
Authorized Client-side Deduplication Using Access Policy-based Convergent Encryption 1229

Authorized Client-side Deduplication Using Access Policy-based

Convergent Encryption

Taek-Young Youn1, Ku-Young Chang1, Kyung Hyune Rhee2, Sang Uk Shin2*

1 Electronics and Telecommunications Research Institute (ETRI), Korea
2 Dept. of IT Convergence and Application Engineering, Pukyong National University, Korea

{taekyoung, jang1090}@etri.re.kr, {khrhee, shinsu}@pknu.ac.kr

*Corresponding Author: Sang Uk Shin; E-mail: shinsu@pknu.ac.kr

DOI: 10.3966/160792642018081904025

Abstract

This paper proposes the method to provide efficient

use of cloud storage while supporting secure data sharing

in the cloud. In order to provide authorized deduplication,

we use the convergent encryption scheme and apply an

access privilege to generate a convergent key. Because of

this, the user without proper privileges will not be able to

generate the convergent key and thus cannot access the

shared data. To verify the ownership of the file in the

client-side deduplication procedure, we also propose a

new proofs of ownership protocol based on an existing

Merkle Tree-based protocol. Our scheme provides an

adequate trade-off between security and storage space

efficiency. By executing the deduplication for users with

the same privilege, the effect of deduplication can be

reduced. However, in view of the data sharing, our

approach has as advantage in the sense that only

authorized users can access the files encrypted based on

privileges allowed to the users. The proposed scheme is

very suitable for the hybrid cloud model considering both

the data security and the storage efficiency.

Keywords: Client-side deduplication, Convergent

encryption, Proofs of ownership, Access

privilege

1 Introduction

With the rapid development of cloud computing,

many companies and individual users are outsourcing

their confidential data to cloud storage service

providers such as Dropbox, Google drive. These

service providers reduce the burden of data storage and

maintenance at the client side while providing high-

quality data storage and computing services in a

ubiquitous manner. As a result, the amount of data

stored in the storage of the cloud storage provider (CSP)

is increasing rapidly, and in particular, has more

rapidly increased in the era of big data. According to

the analysis of the IDC, global data volume is expected

to reach 40 trillion GB in 2020 [1]. Therefore, one of

the key issues of CSP is that how efficiently manage

the data that increases continuously.

Deduplication is one important approach to deal

with this issue. Deduplication is a special data

compression technique to remove redundant copy of

the repeated data [2]. This technique is used to improve

the utilization ratio of the storage and can be applied to

the network data transfer in order to reduce the amount

of data that should be transmitted. CSP performs a save

operation on the first uploaded data files. For the

subsequent upload request for the same file, it ensures

that each data file is stored one copy only at the server

by assigning a link to the first uploaded data copy to

the requester. Deduplication can be used to effectively

reduce the data storage space and the communication

overhead.

Deduplication technology can be classified on the

client side deduplication and server-side deduplication

technology. Because the client-side deduplication

technology has the advantage from the viewpoint of

efficient use of bandwidth, many studies on the client-

side deduplication is being carried out. Despite the

many advantages of the deduplication technology,

deduplication technology on critical data has caused

some new security problems. In particular, the

confidentiality protection of outsourcing data is a very

important issue. To deal with this issue, it is possible to

consider the encryption prior to outsourcing data to the

cloud. If a conventional encryption is used, different

ciphertexts will be generated for the same plaintext

users use different key for encryption. In this case, it

becomes impossible to perform the deduplication. To

solve this problem, Douceur et al. [3] proposed the

convergent encryption technique using the hash value

of the plaintext as the encryption key (where,

encryption scheme E() is deterministic algorithm and a

convergent key K depends only on the input data file

F). However, convergent encryption techniques are

vulnerable to offline brute-force attack since the

message can be predicted in many cases as indicated in

[4]. By an attacker to execute encrypt all possible

plaintext in offline phase, it is possible to determine the

corresponding plaintext information. To solve this

1230 Journal of Internet Technology Volume 19 (2018) No.4

problem, several studies have been conducted [5-7].

Meanwhile, cloud computing system may be used to

provide a data sharing service, which provides

numerous advantages for the user. Currently, many

information technology (IT) organizations are possible

to obtain high productivity benefits through data

sharing, and it can result in savings of time and money.

Typically, healthcare service provider in the healthcare

environment saves and shares the medical records

through the cloud, which makes it possible to eliminate

geographic dependencies between health care

providers and patients. However, the sharing of data

via the cloud has threats on the privacy and security,

and thus solving this problem is a top priority issue for

the dissemination of the cloud. For secure data sharing

in the cloud, the owner of the data must be able to

specify a user or a group of users which is allowed

access to data. Entities other than the owner and the

user with the right should not be permitted to access to

the data [8]. The simplest solution for this is to encrypt

their data before the owner uploads the data to the

cloud. Thereafter, if the owner of the data may want to

share, it transmits the key to the members of the group.

However, this approach is very inefficient and many

complex problems occur in the delivery of the key.

Also, in terms of cloud storage, there is a problem that

deduplication for efficient use of storage space does

not support.

Therefore, in this paper, we propose the method to

provide efficient use of cloud storage while supporting

secure data sharing in the cloud. To support

deduplication, the proposed scheme uses the

convergent encryption techniques, and applies an

access privilege to generate a convergent key. Due to

this, the user without proper privileges will not be able

to generate a convergent key and thus cannot access

the shared data. We analyze the security and

performance of the proposed scheme, and compare the

features with the existing authorized deduplication

scheme. One of notable merits of the proposed method

is that it provides an adequate trade-off between

security and storage space efficiency, and is very

suitable for the hybrid cloud model considering both

the data security and the storage efficiency.

Note that the preliminary version of this paper was

presented at MobiSec2016 [9]. The main improvement

of this paper is that we propose an improved scheme

which can support stronger security than the scheme in

[9]. Especially, the scheme [9] is secure only if users

do not collude to break the security of the scheme. In

this paper, we analyze the security of the authorized

convergent key distribution protocol in [9] with respect

to the collusion attacks where some users collude to

extend their access privilege without the help of the

authorization server. Then, we propose an improved

protocol based on blind BLS signature, which can

support stronger security against the collusion attacks.

