
Efficient and Publicly Verifiable Outsourcing of Large-scale Matrix Multiplication 1253

Efficient and Publicly Verifiable Outsourcing of Large-scale

Matrix Multiplication

Gang Sheng1, Chunming Tang1, Wei Gao2, Ying Yin3, Yunlu Cai1*

1 College of Mathematics and Information Science, Guangzhou University, China
2 School of Mathematics and Statistics Science, Ludong University, China

3 College of Computer Science and Engineering, Northeastern University, China

shenggang@neusoft.edu.cn, ctang@gzhu.edu.cn, gaow@ldu.edu.cn, yingying@cc.neu.edu.cn,

yunlucai@gzhu.edu.cn

*Corresponding Author: Chunming Tang; E-mail: ctang@gzhu.edu.cn

DOI: 10.3966/160792642018081904027

Abstract

Matrix multiplication is an important operation, whose

computation overhead is large for the matrix with big size.

The researchers seek to delegate the computation to the

cloud service provider with abundant resources. The

security issues arise because the user loses direct control

on the data, such as privacy preservation, result

verification, etc. We investigate the problem of publicly

verifiable matrix multiplication, where the third party

verifier can verify the correctness of the returned result

from the service provider with public key. The state-of-

the-art schemes work inefficiently in practice because a

number of computationally expensive operations are

utilized for the purpose of public verification. We

introduce the notion of matrix digest, on which an

efficient scheme MD-
Matrix

VC is presented. A one-

dimensional vector is used for the verification-related

computing, which is inverted from the original two-

dimensional matrix. The computing on the verification-

related computing is decreased significantly, thus the

running efficiency of the related algorithms is promoted.

We further present a fast algorithm for computing the

batch of exponentiations. The security analysis

demonstrates the security of our proposed outsourcing

scheme, and the performance analysis shows the running

efficiency of the scheme.

Keywords: Cloud computing, Outsourced computation,

Public verification, Matrix multiplication

1 Introduction

The matrix is a common tool in higher algebra,

which is widely used in statistical analysis, circuit

theory, 3D animation, etc. Matrix has a wealth of

computing forms, such as multiplication, eigenvalue,

matrix decomposition, and so on. Matrix plays a very

important role in the current scientific research and

industrial production.

The scale of the matrix is very large in many

scenarios. Although the computer is deployed with

high computing speed CPU now, matrix operations

still need to consume a large amount of computing

resources. Therefore, high-performance equipment is

needed to be configured, which is not a small overhead

for some research institutions and researchers.

Furthermore, it needs to spend a lot of manpower and

material resources to carry out day-to-day management

and maintenance. Fortunately, with the maturity and

popularity of cloud computing technology and big data

platform, large-scale computing tasks can be entrusted

to cloud computing or big data platform with rich

resources.

However, the cloud service provider or the big data

platform is not entirely trusted. When the computing

task is outsourced to the cloud computing service

provider or the big data platform, the data owner loses

direct control over the data, and thus some security

issues may occur, including data leakage and incorrect

results.

We study the problem of publicly verifiable

computation of outsourced matrix multiplication.

Many secure schemes have already been proposed [1-

3]. Fiore et al. proposed a secure and publicly

verifiable scheme
Matrix

VC for outsourced matrix

multiplication, which is deployed in the amortized

model [1]. Fiore et al. makes full use of the closed-

form efficiency property of the new pseudo-random

functions to improve the processing efficiency on the

user side. Li et al. followed the framework of [1] to

propose a new scheme [2], where the user gets only an

element in the ProbGen stage, the running efficiency is

improved correspondingly.

However, we observe that, in the state-of-the-art

schemes, a large number of computationally expensive

computations are involved. For example, the

verification element ,

,

(,)i jm

i j Kw g F i j
α

= ⋅ is computed

for each element
,i jm of the matrix M in the

1254 Journal of Internet Technology Volume 19 (2018) No.4

algorithm KeyGen. The verification object

1
(, ,)

n
VO V V= … with ,1

j
n x

j i ji
V w

=

=∏ is computed in

the algorithm Compute.

Both KeyGen and Compute work with time

complexity O(n2) in the group domain, which is

especially computationally expensive. Thus, the

running efficiency of the existing publicly verifiable

schemes for outsourced matrix multiplication is

practically not so high. The schemes work inefficiency

owning to the adoption of computationally expensive

computations in the verification-related computing.

In this paper, we propose a scheme, called MD-

Matrix
VC , for the problem of publicly verifiable

outsourcing for large-scale matrix multiplication. On

the basis of the algebraic properties of matrix, the

Matrix digest (MD) is given for the involved matrix,

by which a one-dimensional vector is obtained from

the original two-dimensional matrix. The obtained

vector retains the computing ability and is used as the

substitute for subsequent verification-related work. The

work is increased in the domain of integer, while the

work is decreased in the domain of group. Thus, in the

algorithms KeyGen and Compute of the publicly

verifiable scheme, the time complexity of verification-

related work reduces dramatically from O(n2) to O(n).

We summarize our main contributions as follows.

‧ We propose an efficient and publicly verifiable

scheme MD-
Matrix

VC for outsourced matrix

multiplication.

‧ We propose to construct matrix digest for the

original matrix, which is used as the substitute for

the verification-related work in each algorithm of

the scheme.

