends to lead to good

solutions and accelerates the convergence speed. As

mentioned in Section 2.2, a chaotic and opposition-

based learning method which is designed by Gao and

Liu is used to produce the initial population [22]. The

detailed steps are as follows. First, the chaotic method

is used to generate the initial population. Next, another

population is produced by the opposition-based

learning method. The size of the two populations is the

same. Then, their fitness values are calculated. The

individuals are further compared with each other and

the better ones are reserved. Finally, the final initial

population is obtained. Experimental results show that

this initialization approach is effective [22].

However, this initialization approach also has

several disadvantages: the individuals in the population

which are generated by the chaotic system may be the

same as those in the population which are generated

through the opposition-based learning method. In this

case, the efficiency will be affected. As shown in

Figure 1(a), suppose the range of a given problem is

[X1, X2] and the generated population is
1 2 3 4

{ , , , }R R R R ,

which are produced by the chaotic method, where

1 2
,X X R∈ , M = (X1+X2)/2. Obviously, the values

generated through the opposition-based learning

method are still
1 2 3 4

{ , , , }R R R R .

This means that the opposition-based learning

method is invalid in this case. As a result, almost half

of the initial population are redundant and its

efficiency is thus affected in the algorithm.

In order to overcome the above shortcoming, we

propose a novel initialization approach named Half

Space based Symmetry Initialization algorithm (HSSI).

The detailed steps are as follows: The first and utmost

step is to define the Half Range (HR) of a given

problem and it is selected randomly. It is noted that the

selection of HR is a further research problem. In this

research we choose the front half range. After that the

first part of the initial population is generated in HR

randomly, the symmetry initialization approach is then

used to produce the second part of the initial

population in the rest of the range. Finally, the final

population is generated by selecting the top half

individuals with better fitness values from both

populations. As shown in Figure 1(b), this method

divides the solution space into N regions and each

region is assigned to a solution every time by HSSI. In

this research we set N=2. R1, R2, R3 and R4 are

produced from [X1, M]. R1’, R2’, R3’, and R4’ are

produced by the symmetry method. It essentially

guarantees the uniform distribution of initialization.

Obviously, the initial population produced by this

approach is more comprehensive and efficient. The

detailed steps of the HSSI algorithm are shown in

Algorithm 2.

3.2 The Optimal Solution Reserving Selection

Operator

During the evolution process in each generation,

employed bees, onlooker bees and scout bees are

employed alternatively. Thereafter, the best solution is

recorded. For the last iteration of the loop, surely we

only need to record the optimal solution. However, we

may also need to deal with the other best solutions.

Therefore, we consider how to make a better use of the

previous optima if it is replaced by the current best

solution. So we propose a selection operator which can

researve optimal solutions.

After the scout bee phase of the original ABC

algorithm, the solutions of the current generation are

generated. Then, the current optimum (bestFit) is

compared with the previous optimum (gbestFit). If

bestFit is better than gbestFit, the current best solution

(bestSol) is retained. Otherwise, this step is skipped.

Nevertheless, not only does the proposed selection

operator complete the above steps, but also it is

capable of abandoning bad solutions. Abandoning a

few solutions is a direction in future research, and in

this research we only consider the case of the worst

solution. First, we compare the gbestFit with the

current worst fitness (worstFit). If the worstFit is

worse than the gbestFit, the worst solution is replaced

by a random generated solution. Otherwise, this step is

skipped. The advantage of this approach is that it can

further enhance the diversity of the population and

avoid getting trapped into local optima when solving

the complex optimization problems. The fundamental

reason is that those solutions which seldom or never

evolve should be removed or die, which is known as

“natural selection and survival of the fittest”. Besides,

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1351

the selection probability of the good population is

increased and the superior population can also improve

the overall efficiency of algorithms. The detailed steps

of the optimal solutions reserving selection operator

are shown in Algorithm 3.

(a)

(b)

Figure 1. A comparisons between HSSI and rand initialization

Algorithm 2. The detailed steps of the HSSI algorithm

Step (1) Input: Population size ps; Number of dimension D; M is a certain value in HR

Step (2) For i = 1 to ps

 For j = 1 to D

 P(i, j) = Lbound(j) + rand(0,1)*(M − Lbound(j))

 End for

 End for

Step (3) For i = 1 to ps

 For j = 1 to D

 Q(i, j) = Lbound(j) + Ubound(j) − P(i, j)

 End for

 End for

Step (4) Select SN fittest individuals from collection { Q}P∪ as the actual initiali population PQ.

Algorithm 3. The optimal solution reserving selection operator

Step (1) Find the best fitness bestFit and the worst fitness worstFit respectively, gbest represents the previous

optimum, gbestFit represents the fitness of gbest

Step (2) According to bestFit and worstFit, find the best solution bestSol and the worst solution worstSol and its

position worstPos

Step (3) If bestFit < gbestFit

 gbest = bestSol

 gbestFit = bestFit

 End if

Step (4) If worstFit > gbestFit

 randomSol = Lbound + rand(Ubound − Lbound)

 populationworstPos = randomSol

 End if

3.3 The Self-adaptive Mechanism

In ABC algorithm, the employed bee phase and

onlooker bee phase both need Candidate Solution

Generating Strategies (CSGSes) to produce new

individuals. An ideal CSGS should be able to not only

solve different problems as many as possible, but also

to be adapted to the global and local optimization

during the evolutionary process. Many researchers

developed various CSGSes and many of them have

achieved good results [12, 23-25]. Obviously, one

CSGS cannot satisfy the demand of solving various

kinds of complex problems. For this reason, a self-

adaptive mechanism, combined with several CSGSes,

is employed in our SABC-SI. The self-adaptive

mechanism is described as follows:

