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Abstract 

As cloud computing gets popular in recent years, the 

bandwidth cost of data centers becomes a hot research 

topic. For the analysis jobs based on MapReduce 

framework, locally generated big data usually does not 

need uploading immediately. Instead, certain delay is 

tolerable. Therefore, we can use the allowable delay time 

to optimize the bandwidth usage and minimize the cost. 

In this paper, we discuss how to use the allowable 

delay window that a given workload has and propose two 

algorithm to reduce peak volume by increasing the 

maximum transmission of early stages. The experiments 

show that the peak value can be reduced by choosing a 

larger initial value. 

Besides, we also discuss how to assign workloads 

among data centers in the cloud scenario. We point out 

that the total bandwidth cost of data centers will be 

minimal when the maximum transmission capacity of 

these data centers are generally equal to each other. 

Keywords:  Cloud computing, Bandwidth, Map reduce, 

Zoom-heuristic smoothing algorithm, Fast 

start heuristic smoothing algorithm 

1 Introduction 

There are many cloud service providers at present, 

providing us with a wide variety of cloud service. 

Among all these cloud service providers, Amazon [1], 

Google [2], Microsoft [3] and Alibaba [4] are the best-

known vendors. Cloud computing is highly elastic and 

allows on-demand access to computing resources. It 

has already brought great convenience to users and is 

well accepted in many ways. A great deal of Internet 

applications are running on the cloud. Many medium 

and small-sized enterprises tend to build their online 

application systems by renting cloud services. 

In addition to online application systems, data 

analysis is also an important category of cloud 

computing applications. As the fourth paradigm of 

scientific research [5] is eventually accepted, people 

are getting used to making decisions based on data 

analysis. To cope with the big data challenge, the cloud 

platform with highly flexible computing power is a 

natural choice. However, cloud users have to upload a 

great amount of local generated data to the cloud 

before executing their data analysis jobs. 

As we know, a large number of data centers, which 

are typically geographically distributed, bear the cloud 

services. In order to transmit data from cloud users to 

data centers, we have to rent the transmission 

bandwidth offered by Internet Service Providers (ISPs). 

However, the bandwidth cost charged by ISPs is not 

cheap. Like the power consumption problem, the 

bandwidth cost is also not ignorable for the total cost 

of data centers. Therefore, in order to provide cost-

effective cloud computing services to the users, 

researchers are exploring methods to reduce the 

bandwidth cost of data centers. 

In general, Most ISPs do not use the total-volume 

based charge model or the flat-rate charge model. 

Instead, they have adopted a so-called θ-th percentile 

charge model. In the θ-th percentile charge model, the 

ISP divides the charge period, e.g., 30 days, into small 

intervals of equal fixed length, e.g., 5 minutes. 

Statistical logs summarize traffic volumes witnessed in 

different time intervals, sorted in ascending order. The 

traffic volume of the θ-th percentile interval is chosen 

as the charge volume. For example, let θ=95, the cost 

is proportional to the traffic volume sent in the 8208-th 

(95% × 30 × 24 × 60/5 = 8208) interval in the sorted 

list [6-8]. The MAX contract model is simply the 100-

th percentile charge scheme. Such percentile charge 

models are perhaps less surprising when one considers 

the fact that the cost of infrastructure is more closely 

related to the peak than the average demand [9]. 

According to this kind of charge model, we can find 

that peak usage determines not only the network 

bandwidth of the month, but also the cost of data 

centers. Therefore, we should try to work out the 

optimization method by taking full advantage of the 

characteristics of data analysis jobs. Luckily, different 

from online applications, certain delay when uploading 

data is tolerable in the most of analysis jobs. In this 
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case, we can use the allowable delay window size to 

optimize the bandwidth usage and minimize the cost. 

More specifically, we study the case when users use 

MapReduce framework to do data analysis. Google 

engineers originally propose the MapReduce 

framework [10], which quickly becomes one of the 

most popular computing models in the field of big data 

analysis. Recently, Google claims they have already 

abandoned MapReduce [11]. However, there is still a 

large number of real world applications using this 

framework. Moreover, MapReduce represents a 

general pipeline model in cloud computing. Other 

newly developed frameworks will continue to employ 

the design philosophy behind it. In our research, we 

assume that Mappers and Reducers are geographically 

distributed, and they connect with each other by 

employing the transmission services provided by 

different ISPs. Cloud users will generate plenty of local 

data, which needs to be uploaded to the data centers 

while certain delay is tolerable. 