‧ We prove the security of the proposed scheme and

demonstrate the efficiency by both theoretic analysis

and experimental results simultaneously.

The rest of the paper is organized as follows. We

give the system model, the security model and some

definitions in Section 2. In Section 3, a publicly

verifiable scheme is proposed for outsourced matrix

multiplication and a fast algorithm is also presented for

batch of exponentiations. We give the performance

analysis in Section 4, including both the theoretic

analysis and the experimental results. The related

works are summarized in Section 5. Finally, we give

the conclusions in Section 6.

2 Preliminaries

2.1 System Model and Security Model

We now give the system model adopted in this paper

in Figure 1.

Figure 1. System model

Three parties are involved in the above model,

which includes the cloud service provider (CSP), the

user and the verifier. The CSP is deployed with

abundant resources, and usually is a specific cloud

service provider. The user owns a large-scale matrix

M and a vector x
�

, and needs to compute M x⋅
�

. The

user is deployed with constrained resources and has no

ability to perform the computing locally, and

outsources the computing to the CSP. The verifier is an

impartial third party, which computes with the publicly

released data to determine whether or not the result is

correct. The process of the outsourced computation is

summarized as follows:

‧ The user performs computation on ,M x
�

respectively, to obtain the publicly released data for

later verification, and sends part of the data to the

verifier.

‧The user sends ,M x
�

 and the related data to the CSP.

‧ The CSP performs computation to get the result

M x⋅
�

 and the verification object, which are sent to

the verifier.

‧ The verifier performs computation with the publicly

released data the verification object to determine

whether or not the result M x⋅
�

 is correct.

We assume in this paper that the user and the

verifier are both honest, and the CSP is semi-honest in

the given model. We mainly study the security issue of

public verification of the outsourced computation

result, and privacy preservation issue is not taken into

consideration in this paper.

2.2 Definitions

Definition 1. A publicly verifiable scheme VC for

outsourced matrix multiplication is a four-tuple

(KeyGen, ProbGen, Compute, Verify) [1, 4].

‧ KeyGen (1 ,) (, ,)
M M M

M SK EK PK
λ

→ : The user

runs the algorithm with the security parameter λ on

the input matrix M to get the

keys , ,
M M M

SK PK EK , where
M

SK is the secret key,

M
PK is the public key, and

M
EK is the evaluation

key.

Efficient and Publicly Verifiable Outsourcing of Large-scale Matrix Multiplication 1255

‧ ProbGen (,)
M x

SK x VK→
�

: The user runs the

algorithm with
M

SK on the input vector x

�

 to

get
x

VK .

‧ Compute (,) (,)
M

EK x y v→
� �

: The CSP runs the

algorithm to perform the matrix multiplication and

obtains ,y v
�

 as output, where y
�

 is the computation

result of matrix multiplication and v is the

verification object. The CSP can prove with v that

he has performed the computing normally.

‧ Verify (, , ,) /
M x

PK VK y v true false→
�

: The third

party verifier runs the algorithm to judge whether or

not the result y
�

 is correct with , ,
M x

PK VK v .

Let
1 2
, ,

T
G G G be multiplicative cyclic groups of the

same order q , and
1 2
,g g be a generator of

group
1 2
,G G , respectively, where q be a big prime.

Definition 2. Unsymmetrical Bilinear Pairing.

A bilinear pairing
1 2

:
T

e G G G× → defined on

1 2
, ,

T
G G G is such a pairing that should satisfy the

conditions as follows:

‧ bilinear. ,
q

a b∀ ∈� , equation
1 2 1 2

(,) (,)a b ab
e g g e g g=

holds.

‧ non-degenerate. The operations in equation

(,) 1e g h = holds, 1g = .

‧ computable. The operations in groups
1 2
, ,

T
G G G ,

and operations of bilinear map e are solvable in

probability polynomial time.

Definition 3. co-Computational Diffie-Hellman problem

(co-CDH).

The advantage of solving the co-CDH by an

adversary A is defined as

1 2 1 2 1

() Pr[(, , , ,)],acdh abb
q g g g g gλ = =

A
ADV

where ,
q

a b∈� . Then we say the co-CDH assumption

ε -holds in
1 2
,G G , if for every probability polynomial

time (PPT) algorithm A we have cdh
ε≤

A
ADV .

Definition 4. External Diffie-Hellman problem (XDH).

The advantage of ()cdh
λ

A
ADV of deciding the XDH

problem by an adversary is defined as

1 2 1 2 1

1 2 1 2 1

() | Pr[(, , , ,)]

Pr[(, , ,]

,

,,) |

a b

a b c

cdh ab
q g g g g g

q g g g g g

λ

ε

=

− ≤

A
ADV

where , ,
q

a b c∈� .

We say that the XDH assumption ε -holds

over
1 2
, ,

T
G G G , if for every PPT algorithm A we

have xdh
ε≤

A
ADV .

For any verifiable computation scheme VC , we

follow Fiore et al. to define the following experiment

[1].

Definition 5. Experiment [, ,]
PubVerExp f λ
A

VC .

