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Abstract 

Matrix multiplication is an important operation, whose 

computation overhead is large for the matrix with big size. 

The researchers seek to delegate the computation to the 

cloud service provider with abundant resources. The 

security issues arise because the user loses direct control 

on the data, such as privacy preservation, result 

verification, etc. We investigate the problem of publicly 

verifiable matrix multiplication, where the third party 

verifier can verify the correctness of the returned result 

from the service provider with public key. The state-of-

the-art schemes work inefficiently in practice because a 

number of computationally expensive operations are 

utilized for the purpose of public verification. We 

introduce the notion of matrix digest, on which an 

efficient scheme MD-
Matrix

VC  is presented. A one-

dimensional vector is used for the verification-related 

computing, which is inverted from the original two-

dimensional matrix. The computing on the verification-

related computing is decreased significantly, thus the 

running efficiency of the related algorithms is promoted. 

We further present a fast algorithm for computing the 

batch of exponentiations. The security analysis 

demonstrates the security of our proposed outsourcing 

scheme, and the performance analysis shows the running 

efficiency of the scheme. 

Keywords:  Cloud computing, Outsourced computation, 

Public verification, Matrix multiplication 

1 Introduction 

The matrix is a common tool in higher algebra, 

which is widely used in statistical analysis, circuit 

theory, 3D animation, etc. Matrix has a wealth of 

computing forms, such as multiplication, eigenvalue, 

matrix decomposition, and so on. Matrix plays a very 

important role in the current scientific research and 

industrial production. 

The scale of the matrix is very large in many 

scenarios. Although the computer is deployed with 

high computing speed CPU now, matrix operations 

still need to consume a large amount of computing 

resources. Therefore, high-performance equipment is 

needed to be configured, which is not a small overhead 

for some research institutions and researchers. 

Furthermore, it needs to spend a lot of manpower and 

material resources to carry out day-to-day management 

and maintenance. Fortunately, with the maturity and 

popularity of cloud computing technology and big data 

platform, large-scale computing tasks can be entrusted 

to cloud computing or big data platform with rich 

resources. 

However, the cloud service provider or the big data 

platform is not entirely trusted. When the computing 

task is outsourced to the cloud computing service 

provider or the big data platform, the data owner loses 

direct control over the data, and thus some security 

issues may occur, including data leakage and incorrect 

results. 

We study the problem of publicly verifiable 

computation of outsourced matrix multiplication. 

Many secure schemes have already been proposed [1-

3]. Fiore et al. proposed a secure and publicly 

verifiable scheme 
Matrix

VC  for outsourced matrix 

multiplication, which is deployed in the amortized 

model [1]. Fiore et al. makes full use of the closed-

form efficiency property of the new pseudo-random 

functions to improve the processing efficiency on the 

user side. Li et al. followed the framework of [1] to 

propose a new scheme [2], where the user gets only an 

element in the ProbGen stage, the running efficiency is 

improved correspondingly. 

However, we observe that, in the state-of-the-art 

schemes, a large number of computationally expensive 

computations are involved. For example, the 

verification element ,

,

( , )i jm

i j Kw g F i j
α

= ⋅  is computed 

for each element 
,i jm  of the matrix M  in the 
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algorithm KeyGen. The verification object 

1
( , , )

n
VO V V= …  with ,1

j
n x

j i ji
V w

=

=∏ is computed in 

the algorithm Compute. 

Both KeyGen and Compute work with time 

complexity O(n2) in the group domain, which is 

especially computationally expensive. Thus, the 

running efficiency of the existing publicly verifiable 

schemes for outsourced matrix multiplication is 

practically not so high. The schemes work inefficiency 

owning to the adoption of computationally expensive 

computations in the verification-related computing. 

In this paper, we propose a scheme, called MD-

Matrix
VC , for the problem of publicly verifiable 

outsourcing for large-scale matrix multiplication. On 

the basis of the algebraic properties of matrix, the 

Matrix digest (MD) is given for the involved matrix, 

by which a one-dimensional vector is obtained from 

the original two-dimensional matrix. The obtained 

vector retains the computing ability and is used as the 

substitute for subsequent verification-related work. The 

work is increased in the domain of integer, while the 

work is decreased in the domain of group. Thus, in the 

algorithms KeyGen and Compute of the publicly 

verifiable scheme, the time complexity of verification-

related work reduces dramatically from O(n2) to O(n). 

