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Abstract 

This paper proposes a zone-based indoor positioning 

scheme using a wireless sensor networks (WSNs) in 

conjunction with a fuzzy-based algorithm. We propose 

using the received signal strength indicator (RSSI) to 

determine the distance between the target node and 

reference nodes in indoor environments. This propagation 

characteristic has previously been used to construct a 

signal propagation channel model. We divide the RSSI 

into several power levels based on the rate of signal 

attenuation over distance, and the indoor environment is 

splitting up into zones. A fuzzy inference system (FIS) 

algorithm is used to improve the accuracy of localization. 

The RSSI values from several reference nodes are used as 

inputs in the FIS to estimate the location of the target 

node within the zone. Simulation results show that the 

fuzzy rectangular splitting method is the most suitable 

approach to splitting up the zone. 

Keywords:  Wireless sensor networks, Fuzzy inference 

system, Received signal strength indicator, 

Zone-based location method 

1 Introduction 

Developments in the Internet of things (IoT) [1] will 

soon make it possible to build smart cities in which 

traffic congestion, parking, street lighting, and urban 

noise are monitored and managed in real time. 

Wireless sensor networks (WSNs) are expected to be a 

key technology in the IoT. The benefits of connecting 

both WSN and other IoT elements extends beyond 

remote access. Heterogeneous information systems can 

be used for environmental monitoring, military 

surveillance, and object tracking [2-3]. However, the 

above applications require accurate positioning 

information. 

Indoor or outdoor location-based services (LBSs) 

are expanding rapidly [4]. The global positioning 

system (GPS) is widely used outdoors [5]; however, it 

does not perform well indoors, due to the blocking of 

radio waves from satellites. Furthermore, indoor 

environments are prone to interference from moving 

bodies, multi-path effects and shadowing, which has 

necessitated the development of positioning systems 

especially for indoor environments [6-7].  

Most existing indoor localization methods can be 

categorized as coordinate-based or zone-based. 

Coordinate-based localization methods include the 

angle of arrival (AOA) [8], time of arrival (TOA) [9], 

time difference of arrival (TDOA) [10], and 

trilateration [11]. These techniques rely on the 

relationship between the signal and distance. Distance 

information can then be used to obtain location 

coordinates. Existing zone-based methods make use of 

received signal strength indicator (RSSI) information 

collected from reference nodes to create a database for 

estimating the location of target nodes [12]. However, 

we adopted zone-based localization in this study 

because it is simpler and less expensive. In [13], we 

presented a two-stage indoor positioning scheme using 

a fuzzy-based algorithm for coordinate-based 

localization method. However, we focus on the further 

application of fuzzy algorithm to zone-based 

positioning system, in this article. 

The main contribution of this paper is a novel fuzzy-

based algorithm to enable indoor zone positioning in 

wireless sensor networks. We implemented the RSSI 

method in conjunction with a novel fuzzy algorithm to 

overcome the inaccuracies found in conventional RSSI 

positioning methods, associated with signal multi-path 

transmission and obstructions in indoor environments. 

The proposed positioning system is able to determine 

locations without the need for training. Furthermore, 

unlike existing systems based on fingerprinting 

algorithms, the proposed system does not require 

numerous measurement points to construct a radio map 

[14-15]. 

The remainder of this paper is organized as follows. 

Section 2 describes related works. Section 3 details the 

fuzzy inference system used for zone-based 

localization. Section 4 provides simulation results and 

discusses the performance of indoor zone positioning 

system using various zone-splitting methods. 
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Conclusions are drawn in Section 5. 

2 Related Works 

2.1 Signal Propagation Model 

The most common approach to indoor localization 

uses a signal propagation model to estimate distances 

based on RSSI data. In [15], the authors used the log-

distance path loss model, in which the propagation 

model is represented as follows: 
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where (dB)PL  is the received power and
0

d  is within 

the close-in distance. “Close-in distance” is a reference 

point for radio field strength measurements. It is 

generally close to the transmitter. 
0

( )PL d is the 

received power when d  is within the close-in distance, 

γ  is the path loss exponent, and d  is the distance 

between the reference and target nodes. 

Furthermore, in an ideal space, the path loss 

exponent γ  is 2. Table 1 shows the values of the path 

loss exponent in various real environments. 