1352 Journal of Internet Technology Volume 19 (2018) No.5

At the initialization phase of the algorithm, each

CSGS is assigned with the same initial selection

probability value (P) and it is set as the reciprocal of

the total CSGS. The number of adaptive CSGSes

(straNum) is set to 8 since eight CSGSes are used in

this paper, and the details of these eight CSGSes are

presented in Section 3.4. LP is the cycle for adaptive

update and it is set to 10. First, according to the initial

P, each individual is given its own CSGS through the

roulette wheel selection algorithm, which is selected

from the eight CSGSes. The chosen strategy in the

current generation is named curStra. Then, the new

individual is produced through curStra and its fitness

value is calculated. If the obtained fitness is better than

the previous one, the strategy-success flag matrix

(straFlagS) of curStra is updated. Otherwise, the

strategy-failure flag matrix (straFlagF) is updated. The

straFlagS and straFlagF of the other CSGSes are all

set to 0 and it represents that these strategies are not

selected in the current generation. After one generation,

which means that all individuals have been evolved at

least once, the data of straFlagS and straFlagF are

transferred to the total-success flag matrix (totalFlagS)

and total-failure flag matrix (totalFlagF), respectively.

Meanwhile, straFlagS and straFlagF are set to zero in

order to prepare for the next generation. When the

number of above iterations reaches LP, the new

selection probabilities of each CSGS will be calculated

according to Equations (3.1) and (3.2).

1

1

1

'

1

1

1

1

, 0

(

) ,

, 0

()

LP

n LP
n

nLP
n

n

n

LP

q n

n

LP

n LP
n

nLP
n

n

n

straFlagS

straFlagS

straFlagS

straFlagF

straFlagS

straFla

P

gS

straFlagFε

=

=

=

=

=

=

=

⎧
⎪
⎪ ≠
⎪ +
⎪
⎪
⎪

= ⎨
⎪
⎪
⎪
⎪ =
⎪

+⎪
⎩

∑
∑

∑

∑

∑
∑

∑

 (3.1)

where straFlagS represents the strategy-success flag

matrix and straFlagF represents the strategy-failure

flag matrix.
1

LP

n

n

straFlagS
=

∑ and
1

LP

n

n

straFlagF
=

∑ represent

the number of successful and failed strategies during

the evolutionary process, respectively. Pq
’ represents

the probability of successful strategies. ɛ is a small

number close to 0.

' '

1

/

Q

q q

q

P P P

=

= ∑ , (3.2)

where {1,2,..., }q Q∈ , and P is the next selection

probabilities of strategies.

r1, 2, 3,

4, 5,

1

,
()

 ()

j r j r j

r j r j

G G G G

i j

G G

X X rand X X

rand X X

+

= + −

+ −

, (3.3)

i , , ,

1, 2,

1

,
()

 ()

j best j i j

r j r j

G G G G

i j

G G

X X rand X X

rand X X

+

= + −

+ −

, (3.4)

i , , ,

1, 2, 3, 4,

1

,
()

()+ ()

j best j i j

r j r j r j r j

G G G G

i j

G G G G

X X rand X X

rand X X rand X X

+

= + −

+ − −

, (3.5)

where G represents the number of current generation

and G+1 is the next generation, r1, r2, r3 and r4 are

random integers in the range of [1, 2, ... ,]ps ,

1, 2, ... , Dj = , [1,1]rand∈ − .
,i j

G
X is the current

individual and
,

1

i j

G
X

+ is the generated individual.

The detailed steps of SABC-SI are described in

Algorithm 4.

3.4 The Candidate Solution Generating

Strategy

The CSGS greatly affects the efficiency of the

SABC-SI algorithm. In general, the efficiency is better

when the number of adaptive CSGS is bigger, but more

strategies mean that the algorithm is more complex and

the running time may be longer. After carefully

weighing these factors, the straNum is set at 8. In order

to avoid getting trapped into local optima, Zhu added

the perturbation of global optimal solution and

proposed GABC algorithm [11]. Furthermore, Gao

enhanced the effect of best solution in the current

generation and presented the ABC/best/1, ABC/best/2

and MABC algorithms [12, 22]. Besides, Gao also

proposed ABC/rand/1 algorithm for increasing the

diversity of solution and the trial vectors are all

generated from stochastic solutions [25].

In order to solve multimodal problems by better

approaches and make the strategy more comprehensive,

inspired by the mutation strategies of DE [23-24], we

proposed three mutation strategies for ABC, as listed

by Equations (3.3), (3.4) and (3.5). They are termed as

ABC/rand/2, ABC/current-to-best/1 and ABC/current-

to-best/2.

The above 8 variant strategies form an adaptive

strategy selection pool. According to the strategy

selection probability P, one strategy could be chosen at

a high probability during the evolutionary process.

Then the strategy with a higher probability is more

likely to be selected than the others, and this could

greatly improve the ability of SABC-SI for solving

different kinds of problems.

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1353

Algorithm 4. The proposed SABC-SI algorithm

Step (1) Initialization

 Step (1.1) Initialize the strategy selection probability PstraNum(q= 1, 2, ..., Q), where Q is the number of

strategies, and straNum is the number of CSGSes; set the values of ps, LP, straFlagS, straFlagF,

totalFlagS and totalFlagF.

 Step (1.2) Algorithm 2 is used to generate ps individuals

 Step (1.3) Calculate the fitness values of the ps individuals

Step (2) Employed Bee Phase

 Step (2.1) For (fitCount< MaxFES fitCounti++), 1, …, ps, CONTINUE

 Step (2.1.1) Based on the related data gathered from evolution, the current strategy curStra can be selected

by the roulette wheel algorithm.

 Step (2.1.2) Use curStra from the candidate pool to generate a new solution and calculate the fitness value

of the new solution.

 Step (2.2) If a the better value is found, update the solution, else trial=trial+1

 Step (2.3) Update the flag matrices straFlagS and straFlagF.