We also provide a detailed analysis of security and

complexity.

The rest of the paper organized as follows. In

Section 2, we briefly describe related works on the

convergent encryption and the proofs of ownership

(PoW). In Section 3, we propose an authorized

deduplication using RSA blind signature and an

improved Merkle Tree-based PoW. An improved

authorized deduplication based on blind BLS signature

is proposed in Section 4, and also the security and

efficiency analysis are presented. Finally, we draw

conclusion in Section 5.

2 Related Works

2.1 Convergent Encryption

Convergent encryption scheme proposed by

Douceur et al. [3] encrypts a file F using a symmetric

key encryption algorithm E() with the key which is

generated by hashing the file F. C=E(H(F), F).

Therefore, the same plaintext becomes the same

encryption, allowing duplication process. However,

convergent encryption scheme is very vulnerable to a

dictionary attack which is a brute force attack [4].

DupLESS scheme used a key server (KS) to prevent

offline brute force dictionary attack [5]. It uses RSA

blind signature based oblivious PRF (pseudo random

function) protocol between KS and a client. And

DupLESS applied rate-limiting scheme in order to

prevent a brute force attack which one client sends

multiple request messages to KS.

Duan [6] proposed a scheme that eliminates KS. To

do this, they used distributed oblivious key generation

scheme utilizing Shoup’s RSA based threshold

signature. This scheme is modeling a key server to a

group of key servers, and obtains a convergent key by

interacting with t key servers to perform distributed

threshold blind signature protocol. DupLESS needs a

key server and is not secure against a collusion attack

attempted by KS and CSP, while Duan’s scheme

generates a convergent key using distributed oblivious

key generation scheme with the aid of other users

(trusted dealers). In some ways, trusted dealer does a

similar function as a key server. Because of this, Miao

et al. [7] proposed multi-server-aided data

deduplication scheme using threshold blind signature.

Meanwhile, Shah et al. [10] proposed Lamassu

scheme. DupLESS needs a key server and an

interaction between a client and a key server. In order

to remove it, Lamassu scheme adds secret key to the

convergent key generation process. Client is allowed to

directly access this secret key, and is possible to

generate one’s own convergent key locally. In this

approach, the clients using other secret key produce

different ciphertexts for the same plaintext, and thus it

is not possible to deduplicate the file for the users. If

more than two clients share a secret key, those clients

are capable of accessing the shared data and

Authorized Client-side Deduplication Using Access Policy-based Convergent Encryption 1231

deduplication is possible. A set of clients that share a

secret key forms an isolation zone by configuring

security zone and deduplication group.

Deduplication scheme applying the privilege

information was proposed first in [2]. In the proposed

paper, the privilege information is applied when

calculating the file authentication tag for the

deduplication. The authentication tag is generated by

the private cloud functioning as the authorized server,

and the private cloud possesses the privilege private

key corresponding to the user's privileges. This

privilege private key does not be distributed to the user.

For users with the same privilege, therefore,

authentication tag identifying deduplication is

generated and deduplication is possible.

2.2 Proofs of Ownership (PoW)

In order to prevent leakage of information about the

files stored in the cloud server from the attacker

without the access right to files stored in the cloud

server, Halevi et al. [13] proposed the proofs of

ownership protocol for the file. In this scheme, the

client owning the actual file generates the

authentication information from the file and by using

this information, the client proves the ownership of the

file by sending a response to the challenge received

from the cloud server. The purpose of PoW is contrary

to that of remote data checking such as PDP (Provable

Data Possession)/PoR (Proof of Retreivability). In

PoW, the client proves the possession of a file, but

PDP/PoR is the opposite. Although these two concepts

are somewhat related, PoR/PDP schemes cannot be

used to build PoW because clients would need to share

a common state. For PDP/PoR, see [11-12].

PoW scheme of [13] is a Merkle-Tree based

protocols, and to prove ownership of the file the client

has to present the exact sibling path for random block

indexes that are requested from the server. This method

is that client proves the ownership of the file to the

server. To do this, the client configures the Merkle

Tree and then sends the number of leaf nodes (which is

the lowest node of the tree) and the value of the root

(which is the top-level node) to the server. The server

sends random indexes of leaf nodes to the client, and

the client responds corresponding leaf nodes and

accurate sibling path. The server computes a root value

by using the values received from the client, and

compares it with the received root value. If both values

match, the server admits the ownership of the file. In

[13], however, since the server stores unencrypted files,

there is the privacy issue that the information of the file

is revealed, as well as a drawback that requires a lot of

operations in order to prove the ownership of the data.

In addition, there is a problem that it does not

guarantee the freshness of the proof in all the challenge

which the cloud server requests to the client.

3 The proposed Authorized Client-side

Deduplication Scheme

If the confidentiality of the data is requested by the

client-side deduplication scheme, the user has to

encrypt the data before uploading it to the cloud

storage. To support deduplication, the convergent

encryption scheme is used and it requires the

generation of convergent encryption keys for this

purpose. As described in Section 2, a simple technique

is to use the hash value of the plaintext data as a

convergent key. However, this method is vulnerable to

offline brute force attack. So, DupLESS scheme

introduced the key server and generated a convergent

key by performing RSA blind signature based

oblivious PRF protocol between the key server and the

data owner. In our scheme, a privilege information is

applied in this process in order to allow only the

authorized user to access to data. By adding a privilege

information to the generation process of a convergent

encryption key, it provides the appropriate trade-off

between the efficiency of deduplication and security of

data sharing. By executing the deduplication for users

with the same privilege, the effect of deduplication can

be reduced, but in view of the data sharing, there is an

advantage that only authorized users can access by

uploading the encrypted file with the privilege

information. When applying the hybrid cloud model

for the data security and the storage efficiency, our

scheme is very suitable. As with DupLESS, the

proposed method uses RSA blind signature-based

oblivious PRF protocol, however we add the privilege

information to this process.