Table 1. Value of path loss exponent in various 

environments 

The path loss exponent  

Environment Value 

Open space 2 

In the building 1.6 to 1.8 

In the factory 2 to 3 

 

It is necessary to take into account the effects of 

shadowing in order to improve simulations in actual 

indoor environments. Thus, we combined the log-

distance path loss model with the log-normal 

distribution used in [16]. This resulted in the following 

propagation model: 
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where X
σ

 is a zero-mean Gaussian distributed random 

variable (in dB) with standard deviation σ  (also in dB). 

2.2 Basic Positioning Schemes for Indoor 

Environments 

Most indoor positioning systems use triangulation 

based on distance measurements, and distance 

conversion results have a direct effect on trilateral 

positioning. RSSI measuresthe distance directly, 

whereas TOA and TDOA measure distances by 

computing the attenuation of the emitted signal 

strength or by multiplying the velocity of the radio 

signal by the travel time. The RSSI method is the most 

commonly used due to cost considerations. Thus, we 

adopted the RSSI method to enhance localization 

performance. 

2.3 Fuzzy Inference System 

Fuzzy logic (FL) is widely used in inference systems 

to imitate human behavior and make decisions. These 

systems are referred to as Fuzzy Inference Systems 

(FISs) [17]. There are two common types of FIS: (1) 

Mamdani-type for capturing expert knowledge and (2) 

Sugeno-type for control problems in dynamic 

nonlinear systems. The Mamdani scheme uses output 

membership functions, whereas the Sugeno scheme 

does not [18]. 

FIS has been used to improve the accuracy in WSN 

localization. In [19], the authors proposed a fuzzy 

logic-based approach to mobile node localization in 

sparse networks with few available anchors. They 

achieved a 24-40% improvement in localization 

accuracy. In [20], a fuzzy system for collaborative 

feedback communication in wireless sensor networks 

reduced error in the localization estimates to less than 

5%. In [21], the authors proposed a novel algorithm for 

localization in WSNs using fuzzy distance 

measurements based on RSSI, which resulted in error 

of approximately 7%. In [17], the authors presented a 

localization method based on an FIS estimator in a 

wearable wristband, which achieved accuracy of 

approximately 95%. 

2.4 Zone-based Positioning 

Zone-based positioning is generally used for 

passageways or indoor environments, such as office 

spaces and hospitals. The fingerprinting process can be 

divided into two phases: training and online 

positioning [22]. A novel Wi-Fi RSSI fingerprinting 

scheme for zone localization was presented in [17]. In 

the positioning phase, RSSI data is trained using the 

FIS in order to estimate the location of the user within 

a zone. In [23], the authors presented an indoor 

localization scheme based on a wireless local area 

network with multiple zones. The RSSI in each zone, 

the range of each AP, and the distance to each zone are 

set in the offline phase. In the online phase, the zone is 

identified using RSSI in real time. The zone-based 

localization methods in [17, 23] regard zones as their 

final localization result. 

Many researchers have adopted a third localization 

process based on machine learning [24-25]. K-nearest 

neighbor (KNN) classification and neural networks 

(NNs) are widely used in fingerprinting algorithms [14, 

15, 25-26]. These schemes provide adequate estimation 

accuracy; however, they require a considerable 

quantity of training data. Computation cost is high and 

distance-based learning lacks specificity. 

Mamdani-type FIS is a simple, intuitive approach to 

dealing with simple problems. Figure 1 presents the 
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Mamdani-type fuzzy inference system adopted in this 

study. The proposed system comprises an input, a 

fuzzifier, a fuzzy rule-based inference engine, a 

defuzzifier, and an output. We used the RSSI method 

in conjunction with a fuzzy algorithm to enhance 

localization performance. We compare the pros and 

cons of these localization methods in Table 2. 

2 inputs with 

2 member functions

Fuzzifier

If-then

Rules

Inference Engine

X

Y

Defuzzifier

Z

Inputs Output

 

Figure 1. Mamdani-type fuzzy inference system 

Table 2. Pros and cons of various localization schemes 

Localization 

method 
Strengths Weaknesses 

KNN 

Simple classifier Requires more training 

data and measurement 

points; slow convergence; 

not robust to noisy data 

NN 

Applicable to a 

variety of 

classification and 

forecast problems 

Requires more training 

data and measurement 

points; high 

computational burden; 

prone to overfitting 

Fuzzy 

Requires only a 

small set of data 

and measurement 

points for training; 

interpretable; and 

simple 

Requires development of 

fuzzy rules and 

membership functions 

3 Application of Fuzzy Algorithm to Zone-

based Positioning System 

In indoor environments, the position of reference 

nodes affects the accuracy of positioning. Locating 

reference nodes in four corners (as a square) can 

improve positioning accuracy [27]. In this paper, we 

included an additional reference node in the center of 

the square to overcome uncertainty. The proposed 

positioning topology based on five reference nodes is 

shown in Figure 2. 