In this paper, we focus on minimizing the bandwidth 

cost when uploading deferrable big data. Deferrable 

here means that all of the generated data has to be 

uploaded to the cloud, but certain delay time is 

allowable. We improved the online algorithm provided 

in [12] to achieve a better result for reducing the 

bandwidth cost of data centers. We will discuss related 

work that other scholars have studied in Section 2, and 

especially focus on the research of uploading 

deferrable big data. Section 3 briefly introduces the 

MapReduce framework at first, and then presents the 

bandwidth cost model. We discuss two scenarios and 

propose algorithms that can further reduce the 

bandwidth cost. The evaluation results are in Section 4. 

Finally, we conclude the paper in Section 5. 

2 Related Work 

In the era of cloud computing, the cost of large-scale 

data centers has drawn a lot of attention. Many factors 

will affect the total cost of data centers, while the 

power consumption and the bandwidth occupation are 

the two major ones. Comparatively speaking, the 

research on how to reduce power consumption starts 

earlier. Yao et al. [13] initially provide an optimal 

offline algorithm, the YDS algorithm, to minimize the 

power consumption by scaling CPU speed. They 

assume that the power consumption is a convex 

function of the CPU speed. After that, researchers 

carry out several extension work from different aspects. 

For example, by adopting the total volume based 

energy charge, computed by integrating instantaneous 

power consumption over time, Albers et al. [14] design 

an online algorithm for multi-processor job scheduling 

without inter-process job migration. Adnan et al. [15] 

consider deadline constraints and analyze the energy 

minimization problem in a data center when available 

deadline information of the workload can be used to 

defer job execution for reduced energy consumption. 

The initial research on the cost of big data 

transmission has a basic assumption that all the data 

has to be uploaded immediately. Cho et al. [16] work 

with total volume based charge model and design a 

static cost-aware planning system for transferring large 

amounts of data to the cloud provider via both the 

Internet and courier services. Considering a dynamic 

transfer scheme, Zhang et al. [17] propose two online 

algorithms to minimize the total transfer cost. 

However, as mentioned in the previous chapter, ISPs 

tend to employ the percentile charge model. Therefore, 

Goldenberg et al. [6] study the multi-homing problem 

under 95-percentile traffic charge model. Grothey et al. 

[8] investigate a similar problem through a stochastic 

dynamic programming approach. They both leverage 

ISP subscription switching for traffic engineering to 

minimize the charge volume. 

Golubchik et al. [18] carry out the first research 

pointing out the deferrable data transmission problem. 

The authors focus exclusively on the single point-to-

point link case. They propose an online algorithm 

called Simple Smoothing Algorithm (SSA). This 

algorithm involves evenly smoothing every input 

across its window of tolerable delay for upload. 

Although SSA is really a simple algorithm, it can 

approach the offline optimum within a small constant 

under the MAX model. 

In [9], the authors assume that ISPs adopt the MAX 

contract model and study how to minimize the 

bandwidth cost for uploading deferral big data to a 

cloud platform for processing by a MapReduce 

framework. They first analyze the single ISP case and 

then generalize to the MapReduce framework over a 

cloud platform. In the single ISP case, they design a 

Heuristic Smoothing Algorithm (HSA) whose worst-

case competitive ratio is proved to fall between 

2 1/( 1)D− +  and 2(1 1/ )e− , where D  is the maximum 

tolerable delay. In the cloud scenario, they employ the 

HSA as a building block, and design an efficient 

distributed randomized online algorithm, achieving a 

constant expected competitive ratio. 