 (, ,) (1 ,)f f fSK EK PK KeyGen fλ
←

For 1i = to q

1 ,1 1 , 1 , 1
ˆ ˆ (, , , , , ,)i f x i x i x ix EK x VK x PK VK

− − −

← …A

, ,

ˆˆ(, ,) (, , , , ,)i x i x i f f ix PK VK ProbGen f PK E M SK x
λ

←

*

1 ,1 ,1 , ,
ˆ ˆ(, , , , , , ,)f x x q x q x qx EK x PK VK x PK VK← …A

* *

* *

ˆ ˆ

ˆˆ ˆ(, ,) (, , , , ,)f fx x
x PK VK ProbGen f PK E E SK x

λ
←

* *

*

1 ,1 ,1 , ,

ˆ ˆ

ˆ ˆ ˆ(, , , , , , , , ,

,)

f x x q x q x q

x x

REs EK x PK VK x PK VK x

PK SK

′← …A

* *

ˆ ˆ

ˆ (, ,)
x x

y Verify PK VK Res′ ′=

ˆˆ(, ())y Decryption y H E′ ′ ′←

IF ŷ′ ≠⊥ and *()y f x′ ≠ output 1, otherwise output

0.

The variables ,x y are both matrixes in our scheme,

and x is in the domain of function f (where

f M x= ⋅

�

 is a function that will be outsourced to the

server).

For any λ∈N , we define the advantage of an

adversary A making at most ()q poly λ= queries in

the above experiment against VC as:

 [, , ,] Pr[[, ,] 1].
PubVer PubVerAdv f q Exp fλ λ= =
A A

VC VC

We say that a publicly verifiable computation

scheme VC is secure for F if it holds that

[, , ,]
PubVerAdv f q λ
A

VC is negligible for any f ∈F and

any PPT adversaryA .

3 Our Proposed Scheme: MD-
Matrix

VC

We focus on an important security issue in this

paper, which is the result public verification of the

outsourced matrix multiplication. As far as the security

issue of privacy preservation is concerned, an

alternative would be the method adopted in [5-6],

where the matrix M can be hidden by multiplying a

sparse matrix P to get PM , which is sent to the server

for later computing. In this section, we first give the

definition of Matrix Digest. We then propose a scheme

Matrix
MD −VC by using the matrix digest for public

verification of outsourced matrix multiplication.

Finally, a fast algorithm for computing batch of

exponentiations is presented.

3.1 Matrix Digest

Definition 6. Matrix Digest (MD) is obtained by

multiplying a matrix with a chosen vector.

Given a vector
1

(, ,) n

n
p p p= … ∈

�
� and a matrix A ,

1256 Journal of Internet Technology Volume 19 (2018) No.4

the MD of A is computed as d
pm A⋅ ∈=

� �
� . The

matrix A can be rewritten as
1

(, ,)
d

A a a= …

� �

, where

(1, ,)n

i
a i d∈ = …

�
� is a column vector.

Thus,
i i

m p a= ⋅

� � �

, where ⋅ means inner product of

vectors. MD has the following properties:

‧ deterministic. Given a vector p
�

, the matrix digest

of a matrix is determined, that is, we can obtain

different matrix digest for a matrix with different p
�

.

‧ computable. The matrix digest is essentially a

vector and has the properties of vector, which can be

applied to the operations of vector.

‧ irreversible. The computation of matrix digest is a

one-way mapping. Given only a matrix digest, the

matrix and the parameters cannot be detected. Even

if the matrix digest and the parameters are given

simultaneously, the matrix cannot be detected, too.

3.2 Scheme Details

We use the matrix digest instead of the original

matrix for the verification-related computation. The

original two-dimensional matrix is transformed into a

one-dimensional vector by the matrix digest, and the

computation of exponentiation is then decreased

dramatically from O(n2) to O(n).

The user outsources the computing of y M x= ⋅

� �

 to

the CSP for better performance ratio, where n d
pM
×

∈�

is a matrix and d
px∈

�
� is a vector, p is a large prime,

and 1, 1n d≥ ≥ are integers. The third-party verifier

can check with the publicly released information

whether or not the returned result y
�

 is correct.

We now give the details of MD-
Matrix

VC as follows.

KeyGen (1 ,)M
λ .

We assume that the input n d
pM
×

∈� be a matrix.

With the give security parameterλ , the user generates

a description of bilinear groups
1 2 1 2

(, , , , ,p g g G G

,) (1)T e
λ

←GG , a random vector n

p
p∈
�

� , a random

integer
p

α ∈� , and a key
0 1

(, , ,)
d

K k k k= … , where

 (0, ,)i pk i d∈ = …� .

The user computes , ,
p

m PK w
� �

 as follows:

(1) m p M= ⋅

� �

, where · denotes here the

multiplication of a vector and a matrix.

(2)
1

(, ,)
p n

PK PK PK= … , where
1 2

(,)i
p

iPK e g g
α

= .

(3)
1

(, ,)
d

w w w= …

�

, where
1

()i
m

i K
w g F i

α

= ⋅ , and the

symbol ⋅ denotes the multiplication of group elements.

Here, ()
K

F i is defined as an algebraic

pseudorandom function, which is computed as follows:

 0

1
() ,i

k k

K
F i g= 1, ,i d= … .

Output (, ,),
M M M

SK EK PK where ,
M

SK K=

(,)
M

EK M w=

�

, and M pPK PK= .

ProbGen (,)
M

SK x
�

.