 

Figure 2. Topology of reference nodes  

We employed a zone-based positioning system in 

this study. The RSSI value from the reference node is 

simulated using signal propagation model. The model 

of signal attenuation can be divided over distance into 

several power levels. In this manner, the indoor area is 

divided into multiple zones under the assumption that 

the RSSI power levels are identical at each reference 

node. We use the FIS to construct a fuzzy rule base in 

order to identify the zone of the target node. The 

processing flow of the system is presented in Figure 3. 

Randomly scatter the 

target node in the area 

RSSI data simulated by 

using the signal 

propagation model

Construct a fuzzy rule 

base and get the FIS

Divide the area into 

several zones

Estimate the position 

zone by using FIS

Get the position zone

 

Figure 3. Processing flow of proposed system 

The FIS structure of the zone-based positioning 

system is presented in Figure 4. The FIS is a Mamdani-

type fuzzy inference system with five inputs and one 

output. The inputs (RSSI_a, RSSI_b, RSSI_c, RSSI_d, 

RSSI_e) are the values simulated utilizing the signal 

propagation model and the output (zone localization) is 

estimated using FIS. The fuzzifier section converts 

RSSI values into fuzzy values using a 6-triangular 

membership function for use in the if-then rule section. 
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Construct a fuzzy 

Rule base according 

the RSSI power level
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Location zone
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…

Fuzzy rules
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(A is L2 , B is L6 , C is L6 , D is L6 , E is L3)

…

Test Node
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Location 
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Inputs Output
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RSSI_e
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RSSI_d

RSSI_b

Ref_Node A Ref_Node B

Ref_Node C
Ref_Node D

Ref_Node E

Ref_Node C

Ref_Node A Ref_Node B

Ref_Node D

Ref_Node E

 

Figure 4. FIS structure of proposed zone-based 

positioning system 

The number of membership functions is determined 

by the input RSSI power levels, which are defined as 

six fuzzy sets (L1, L2, L3, L4, L5 and L6), as shown in 

Table 3. We did not observe obvious changes in the 

RSSI power levels for S6 and S7; therefore, we placed 

these two power levels within the same fuzzy set (L6). 

Table 3. fuzzy membership function for RSSI power 

level [13] 

Fuzzy Set RSSI Power Level RSSI Range (dBm) 

L1 S1 0 to -11 

L2 S2 -9 to -16 

L3 S3 -13 to -19 

L4 S4 -17 to -21 

L5 S5 -20 to -23 

L6 S6, S7 -24 to -26 

 

The triangular membership function is presented in 

Figure 5. The RSSI power level from the corner 

reference node (A) and the center reference node (E) 

are shown in Figure 6 and Figure 7 respectively. 

0

-25 -20 -15 -10 -5 0

0.5

1

L1L2L3L4L5L6

Input variable “RSSI A~RSSI D”  

0

-20 -15 -10 -5 0

0.5

1

L1L2L3L4

Input variable “RSSI_E”  

Figure 5. RSSI triangular membership function [13]  

 

Figure 6. RSSI power level from reference node A [13] 

 

Figure 7. RSSI power level from reference node E  [13] 

In this paper, we probe various methods by which to 

splitting up the zones in accordance with the topology 

of the reference node in the 3M x 3M simulation area, 

as follows: 
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3.1 Triangular Splitting Method 

Figure 8 presents the triangular splitting method, 

wherein the simulation area is divided into four equal 

triangular zones. Despite the wide usage of triangular 

splitting, there remains considerable room for 

improvement. In reference to the two splitting methods, 

the area of the triangular splitting zone is large and the 

positioning resolution is not very high. However, if we 

the area were split into more a larger number of zones, 

the judgment of zone can be judged erroneously zone 

identification could be compromised due to the 

instability of the RSSI at the boundary of the splitting 

zone. 