3.1 System Model

The proposed model consists of a user, an

authorization server (or a key server), and a cloud

storage provider (CSP). Here, an authorization server

(AS) can be regarded as a private cloud and a CSP can

be considered as a public cloud. An authorization

server is an entity that helps a user to securely use a

CSP. Also, AS generates and manages to the private

key corresponding to the privilege, and computes a

convergent encryption key for the file by applying the

privilege through the interaction with a user. Thus,

users are possible to perform the duplication check

based on their privilege, and only the authorized user

can generate a convergent encryption key. AS and CSP

both are assumed to be “honest-but-curious”.

In the initialization process (or the registration

process), a set of privileges is given to each user by AS.

A set of privileges describes which users are allowed to

perform the duplication check and the file access, and

is bound to the file uploaded to the cloud. It is defined

on the basis of a set of privileges. The exact definition

of a privilege is slightly different for each application.

For example, the role-based privilege may be defined

1232 Journal of Internet Technology Volume 19 (2018) No.4

by the title within the organization. Or time-based

privilege may specify the valid access period [2].

The authorization server issues a privilege secret key

corresponding to the privilege to the user, and this

secret key is applied to the generation of the

convergent encryption key. Also, this key does not

directly being distributed to the user and the

authorization server manages it securely. The reason to

do so is to prevent a collusion attack between users (if

this privilege secret key is distributed to the user and

the user manages it, a collusion attack between users is

possible easily).

It assumes that a universe of privileges is defined as

℘ = {p1, p2, …, pn}. The secret key kpi for each

privilege pi belonging to the set ℘ is randomly

generated. A set of privileges, PU is assigned to a user

U, and the set of corresponding keys, { kpi }pi ∈ Pu is

also assigned to the user U. As mentioned above, this

set of keys is not issued to the user directly, and is

securely kept and managed by the authorization server.

It assumes the authorization server stores a user's

identity and the set of privileges corresponding to the

user identity.

Table 1 shows terms and symbols used in this paper.

Table 1. Terms and symbols

Notation Meaning

U A user

AS The authorization server

CSP The cloud storage provider

IDU The identity of a user U

sk A user’s secret key

K A convergent encryption key

H() A cryptographically secure hash function

pf A access privilege

kpf A privilege secret key corresponding to the

privilege pf. This key is managed securely by

AS.

G() A collision-resistant hash function

E(k, m) Symmetric key encryption scheme with a

secret key k and a plaintext m

CF An encrypted file using E() with a key K

CU An encrypted convergent key using E() with

a key sk

T A file tag which is used to identify duplicated

files

MT(F) A Merkle Tree configured for a file F

leaf_nodes Leaf nodes of a Merkle Tree corresponding to

specific indexes

SP(idxs) Sibling path of leaf nodes corresponding to

specific indexes idxs in a Merkle Tree

3.2 Access Privilege Based Convergent

Encryption

It assumes that a user wants to upload a file F to a

cloud storage provider. The proposed scheme ensures

the user the confidentiality by uploading the encrypted

file, and at the same time, provides CSP for the

efficient use of the storage by performing the

deduplication. For the file encryption supporting the

deduplication, it needs the generation of a convergent

encryption key. So, we generate a convergent

encryption key by interacting with the authorization

server to prevent an offline brute force attack. In this

process, we apply the access privilege for secure

sharing of uploaded files.

The generation process of a convergent encryption

key uses the protocol based on RSA blind signature

which is used in DupLESS. The AS generates a public

and private key pair based on RSA. That is, generate

two large prime numbers, p and q, and compute N = p ⋅
q. Then find e ⋅ d ≡ 1 (mod φ(N)), where φ() denotes

Euler’s totient function or Euler’s phi function. A

public key is (N, e) and a private key is d.

A user U selects r ∈
n

� randomly and then

computes re (mod N) using AS's public key (N, e). And

the user computes a hash value h = H(F) of a uploading

file F using a cryptographically secure hash function

H(), and then computes x = (re ⋅ h) mod N. The user

sends (x, IDU) to AS. After AS identifies the user U

from IDU, AS reads a secret key kpf corresponding to

the user's privilege pf. And then computes y = (xd ⋅ kpf)
mod N using the private key d and sends it to the user.

The user computes z = y ⋅ r -1 mod N, and then

generates a convergent encryption key K = G(z). Figure

1 shows the distribution process of a convergent

encryption key between the user and AS.

3.3 File Upload

Before uploading a file F, the user has to encrypt F

using the key K computed in the distribution process of

a convergent encryption key. CF = E(K, F). Also, it

encrypts the convergent key K using the user's secret

key sk. CU = E(sk, K). Next, it computes the file tag T

for the encrypted file CF. T = TagGen(CF), where

TagGen() function is a collision-resistant hash function.

The user sends the tag T and the file size FileSize to the

CSP. Then the CSP checks whether the received tag

exists or not. If the same tag does not exist, it runs the

first upload process. If the same tag already exists, it

will perform the deduplication process. In this process,

it has to perform the proofs of ownership protocol.

Authorized Client-side Deduplication Using Access Policy-based Convergent Encryption 1233

User (U)
Authorization

Server (AS)

mod ,

Verify and

then load privilege secret key

mod

mod

mod

mod

mod

mod

Public key: (,)

Private key:

Figure 1. The distribution process of a convergent encryption key

First upload process. The CSP selects a random

number r and a block size b that divides the file, and

sends them to the user U1. The file will be split into nb

blocks. nb = ⎡FileSize / b⎤. The user configures the

Merkle Tree MT by dividing the file CF into nb blocks

and calculates a root value AuthTag = MT(CF). And

then it sends (CF, CU1, rTag) to the CSP, where rTag =

H(r||AuthTag). The CSP configures the Merkle Tree

using the received CF and computes the root value

AuthTag’. If H(r||AuthTag’) matches the received rTag,

the CSP stores {T, FileSize, b, CF, AuthTag’, IDU1, CU1}

to a storage. If not match, the CSP returns ‘⊥’ and

stops the procedure. When the upload is completed

successfully, the user stores AuthTag and removes the

file F. Figure 2 shows the first upload process.