Let a vector
1

(,...,) d
d px x x= ∈

�
� be the input. The

user computes the value
1

() ,i
d

x

x K

i

F iρ

=

=∏ and defines

the verification key
2

(,)
x x

VK e gρ= . Output (,).
x

x VK
�

Compute (,)
M

EK x
�

.

The CSP computes the result y
�

 and the verification

object v as evidence, where y M x= ⋅

� �

 and
1

.

i

d

x

i

i

v w

=

=∏

Output (,)y v
�

.

Verify (, , ,)
M x

PK VK y v
�

.

The verifier checks with the public key and the

verification key if

2

1

(,) () .i

n
y

i x

i

e v g PK VK
=

= ⋅∏

If the above equation holds then the algorithm

outputs y
�

, otherwise outputs⊥ .

Theorem 1. The algorithm Verify in our proposed

scheme MD-
Matrix

VC is correct.

Proof. By KeyGen and Compute, we have m p M= ⋅

� �

and y M x= ⋅

� �

, respectively.

Then, m x p y⋅ = ⋅

� � � �

 can be obtained. Thus,

1 1

.

d n

i i i i

i i

m x p y

= =

=∑ ∑

Then, in Verify, when the third party verifier checks

whether the equation
2

1

(,) () i

d
y

i x

i

e v g PK VK
=

= ⋅∏ holds,

we have

 1

2 2

1

1 2 2

1 1

1 2

1 2

1

1

(,) (,)

(,) (() ,)

(,)

(),

)

()

i

i i i

d

i i

i

i i

i

d
x
i

i

d d
am x x

K

i i

am x

x

n
ap y

x

i

n
y

i x

i

e v g e w g

e g g e F i g

e g g VK

e g g VK

PK VK

=

=

= =

=

=

=

= ⋅

= ⋅

= ⋅

= ⋅

∑

∏

∏ ∏

∏

∏

Thus, we conclude that the algorithm Verify works

correctly.

Efficient and Publicly Verifiable Outsourcing of Large-scale Matrix Multiplication 1257

3.3 Fast Algorithm

We observe that the running efficiency of the

algorithm KeyGen can be improved further owning to

the usage of so much exponentiation. The values

1 1
,

i i
p m

g g
α α

 are computed in KeyGen for later use,

among which abundant duplicate computations are

involved. As
1
g is a large number, the computations of

1 1
,

i i
p m

g g
α α

 are computationally expensive. We propose

to compute the modular exponentiation incrementally.

Thus, the duplicate computations are decreased and the

running efficiency is improved further.

We give an algorithm BatchExp for efficient

computation of batch of exponentiations. In the

algorithm, the subroutine Exp is just a function to

compute the exponentiation in common use, which

returns

xg mod N for invoking (, ,)Exp g x N . We first

sort the array d
�

 in ascending order. Then the result is

obtained incrementally. Though the operation of

sorting data is increased, the operation on computing

exponentiation is decreased. The overall efficiency of

computing batch of exponentiations is promoted.

Algorithm 1. BatchExp(, ,d g N
�

)

 \ ()sort d
�

 //in ascending order

 \
1

(, ,)
n

r r r= …

�

 //the computing result

1 1

(, ,)r Exp g d N=

 \ FOR 2i = to n

1 1
* (, ,)

i i i i
r r Exp g d d N modN

− −

= −

ENDFOR

return r
�

3.4 Security Analysis

Following the work in [1-2], we give the security

analysis of our scheme MD-
Matrix

VC in this section.

Theorem 2. If G is such that co-CDH assumption

cdh
ε -holds, and F is prfε -secure, then any PPT

adversary A making at most ()q poly λ= queries has

advantage [, , ,] .
PubVer

Matrix cdh prfADV MD f q λ ε ε− ≤ +
A

VC

We then define the following games, where ()
i

G A

is the output of Game i run by the adversaryA .

Game 0. this game is the same as PubVer
Exp

A

[, , ,]
Matrix

MD f q λ−VC .

Game 1. this game is similar to Game 0, except that
1

1 2 1 2
((,), , (,))n

apap

MPK e g g e g g= … in the KeyGen

algorithm.

Game 2. this game is similar to Game 1, except

that
1

(, ,)
d

w w w= …

�

, where
1

·

i
am

i i
w g R= .

The proof of this theorem is based on Games

defined above, and is obtained by proving the

following claims.

 Claim 1
0 1

Pr[() 1] Pr[() 1]G G= = =A A

Proof. The difference between Game 0 and Game 1 is

computing the public keys in ProbGen. However, due

to the security of the bilinear map, the probability of

the adversary winning in Game 1, i.e.,
1

Pr[() 1]G =A ,

remains the same.

 Claim 2
1 2

| Pr[() 1] Pr[() 1] | prfG G ε= − = ≤A A

Proof. The difference between Game 1 and Game 2

lies that each pseudo random function
K

F is replaced

with a random value of group
i

R . Obviously, for any

adversaryA , the difference between the possibility of

winning two Games accounts on the possibility of

winning the pseudo random function. Thus, the

possibility of winning Game must be lower than

winning a pseudo random function.

 Claim 3
2

Pr[() 1]
cdh

G ε= ≤A

Proof. Assume by contradiction that there exists a PPT

adversary A such that the probability of A winning

in Game 2 is a non-negligible function ε . Then, we

show that we can build an efficient algorithm B which

uses A to solve the co-CDH problem with

probability
cdh

ε ε≥ .