Reference Node A Reference Node B

Reference Node C Reference Node D

Reference Node E

3M

3M

1

2

3

4

 

Figure 8. Triangular splitting method [13] 

3.2 Fuzzy Triangular Splitting Method 

Figure 9 depicts another method that includes an 

additional zone near the border between the triangles. 

This zone is meant to improve analysis in the zone and 

increase the likelihood of obtaining accurate 

positioning data. 

Reference Node A Reference Node B

Reference Node C Reference Node D

Reference Node E

2M

1

2M

0.5M

0.5M

0.5M 0.5M

2

3

4

5

6
7

8

 

Figure 9. Fuzzy triangular splitting method [13] 

3.3 Fuzzy Rectangular Splitting Method 

This method involves re-splitting the simulation area 

into nine square zones, as shown in Figure 10. This 

helps to improve positioning in cases where the target 

node is in the central area. 

Reference Node A Reference Node B

Reference Node C Reference Node D

Reference Node E

3M

3M

1 2 3

4 5 6

7 8 9

 

Figure 10. Fuzzy rectangular splitting method [13] 

4 Simulation Results 

In this section, we present our simulation results 

using the proposed zone-based indoor positioning 

system. We used standard as well as several custom 

MATLAB® functions in the simulations. We 

established a channel model and then simulated the 

received RSSI value using a mathematical model. 

Gaussian random variable X
σ

was added to the channel 

model to simulate the effects of shadowing, path loss, 

multipath, noise and interference, which are typical of 

actual indoor environments. These effects destabilized 

the received RSSI values. The standard deviation 

parameters were set to 3dBm, 5dBm, 7dBm, and 9dBm 

to estimate positioning efficiency in indoor 

environments. In (2), the value of X
σ

parameter was 

adjusted to simulate various indoor environments, as 

shown in Figure 11 to Figure 14. The X-axis indicates 

the distance between reference node and target node; 

the Y-axis indicates the RSSI. 

The simulation results in Figure 11 to Figure 14 

indicate that when the standard deviation ( )σ  is larger, 

the influence of RSSI value in the channel model is 

large. However, from the perspective of the receiver 

observing this phenomenon, it is not possible to tell 

whether changes in the RSSI value are due to 

shadowing, path loss, multipath effects, noise, 

interference, or other factors. We therefore added a 

Gaussian random variable to the path loss model to 

simulate the impact of environmental factors in actual 

indoor environments. We defined various indoor 

environments by adjusting the standard deviation of the 

parameters. A smaller standard deviation (representative 

of an indoor environment without obstacles) produces 

a stable model, whereas a larger standard deviation 

(representative of a complex indoor environment) 

produces an unstable model. 
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Figure 11. Signal propagation model with σ =3 
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Figure 12. Signal propagation model with σ =5 
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Figure 13. Signal propagation model with σ =7 
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Figure 14. Signal propagation model with σ =9 

In this paper, we implemented FIS-based zone 

positioning using the fuzzy triangular splitting method 

as well as the fuzzy rectangular splitting method in 

order to enhance the accuracy positioning estimates. 

The percentage of the positioning estimates that are 

correct is obtained as follows: 

 100%
correct

Total

P
E

P
= ×  (3) 

where 
Total
P is the total number of sampling points 

deployed in the indoor environment; 
correct
P represents 

the number of sampling points in correct positioning 

estimates; 
Total
P  is set to 100 to calculate the average 

number of correct positioning estimates in the 

simulations. A performance comparison using various 

standard deviations is presented in Table 4 and Figure 

15. 

Table 4. Correct Positioning Estimates obtained using 

three methods with variations in standard deviations 

Accuracy of positioning estimates 
Standard 

deviation
Triangular 

splitting 

method 

Fuzzy triangular 

splitting method 

Fuzzy 

rectangular 

splitting method 

3 82% 77% 91% 

5 77% 73% 88% 

7 76% 72% 81% 

9 69% 66% 80% 

 

Figure 15. Average number of correct positioning 

estimates (percent) 

As shown in Table 4 and Figure 15, an increase in 

the standard deviation resulted in a gradual decrease in 

the number of correct positioning estimates. When 

using the proposed fuzzy rectangular splitting method 

with σ = 3, 91% of the positioning estimates were 

correct. Even when σ was increased, more than 80% 

of the positioning estimates were correct. A further 

increase in σ reduced the number of correct 

positioning estimates to 66%. Overall, the fuzzy 

triangular splitting method was outperformed by the 

conventional triangular splitting method. The fuzzy 

rectangular splitting method outperformed the other 
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two methods from the perspective of accuracy. As for 

positioning resolution, the area was divided into nine 

square zones of 1M× 1M, which means that as long as 

the zone is identified correctly, the error would be less 

than 1 m. 