Step (3) Update totalFlagS and totalFlagF

Step (4) Calculate the probability values

Step (5) Onlooker Bee Phase

 Step (5.1) if rand< Pi

 Step (5.1.1) Use curStra from the candidate pool to generate a new solution and calculate the fitness value

of the new solution.

 Step (5.1.2) If a better fitness value is found, update the solution, else trial=trial+1

 Step (5.1.3) Update the flag matrices straFlagS and straFlagF.

 End if

 End for

Step (6) Update totalFlagS and totalFlagF

Step (7) Scout Bee Phase

 If max(trial)>limit, generate one individual randomly

Step (8) If the number of iterations for adaptive update achieves LP, calculate the new PstraNum

Step (9) Use Algorithm 3 to generate best solutions and remove the worst previous solution

Step (10) If FES>= MaxFES, output the optimal solution, else go to step2

4 Computational Experiments and Result

Comparisons

4.1 The Orthogonal Design Method

In this paper, the orthogonal design method is used

to find out the best level of the main influential factors

of a specific algorithm. The Population Size (PS), limit,

and the fixed number LP are analyzed in this research.

Each factor is set with three levels according to

experience and they are shown in Table 1.

Table 1. The three factors and their levels

Factors Levels

PS 60 120 180

Limit 500 1000 1500

LP 10 20 30

In order to find the best level for each factor, we

carry out a series of experiments for the combinations

of all factor levels and select the best combination. In

this experiment, the number of combinations is

3*3*3=27. In general, we consider a situation where

there exists A factors and B levels and the number of

combinations is A*B. Obviously, when A, and B are

very large, the combinatorial experiments for all

factors may be intractable. Thus, we expect to provide

a design method which can obtain the good

combination based on fewer experiments. The

orthogonal design is a very popular method which can

deal with this problem. As shown in Table 2, 9

orthogonal tests are designed according to the

orthogonal array in this paper.

1354 Journal of Internet Technology Volume 19 (2018) No.5

Table 2. Orthogonal design

Combinations PS Limit LP Results

M1 60 500 10 f1

M2 60 1000 20 f2

M3 60 1500 30 f3

M4 120 500 20 f4

M5 120 1000 30 f5

M6 120 1500 10 f6

M7 180 500 30 f7

M8 180 1000 10 f8

M9 180 1500 20 f9

4.2 The Benchmark Functions and Parameter

Settings

The factor analysis on the 25 benchmark functions is

recorded. Due to space limitation, we only list the data

on function 1 as shown in Table 3. The optimal

numbers of each level of each factor are shown in

Table 4. Based on these results, we find that the best

PS is 60 and it is exactly equal to the double of D. The

best limit is 500 and it is approximately 10 times

bigger than PS. The best LP is 10 or 20 and it tends to

be smaller.

Table 3. Factor analysis on function 1

L1 (f1+ f2+ f3)/3=7.58E-14 (f1+ f4+ f7)/3=6.95E-14 (f1+ f6+ f8)/3=8.84E-14

L2 (f4+ f5+ f6)/3=6.95E-14 (f2+ f5+ f8)/3=8.84E-14 (f2+ f4+ f9)/3=8.21E-14

L3 (f7+ f8+ f9)/3=1.01E-13 (f3+ f6+ f9)/3=8.84E-14 (f3+ f5+ f7)/3=7.58E-14

Sort 120 500 30

Table 4. The results on the 25 test functions

Parameter Optimal Number

PS60 18

PS120 12

PS180 8

Limit500 18

Limit1000 9

Limit1500 8

LP10 13

LP20 13

LP30 11

In the experiments, the number of dimensions D of

the solution is set to 30 or 50. The particle numbers ps

is equal to the double of D. That is to say, the number

of employed bees is half of the population size. To

make a fair comparison, the populations for these

dimensions of all the compared algorithms were

initialized with the same random seeds. The fixed

integer of previous generations LP=10. The number of

decision variables was set to the same for all the 25 test

functions. For each algorithm on each function, 25

independent runs were conducted with 500,000

(Number of Fitness Evaluation, NFE) times of function

evaluations being the termination criterion.

All the algorithms involved in this research are

tested on 25 benchmark functions. The individual

functions are shown in Table 5 and Table 6. The

functions are numbered from f1 to f25 and they can be

grouped into three categories: f1 to f5 are unimodal

functions, f6 to f14 are basic multimodal functions, and

f15 to f25 are composition functions. A detailed

description of these test functions can be found in [26].

4.3 Performance Comparison between the

HSSI Method and Random Initialization

In order to investigate whether the convergence rate

is greatly influenced by the quality of initial population

in ABC and HSSI is better than random initialization,

the performance of ABC-HSSI (ABC combines only

with the HSSI algorithm) on 25 benchmark functions is

compared with that of ABC using random initialization.

Figure 2 shows the convergence performance of both

ABC-HSSI and ABC with random initialization. In

order to make the images clearer, we convert

generation and fitness to log(generation) and

relevantFitness respectively. So the horizontal axis and

vertical axis represent the corresponding evolution

generations and relevant fitness, respectively. The test

functions of Figure 2 are from the three different types

with different dimensions, and due to space limitation

the other results are shown in the supplementary

material.