We summarize our main contributions as follows. 

‧ We propose an efficient and publicly verifiable 

scheme MD-
Matrix

VC  for outsourced matrix 

multiplication. 

‧ We propose to construct matrix digest for the 

original matrix, which is used as the substitute for 

the verification-related work in each algorithm of 

the scheme. 

‧ We prove the security of the proposed scheme and 

demonstrate the efficiency by both theoretic analysis 

and experimental results simultaneously. 

The rest of the paper is organized as follows. We 

give the system model, the security model and some 

definitions in Section 2. In Section 3, a publicly 

verifiable scheme is proposed for outsourced matrix 

multiplication and a fast algorithm is also presented for 

batch of exponentiations. We give the performance 

analysis in Section 4, including both the theoretic 

analysis and the experimental results. The related 

works are summarized in Section 5. Finally, we give 

the conclusions in Section 6. 

2 Preliminaries 

2.1 System Model and Security Model 

We now give the system model adopted in this paper 

in Figure 1. 

 

Figure 1. System model 

Three parties are involved in the above model, 

which includes the cloud service provider (CSP), the 

user and the verifier. The CSP is deployed with 

abundant resources, and usually is a specific cloud 

service provider. The user owns a large-scale matrix 

M  and a vector x
�

, and needs to compute M x⋅
�

. The 

user is deployed with constrained resources and has no 

ability to perform the computing locally, and 

outsources the computing to the CSP. The verifier is an 

impartial third party, which computes with the publicly 

released data to determine whether or not the result is 

correct. The process of the outsourced computation is 

summarized as follows: 

‧ The user performs computation on ,M x
�

 

respectively, to obtain the publicly released data for 

later verification, and sends part of the data to the 

verifier. 

‧The user sends ,M x
�

 and the related data to the CSP. 

‧ The CSP performs computation to get the result 

M x⋅
�

 and the verification object, which are sent to 

the verifier. 

‧ The verifier performs computation with the publicly 

released data the verification object to determine 

whether or not the result M x⋅
�

 is correct. 

We assume in this paper that the user and the 

verifier are both honest, and the CSP is semi-honest in 

the given model. We mainly study the security issue of 

public verification of the outsourced computation 

result, and privacy preservation issue is not taken into 

consideration in this paper.  

2.2 Definitions 

Definition 1. A publicly verifiable scheme VC  for 

outsourced matrix multiplication is a four-tuple 

(KeyGen, ProbGen, Compute, Verify) [1, 4]. 

‧ KeyGen ( 1 , ) ( , , )
M M M

M SK EK PK
λ

→ : The user 

runs the algorithm with the security parameter λ  on 

the input matrix M  to get the 

keys , ,
M M M

SK PK EK , where 
M

SK  is the secret key, 

M
PK  is the public key, and 

M
EK  is the evaluation 

key. 
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‧ ProbGen ( , )
M x

SK x VK→
�

: The user runs the 

algorithm with 
M

SK  on the input vector x

�

 to 

get
x

VK . 

‧ Compute ( , ) ( , )
M

EK x y v→
� �

: The CSP runs the 

algorithm to perform the matrix multiplication and 

obtains ,y v
�

 as output, where y
�

 is the computation 

result of matrix multiplication and v  is the 

verification object. The CSP can prove with v  that 

he has performed the computing normally. 

‧ Verify ( , , , ) /
M x

PK VK y v true false→
�

: The third 

party verifier runs the algorithm to judge whether or 

not the result y
�

 is correct with , ,
M x

PK VK v . 

Let 
1 2
, ,

T
G G G  be multiplicative cyclic groups of the 

same order q , and 
1 2
,g g  be a generator of 

group
1 2
,G G , respectively, where q  be a big prime. 

Definition 2. Unsymmetrical Bilinear Pairing. 

A bilinear pairing 
1 2

:
T

e G G G× →  defined on 

1 2
, ,

T
G G G  is such a pairing that should satisfy the 

conditions as follows: 

‧ bilinear. ,
q

a b∀ ∈� , equation 
1 2 1 2

( , ) ( , )a b ab
e g g e g g=  

holds. 