In the above simulations, the three splitting methods 

do not produce the same number or size of splitting 

areas; therefore, it would be unfair to calculate the 

percentage of correct positioning estimates from the 

results in Table 4. Nonetheless, we can see that the 

rectangular splitting method combined with fuzzy 

inference produces a larger number of splitting zones 

as well as a higher percentage of correct positioning 

estimates. 

In the previous simulation, the sampling of the 

anchor point was randomly set to 100; however, this 

was not high enough to determine whether the 

positioning results were stable. In subsequent 

simulations, we gradually increased the number of 

sampling points from 100 to 400. Under these 

conditions, the percentage of correct positioning 

estimates achieves convergence. 

Figure 16 presents the percentage of correct 

positioning estimates obtained using the fuzzy 

triangular splitting method vs. the number of sampling 

points. The percentage of correct positioning estimates 

gradually converged with an increase in the number of 

sampling points, regardless of the standard deviation. 

In simulations with 225 sampling points, the 

percentage of correct positioning estimates in the two 

zones converged as follows: σ = 3 [72%, 74%], σ = 5 

[69%, 71%], σ = 7 [62%, 64%], σ = 9 [60%, 62%]. 

 

Figure 16. Percentage of correct positioning estimates 

obtained using fuzzy triangular splitting method 

As shown in Figure 17, the rectangular splitting 

method combined with fuzzy inference led to a 

convergence in the percentage of correct positioning 

estimates as the number of samples was increased. In 

simulations with 225 sampling points, the percentage 

of correct positioning estimates converged as follows: 

σ = 3 [83%, 85%], σ = 5 [80%, 82%],σ = 7 [77%, 

78%], and σ = 9 [73%, 75%]. 

 

Figure 17. Percentage of correct positioning estimates 

obtained using fuzzy rectangular zone splitting method 

When using the fuzzy inference method, increasing 

the number of sampling points to 225 led to 

convergence in the percentage of correct positioning 

estimates. This also means that using more than 225 

sampling points makes the judgements more reliable. 

Figure 18 and Table 5 compare the two fuzzy zone 

splitting methods under four ranges of standard 

deviation. 

 

Figure 18. Comparison of two fuzzy zone splitting 

methods with regard to positioning performance using 

four ranges of standard deviation  

Table 5. Comparison of two fuzzy zone splitting 

methods with regard to positioning performance using 

four ranges of standard deviation 

σ  
Fuzzy triangular 

splitting method 

Fuzzy rectangular 

splitting method 

Improvement 

Ri 

3 73% 83% 13.7% 

5 70% 82% 17.1% 

7 64% 77% 20.3% 

9 62% 74% 19.35% 

 

Equation (4) below was used to calculate the 

improvement provided by the fuzzy triangular splitting 

method over the fuzzy rectangular splitting method: 
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 100%
FuzzySqr FuzzyTri

i

FuzzyTri

E E
R

E

−

= ×  (4) 

where FuzzySqrE  represents the average percentage of 

correct positioning estimates obtained using the fuzzy 

rectangular splitting method, and FuzzyTri
E  represents 

the average percentage of correct positioning estimates 

obtained using the fuzzy triangular splitting method. 

As shown in Table 5 and Figure 18, the fuzzy 

rectangular splitting method outperformed the fuzzy 

triangular splitting method by 13.7% - 20.3%. The 

fuzzy rectangular splitting method also outperformed 

the fuzzy triangular splitting method from the 

perspective of accuracy. With regard to the stability of 

positioning, an increase in σ  enabled the fuzzy 

rectangular splitting method to achieve accurate 

estimations in 74% to 83% of the cases. 

We also sought to determine whether the proposed 

rectangular zone splitting method could increase the 

percentage of correct positioning estimates in cases 

where an unknown target was close to the central 

reference node. This was achieved by randomly 

deploying 200 sampling points within a radius of 0.5 

meter from the central reference node. As shown in 

Figure 19, we compared the positioning performance 

of the two fuzzy zone splitting methods using various 

σ  values. The results are presented in Figure 20 and 

Table 6. 