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1355

Table 5. Benchmark functions f1 to f20

Objection function Property Class Search Range

2

1 1

1

() _
D

i

i

f X Z f bias
=

= +∑ Unimodal [100,100]
D

−

2

2 2

1 1

() () _
D i

j

i j

f X Z f bias
= =

= +∑ ∑ Unimodal [100,100]
D

−

1D

6 21

3 3

1

() (10) _
i

D

i

i

f X Z f bias
−

−

=

= +∑ Unimodal [100,100]
D

−

2

4 4

1 1

() (())*(1 0.4 (0,1)) _
D i

j

i j

f X Z N f bias
= =

= + +∑ ∑ Unimodal [100,100]
D

−

}{5 5
() _

i i
f X max A x B f bias= − + Unimodal [100,100]

D
−

1

2 2 2

6 1 6

1

() (100() (1)) _
D

i i i

i

f X Z Z Z f bias
−

+

=

= − + − +∑ Basic Multimodal [100,100]
D

−

21

7 7

1 1

() cos() 1 _
4000

DD

i i

i i

Z Z
f X f bias

i

−

= =

= − + +∑ ∏ Basic Multimodal [0,600]
D

2

8

1 1

8

1 1
() 20exp(0.2) exp(cos(2))

 20 _

D D

i i

i i

f X Z Z
D D

e f bias

π

= =

= − − − +

+ +

∑ ∑
 Basic Multimodal [32,32]

D
−

2

9 9

1

() (10cos(2) 10) _
D

i i

i

f X Z Z f biasπ

=

= − + +∑ Basic Multimodal [5,5]
D

−

2

10 10

1

() (10cos(2) 10) _
D

i i

i

f X Z Z f biasπ

=

= − + +∑ Basic Multimodal [5,5]
D

−

11 11

1 0 0

() ([cos(2 (0.5))]) [cos(2 0.5)] _
D kmax kmax

k k k k

i

i k k

f X a b Z D a b f biasπ π

= = =

= + − ⋅ +∑ ∑ ∑ Basic Multimodal [0.5,0.5]
D

−

2

12 12

1

() (A B ()) _
D

i i

i

f X x f bias
=

= − +∑ Basic Multimodal [,]
D

π π−

13 1 2 2 3

1 13

() 8(2(,)) 8(2(,)) ...

 8(2(,)) _
D

f X F F Z Z F F Z Z

F F Z Z f bias

= + + +

+

 Basic Multimodal [3,1]
D

−

14 1 2 1 2 2 3

1 1 14

() (, ,...,) (,) (,) ...

 (,) (,) _

D

D D D

f X EF Z Z Z F Z Z F Z Z

F Z Z F Z Z f bias
−

= = + + +

+ +

 Basic Multimodal [100,100]
D

−

15
:f

1 2
() : Rastrigin ' Functionf x s

− 3 4
() : Weierstrass Functionf x

−

 5 6
() : Griewank's Functionf x

− 7 8
() : Ackley's Functionf x

−

 9 10
() : Sphere Functionf x

−

Composition [5,5]
D

−

16
:f All settings are the same as f15 except Mi Composition [5,5]

D
−

17 17
() ()*(1 0.2 | (0,1) |) _f X G x N f bias= + + Composition [5,5]

D
−

18
:f

1 2
() : ' Functionf x Ackley s

− 3 4
() : ' Functionf x Rastrigin s

−

 5 6
() : Functionf x Sphere

− 7 8
() : Functionf x Weierstrass

−

 9 10
() : ' Functionf x Griewank s

−

Composition [5,5]
D

−

19
:f All settings are the same as f18 exceptσ and λ Composition [5,5]

D
−

20
:f All settings are the same as f18 except O Composition [5,5]

D
−

1356 Journal of Internet Technology Volume 19 (2018) No.5

Table 6. Benchmark functions f21 to f25

Objection function Objection function Objection function

21
:f

1 2
() : Scaffer's F6 Functionf x Rotated Expanded

−

 3 4
() : ' Functionf x Rastrigin s

−

5 6
() : 8 2 Functionf x F F

−

 7 8
() : Functionf x Weierstrass

−

9 10
() : ' Functionf x Griewank s

−

Composition [5,5]
D

−

22
:f All settings are the same as f21 except Mi Composition [5,5]

D
−

23
:f All settings are the same as f21 except xj and round Composition [5,5]

D
−

24
:f

1
() : Functionf x Weierstrass

2
() : Rotated Expanded Scaffer ' F6 Functionf x s

 3
() : F8F2 Functionf x 4

() : Ackley ' Functionf x s

5
() : Rastrigin ' Functionf x s

6
() : Griewank ' Functionf x s

 7
() : Non-Continuous Expanded Scaffer ' F6 Functionf x s

8
() : Non-Continuous Rastrigin ' Functionf x s

9
() : High Conditioned Elliptic Functionf x

 10
() : Sphere Function with Noise in Fitnessf x

Composition [5,5]
D

−

25
:f All settings are the same as f24 except no exact search range set for this test

function.
Composition [2,5]

D

f1 with D=30

f1 with D=50

f6 with D=30

f6 with D=50

f25 with D=30 f25 with D=50

Figure 2. Convergence performance of ABC-HSSI and ABC

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1357

As shown in Figure 2, the convergence rate of ABC-

HSSI is better than ABC with random initialization on

f1, f6, and f25. Although the performance of ABC-HSSI

is a little poorer in the middle generations of the whole

evolution process for f1, the results of ABC-HSSI are

superior to the other one obviously. The case is similar

on other test functions which are not shown in Figure 2.

It benefits most from the HSSI and symmetric method

which make the search more global-oriented and the

initial population is distributed more uniformly.

Obviously, the algorithm with a randomly initialized

population could not get the results which are as good

as ABC-HSSI. To sum up, the HSSI approach can

produce better initial population and it is helpful for

ABC to obtain better solutions.

4.4 The Effect of the Optimal Solution

Reserving Selection Operator

To investigate the effectiveness of the novel solution

selection operator, the performance on the 25

benchmark functions of ABC-MS (ABC combined

only with the modified optimal solution reserving

selection operator) is compared with ABC with the

original selection strategy. Figure 3 shows the

convergence performance of ABC-MS and ABC. Same

as above, the test functions of Figure 3 are also from

three different types of different dimension and the

results on other test functions are shown in the

supplementary material.