‧ non-degenerate. The operations in equation 

( , ) 1e g h =  holds, 1g = . 

‧ computable. The operations in groups 
1 2
, ,

T
G G G , 

and operations of bilinear map e  are solvable in 

probability polynomial time. 

Definition 3. co-Computational Diffie-Hellman problem 

(co-CDH). 

The advantage of solving the co-CDH by an 

adversary A  is defined as  

 
1 2 1 2 1

( ) Pr[( , , , , ) ],acdh abb
q g g g g gλ = =

A
ADV   

where ,
q

a b∈� . Then we say the co-CDH assumption 

ε -holds in
1 2
,G G , if for every probability polynomial 

time (PPT) algorithm A  we have cdh
ε≤

A
ADV . 

Definition 4. External Diffie-Hellman problem (XDH). 

The advantage of ( )cdh
λ

A
ADV  of deciding the XDH 

problem by an adversary is defined as 

 
1 2 1 2 1

1 2 1 2 1

( ) | Pr[( , , , , )]

Pr[( , , , ]

,

,, ) |

a b

a b c

cdh ab
q g g g g g

q g g g g g

λ

ε

=

− ≤

A
ADV

  

where , ,
q

a b c∈� . 

We say that the XDH assumption ε -holds 

over
1 2
, ,

T
G G G , if for every PPT algorithm A  we 

have xdh
ε≤

A
ADV . 

For any verifiable computation scheme VC , we 

follow Fiore et al. to define the following experiment 

[1]. 

 

Definition 5. Experiment [ , , ]
PubVerExp f λ
A

VC . 

 ( , , ) (1 , )f f fSK EK PK KeyGen fλ
←   

For 1i =  to q  

1 ,1 1 , 1 , 1
ˆ ˆ ( , , , , , , )i f x i x i x ix EK x VK x PK VK

− − −

← …A  

, ,

ˆˆ( , , ) ( , , , , , )i x i x i f f ix PK VK ProbGen f PK E M SK x
λ

←

 
*

1 ,1 ,1 , ,
ˆ ˆ( , , , , , , , )f x x q x q x qx EK x PK VK x PK VK← …A  

* *

* *

ˆ ˆ

ˆˆ ˆ( , , ) ( , , , , , )f fx x
x PK VK ProbGen f PK E E SK x

λ
←  

* *

*

1 ,1 ,1 , ,

ˆ ˆ

ˆ ˆ ˆ( , , , , , , , , ,

, )

f x x q x q x q

x x

REs EK x PK VK x PK VK x

PK SK

′← …A

 
* *

ˆ ˆ

ˆ ( , , )
x x

y Verify PK VK Res′ ′=  

ˆˆ( , ( ))y Decryption y H E′ ′ ′←  

IF ŷ′ ≠⊥  and *( )y f x′ ≠  output 1, otherwise output 

0. 

The variables ,x y  are both matrixes in our scheme, 

and x  is in the domain of function f  (where 

f M x= ⋅

�

 is a function that will be outsourced to the 

server). 

For any λ∈N , we define the advantage of an 

adversary A  making at most ( )q poly λ=  queries in 

the above experiment against VC  as: 

 [ , , , ] Pr[ [ , , ] 1].
PubVer PubVerAdv f q Exp fλ λ= =
A A

VC VC   

We say that a publicly verifiable computation 

scheme VC  is secure for F  if it holds that 

[ , , , ]
PubVerAdv f q λ
A

VC  is negligible for any f ∈F  and 

any PPT adversaryA . 

3 Our Proposed Scheme: MD-
Matrix

VC  

We focus on an important security issue in this 

paper, which is the result public verification of the 

outsourced matrix multiplication. As far as the security 

issue of privacy preservation is concerned, an 

alternative would be the method adopted in [5-6], 

where the matrix M  can be hidden by multiplying a 

sparse matrix P  to get PM , which is sent to the server 

for later computing. In this section, we first give the 

definition of Matrix Digest. We then propose a scheme 

Matrix
MD −VC  by using the matrix digest for public 

verification of outsourced matrix multiplication. 

Finally, a fast algorithm for computing batch of 

exponentiations is presented. 