B takes as input
1 2 1 2

(, , , , , ,)
T

q g g G G G e and two

random elements
1 2
,

a b
g g , and proceeds with the

following steps.

First, B chooses at random:

(1) a vector
1

(, ,) n

n p
p p p= … ∈

�
� ;

(2) another vector
1

()
i d

w w G= ←
�

 for 1, ,i d= … .

B then sets (,).
M

EK M w=

�

 Let
M

PK =

1

1 2 1 2
((,) , , (,)).n

ppa b a b
e g g e g g… Then,

2 2
((),) (,)/

K i
e F i g e w g=

1 2
(,) i

ma b
e g g .

The values
M

PK ,
M

EK and
2

((),)
K

e F i g are

distributed obviously as same as in Game 2.

Next, B runs
2

(, , ((),))
M M K

PK EK e F i gA and answers

its queries as follows. Let x
�

 be the queried value, then

B computes

2 2 1 2

1 1

(() ,) ((,) / (,))i i i

d d

x m xa b

x K i

i i

VK e F i g e w g e g g
= =

= =∏ ∏

and returns it to A . By the bilinear property of (,)e ⋅ ⋅ ,

computing
x

VK is equivalent to that in Game 2.

Finally, let ˆ ˆ ˆ(,)
y

y vσ = be the output of A at the

end of the game, such that for some *

x

�

 chosen byA , it

holds that
*
ˆ ˆ(, ,) ,M yx

Verify PK VK yσ = ŷ ≠⊥ and

*

y M x≠ ⋅
�

. By verification, this means that

1258 Journal of Internet Technology Volume 19 (2018) No.4

* *

ˆ ˆ

2 1 2

1 1

ˆ(,) (,)i i i

n n
y p ya b
i x x

i i

e v g PK VK e g g VK
= =

= ⋅ = ⋅∏ ∏ (1)

Let *

y M x= ⋅
�

 be the correct computation result.

Then, by correctness the following equation also holds:

*2 1 2

1

(,) (,) i i

n
p ya b

x
i

e v g e g g VK
=

= ⋅∏ (2)

So, dividing the equation (1) by (2), we have that

 1

ˆ()

2 1 2

1

ˆ(/ ,) (,)

d

i i i

i

n p y y
ab

i

e v v g e g g =

−

=

=

∑
∏

Because ˆ
i i
y y≠ (1, ,i n= …), the value

1

ˆ()
d

i i i

i

p y y

=

−∑

is generally equal to 0. Thus,

1

1

ˆ(())

1
ˆ(/)

d

i i i

i

p y y
ab

g v v

−

=

−

=

∑
 mod q

Therefore, if A wins in Game 2 with

probability
cdh

ε , then B solves co-CDH with the same

probability. �

4 Performance Analysis

In this section, we discuss the performance of the

scheme
Matrix

VC [1] and our scheme MD-
Matrix

VC by

theoretic analysis and experimental results,

respectively.

4.1 Theoretic Analysis

The symbol O is used traditionally to analyze an

algorithm’s time complexity. The computing in both

� and G is involved in our scheme MD-
Matrix

VC .

Thus, the time complexity analysis of MD-
Matrix

VC

cannot be done directly by O because of the difference

of magnitude between the two fields. We utilize

another two similar symbols ,O O
� G

, where O
�

denotes the time complexity of operations in � , and

O
G

 denotes the time complexity of operations

in
1 2
, ,

T
G G G .

Let the matrix n d
pM
×

∈� . We give the comparisons

of computation overhead theoretically in Table 1 as

follows.

Table 1. Comparison of computation overhead

Algorithm Matrix
VC MD-

Matrix
VC

KeyGen ()O nd
G

 ()O nd
�

+ ()O d
G

ProbGen ()O n d+
G

 ()O d
G

Compute ()O nd
�

+ ()O nd
G

 ()O nd
�

+ ()O d
G

As can be seen from the Table 1, the efficiency of

MD-
Matrix

VC is superior to that of
Matrix

VC in ProbGen

and Compute. Regarding to the verification-related

computation, the time cost of algorithm ProbGen is

decreased from ()O n d+
G

 in
Matrix

VC to ()O d
G

 in

MD-
Matrix

VC , and the time cost of algorithm Compute

is decreased ()O nd
G

 in
Matrix

VC to ()O d
G

 in MD-

Matrix
VC .

It is the same in the algorithm Verify. As far as the

algorithm KeyGen is concerned, it is difficult to

differentiate MD-
Matrix

VC from
Matrix

VC with the

symbols ,O O
� G

, because in the scheme MD-
Matrix

VC ,

the time cost is decreased in O
G

 and increased inO
�

.

The difference can be further made clear only by

experimental results.

4.2 Experiment Results

We now compare the running efficiency of the

schemes with experiments. There are four algorithms

in the publicly verifiable outsourced computation, i.e.,

KeyGen, ProbGen, Compute and Verify. We

implement the first three algorithms of Fiore et al’s

scheme [1] and ours, respectively. As the computation

overhead of algorithm Verify is the same according to

the theoretic analysis in the two schemes, we will not

discuss it here. We implement the algorithms with Java

and the JPBC library [7]. The experiments are

conducted on a laptop with an Intel Core i5 CPU

running at 2.50GHz with 4GB RAMs. Each algorithm

is executed 100 times, and the average time is gotten.