It can be observed from Figure 3 that the

convergence performance of ABC-MS is better than

ABC with the original selection operator when solving

different kinds of benchmark functions.

f2 with D=30

f2 with D=50

f9 with D=30

f9 with D=50

f15 with D=30

f15 with D=50

Figure 3. Convergence performance of ABC-MS and ABC

1358 Journal of Internet Technology Volume 19 (2018) No.5

Table 7. The optimization results of GABC, ABC/best/1, NSHS and SABC-SI on 25 test functions with D=30

GABC ABC/best/1 NSHS SABC-SI
Functions

Mean SD Mean SD Mean SD Mean SD

f1 1.09E-02 6.33E-03 1.97E-12 1.93E-13 2.42E-02 3.71E-03 5.68E-14 0.00E+00

f2 2.99E+04 6.02E+03 3.55E+04 1.96E+03 3.16E+03 1.03E+03 3.10E+03 1.53E+03

f3 4.88E+07 7.10E+06 5.28E+07 9.41E+06 8.39E+06 3.92E+06 1.31E+06 3.04E+06

f4 4.60E+04 1.95E+03 5.06E+04 5.02E+03 9.47E+03 1.59E+03 3.08E+03 1.61E+03

f5 1.09E+04 2.90E+02 9.34E+03 5.34E+02 2.64E+03 4.72E+02 6.36E+03 7.31E+02

f6 1.44E+03 7.37E+02 1.86E+02 4.11E+01 2.22E+02 9.14E+01 4.04E-01 3.26E-01

f7 4.70E+03 8.97E-01 4.70E+03 5.15E-02 3.96E+02 8.75E+00 3.52E+03 5.25E-13

f8 2.09E+01 9.03E-02 2.09E+01 1.10E-02 2.10E+01 2.59E-02 2.09E+01 3.34E-02

f9 3.64E+01 4.88E+00 2.03E-12 2.02E-12 7.07E-01 9.18E-01 5.68E-14 0.00E+00

f10 3.11E+02 9.17E+00 2.82E+02 1.14E+01 1.90E+02 8.94E+00 1.45E+02 1.47E+01

f11 3.36E+01 3.98E-01 3.32E+01 1.45E+00 4.03E+01 6.19E-01 2.50E+01 1.16E+00

f12 8.10E+04 2.49E+04 8.82E+04 1.61E+04 9.22E+03 3.18E+03 7.84E+03 2.92E+03

f13 7.58E+00 4.75E-01 7.59E+00 7.45E-01 2.24E+00 2.59E-01 9.69E-01 9.99E-02

f14 1.32E+01 1.04E-01 1.33E+01 3.39E-02 1.36E+01 6.68E-02 1.26E+01 7.88E-02

f15 3.36E+02 1.19E+02 3.29E+02 1.45E+02 3.08E+02 8.66E-01 1.63E+02 2.31E+02

f16 3.66E+02 4.10E+01 3.17E+02 1.11E+01 2.98E+02 7.86E+01 2.63E+02 1.34E+02

f17 4.65E+02 2.36E+01 4.25E+02 8.83E+00 3.62E+02 5.82E+01 2.89E+02 2.69E+01

f18 9.24E+02 2.32E+00 9.21E+02 2.16E+00 8.70E+02 2.84E+00 8.58E+02 2.06E+00

f19 9.32E+02 1.76E+00 9.21E+02 1.73E+00 8.98E+02 1.75E+00 8.64E+02 1.64E+00

f20 9.27E+02 9.21E-01 9.23E+02 3.07E+00 8.67E+02 2.40E+00 8.50E+02 2.93E-01

f21 5.14E+02 1.62E+00 5.07E+02 5.87E-01 5.00E+02 9.01E-04 5.00E+02 8.63E-13

f22 1.07E+03 1.04E+01 1.04E+03 1.60E+01 9.37E+02 1.70E+00 9.37E+02 7.09E+00

f23 6.99E+02 1.49E+00 6.12E+02 2.13E+01 5.34E+02 1.50E-04 5.12E+02 3.38E-04

f24 1.18E+03 1.79E+01 1.07E+03 3.25E+01 2.00E+02 4.05E-04 1.01E+02 0.00E+00

f25 1.71E+03 3.65E+00 1.68E+03 5.07E+00 1.64E+03 2.20E+00 1.63E+03 3.93E+00

“Mean” and “SD” refer to the average values and standard deviation of the corresponding functions respectively.

Table 8. The optimization results of GABC, ABC/best/1, NSHS and SABC-SI on 25 test functions with D=50