3.1 Matrix Digest 

Definition 6. Matrix Digest (MD) is obtained by 

multiplying a matrix with a chosen vector. 

Given a vector 
1

( , , ) n

n
p p p= … ∈

�
�  and a matrix A , 
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the MD of A  is computed as d
pm A⋅ ∈=

� �
� . The 

matrix A  can be rewritten as
1

( , , )
d

A a a= …

� �

, where 

( 1, , )n

i
a i d∈ = …

�
�  is a column vector. 

Thus,
i i

m p a= ⋅

� � �

, where ⋅  means inner product of 

vectors. MD has the following properties: 

‧ deterministic. Given a vector p
�

, the matrix digest 

of a matrix is determined, that is, we can obtain 

different matrix digest for a matrix with different p
�

. 

‧ computable. The matrix digest is essentially a 

vector and has the properties of vector, which can be 

applied to the operations of vector. 

‧ irreversible. The computation of matrix digest is a 

one-way mapping. Given only a matrix digest, the 

matrix and the parameters cannot be detected. Even 

if the matrix digest and the parameters are given 

simultaneously, the matrix cannot be detected, too. 

3.2 Scheme Details 

We use the matrix digest instead of the original 

matrix for the verification-related computation. The 

original two-dimensional matrix is transformed into a 

one-dimensional vector by the matrix digest, and the 

computation of exponentiation is then decreased 

dramatically from O(n2) to O(n). 

The user outsources the computing of y M x= ⋅

� �

 to 

the CSP for better performance ratio, where n d
pM
×

∈�  

is a matrix and d
px∈

�
�  is a vector, p  is a large prime, 

and 1, 1n d≥ ≥  are integers. The third-party verifier 

can check with the publicly released information 

whether or not the returned result y
�

 is correct. 

We now give the details of MD-
Matrix

VC  as follows. 

KeyGen (1 , )M
λ . 

We assume that the input n d
pM
×

∈�  be a matrix. 

With the give security parameterλ , the user generates 

a description of bilinear groups 
1 2 1 2

( , , , , ,p g g G G  

, ) (1 )T e
λ

←GG , a random vector n

p
p∈
�

� , a random 

integer 
p

α ∈� , and a key
0 1

( , , , )
d

K k k k= … , where 

 ( 0, , )i pk i d∈ = …� . 

The user computes , ,
p

m PK w
� �

 as follows: 

(1) m p M= ⋅

� �

, where ·  denotes here the 

multiplication of a vector and a matrix. 

(2) 
1

( , , )
p n

PK PK PK= … , where 
1 2

( , )i
p

iPK e g g
α

= . 

(3) 
1

( , , )
d

w w w= …

�

, where
1

( )i
m

i K
w g F i

α

= ⋅ , and the 

symbol ⋅  denotes the multiplication of group elements. 

Here, ( )
K

F i  is defined as an algebraic 

pseudorandom function, which is computed as follows: 

 0

1
( ) ,i

k k

K
F i g=  1, ,i d= … .  

Output ( , , ),
M M M

SK EK PK  where ,
M

SK K=  

( , )
M

EK M w=

�

, and M pPK PK= . 

ProbGen ( , )
M

SK x
�

. 

Let a vector 
1

( ,..., ) d
d px x x= ∈

�
�  be the input. The 

user computes the value
1

( ) ,i
d

x

x K

i

F iρ

=

=∏  and defines 

the verification key
2

( , )
x x

VK e gρ= . Output ( , ).
x

x VK
�

 

Compute ( , )
M

EK x
�

. 

The CSP computes the result y
�

 and the verification 

object v  as evidence, where y M x= ⋅

� �

 and
1

.

i

d

x

i

i

v w

=

=∏  

Output ( , )y v
�

. 

Verify ( , , , )
M x

PK VK y v
�

. 

The verifier checks with the public key and the 

verification key if  

 
2

1

( , ) ( ) .i

n
y

i x

i

e v g PK VK
=

= ⋅∏  

If the above equation holds then the algorithm 

outputs y
�

, otherwise outputs⊥ . 

Theorem 1. The algorithm Verify in our proposed 

scheme MD-
Matrix

VC  is correct. 