We first show the effect of the usage of the matrix

digest. It is ambiguous to compare the algorithm

KeyGen theoretically owning to the different

magnitude in � andG . The computation overhead is

()O nd to compute matrix digest in the scheme MD-

Matrix
VC , whereas it is done in � with high efficiency.

The computations in G is computationally

expensive, which includes bilinear map, modular

exponentiation, etc. The comparison results between

the scheme
Matrix

VC in [1] and our proposed scheme

MD-
Matrix

VC are shown in Table 2, where for clarity,

d is set to be equal to n .

Three sub-Tables are included in Table 2, which

corresponds to the algorithm KeyGen, ProbGen and

Compute, respectively. In each sub-table,
1
t is the time

of the scheme
Matrix

VC , and
2
t is the time of our

proposed scheme MD-
Matrix

VC . The value of the last

column Speedup of each sub-table is gotten by
2 1
/t t .

Efficient and Publicly Verifiable Outsourcing of Large-scale Matrix Multiplication 1259

Table 2. Effect of two schemes (Time in Milliseconds)

(a) Algorithm KeyGen

n
1
t

2
t Speedup

100 44,805 3,713 12.07

300 401,185 11,068 36.25

500 1,120,142 18,378 60.95

700 2,195,619 25,683 85.49

900 3,624,704 33,055 109.66

(b) Algorithm ProbGen

n
1
t

2
t Speedup

100 2,897 71 40.8

300 8,716 159 54.82

500 14,559 252 57.77

700 20,330 341 59.62

900 26,141 434 60.23

(c) Algorithm Compute

n
1
t

2
t Speedup

100 4,425 45 98.33

300 39,743 133 298.82

500 114,906 229 501.77

700 219,196 316 693.66

900 365,458 406 900.14

As can be seen from the table, the efficiency of MD-

Matrix
VC is superior to that of ,

Matrix
VC which

demonstrates the consistency with the theoretic

analysis. Specifically, it is difficult to differentiate with

theoretic analysis the algorithm KeyGen of two

schemes. But it is easy to conclude with experiment

results that the running efficiency is improved

practically. For example, the algorithm KeyGen of our

proposed scheme is almost 60 times faster than that of

Matrix
VC when n is set to 500.

We then show the effect of the fast algorithm for

batch of exponentiations proposed in Section 3.3,

which is show in Table 3. In Table 3, the column

originalt is the time cost of a trivial method, where the

batch of exponentiations is computed one by one with

loop command. The column fastt is the time cost of our

proposed fast Algorithm. The value of the column of

Speedup is gotten by /original fastt t . As can be seen that,

the time cost of optimized algorithm is almost 25

percent of that of the original one.

Table 3. Effect of BatchExp (Time in Milliseconds)

n originalt fastt Speedup

10,000 4.4 0.87 5.06

20,000 8.86 1.82 4.87

30,000 13.3 2.83 4.70

40,000 17.75 3.86 4.60

50,000 22.24 4.95 4.49

5 Related Works

Abundant efforts have been done on securely

outsourced computation, including linear system of

equations [6, 11, 13], optimization problem [14-15],

matrix operation [1-2, 5, 8-10], privacy preservation

[23-25], data mining [26-27], secure multiparty

computation [28-29], function query [30-31], etc. We

focus on the security issue of correctness verification

of the result, which can be grouped into two categories

according to the executor of the result verification, i.e.,

private verification and public verification.

The private verification is performed by the user

locally, which includes such methods as double server,

redundant data, random check, Monte Carlo method,

and so on. Hohenberger et al. used the double server

method to verify the result of outsourced exponent

operation [19]. Xie et al. proposed to insert fake tuples

into the original dataset [16]. A portion of fake tuples

should be included in the result. The result must be

incorrect if the fake tuples that should be included in

the result do not appear in the result. Hu et al. adopted

the random check method to verify the result of

outsourced matrix multiplication [5]. The user

computes an item locally, if the item is not the same as

that in the result, then the result is incorrect. Lei et al.

applied the Monte Carlo method [9], which amounts to

executing random check multiples times.

The public verification is performed by a third party

verifier with public information provided by the user

and server provider, which includes authentication data

structure and computational hard problem. The verifier

is acted by a neutral third party except the user and

server provider. Devanbu et al. proposed to utilize

Merkle Hash Tree (MHT) to verify the correctness of

the query results on relational data [18]. Li et al.

extended MHT to multi-dimensional data query and

aggregate query [20], and Yang et al. further proposed

MR-tree for k nearest neighbor (kNN) query on spatial

data [21]. Hu et al. presented the voronoi neighbor

techniques to separate the authentication structure with

the query structure [22], by which the size of the

verification object is diminished.

Fiore et al. utilized the discrete logarithm problem to

propose a public verification scheme for outsourced

matrix multiplication [1], where the property of Closed

Form Efficiency is used to improve the running

efficiency. Li et al. followed the framework to further

improve the efficiency [2]. Elkhiyaoui pointed out in

[17] that the secret key is used the algorithms of

KeyGen and Compute on the user side in [1-2], which

is unfavorable to public verification. A new verifiable

computation scheme with completely public key on the

user side is proposed in [16].