0

0.5
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2
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2.5

0.5 1 1.5 2 2.5
3

Ref_Node_A Ref_Node_B

Ref_Node_C Ref_Node_D

Ref_Node_E

 

Figure 19. Area of central reference node (radius of 

0.5 m)  

 

Figure 20. Positioning performance of two fuzzy zone 

splitting methods in region of central reference node 

Table 6. Positioning performance of two fuzzy zone 

splitting methods in region of central reference node 

σ  Method 

Correct 

positioning 

estimates 

Performance 

improvement 

Rectangular splitting method 85.4% 
3 

Triangular splitting method 34% 
51.4% 

Rectangular splitting method 84.8% 
5 

Triangular splitting method 41.1% 
43.7% 

Rectangular splitting method 80.4% 
7 

Triangular splitting method 36.4% 
44% 

Rectangular splitting method 78.6% 
9 

Triangular splitting method 33.6% 
45% 

 

The difference in positioning performance between 

the two fuzzy splitting methods was calculated as 

follows: 

 promote FuzzySqr FuzzyTriE E E= −  (5) 

As shown in Table 6 and Figure 20, the fuzzy 

rectangular splitting method outperformed the 

triangular splitting method by more than 40%. 

In the previous simulation, we explored two zone 

splitting methods based on fuzzy inference. In an 

indoor environment, the fuzzy rectangular splitting 

method has more consistent regions, higher resolution, 

and better positioning performance. The above results 

were averaged from all of the regions; therefore, we 

also investigated the performance of these methods in 

specific regions. This was achieved by deploying 50 

positioning sampling points in each zone (to ensure a 

sufficient number of samples), and then applying the 

rectangular splitting method with fuzzy inference. We 

then identified the zones in which positioning 

performance was not up to par. Table 7 and Figure 21 

present the average positioning performance in each 

zone. 

Table 7. Positioning performance of fuzzy rectangular 

zone splitting in nine specific zones 

Average percentage of correct positioning 

estimates in each zone 
Zone 

Number 
σ =3 σ =5 σ =7 σ =9 

1 86.2% 82.8% 81% 76.6% 

2 84.4% 81.2% 78.2% 77.6% 

3 87.4% 83.2% 80.8% 77% 

4 81.8% 79.4% 74.4% 65.6% 

5 88.6% 85.8% 80.2% 78% 

6 81.6% 80% 75.6% 65.8% 

7 86.2% 83.8% 81.4% 77.8% 

8 81% 83.4% 76.4% 74% 

9 86.4% 83% 80.2% 75.8% 
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Figure 21. Positioning performance of fuzzy 

rectangular splitting method in nine specific zones 

Table 7 shows that when σ = 3 and σ = 5, the 

average positioning performance in 9 zones is roughly 

80%. However, in cases of large deviation in the RSSI 

values (σ = 7 and σ = 9), positioning performance was 

good in only five of the zones (1, 3, 5, 7, 9) in the 

vicinity of the reference nodes. In zones at a distance 

from the reference nodes, performance was not as good. 

From a theoretical perspective, there should be little 

difference in performance in these four areas; however, 

our simulation results presented a notable difference in 

performance between zones 4/ 6 and zones 2 /8. This 

may be due to inconsistencies in the fuzzy rule base. 

The division of the region and deployment of reference 

nodes clearly affects location performance. 

5 Conclusion 

This paper presents an efficient fuzzy-based indoor 

zone positioning system for wireless sensor networks. 

The RSSI between the reference node and target node 

is used to estimate the position of the zone without the 

need for additional hardware. The proposed method is 

fast and does not require training or a large number of 

measurement points for the formulation of a database. 

The shape of the regions, the location of the reference 

points, and the fuzzy rule base all affect location 

performance. Based on these constraints, we propose 

using fuzzy rectangular splitting as well as fuzzy 

triangular splitting to enhance the accuracy of zone 

positioning within an indoor environment. Simulation 

results demonstrate that the fuzzy rectangular splitting 

method outperforms fuzzy triangular splitting by more 

than 40% under four standard deviations. The proposed 

fuzzy rectangular splitting method is the most suitable 

for splitting up zones for indoor localization. 
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