Proof. By KeyGen and Compute, we have m p M= ⋅

� �

 

and y M x= ⋅

� �

, respectively. 

Then, m x p y⋅ = ⋅

� � � �

 can be obtained. Thus,  

 
1 1

.

d n

i i i i

i i

m x p y

= =

=∑ ∑  

Then, in Verify, when the third party verifier checks 

whether the equation 
2

1

( , ) ( ) i

d
y

i x

i

e v g PK VK
=

= ⋅∏  holds, 

we have 

 1

2 2

1

1 2 2

1 1

1 2

1 2

1

1

( , ) ( , )

( , ) ( ( ) , )

( , )

( ),

 

)

( )

i

i i i

d

i i

i

i i

i

d
x
i

i

d d
am x x

K

i i

am x

x

n
ap y

x

i

n
y

i x

i

e v g e w g

e g g e F i g

e g g VK

e g g VK

PK VK

=

=

= =

=

=

=

= ⋅

= ⋅

= ⋅

= ⋅

∑

∏

∏ ∏

∏

∏

  

Thus, we conclude that the algorithm Verify works 

correctly. 
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3.3 Fast Algorithm 

We observe that the running efficiency of the 

algorithm KeyGen can be improved further owning to 

the usage of so much exponentiation. The values 

1 1
,

i i
p m

g g
α α

 are computed in KeyGen for later use, 

among which abundant duplicate computations are 

involved. As 
1
g  is a large number, the computations of 

1 1
,

i i
p m

g g
α α

 are computationally expensive. We propose 

to compute the modular exponentiation incrementally. 

Thus, the duplicate computations are decreased and the 

running efficiency is improved further. 

We give an algorithm BatchExp for efficient 

computation of batch of exponentiations. In the 

algorithm, the subroutine Exp  is just a function to 

compute the exponentiation in common use, which 

returns   

xg mod N  for invoking ( , , )Exp g x N . We first 

sort the array d
�

 in ascending order. Then the result is 

obtained incrementally. Though the operation of 

sorting data is increased, the operation on computing 

exponentiation is decreased. The overall efficiency of 

computing batch of exponentiations is promoted. 

 

 

Algorithm 1. BatchExp( , ,d g N
�

) 

    \  ( )sort d
�

  //in ascending order 

    \   
1

( , , )
n

r r r= …

�

 //the computing result 

        
1 1

( , , )r Exp g d N=  

    \   FOR 2i =  to n   

           
1 1
* ( , , )

i i i i
r r Exp g d d N modN

− −

= −  

ENDFOR 

return r
�

 

 

3.4 Security Analysis 

Following the work in [1-2], we give the security 

analysis of our scheme MD-
Matrix

VC  in this section. 

Theorem 2. If G  is such that co-CDH assumption 

cdh
ε -holds, and F  is prfε -secure, then any PPT 

adversary A  making at most ( )q poly λ=  queries has 

advantage [ , , , ] .
PubVer

Matrix cdh prfADV MD f q λ ε ε− ≤ +
A

VC  

We then define the following games, where ( )
i

G A  

is the output of Game i  run by the adversaryA . 

Game 0. this game is the same as PubVer
Exp

A
 

[ , , , ]
Matrix

MD f q λ−VC . 

Game 1. this game is similar to Game 0, except that 
1

1 2 1 2
( ( , ), , ( , ))n

apap

MPK e g g e g g= …  in the KeyGen 

algorithm. 

Game 2. this game is similar to Game 1, except 

that
1

( , , )
d

w w w= …

�

, where
1

·

i
am

i i
w g R= . 

The proof of this theorem is based on Games 

defined above, and is obtained by proving the 

following claims. 

 Claim 1 
0 1

Pr[ ( ) 1] Pr[ ( ) 1]G G= = =A A   

Proof. The difference between Game 0 and Game 1 is 

computing the public keys in ProbGen. However, due 

to the security of the bilinear map, the probability of 

the adversary winning in Game 1, i.e.,
1

Pr[ ( ) 1]G =A , 

remains the same. 