1260 Journal of Internet Technology Volume 19 (2018) No.4

6 Conclusions

In this paper, we aim at efficiently and publicly

verifiable computation of outsourced matrix

multiplication. We adopt two strategies, one is the

matrix digest, and the other is fast computation for

batch of exponentiations. The verification-related

computation is decreased by the matrix digest, which

improves the running efficiency dramatically. The

running efficiency of the algorithm KeyGen is also

improved by the fast algorithm for batch of

exponentiations. The performance analysis on theoretic

analysis and experimental results jointly demonstrate

the efficiency of our proposed scheme. In future work,

we plan to present more efficient scheme for publicly

verifiable computation of outsourced matrix

multiplication.

Acknowledgments

This work was supported in part by the Foundation

of National Natural Science of China (No. 61772147,

61772124), Guangdong Province Natural Science

Foundation of major basic research and Cultivation

project (No. 2015A030308016), Project of Ordinary

University Innovation Team Construction of

Guangdong Province (No. 2015KCXTD014), Basic

Research Major Projects of Department of education of

Guangdong Province (No. 2014KZDXM044),

Collaborative Innovation Major Projects of Bureau of

Education of Guangzhou City (No. 1201610005),

Humanities and Social Science Project of Education

(No. 15YJCZH111), and Fundamental Research Funds

for the Central Universities (No. N150402002).

References

[1] D. Fiore, R. Gennaro, Publicly Verifiable Delegation of Large

Polynomials and Matrix Computations, with Applications,

19th ACM Conference on Computer and Communications

Security, Raleigh, NC, 2012, pp. 501-512.

[2] H. Li, S. Zhang, T. H. Luan, H. Ren, Y. Dai, L. Zhou,

Enabling Efficient Publicly Verifiable Outsourcing

Computation for Matrix Multiplication, IEEE International

Telecommunication Networks and Applications Conference,

Sydney, Australia, 2015, pp. 44-50.

[3] K. Jia, H. Li, D. Liu, S. Yu, Enabling Efficient and Secure

Outsourcing of Large Matrix Multiplications, IEEE Global

Communications Conference, San Diego, CA, 2015, pp. 1-6.

[4] R. Gennaro, C. Gentry, B. Parno, Non-interactive Verifiable

Computing: Outsourcing Computation to Untrusted Workers,

in: T. Rabin (Ed.), Advances in Cryptology – CRYPTO 2010,

Lecture Notes in Computer Science, Vol. 6223, Springer,

Berlin, 2010, pp. 465-482,.

[5] X. Hu, D. Pei, C. Tang, D. Wong, Verifiable and Secure

Outsourcing of Matrix Calculation and Its Application,

Scientia Sinica (Informationis), Vol. 43, No. 7, pp. 842-852,

July, 2013.

[6] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, D. Wong, New

Algorithms for Secure Outsourcing of Large-scale Systems of

Linear Equations, IEEE Transactions on Information

Forensics and Security, Vol. 10, No. 1, pp. 69-78, January,

2015.

[7] A. D. Caro, V. Iovino, jpbc: Java Pairing based Cryptography,

16th IEEE Symposium on Computers and Communications,

Kerkyra, Greece, 2011, pp. 850-855.

[8] M. Atallah, K. Frikken, Securely Outsourcing Linear Algebra

Computations, 5th ACM Symposium on Information, Computer

and Communications Security, Beijing, China, 2010, pp. 48-

59.

[9] X. Lei, X. Liao, T. Huang, H. Li, C. Hu, Outsourcing Large

Matrix Inversion Computation to A Public Cloud, IEEE

Transactions on Cloud Computing, Vol. 1, No. 1, pp. 78-87,

January-June, 2013.

[10] X. Lei, X. Liao, T. Huang, F. Heriniaina, Achieving Security,

Robust Cheating Resistance, and High-efficiency for

Outsourcing Large Matrix Multiplication Computation to A

Malicious Cloud, Information Sciences, Vol. 280, pp. 205-

217, October, 2014.

[11] C. Wang, K. Ren, J. Wang, Q. Wang, Harnessing the Cloud

for Securely Outsourcing Large-scale Systems of Linear

Equations, IEEE Transactions on Parallel and Distributed

Systems, Vol. 24, No. 6, pp. 1172-1181, June, 2013.

[12] F. Chen, T. Xiang, Y. Yang, Privacy-preserving and Verifiable

Protocols for Scientific Computation Outsourcing to the

Cloud, Journal of Parallel and Distributed Computing, Vol.

74, No. 3, pp. 2141-2151, March, 2014.

[13] S. Salinas, C. Luo, X. Chen, P. Li, Efficient Secure Outsourcing

of Large-scale Linear Systems of Equations, IEEE

International Conference on Computer Communications, Hong

Kong, China, 2015, pp. 1035-1043.

[14] F. Ma, G. Sheng, Y. Yin, A Superlinearly Convergent

Method for the Generalized Complementarity Problem over a

Polyhedral Cone, Journal of Applied Mathematics, Vol. 2013,

Article ID 671402, pp. 1-6, July, 2013.

[15] C. Wang, K. Ren, J. Wang, Secure and Practical Outsourcing

of Linear Programming in Cloud Computing, IEEE International

Conference on Computer Communications, Shanghai, China,

2011, pp. 820-828.

[16] M. Xie, H. Wang, J. Yin, X. Meng, Integrity Auditing of

Outsourced Data, 33rd International Conference on Very

Large Data Bases, Vienna, Austria, 2007, pp. 782-793.