User

(U1)
CSP

,

{ , , FileSize}

Duplicate-check using and FileSize

If there is no duplication,

perform the First Upload procedure

Select a blocksize ()

(: the number of blocks)

Select a random number

[First Upload procedure]

{ , }

Compute

Compute

{ , , }

Check ==

Compute

If == ,

then accept

(store , FileSize, , , , ,)

Else

Figure 2. First upload process

Deduplication process. In this case, it assumes the

user U2 wants to upload a duplicated file. Figure 3

shows the deduplication process. When the CSP has

found a duplicated file upload, the CSP loads the block

size b and AuthTag from the storage. The file is

divided into nb blocks. nb = ⎡FileSize / b⎤. The CSP

randomly selects a set of block indexes, idxs which is

challenged to the user. idxs ⊂ {0, 1, …, nb}. The CSP

also selects a random number r. And then the CSP

requests the verification of the file ownership by

sending (r, idxs, cTag) to the user, where cTag =

H(IDU2, T, AuthTag).

1234 Journal of Internet Technology Volume 19 (2018) No.4

User

(U2)
CSP

,

{ , , FileSize}

Duplicate-check using and FileSize

If there exists a duplication,

perform the Deduplication procedure

Load the blocksize and

()

Select

Select a random number

Compute

[Deduplication procedure]

{ , , , }

Compute

If ==

Compute

Compute

Else
{ , }

Compute from and

If == (stored)

then accept

Else

Store ,

request metadata

Figure 3. Deduplication process

The user U2 computes AuthTag' = MT(CF) and then

verifies that the received cTag is valid. With this step,

the user can check whether its own file matches a

duplicated file stored on the CSP. If this verification

succeeds, computes rTag = H(r, AuthTag') and then

selects leaf_nodes and SP(idxs) of the Merkle Tree

corresponding to the received block indexes idxs. The

user scrambles SP(idxs) and leaf_nodes by using rTag.

SP'(idxs) = SP(idxs) ⊕ rTag and leaf_nodes' =

leaf_nodes ⊕ rTag. The user responds SP'(idxs) and

leaf_nodes' to the CSP.

The CSP computes rTag' using the stored AuthTag,

and then descrambles SP(idxs) and leaf_nodes xoring it

with the received SP'(idxs) and leaf_nodes'. After

computing AuthTag' using SP(idxs) and leaf_nodes, the

CSP checks if it matches the stored AuthTag. If valid,

then the CSP admits the file ownership of the user U2

and requests its metadata CU2 to U2. When receiving

CU2 from the user, the CSP allows the file access by

assigning the file pointer to the user and stores {IDU2,

CU2}. If this process is completed successfully, the user

stores AuthTag and removes the file F.

3.4 File Download

If the user wants to download a file F, he first sends

the file request message to the CSP. The CSP checks

the right for download of the requesting user for the

file F, and then sends a random number r as a

challenge to the user. The user responds rTag = H(r,

AuthTag) to the CSP. If rTag is valid, the CSP sends to

the user, CF and CU corresponding to the user. The user

obtains a convergent key K by decrypting the received

CU with its secret key sk, and then recovers the file F

by decrypting CF.

4 An Improved Authorized Client-side

Deduplication with Stronger Security

In this section, we review the scheme in Section 3 in

terms of the security against the collusion attacks. Then

we give an improved authorized client-side

deduplication scheme which is secure against the

collusion attacks. We also analyze the proposed

scheme in terms of the security and the performance.

4.1 Insecurity of the RSA Based Authorized

Convergent Key Distribution against

Collusion Attacks

In the case of the above RSA-based authorized

convergence encryption method, there is a

disadvantage that the user cannot verify if the value y

received from the AS is correct. There is also the

possibility of collusion attacks among users. Suppose

that there are two users, A and B who are authorized by

pfk and fpk ′
, respectively. These two privilege secret

keys are managed by AS. For the same file h = H(F),

both users obtain the convergent keys, pf
d

kh ⋅ and

fp
d

kh
′

⋅ from AS, respectively. This allows both users

to perform a collusion attack. When two users perform

a division operation using each other's information,

Authorized Client-side Deduplication Using Access Policy-based Convergent Encryption 1235

they can compute fppf kk
′

−

⋅

1 or pffp kk ⋅

−

′

1 , respectively.

A colluding attacker who has a legitimate privilege

attribute can use the information to transform a

convergent key to a key for another privilege attribute.

For example, a user A with a privilege pf obtains

pf
d

kh ⋅′ from AS for)(FHh ′=′ . Using fppf kk
′

−

⋅

1

obtained by colluding another user B with a privilege

fp ′ , he can obtain fp
d

kh
′

⋅′ by multiplying two values.

This fp
d

kh
′

⋅′ value is an authorized convergent key

material by a privilege key fpk ′
 which is not access

right of the user A. This malicious collusion attack may

be assumed by various methods such as exposing

existing key information by a revoked user.

4.2 BLS Signature Based Authorized

Convergent Key Distribution with Stronger

Security

To solve these problems, we propose an authorized

convergence key distribution scheme based on BLS

signature. BLS signature is proposed by Boneh et al.,

and uses bilinear pairing based on the difficulty of the

discrete logarithm problem on an elliptic curve [14].

Assuming two cyclic multiplicative group G and GT

with the same prime order q, a bilinear map e:G×G→

GT satisfies three conditions; bilinearity, non-degeneracy,

computability. BLS signature consists of key

generation, signing and verification.

Key generation. Pick random x from
q

� and compute

v = gx, where g is a generator of G. The public key is v

and the private key is x.

Signing. Given a private key x and a message m,

compute h = H(m). The signature is σ = hx. Here,

H:{0,1}*

→G is a BLS hash function.