 Claim 2 
1 2

| Pr[ ( ) 1] Pr[ ( ) 1] | prfG G ε= − = ≤A A   

Proof. The difference between Game 1 and Game 2 

lies that each pseudo random function 
K

F  is replaced 

with a random value of group
i

R . Obviously, for any 

adversaryA , the difference between the possibility of 

winning two Games accounts on the possibility of 

winning the pseudo random function. Thus, the 

possibility of winning Game must be lower than 

winning a pseudo random function. 

 Claim 3 
2

Pr[ ( ) 1]
cdh

G ε= ≤A   

Proof. Assume by contradiction that there exists a PPT 

adversary A  such that the probability of A  winning 

in Game 2 is a non-negligible function ε . Then, we 

show that we can build an efficient algorithm B  which 

uses A  to solve the co-CDH problem with 

probability
cdh

ε ε≥ .  

B  takes as input 
1 2 1 2

( , , , , , , )
T

q g g G G G e  and two 

random elements
1 2
,

a b
g g , and proceeds with the 

following steps. 

First, B  chooses at random:  

(1) a vector
1

( , , ) n

n p
p p p= … ∈

�
� ;  

(2) another vector 
1

( )
i d

w w G= ←
�

 for 1, ,i d= … . 

B  then sets ( , ).
M

EK M w=

�

 Let 
M

PK =  

1

1 2 1 2
( ( , ) , , ( , ) ).n

ppa b a b
e g g e g g…  Then, 

2 2
( ( ), ) ( , )/

K i
e F i g e w g=  

1 2
( , ) i

ma b
e g g . 

The values
M

PK , 
M

EK  and 
2

( ( ), )
K

e F i g  are 

distributed obviously as same as in Game 2. 

Next, B  runs 
2

( , , ( ( ), ))
M M K

PK EK e F i gA  and answers 

its queries as follows. Let x
�

 be the queried value, then 

B  computes 

2 2 1 2

1 1

( ( ) , ) ( ( , ) / ( , ) )i i i

d d

x m xa b

x K i

i i

VK e F i g e w g e g g
= =

= =∏ ∏
 

and returns it to A . By the bilinear property of ( , )e ⋅ ⋅ , 

computing 
x

VK  is equivalent to that in Game 2. 

Finally, let ˆ ˆ ˆ( , )
y

y vσ =  be the output of A  at the 

end of the game, such that for some *

x

�

 chosen byA , it 

holds that
*
ˆ ˆ( , , ) ,M yx

Verify PK VK yσ =  ŷ ≠⊥  and 

*

y M x≠ ⋅
�

. By verification, this means that 
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* *

ˆ ˆ

2 1 2

1 1

ˆ( , ) ( , )i i i

n n
y p ya b
i x x

i i

e v g PK VK e g g VK
= =

= ⋅ = ⋅∏ ∏  (1) 

Let *

y M x= ⋅
�

 be the correct computation result. 

Then, by correctness the following equation also holds: 

 
*2 1 2

1

( , ) ( , ) i i

n
p ya b

x
i

e v g e g g VK
=

= ⋅∏  (2) 

So, dividing the equation (1) by (2), we have that  

 1

ˆ( )

2 1 2

1

ˆ( / , ) ( , )

d

i i i

i

n p y y
ab

i

e v v g e g g =

−

=

=

∑
∏   

Because ˆ
i i
y y≠  ( 1, ,i n= … ), the value 

1

ˆ( )
d

i i i

i

p y y

=

−∑  

is generally equal to 0. Thus,  

 

1

1

ˆ( ( ))

1
ˆ( / )

d

i i i

i

p y y
ab

g v v

−

=

−

=

∑
  mod q   

Therefore, if A  wins in Game 2 with 

probability
cdh

ε , then B  solves co-CDH with the same 

probability. �  

4 Performance Analysis 

In this section, we discuss the performance of the 

scheme 
Matrix

VC  [1] and our scheme MD-
Matrix

VC  by 

theoretic analysis and experimental results, 

respectively. 

4.1 Theoretic Analysis 

The symbol O  is used traditionally to analyze an 

algorithm’s time complexity. The computing in both 

�  and G  is involved in our scheme MD-
Matrix

VC . 

Thus, the time complexity analysis of MD-
Matrix

VC  

cannot be done directly by O  because of the difference 

of magnitude between the two fields. We utilize 

another two similar symbols ,O O
� G

, where O
�

 

denotes the time complexity of operations in � , and 

O
G

 denotes the time complexity of operations 

in
1 2
, ,

T
G G G . 