GABC ABC/best/1 NSHS SABC-SI
Functions

Mean SD Mean SD Mean SD Mean SD

f1 1.08E+00 7.42E-01 6.33E-11 1.10E-11 2.58E-01 4.77E-02 1.71E-13 4.64E-14

f2 9.92E+04 3.74E+03 1.06E+05 1.22E+04 4.32E+04 8.78E+03 3.92E+04 4.22E+03

f3 2.20E+08 1.68E+07 1.84E+08 4.77E+07 6.08E+07 3.39E+07 2.70E+07 6.45E+06

f4 1.48E+05 1.68E+04 1.31E+05 7.70E+03 7.69E+04 1.15E+04 6.32E+04 1.46E+04

f5 2.64E+04 6.50E+02 2.47E+04 1.20E+03 6.08E+03 9.11E+02 6.84E+03 1.92E+03

f6 2.19E+04 2.09E+03 3.24E+03 1.33E+03 4.70E+02 1.05E+02 6.83E-01 1.22E-01

f7 6.24E+03 1.39E+01 6.22E+03 1.85E+00 6.20E+03 3.01E+01 3.55E+03 1.29E-12

f8 2.11E+01 9.00E-03 2.11E+01 1.82E-02 2.12E+01 1.34E-02 2.11E+01 6.88E-02

f9 1.10E+02 9.04E+00 2.97E-12 6.18E-13 6.03E+00 5.28E-01 2.08E-13 2.68E-14

f10 8.28E+02 1.14E+01 6.61E+02 1.17E+01 3.58E+02 8.52E+00 3.40E+02 8.47E+01

f11 6.39E+01 6.58E-01 6.46E+01 6.63E-01 7.48E+01 1.61E+00 5.33E+01 3.85E+00

f12 4.65E+05 8.09E+04 4.69E+05 4.79E+03 4.45E+04 2.20E+04 3.26E+04 2.32E+03

f13 2.12E+01 1.75E+00 1.82E+01 1.90E+00 5.09E+00 7.52E-02 2.58E+00 6.77E-02

f14 2.30E+01 2.00E-01 2.31E+01 2.34E-01 2.34E+01 6.74E-03 2.24E+01 4.16E-01

f15 3.93E+02 6.88E+01 3.17E+02 8.96E+01 3.43E+02 4.07E+01 1.87E+02 3.81E+01

f16 4.26E+02 3.91E-01 4.27E+02 1.37E+00 2.65E+02 1.08E+01 2.63E+02 1.14E+01

f17 8.52E+02 3.51E+01 7.56E+02 3.98E+01 3.80E+02 6.43E+01 3.75E+02 2.69E+01

f18 9.89E+02 2.07E+01 9.71E+02 9.33E+00 9.65E+02 1.41E+01 9.29E+02 1.86E+01

f19 9.91E+02 8.55E+00 9.68E+02 1.30E+00 9.70E+02 3.40E+00 9.22E+02 1.99E+01

f20 9.91E+02 7.74E+00 9.75E+02 3.36E+00 9.42E+02 1.33E+01 9.37E+02 2.07E+01

f21 1.04E+03 1.86E+00 1.04E+03 1.16E+00 5.00E+02 3.38E-03 5.00E+02 7.03E-13

f22 1.20E+03 5.75E+00 1.13E+03 2.46E+01 9.44E+02 1.32E+01 9.43E+02 1.94E+01

f23 1.06E+03 3.30E+00 1.04E+03 3.69E+00 5.65E+02 4.55E-03 5.39E+02 1.88E-04

f24 1.40E+03 1.46E+01 1.36E+03 5.29E+00 2.00E+02 3.02E-03 1.17E+02 9.62E+01

f25 1.90E+03 4.63E+00 1.85E+03 9.93E+00 1.67E+03 5.52E+00 1.65E+03 9.32E+00

“Mean” and “SD” refer to the average values and standard deviation of the corresponding functions respectively.

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1359

f1 with D=30 f1 with D=50

f6 with D=30 f6 with D=50

f13 with D=30 f13 with D=50

f14 with D=30 f14 with D=50

f15 with D=30 f15 with D=50

Figure 4. Convergence performance of GABC, ABC/best/1, NSHS and SABC-SI

1360 Journal of Internet Technology Volume 19 (2018) No.5

Albeit the quality of the solutions produced by

ABC-MS are close to that of the others at the

beginning of the evolution, the optimal solution

reserving selection operator plays an important role in

the later stage and the convergent rate is greatly

accelerated. The final results of ABC-MS are better

than those of the other. Thus, we can draw a

conclusion that at least the optimal solution reserving

selection operator can improve the efficiency of ABC

and get better quality solutions.

4.5 The Performance Comparison between

SABC-SI and Other Algorithms

To verify the effectiveness and superiority of the

proposed algorithm, the performance of SABC-SI is

compared with other state-of-the-art algorithms,

including GABC [11], NSHS [27] and ABC/best/1

[12]. These algorithms are applied to solve unimodal,

multimodal, and composite benchmark functions in

this research. Table 7 and Table 8 show the mean and

SD of the computational results on different

dimensions, respectively. On the whole, the solutions

of all functions on all dimensions generated by SABC-

SI are better than the others except for f5. The reason is

that SABC-SI employs the adaptive strategy selection

mechanism and each function can be greatly solved by

the best strategy. In addition, SABC-SI could find the

most accurate solutions when solving f1 and f9.

Meanwhile, we can also observe that GABC, NSHS

and ABC/best/1 cannot find the precise solutions on f1

and f9. This means that these two types of problems

cannot be easily solved by the above algorithms but

they can be perfectly settled by SABC-SI. It is

interesting to see that not only does SABC-SI discover

the best solution for f8, but also it is found by GABC

and ABC/best/1. Both SABC-SI and NSHS find the

same solution on all dimensions when solving f21. As

shown in Table 7 and Table 8, the solutions of f15 to f25

which belong to composition functions are not

satisfactory. In order to meet the future need of EAs, it

is required to study and solve the class of problems

more effectively. Overall, we can draw a conclusion

that SABC-SI is better than the other algorithms in

terms of the precision of solutions.

The convergence performance of the search

processes when solving the three different types of

functions is shown in Figure 4. The convergence

performance of SABC-SI is similar to that of

ABC/best/1 on f1 when D=30, but SABC-SI

outperforms ABC/best/1 significantly on f1 when D=50.

Although the efficiency of SABC-SI is comparable to

NSHS at the beginning of f13, the latter easily falls into

local optimum and NSHS is better than the other

algorithms significantly at the end of evolution. The

convergence performance of SABC-SI is better than

the others through the observation and analysis of these

graphs shown in Figure 4 and the results demonstrate

that the modified strategies are very effective.

5 Conclusion & Future Work

In this research we proposed a novel artificial bee

colony algorithm SABC-SI. SABC-SI employs an

improved population initialization method called HSSI,

which fundamentally guarantees the uniform

distribution of initialization. In addition, the optimal

solution reserving selection operator follows the

Darwin’s theory and the solutions of higher quality can

be evolved through this selection operator. Moreover,

we also develop a novel self-adaptive mechanism to

choose candidate strategies automatically. All of the

above enables SABC-SI to effectively deal with

different kinds of optimization problems. Experimental

results on 25 different benchmark functions

demonstrate that SABC-SI performs better than several

state-of-the-art algorithms. Hence, SABC-SI is a

promising algorithm which can effectively deal with

different kinds of optimization problems.