Verification. Given a public key v, a message m, and a

signature σ, compute h = H(m) and verify that),(ge σ

is equal to)),((x

gmHe . If so, output valid; if not,

output invalid.

BLS blind signature based convergence encryption

is performed as Figure 4. It assumes that the user has a

set of privileges, PU ⊂℘ and AS has the privilege

private/public key pairs (si, yi) for each privilege pi∈℘.

When the user uploads a file F to the cloud storage, it

selects r from *

q
� randomly and computes

r

gFHF ⋅=)(. Then the user sends F and the access

privilege Uf Pp ∈ to AS. AS computes fs

F)(=σ using

the privilege private/public key pair (fs , fy) for the

access privilege fp , and sends σ to the user. The user

computes r
fy

−

⋅=)(σσ and then verifies that

)),((fyFHe is equal to),(ge σ as following.

User

(U)

Authorization

Server (AS)

A cyclic group of prime order generated by

A bilinear paring (a group of order)

A hash function

A universe of privileges

A set of privileges assigned to a user

File

: access privilege for the file
,

(

)

Verify

For each privilege ,

the privilege private key and

the privilege public key

Figure 4. Authorized convergent key generation based on blind BLS signature

(,) (, ,) ((())) () ,)f fs sr r r

fe g e y g e H F g g gσ σ
− −

= = ⋅ ⋅

((() () () ,)f f fs s sr r

e H F g g g
−

= ⋅ ⋅

((),)fe H F y=

If the verification is successful, the user calculates the

convergent encryption key K = G(σ).

Thus, BLS blind signature based scheme can

improve the problems of RSA blind signature based

scheme. The user can verify the correctness of the

received value .σ And an algebraic attack by colluding

among the users against RSA blind signature based

scheme cannot be applied to BLS blind signature based

scheme. From the computational point of view, BLS

blind signature based scheme has higher computational

overhead than RSA blind signature based scheme.

1236 Journal of Internet Technology Volume 19 (2018) No.4

However, the communication overhead is lowered. The

length of BLS blind signature based scheme is shorter

than RSA blind signature based scheme.

4.3 Analysis of Security and Complexity

4.3.1 Security Analysis

Our scheme provides an authorized deduplication,

confidentiality and integrity of data stored in cloud.

The security of the proposed scheme is ensured by the

security of the used cryptographic primitives such as

hash functions, symmetric and asymmetric encryption.

In the security of the proposed scheme, the

authorization server plays an important role. Because it

is possible to carry out a brute force attack if the

authorization server colludes with an attacker, it is

assumed that the authorization server does not collude

with an attacker. Also it assumes that the authorization

server has similar conditions as the key server in

DupLESS.

The first feature to prove is the correctness of the

functionality so-called the authorized deduplication.

Lemma 1. The proposed scheme provides an

authorized deduplication.

Proof. The proposed method is possible to deduplicate

the same files of users with the same permissions. The

same files derive the same value h = H(F), and the

same privilege secret key kpf is applied when the users

have the same privilege. So, the same convergent key

K is derived and deduplication is possible. An

unauthorized user cannot obtain the same convergent

key K because kpf is kept securely only in AS. Also,

users cannot obtain any information on kpf from y due

to security of AS’s private key d. Thus, our scheme

provides an authorized deduplication under the

assumption of the security of RSA signature and the

privilege secret keys.

Comparing with existing schemes which do not

apply access privileges, the efficiency of deduplication

of the proposed scheme will be reduced. Thus, the

appropriate trade-off between the security of the

sensitive files and the efficient use of storage space

must be taken into account.

To protect the privacy of users’ data stored in CSP’s

storage, all data will be stored in an encrypted form,

which means that the confidentiality of data stored in

cloud is one of important security requirements. In the

below, we will prove that the proposed scheme

achieves the feature.

Lemma 2. The proposed scheme guarantees that only

eligible users can access the plain data. That is, it

provides the confidentiality of data stored in cloud.

Proof. If the CSP colludes with an attacker, the

attacker can access to an encrypted data CF and

metadata CU. However, the proposed method can

ensure security of a plaintext data even with a low

entropy because CF has encrypted with a key K issued

by the authorization server and also the key K has

computed by applying the AS's private key and a

privilege secret key corresponding to the user's

privilege attribute. As long as an attacker does not

know the user's secret key sk, he cannot decrypt CU

because it has encrypted with sk.

A legitimate user behaving as a malicious attacker

can threaten the AS and the CSP. When attacking the

AS, an attacker has to address the factorization

problem to obtain the private information of the AS to

address the factorization problem by the property of

the RSA blind signature-based OPRF protocol, and so

it can ensure security of the AS. When attacking an

encrypted data stored in the CSP, an attacker has to

perform a proofs of ownership protocol for the data. To

do this in the proposed scheme, an attacker has to

construct Merkle Tree for the encrypted data in the

proofs of ownership process and has to submit a sibling

path for block indexes randomly selected by the CSP.

The security of Merkle Tree based proofs of ownership

scheme is presented in [13, 15].

For convergent encryption schemes, the

confidentiality can be easily broken if the adversary

correctly guesses the secret key. Since the key is

derived from the data itself, it is possible to find the

secret key by guessing the encrypted data. To improve

the security against guessing attacks, DupLESS has

been proposed. Due to the invention of DupLESS, in

an adversary’s view point, the only way to find the key

is to perform online brute-force attacks. Hence, the

security against the online brute-force is also important

issue for the confidentiality of data stored in cloud. To

provide resistance to online brute-force attack,

DupLESS restricts the number of key issuing requests

per a client by the rate limiting strategy. However,

DupLESS has a problem that online brute-force attack

is possible when an attacker colludes with multiple

clients. The proposed scheme can provide higher

security than DupLESS because the proposed scheme

applies access privileges to the key issue procedure and

so has a restriction that an attacker has to collude only

with the users with the same privilege.

The last security feature to prove is the integrity of

stored data. In storage services with deduplication, a

user’s data will not be stored if the same file is already

stored. However, if any spoiled file is stored instead of

the original file, the new uploader may lose his file.