Let the matrix n d
pM
×

∈� . We give the comparisons 

of computation overhead theoretically in Table 1 as 

follows. 

Table 1. Comparison of computation overhead 

Algorithm Matrix
VC  MD-

Matrix
VC  

KeyGen ( )O nd
G

 ( )O nd
�

+ ( )O d
G

 

ProbGen ( )O n d+
G

 ( )O d
G

 

Compute ( )O nd
�

+ ( )O nd
G

 ( )O nd
�

+ ( )O d
G

 

 

As can be seen from the Table 1, the efficiency of 

MD-
Matrix

VC  is superior to that of 
Matrix

VC  in ProbGen 

and Compute. Regarding to the verification-related 

computation, the time cost of algorithm ProbGen is 

decreased from ( )O n d+
G

 in 
Matrix

VC  to ( )O d
G

 in 

MD-
Matrix

VC , and the time cost of algorithm Compute 

is decreased ( )O nd
G

 in 
Matrix

VC  to ( )O d
G

 in MD-

Matrix
VC . 

It is the same in the algorithm Verify. As far as the 

algorithm KeyGen is concerned, it is difficult to 

differentiate MD-
Matrix

VC  from 
Matrix

VC  with the 

symbols ,O O
� G

, because in the scheme MD-
Matrix

VC , 

the time cost is decreased in O
G

 and increased inO
�

. 

The difference can be further made clear only by 

experimental results. 

4.2 Experiment Results 

We now compare the running efficiency of the 

schemes with experiments. There are four algorithms 

in the publicly verifiable outsourced computation, i.e., 

KeyGen, ProbGen, Compute and Verify. We 

implement the first three algorithms of Fiore et al’s 

scheme [1] and ours, respectively. As the computation 

overhead of algorithm Verify is the same according to 

the theoretic analysis in the two schemes, we will not 

discuss it here. We implement the algorithms with Java 

and the JPBC library [7]. The experiments are 

conducted on a laptop with an Intel Core i5 CPU 

running at 2.50GHz with 4GB RAMs. Each algorithm 

is executed 100 times, and the average time is gotten. 

We first show the effect of the usage of the matrix 

digest. It is ambiguous to compare the algorithm 

KeyGen theoretically owning to the different 

magnitude in �  andG . The computation overhead is 

( )O nd  to compute matrix digest in the scheme MD-

Matrix
VC , whereas it is done in �  with high efficiency. 

The computations in G  is computationally 

expensive, which includes bilinear map, modular 

exponentiation, etc. The comparison results between 

the scheme 
Matrix

VC  in [1] and our proposed scheme 

MD-
Matrix

VC  are shown in Table 2, where for clarity, 

d  is set to be equal to n . 

Three sub-Tables are included in Table 2, which 

corresponds to the algorithm KeyGen, ProbGen and 

Compute, respectively. In each sub-table, 
1
t  is the time 

of the scheme
Matrix

VC , and 
2
t  is the time of our 

proposed scheme MD-
Matrix

VC . The value of the last 

column Speedup of each sub-table is gotten by
2 1
/t t . 
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Table 2. Effect of two schemes (Time in Milliseconds) 

(a) Algorithm KeyGen 

n  
1
t  

2
t  Speedup 

100 44,805  3,713  12.07 

300 401,185  11,068  36.25 

500 1,120,142  18,378  60.95 

700 2,195,619  25,683  85.49 

900 3,624,704  33,055  109.66 

(b) Algorithm ProbGen 

n  
1
t  

2
t  Speedup 

100 2,897 71 40.8 

300 8,716 159 54.82 

500 14,559 252 57.77 

700 20,330 341 59.62 

900 26,141 434 60.23 

(c) Algorithm Compute 

n  
1
t  

2
t  Speedup 

100 4,425 45 98.33 

300 39,743 133 298.82 

500 114,906 229 501.77 

700 219,196 316 693.66 

900 365,458 406 900.14 

 

As can be seen from the table, the efficiency of MD-

Matrix
VC  is superior to that of ,

Matrix
VC  which 

demonstrates the consistency with the theoretic 

analysis. Specifically, it is difficult to differentiate with 

theoretic analysis the algorithm KeyGen of two 

schemes. But it is easy to conclude with experiment 

results that the running efficiency is improved 

practically. For example, the algorithm KeyGen of our 

proposed scheme is almost 60 times faster than that of 

Matrix
VC  when n  is set to 500. 