However, there is still room for improvement for

SABC-SI. It can be seen from Table 7 that the quality

of the solution of SABC-SI on f5 is not the best. So

SABC-SI is still worth to be further studied in serval

aspects, such as the selection of HR and appropriately

abandoning solutions in the solution selection strategy.

These will become our future work. In addition, the

practical applications of the proposed approach to a

wider range of problem domains will also be further

investigated, for instance, in the future we will

consider exploring the potential of SABC-SI on a

number of data classification [28-29], clustering [30-

31], and other applications [32-34]. In particular, we

will be very interested in studying how the proposed

novel selection operator and population initialization

method affect the performance of ABC when solving

the above problems.

Acknowledgements

This research was supported by the National Natural

Science Foundation of China (Grant No. 61403206),

the Natural Science Foundation of Jiangsu Province

(Grant No. BK20141005) and the Natural Science

Foundation of the Jiangsu Higher Education

Institutions of China (Grant No. 14KJB520025), the

Priority Academic Program Development of Jiangsu

Higher Education Institutions, the Research

Foundation of Nanjing University of Information

Science and Technology (2013x034). WP is supported

by the 2016 Scottish Crucible Award funded by the

Royal Society of Edinburgh. This work is supported by

the Shaanxi Key Laboratory of Complex System

Control and Intelligent Information Processing

(Contract No. SKL2017CP01).

A Self-adaptive Artificial Bee Colony Algorithm with Symmetry Initialization 1361

Reference

[1] J. H. Holland, Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Applications to Biology,

Control & Artificial Intelligence, University of Michigan

Press, 1975.

[2] J. Kennedy, R. Eberhart, Particle Swarm Optimization, IEEE

International Conference on Neural Networks, Perth, WA,

Australia, 1995, pp. 1942-1948.

[3] R. Storn, K. Price, Differential Evolution: A Simple and

Efficient Heuristic for Global Optimization Over Continuous

Spaces, Journal of Global Optimization, Vol. 11, No. 4, pp.

341-359, December, 1997.

[4] M. Dorigo, L.-M. Gambardella, Ant Colony System: A

Cooperative Learning Approach to the Traveling Salesman

Problem, IEEE Transactions on Evolutionary Computation,

Vol. 1, No. 1, pp. 53-66, April, 1997.

[5] D. Karaboga, B. Basturk, A Powerful and Efficient Algorithm

for Numerical Function Optimization: Artificial Bee Colony

(ABC) Algorithm, Journal of Global Optimization, Vol. 39,

No. 3, pp. 459-471, November, 2017.

[6] X.-Z. Wen, L. Shao, W. Fang, Y. Xue, Efficient Feature

Selection and Classification for Vehicle Detection, IEEE

Transactions on Circuits and Systems for Video Technology,

Vol. 25, No. 3, pp. 508-517, March, 2015.

[7] S.-C. Horng, Combining Artificial Bee Colony with Ordinal

Optimization for Stochastic Economic Lot Scheduling

Problem, IEEE Transactions on Systems Man & Cybernetics

Systems, Vol. 45, No. 3, pp. 373-384, March, 2015.

[8] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A

Comprehensive Survey: Artificial Bee Colony (ABC)

Algorithm and Applications, Artificial Intelligence Review,

Vol. 42, No. 1, pp. 21-57, June, 2014.

[9] B. Gu, V. Sheng, Feasibility and Finite Convergence Analysis

for Accurate On-line V-support Vector Machine, IEEE

Transactions on Neural Networks and Learning Systems, Vol.

24, No. 8, pp. 1304-1315, August, 2013.

[10] D. Karaboga, B. Akay, A Comparative Study of Artificial

Bee Colony Algorithm, Applied Mathematics and

Computation, Vol. 214, No. 1, pp. 108-132, August, 2009.

[11] G.-P. Zhu, S. Kwong, Gbest-guided Artificial Bee Colony

Algorithm for Numerical Function Optimization, Applied

Mathematics and Computation, Vol. 217, No. 7, pp. 3166-

3173, December, 2010.

[12] W.-F. Gao, S.-Y. Liu, L.-L. Huang, A Global Best Artificial

Bee Colony Algorithm for Global Optimization, Journal of

Computational and Applied Mathematics, Vol. 236, No. 11,

2012, pp. 2741-2753, May, 2012.

[13] J.-C. Bansal, H. Sharma, K. V. Arya, K. Deep, M. Pant, Self-

adaptive Artificial Bee Colony, Optimization, A Journal of

Mathematical Programming and Operations Research, Vol.

63, No. 10, pp. 1513-1532, May, 2014.

[14] V.-B. Semwal, K. Mondal, G. C. Nandi, Robust and Accurate

Feature Selection for Humanoid Push Recovery and

Classification: Deep Learning Approach, Neural Computing

& Applications, Vol. 28, No. 3, pp. 565-574, March, 2017.

[15] D. Karaboga, An Idea Based on Honey Bee Swarm for

Numerical Optimization, Technical Report-TR06, October,

2005,

[16] X. Zhang, X. Zhang, S. L. Ho, W. N. Fu, A Modification of

Artificial Bee Colony Algorithm Applied to Loudspeaker

Design Problem, IEEE Transactions on Magnetics, Vol. 50,

No. 2, pp. 737-740, February, 2014.

[17] S. K. Agrawal, O. P. Sahu, Artificial Bee Colony Algorithm

to Design Two-channel Quadrature Mirror Filter Banks,

Swarm and Evolutionary Computation, Vol. 21, pp. 24-31,

April, 2015.

[18] M. Al-Salamah, Constrained Binary Artificial Bee Colony to

Minimize the Makespan for Single Machine Batch Processing

with Non-identical Job Sizes, Applied Soft Computing, Vol.

29, No. C, pp. 379-385, April, 2015.