Hence, we need to guarantee the integrity of stored

files. Note that, for cloud storage services, we have to

counter the poison attacks to guarantee the integrity. If

the CSP does not check the integrity of an uploaded

file when a client encrypts it with a randomly selected

key and uploads to the cloud storage in case of client-

side deduplication, a poison attack can be mounted by

an adversary [16]. A poison attack proceeds as follows:

A client uploads a file tag and an encrypted file, (H(F),

C=Ek(F)) to the CSP. When a malicious user stores a

file tag and a modified encrypted file, (H(F), C') to the

cloud storage, the problem arises in case that the

Authorized Client-side Deduplication Using Access Policy-based Convergent Encryption 1237

legitimate users thereafter upload the duplicated file F.

When a legitimate user requests the upload of the file F,

the cloud server decides to perform the deduplication

procedure. Therefore, the user does not need to upload

the file and deletes the file F. Later if the client wants

to download the file F, the modified file C' will be sent

from the server and the user is faced with a problem

that the original file F is lost. To guarantee the security

of the proposed scheme against the above described

attack, we give the following lemma which proves the

integrity of the proposed scheme.

Lemma 3. The proposed scheme guarantees resistance

to a poison attack. That is, it provides the integrity of

data stored in cloud.

Proof. A poison attack occurs because the cloud server

does not perform the integrity check of a received file

properly. To deal with this problem, the CSP of the

proposed scheme checks the integrity of a received file

in the first upload process. Also, the user makes certain

whether the value cTag = H(IDU2, T, AuthTag) is valid,

for the integrity check of the file stored in the CSP. In

order to prevent a poison attack, it runs the

deduplication process only if valid. So, the proposed

scheme guarantees the integrity of data during the

uploading process for both a user and CSP. �

Including the above proved main requirements, the

proposed improved scheme has many merits than

existing techniques. From now, we will compare our

scheme with existing techniques.

Merkle Tree based proofs of ownership scheme [10]

does not guarantee the freshness of challenges. If an

attacker which does not possess the file observes

challenged block indexes and several leaf nodes and

sibling paths of the proof delivered as the response,

there exists a possibility that an attacker can hereafter

derive a valid proof. However, the proposed scheme

guarantees the freshness by means of the values such

as a random number r, cTag, rTag in the proofs of

ownership protocol, and so protects against a guessing

attack of a valid proof.

The deduplication scheme applying the usage right

was first proposed in [2]. This scheme considers the

private cloud as the authorization server which

maintains the privilege secret keys corresponding to

the user's access right. Before uploading a file F to the

CSP, the user receives two file authentication tags

)),((0,
ττ

φ ppF kFHH= and)),((1,
ττ

φ ppF kFHH=′ from

the private cloud which both are computed by applying

the privilege secret key
τ
p

k . Then the user sends
τ

φ pF ,
′

to the CSP and performs the duplication check. If not

duplicated, the user selects a random key k and

computes the encrypted file
F

C using this key. Also,

the key k is encrypted into ciphertexts }{
, jpkCK with

, , 2
{ ()}.

j jF p F p
k H Fφ= ⊕ Both the encrypted file

F
C

and the encrypted keys }{
, jpkCK are uploaded to the

CSP. The user must save
,

{ }.
jF p

k This scheme

performs the deduplication process by applying the

privilege information in the generation of the

authentication tag. On the other hand, our proposed

scheme uses the privilege information in the

convergent key generation process. In [2] it encrypts

the file with a random key k and then generates }{
, jpFk

to encrypt the key k. Thus, there is a disadvantage that

it must generate and save new }{
, jpFk for each file.

That is, the number of keys that the user must maintain

securely increases by the number of files. But in the

proposed scheme, the user needs to save only one's

own secret key because it uploads the convergent key

encrypted by the user's secret key to the CSP after

generating the convergent key. Therefore, the proposed

scheme has the advantage compared to [2] in terms of

the key management of the user. Also, it seems that [2]

uses Merkle Tree based PoW scheme of [10] as it is

instead of suggesting new PoW scheme. In this case, it

has to compute an authentication tag applying the

privilege and generate a PoW tag based on Merkle

Tree, separately. As a result, the proposed scheme has

a lower computational overhead compared to [2] in

terms of the generation of the authentication tag.

Table 2 shows the comparison with the scheme of [2]

which has same goals as the proposed scheme in terms

of security features provided.

Table 2. Comparison of provided security features

Authorized

deduplication

Confidentiality

of data

Integrity of

data

[2] Provided by

authorized file

tag

Not guaranteed Vulnerable to

Poison attack

Proposed

scheme

Provided by

authorized

convergent key

Guaranteed Guaranteed

Both [2] and our scheme provide an authorized

deduplication. In case of [2], this feature is provided by

an authorized file token corresponding to access

privileges, while our scheme supports it by distributing

an authorized convergent key corresponding to access

privileges.

To provide data confidentiality in [2], a user uploads

an encrypted file
F

C and encrypted keys
,

{
jk pCK =

SE ,
Enc (,)}

jF p
k k to CSP, where a random file encryption

key k is encrypted by)}({ 2,, FHk
jj pFpF ⊕= φ

corresponding to each priviledge attribute jp . In this

process, an attacker may obtain
jpFk ,

 if he obtains one

of
jpF ,φ through observation of the protocol because

an attacker can obtain the hash value H2(F) of the file

F by the guessing attack. So, an attacker may compute

1238 Journal of Internet Technology Volume 19 (2018) No.4

the random file key k by decrypting
jpkCK

,

 with the

obtained
,

.

jF p
k It is also possible to obtain the key

through another method. If an attacker does not have

same set of privildges but has at least one common

attribute among priviledge attributes, he is also able to

obtain
jpFk ,

. Therefore, the scheme of [2] does not

guarantee the confidentiality of the file, unlike the

authors’ claims. In the proposed scheme, a user who

does not have a proper set of access rights cannot

generate a corresponding convergence key. Also, since

the convergence key for file encryption is encrypted by

the user's secret key sk and stored in CSP and stored in

the CSP, an attacker who does not know sk can not

access the plain file. Therefore, the proposed scheme

provides the data confidentiality by lemma 1 and 2.