We then show the effect of the fast algorithm for 

batch of exponentiations proposed in Section 3.3, 

which is show in Table 3. In Table 3, the column 

originalt  is the time cost of a trivial method, where the 

batch of exponentiations is computed one by one with 

loop command. The column fastt  is the time cost of our 

proposed fast Algorithm. The value of the column of 

Speedup is gotten by /original fastt t . As can be seen that, 

the time cost of optimized algorithm is almost 25 

percent of that of the original one. 

Table 3. Effect of BatchExp (Time in Milliseconds) 

n  originalt  fastt  Speedup 

10,000 4.4 0.87 5.06 

20,000 8.86 1.82 4.87 

30,000 13.3 2.83 4.70 

40,000 17.75 3.86 4.60 

50,000 22.24 4.95 4.49 

5 Related Works 

Abundant efforts have been done on securely 

outsourced computation, including linear system of 

equations [6, 11, 13], optimization problem [14-15], 

matrix operation [1-2, 5, 8-10], privacy preservation 

[23-25], data mining [26-27], secure multiparty 

computation [28-29], function query [30-31], etc. We 

focus on the security issue of correctness verification 

of the result, which can be grouped into two categories 

according to the executor of the result verification, i.e., 

private verification and public verification. 

The private verification is performed by the user 

locally, which includes such methods as double server, 

redundant data, random check, Monte Carlo method, 

and so on. Hohenberger et al. used the double server 

method to verify the result of outsourced exponent 

operation [19]. Xie et al. proposed to insert fake tuples 

into the original dataset [16]. A portion of fake tuples 

should be included in the result. The result must be 

incorrect if the fake tuples that should be included in 

the result do not appear in the result. Hu et al. adopted 

the random check method to verify the result of 

outsourced matrix multiplication [5]. The user 

computes an item locally, if the item is not the same as 

that in the result, then the result is incorrect. Lei et al. 

applied the Monte Carlo method [9], which amounts to 

executing random check multiples times. 

The public verification is performed by a third party 

verifier with public information provided by the user 

and server provider, which includes authentication data 

structure and computational hard problem. The verifier 

is acted by a neutral third party except the user and 

server provider. Devanbu et al. proposed to utilize 

Merkle Hash Tree (MHT) to verify the correctness of 

the query results on relational data [18]. Li et al. 

extended MHT to multi-dimensional data query and 

aggregate query [20], and Yang et al. further proposed 

MR-tree for k nearest neighbor (kNN) query on spatial 

data [21]. Hu et al. presented the voronoi neighbor 

techniques to separate the authentication structure with 

the query structure [22], by which the size of the 

verification object is diminished.  

Fiore et al. utilized the discrete logarithm problem to 

propose a public verification scheme for outsourced 

matrix multiplication [1], where the property of Closed 

Form Efficiency is used to improve the running 

efficiency. Li et al. followed the framework to further 

improve the efficiency [2]. Elkhiyaoui pointed out in 

[17] that the secret key is used the algorithms of 

KeyGen and Compute on the user side in [1-2], which 

is unfavorable to public verification. A new verifiable 

computation scheme with completely public key on the 

user side is proposed in [16]. 
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6 Conclusions 

In this paper, we aim at efficiently and publicly 

verifiable computation of outsourced matrix 

multiplication. We adopt two strategies, one is the 

matrix digest, and the other is fast computation for 

batch of exponentiations. The verification-related 

computation is decreased by the matrix digest, which 

improves the running efficiency dramatically. The 

running efficiency of the algorithm KeyGen is also 

improved by the fast algorithm for batch of 

exponentiations. The performance analysis on theoretic 

analysis and experimental results jointly demonstrate 

the efficiency of our proposed scheme. In future work, 

we plan to present more efficient scheme for publicly 

verifiable computation of outsourced matrix 

multiplication. 
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