[17] K. Elkhiyaoui, M. Onen, M. Azraoui, R. Molva, Efficient

Techniques for Publicly Verifiable Delegation of

Computation, 11th ACM on Asia Conference on Computer

and Communications Security, Xi’an, China, 2016, pp. 119-

128.

[18] P. Devanbu, M. Gertz, C. Martel, S. G. Stubblebine, Authentic

Data Publication over the Internet, Journal of Computer

Security, Vol. 11, No. 3, pp. 291-314, July, 2003.

[19] S. Hohenberger, A. Lysyanskaya, How to Securely Outsource

Cryptographic Computations, in: J. Kilian (Ed.), Theory of

Efficient and Publicly Verifiable Outsourcing of Large-scale Matrix Multiplication 1261

Cryptography, TCC 2005, Lecture Notes in Computer Science,

Vol. 3378, Springer, Berlin, pp. 264-282, 2005.

[20] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, Authenticated

Index Structures for Aggregation Queries, ACM Transactions

on Information and System Security, Vol. 13, No. 4, Article

No. 32, December, 2010.

[21] Y. Yang, S. Papadopoulos, D. Papadias, G. Kollios,

Authenticated Indexing for Outsourced Spatial Databases,

The VLDB Journal, Vol. 18, No. 3, pp. 631-648, June, 2009.

[22] L. Hu, W. S. Ku, S. Bakiras, C. Shahabi, Verifying Spatial

Queries Using Voronoi Neighbors, 18th SIGSPATIAL

International Conference on Advances in Geographic

Information Systems, San Jose, CA, 2010, pp. 350-359.

[23] Z. Fu, J. Shu, J. Wang, Y. Liu, S. Lee, Privacy-Preserving

Smart Similarity Search Based on Simhash over Encrypted

Data in Cloud Computing, Journal of Internet Technology,

Vol. 16, No. 3, pp. 453-460, May, 2015.

[24] G. Sheng, T. Wen, Q. Guo, Y. Yin, Privacy Preserving Inner

Product of Vectors in Cloud Computing, International

Journal of Distributed Sensor Networks, Vol. 2014, pp. 1-6,

May, 2014.

[25] Z. Wang, Z. Chu, Efficient Mediated Ciphertext-Policy

Attribute-Based Encryption for Personal Health Records

Systems, Journal of Internet Technology, Vol. 16, No. 5, pp.

877-883, September, 2015.

[26] W. Xue, H. Li, Y. Peng, J. Cui, Y. Shi, Secure k Nearest

Neighbors Query for High-dimensional Vectors in

Outsourced Environments, IEEE Transactions on Big Data,

August, 2017.

[27] Y. Zhao, J. X. Yu, G. Wang, L. Chen, B. Wang, G. Yu,

Maximal Subspace Coregulated Gene Clustering, IEEE

Transactions on Knowledge & Data Engineering, Vol. 20,

No. 1, pp. 83-98, January, 2008.

[28] Y. Sun, Q. Wen, Y. Zhang, H. Zhang, Z. Jin, W. Li, Two-

cloud-servers-assisted Secure Outsourcing Multiparty

Computation, The Scientific World Journal, Vol. 2014, pp. 1-

7, May, 2014.

[29] C. Tang, S. Gao, C. Zhang, The Optimal Linear Secret

Sharing Scheme for Any Given Access Structure, Journal of

Systems Science & Complexity, Vol. 26, No. 4, pp. 634-649,

August, 2013.

[30] G. Sheng, C. Tang, H. Han, W. Gao, X. Hu, Authentication of

Outsourced Linear Function Query with Efficient Update,

Cluster Computing, July, 2017.

[31] C. Xiang, C. Tang, New Verifiable Outsourced Computation

Scheme for An Arbitrary Function, International Journal of

Grid and Utility Computing, Vol. 7, No. 3, pp. 190-199, 2016.

Biographies

Gang Sheng is a post-doctoral in

College of Mathematics and

Information Science, Guangzhou

University, China. He received his

Ph.D. degree in computer application

technology from Northeastern

University, China in 2015. His

research interests include cryptography and cloud

computing. He is a member of Chinese Association for

Cryptologic Research.

Chunming Tang is a professor in

College of Mathematics and

Information Science, Guangzhou

University, China. He received the

Ph.D. degree in applied mathematics

from Chinese Academy of Sciences,

China in 2004. His research interests

include cryptography and secure

multiparty computing. He is a member of Chinese

Association for Cryptologic Research.

Wei Gao is an associate professor in

School of Mathematics and Statistics

Science, Ludong University, China.

He received his Ph.D. degree in

applied mathematics from Hunan

University, China in 2006. His

research interests include

cryptography and number theory. He is a member of

Chinese Association for Cryptologic Research.

Ying Yin is an associate professor in

School of Computer Science and

Engineering, Northeastern University,

China. She received her Ph.D. degree

in computer science from

Northeastern University, China in

2008. Her major research interests

include data mining and machine learning. She is a

member of IEEE ACM and a member of CCF.

Yunlu Cai is an associate professor in

College of Mathematics and

Information Science, Guangzhou

University, China. His research

interests include cryptography, secure

multiparty computing and outsourced

computing.

1262 Journal of Internet Technology Volume 19 (2018) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