The scheme of [2] is vulnerable to the poison attack

because CSP can not verify the proper association of

the received
F

C with the file tag/token in the

uploading procedure and a user does not perform the

integrity verification for duplicate files stored in CSP

in the deduplication process. However, the proposed

scheme guarantees the integrity of data because CSP

verifies the received
F

C in the uploading procedure

and a user also performs the integrity check of the

duplicate file stored in CSP in the improved MT based

PoW process.

4.3.2 Complexity Analysis

We compare computational complexity and storage

overhead with [2] whose goal is the same with our

scheme. First, Table 3 shows comparison of

computational complexity.

Table 3. Comparison of computational complexity

Entity Process [2]

(except for

PoW)

Proposed

Scheme (RSA

based, except

for PoW)

Tag & MLE

key Generation

2*H 3*H + 1*Exp

+ 1*ModInv +

2*ModMul

File Encryption 1*SEnc 1*SEnc
User

MLE key

Encryption

n*SEnc + n*H 1*SEnc

Tag & MLE

key Generation

4n*H 1*Exp +

n*ModMul

AS

(Private

cloud in

[2])
File Uploading 1*SigVer + 4n*H

+ 1*SigGen

-

First upload 1*SigGen 1*H

CSP Deduplication 1*SigGen <+

PoW>

<PoW>

Notes. n: number of access privileges; SEnc: symmetric

encryption; H: hash function; SigGen & SigVer: digital

signature generation and verification; Exp: exponentiation;

ModInv: Modular Inversion; ModMul: Modular

Multiplication; PoW: Proofs of Ownership procedure; <>:

omission of a procedure.

To compare the computation overhead, since the

private cloud in [2] plays a similar role to AS in the

proposed method, it considers both entities as the same

and compares them. Also, in order to simplify the

comparison, we compare the computational complexity

except for the PoW process in both schemes because [2]

does not explicitly describe the PoW process. Basically,

[2] is based on hash function, symmetric cryptographic

primitive and digital signature, while our scheme uses

a hash function, a symmetric cryptographic primitive, a

modular operation, and an RSA blind signature.

According to Table 3, from the user’s point of view,

the key generation process has overhead of 2*H in case

of [2], and the overhead of (3*H + 1*Exp + 1*ModInv

+ 2*ModMul) in case of our scheme. Also, in the key

generation step of AS, [2] has computational overhead

of 4n*H and the proposed technique has (1*Exp +

n*ModMul). Since the proposed scheme applies the

privilege information in the process of generating the

convergence key, the computational overhead of the

user side in the process of generating the convergence

key is higher than [2]. However, in other processes, our

scheme is more efficient than [2]. Especially, in the

MLE key encryption process, [2] has (n*SEnc + n*H)

computations, and in addition, AS must interact with

the user during the file upload phase, which has the

computational overhead of (1*SigVer + 4n*H +

1*SigGen). In the proposed scheme, AS participates

only in the MLE (CE) key distribution process and

thereafter does not participate in the protocol. However,

[2] has a disadvantage that the private cloud continues

to involve in the file uploading process.

Table 4 shows the comparison results in terms of

storage overhead. In terms of user-side storage, a user

of [2] must store }{
, jpFk after the file uploading. It

requires (2*n*h_len) storage space for the file token

and keys for each file. In the proposed scheme, the

storage overhead of the user is very small compared to

[2] because a file tag (1*h_len) for each file and only

one secret key sk need to be stored in each user side.

Table 4. Comparison of storage overhead on a user

and CSP

 [2] Proposed scheme

User Nu * (2*n*h_len) 1*key_len + Nu*(1*h_len)

CSP Ncsp * {n*h_len +

1*ct_len + n*senc_len}

Ncsp * {1*h_len + 1*ct_len

+ Nd * senc_len}

Notes. Nu: number of files owned and uploaded by one user;

Ncsp: number of files that are uploaded by all users and

managed on CSP; Nd: number of deduplicaed file uploads;

h_len: bit-length of the output of the hash function; key_len:

bit-length of the secret key of the symmetric encryption;

ct_len: bit-length of the encrypted file; senc_len: bit-length

of the output of the symmetric encryption.

For CSP, [2] must store (n*h_len) for the file token

and the ciphertext CF and encrypted keys }{
, jpkCK of

each file. For this, it requires (1*ct_len + n*senc_len)

Authorized Client-side Deduplication Using Access Policy-based Convergent Encryption 1239

storage space. The proposed scheme needs to store the

file tag, the ciphertext and the encrypted key, and it

requires storage space of (1*h_len + 1*ct_len +

1*senc_len). Therefore, the proposed scheme is more

efficient in terms of CSP-side storage overhead. Also,

the proposed technique is more efficient from the

perspective of the number of keys the user has to

manage.

5 Conclusion

In this paper, we proposed authorized client-side

deduplication scheme which provides efficient use of

cloud storage while supporting secure data sharing in

the cloud. To support deduplication, the proposed

scheme used the convergent encryption method, and

applied an access privilege to compute a convergent

key. Due to this, the user without proper privileges will

not be able to generate a convergent key and thus

cannot access the shared data. To verify the ownership

of the file in client-side deduplication procedure, we

also proposed a new proof of ownership protocol based

on an existing Merkle Tree-based proofs of ownership

protocol. The proposed method provides an adequate

trade-off between security and storage space efficiency.

By executing the deduplication for users with the same

privilege, the effect of deduplication can be reduced,

but in view of the data sharing, there is the advantage

that only authorized users can access by uploading the

encrypted file with the privilege information. The

proposed scheme is very suitable for the hybrid cloud

model considering both the data security and the

storage efficiency.

Acknowledgements

This work was supported by Electronics and

Telecommunications Research Institute (ETRI) grant

funded by the Korean government [17ZH1700,

Development of storage and search technologies over

encrypted database]. Sang Uk Shin is the corresponding

author.