[19] S.-C. Horng, Combining Artificial Bee Colony with Ordinal

Optimization for Stochastic Economic Lot Scheduling

Problem, IEEE Transactions on Systems, Man, and

Cybernetics-Systems, Vol. 45, No. 3, pp. 373-384, March,

2015.

[20] J.-Q. Li, Q.-K. Pan, Solving the Large-scale Hybrid Flow

Shop Scheduling Problem with Limited Buffers by A Hybrid

Artificial Bee Colony Algorithm, Information Sciences, Vol.

316, No. C, pp. 487-502, September, 2015.

[21] F. Xia, L. Liu, J. Li, A. M. Ahmed, L. T. Yang, J. Ma,

Beeinfo: Interest-Based Forwarding Using Artificial Bee

Colony for Socially Aware Networking, IEEE Transactions

on Vehicular Technology, Vol. 64, No. 3, pp. 1188-1200,

March, 2015.

[22] W.-F. Gao, S.-Y. Liu, A Modified Artificial Bee Colony

Algorithm, Computers & Operations Research, Vol. 39, No.

3, pp. 687-697, March, 2012.

[23] A. K. Qin, P. N. Suganthan, Self-adaptive Differential

Evolution Algorithm for Numerical Optimization, The 2005

IEEE Congress on Evolutionary Computation, Edinburgh,

Scotland, UK, 2009, pp. 1785 -1791.

[24] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P.

Plagianakos, M. N. Vrahatis, Enhancing Differential

Evolution Utilizing Proximity-based Mutation Operators,

IEEE Transactions on Evolutionary Computation, Vol. 15,

No. 1, pp. 99 -119, February, 2011.

[25] W.-F. Gao, S.-Y. Liu, Improved Artificial Bee Colony

Algorithm for Global Optimization, Information Processing

Letters, Vol. 111, No. 17, pp. 871-882, September, 2011.

[26] Suganthan, Hansen, Liang, Deb, Chen, Auger and Tiwari,

Problem Definitions and Evaluation Criteria for the CEC

2005 Special Session on Real-Parameter Optimization,

Technical Report, Nanyang Technological University,

Singapore And KanGAL Report Number 2005005, May,

2005.

[27] K.-P. Luo, A Novel Self-adaptive Harmony Search Algorithm,

Journal of Applied Mathematics, Vol. 2013, pp. 1-16, 2013.

[28] B. Gu, V. S. Sheng, A Robust Regularization Path Algorithm

for V-Support Vector Classification, IEEE Transactions on

Neural Networks and Learning Systems, Vol. 28, No. 5, pp.

1241-1248, May, 2017.

1362 Journal of Internet Technology Volume 19 (2018) No.5

[29] X.-Z. Wen, L. Shao, Y. Xue, W. Fang, A Rapid Learning

Algorithm for Vehicle Classification, Information Sciences,

Vol. 295, No. C, pp. 395-406, February, 2015.

[30] J.-C. Ji, W. Pang, Y.-L. Zheng, Z. Wang, Z.-Q. Ma, A Novel

Artificial Bee Colony Based Clustering Algorithm for

Categorical Data, Plos One, Vol. 10, No. 5, e0127125, May,

2015. doi:10.1371/journal.pone.0127125

[31] Y.-H. Zheng, B. Jeon, D. Xu, J. Wu, H. Zhang, Image

Segmentation by Generalized Hierarchical Fuzzy C-means

Algorithm, Journal of Intelligent and Fuzzy Systems, Vol. 28,

No. 2, pp. 961-973, March, 2015.

[32] B. Gu, V. S. Sheng, K.-Y. Tay, W. Romano, S. Li,

Incremental Support Vector Learning for Ordinal Regression,

IEEE Transactions on Neural Networks and Learning

Systems, Vol. 26, No. 7, pp. 1403-1416, July, 2015.

[33] C. Zheng, H. E., M. Song, J. Song, Optimal Crowdsourcing

Scheme for Open Questions on Web, Journal of Internet

Technology, Vol. 17, No. 5, pp. 897-904, September, 2016.

[34] T.-Y. Ma, P. Gerber, A Hybrid Learning Algorithm for

Generating Multi-Agent Daily Activity Plans, Journal of

Internet Technology, Vol. 17, No. 5, pp. 959-969, September,

2016.

Biographies

Yu Xue is a member of IEEE

(92058890), ACM (2270255), and

CCF (E200029023M). He received

the Ph.D. degree from College of

Computer Science and Technology,

Nanjing University of Aeronautics &

Astronautics, China, in 2013. He is a

lecturer in the School of Computer and Software,

Nanjing University of Information Science and

Technology.

Jiongming Jiang received the

undergraduate degree from the School

of Computer and Software, Nanjing

University of Information Science and

Technology. He is currently a master

student in the School of Computer and

Software, Nanjing University of

Information Science and Technology, China. His

research include biomimetic algorithm.

Tinghuai Ma is a professor in

Computer Sciences at Nanjing

University of Information Science &

Technology, China. He received his

Bachelor (HUST, China, 1997),

Master (HUST, China, 2000), Ph.D.

(Chinese Academy of Science, 2003)

and was Post-doctoral associate (AJOU University,

2004). His research interest is data mining.

Jingfa Liu received the B.Sc. degree

in mathematics from Hunan Normal

University, Changsha, China, in 1995.

The M.Sc. degree in operational

research and cybernetics from

Shanghai Railway University,

Shanghai, China, in 1999. The Ph.D.

degree in computer software and theory from

Huazhong University of Science and Technology,

Wuhan, China.

Wei Pang received his Ph.D. degree

in computing science from the

University of Aberdeen in 2009. He is

currently a lecturer at the University

of Aberdeen. His research interests

include bio-inspired computing, data

mining, machine learning, and

qualitative reasoning. He has published over 60 papers,

including 30+ journal papers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