References

[1] J. Gantz, D. Reinsel, The Digital Universe in 2020: Big Data,

Bigger Digital Shadows, and Biggest Growth in the Far East,

IDC iView: IDC Analyze the Future, Vol. 2007, pp. 1-16,

December, 2012.

[2] J. Li, Y.-K. Li, X. Chen, P. P. C. Lee, W. Lou, A Hybrid

Cloud Approach for Secure Authorized Deduplication, IEEE

Transactions on Parallel and Distributed Systems, Vol. 26,

No. 5, pp. 1206-1216, May, 2015.

[3] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, M.

Theimer, Reclaiming Space from Duplicate Files in a

Serverless Distributed File System, Proceedings 22nd

International Conference on Distributed Computing Systems,

Vienna, Austria, 2002, pp. 617-624.

[4] D. Harnik, B. Pinkas, A. Shulman-Peleg, Side Channels in

Cloud Services: Deduplication in Cloud Storage, IEEE

Security & Privacy, Vol. 8, No. 6, pp. 40-47, December, 2010.

[5] M. Bellare, S. Keelveedhi, T. Ristenpart, DupLESS: Server-

aided Encryption for Deduplicated Storage, Presented as part

of the 22nd USENIX Security Symposium (USENIX Security

13), Washington, DC, pp. 179-194.

[6] Y. Duan, Distributed Key Generation for Encrypted

Deduplication: Achieving the Strongest Privacy, Proceedings

of the 6th edition of the ACM Workshop on Cloud Computing

Security, Scottsdale, AZ, 2014, pp. 57-68.

[7] M. Miao, J. Wang, H. Li, X. Chen, Secure Multi-server-aided

Data Deduplication in Cloud Computing, Pervasive and

Mobile Computing, Vol. 24, pp. 129-137, December, 2015.

[8] S. Yu, C. Wang, K. Ren, W. Lou, Achieving Secure, Scalable,

and Fine-grained Data Access Control in Cloud Computing,

2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010,

pp. 1-9.

[9] T. Youn, K. Chang, K. H. Rhee, S. U. Shin, Authorized

Convergent Encryption for Client-side Deduplication, IT

CoNvergence PRActice (INPRA), Vol. 4, No. 2, pp. 9-17,

June, 2016.

[10] P. Shah, W. So, Lamassu: Storage-Efficient Host-Side

Encryption, USENIX Annual Technical Conference (USENIX

ATC 15), Santa Clara, CA, 2015, pp. 333-345.

[11] J. Wei, J. Liu, R. Zhang, X. Niu, Y. Yao, Public Possession

Checking for Shared Data with User Revocation in Cloud

Computing, Journal of Internet Technology, Vol. 17, No. 6,

pp. 1141-1149, November, 2016.

[12] S. Shin, T. Kwon, A Survey of Public Provable Data

Possession Schemes with Batch Verification in Cloud Storage,

Journal of Internet Services and Information Security (JISIS),

Vol. 5, No. 3, pp. 37-47, August, 2015.

[13] S. Halevi, D. Harnik, B. Pinkas, A. Shulman-Peleg, Proofs of

Ownership in Remote Storage Systems, Proceedings of the

18th ACM Conference on Computer and Communications

Security, Chicago, IL, 2011, pp. 491-500.

[14] D. Boneh, B. Lynn, H. Shacham, Short Signatures from the

Weil Pairing, Journal of Cryptology, Vol. 17, No. 4, pp. 297-

319, September, 2004.

[15] R. C. Merkle, A Certified Digital Signature, Advances in

Cryptology - CRYPTO'89 Proceedings, Santa Barbara, CA,

1989, pp. 218-238.

[16] N. Kaaniche, M. Laurent, A Secure Client Side Deduplication

Scheme in Cloud Storage Environments, 2014 6th International

Conference on New Technologies, Mobility and Security

(NTMS), Dubai, United Arab Emirates, 2014, pp. 1-7.

1240 Journal of Internet Technology Volume 19 (2018) No.4

Biographies

Taek-Young Youn received his B.S.,

MS, and Ph.D. from Korea University

in 2003, 2005, and 2009, respectively.

He is currently a senior researcher at

Electronics and Telecommunications

Research Institute (ETRI), Korea. His

research interests include

cryptography, information security, and data privacy.

Ku-Young Chang received his B.S.,

M.S. and Ph.D. degrees in

mathematics from Korea University,

Seoul, Korea on 1995, 1997, and 2000,

respectively. He is currently a

principal researcher of Cryptography

Research Section at Electronics and

Telecommunication Research Institute, Daejeon, Korea.

His research interests include cryptography, data

privacy, and finite field theory.

Kyung-Hyune Rhee received his M.S.

and Ph.D. degrees from Korea

Advanced Institute of Science and

Technology (KAIST), Daejeon, Korea

in 1985 and 1992, respectively. He

worked as a senior researcher in

Electronic and Telecommunications

Research Institute (ETRI), Daejeon, Korea from 1985

to 1993. He also worked as a visiting scholar in the

University of Adelaide in Australia, the University of

Tokyo in Japan, the University of California at Irvine

in USA, and Kyushu University in Japan. He has

served as a Chairman of Division of Information and

Communication Technology, Colombo Plan Staff

College for Technician Education in Manila, the

Philippines. He is currently a professor in the

Department of IT Convergence and Application

Engineering, Pukyong National University, Busan,

Korea. His research interests center on multimedia

security and analysis, key management protocols and

mobile ad-hoc and VANET communication security.

Sang Uk Shin received his M.S. and

Ph.D. degrees from Pukyong National

University, Busan, Korea in 1997 and

2000, respectively. He worked as a

senior researcher in Electronics and

Tele-communications Research

Institute, Daejeon Korea from 2000 to

2003. He is currently a professor in Department of IT

Convergence and Application Engineering, Pukyong

National University. His research interests include

digital forensics, e-Discovery, cryptographic protocol,

mobile and wireless network security and multimedia

content security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