Inspired by [9], our research team successively 

propose Dynamic Self-adaption Algorithm (DSA) [19] 

and Improved Dynamic Self-adaption Algorithm 

(IDSA) [20] for the cloud scenario, and compare the 

experimental results with the randomized online 

algorithm in [9]. On this basis, [12] extends the HSA to 

support multiply deferrable big data, which are 

produced by local cloud users and have its own delay 

window sizes. The paper studies a basic single ISP 

case at first and proposes a Multi-Heuristic Smoothing 

Algorithm (MHSA) for the single case. It is proved 

that the worst-case competitive ratio of the MHSA falls 

between 2(1 (1 ) )max
D

max
D− −  and 2, where 

max
D  is the 

maximum delay window size. For the cloud scenario, 
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[12] designs the Multi-Dynamic Self-Adaption 

Algorithm (MDSA) to optimize the cloud scenario 

based on the Multi-Heuristic Smoothing Algorithm. 

The simulation experiments demonstrate that the total 

cost can be reduced by 12% when adopting the Multi-

Dynamic Self-Adaption Algorithm. 

3 System Model 

In order to go on with the previous research work in 

[12], we assume that cloud users keep generating large 

amounts of local data at all hours and employ the 

MapReduce framework on the cloud computing 

platform to carry out their big data analysis jobs. The 

cloud computing platform is made up of 

geographically distributed data centers. Some of these 

data centers work as Mappers, while others work as 

Reducers. During a MapReduce processing job, the 

first thing that users have to do is uploading data to a 

data center, which works as a Mapper. After that, the 

intermediate data generated by Mappers will be sent to 

certain data centers which are responsible for the 

reducing jobs. The ISPs employed between users and 

Mappers, Mappers and Reducers are probably different, 

and have their own charge models. 

Moreover, the most important hypothesis here is that 

the data generated by users is deferrable. In other 

words, a reasonable amount of uploading delay (often 

specified in service level agreement, or SLA) is 

tolerable by cloud users. In our research, we will not 

restrict the allowable delay time to the same value. 

Inside, we focus on the deferrable big data which has 

different delay window sizes. 

Later in this chapter, we will define the 

mathematical model of bandwidth cost minimization 

problem. Two simplified scenarios will be discussed 

based on this model. First, we will consider the single 

ISP case which means there is only one Mapper and 

one Reducer with only one ISP between them. After 

that, we will extend the single ISP case to the cloud 

scenario that contains multiple Mappers and Reducers 

with different ISPs between these data centers. Figure 

1 shows the network structure used to carry out 

experiments in the cloud scenario. There are five data 

centers in this cloud computing platform. As shown in 

the figure, DC1, DC2 and DC3 are Mappers, while 

DC4 and DC5 are Reducers.  

But before all of these, we will make a brief 

introduction to the MapReduce framework. 

3.1 MapReduce 

MapReduce is a parallel architecture for large scale 

data processing [10]. A typical MapReduce program 

contains two critical functions called Map and Reduce. 

The Map function maps a key/value pair (K1, V1) of 

the input data to a temporary key/value pair (K2, V2). 

Each key/value is independent of the operation and  

 

Figure 1. Data centers of MapReduce framework 

does not modify the original data, so the Map operation 

can be highly parallel. 

The Reduce function receives keys for specific K2 

of a group of temporary key/value pairs, merging these 

results to obtain the final result (K2, V3), where key 

K2 is constant. It is relatively difficult to achieve a 

number of parallel reductions. 

Besides these two functions, there are some more 

functions available. For example, there are some 

optional steps before the Reduce function, such as 

Combine, Shuffle and Sort. We will ignore these steps 

in our discussion. In addition, the time consumption of 

the Map function is also ignored in our following 

model. 

3.2 Mathematical Model of Bandwidth Cost 

Minimization 

Let M  and R  represent the set of Mapper data 

centers and Reducer data centers. 
m

ISP  (m M∈ ) is the 

ISP employed between the user and Mapper m . The 

maximum traffic volumn of 
m

ISP  in a charging cycle is 

denoted as .

max

m
V  Similarly, we use 

m,r
ISP  

( , )m M r R∈ ∈  to represent the ISP employed between 

Mapper m  and Reducer r , and the maximum traffic 

volumn of 
m,r

ISP  in a charging cycle is denoted as 

,

.

max

m r
V  

We assume that all the ISPs employ the MAX 

contract model. Therefore, the cost function of 
m

ISP  

can be denoted as ( ),max

m m
f V  and the cost function of 

m,r
ISP  can be denoted as 

, ,

( ).max

m r m r
f V  As discussed 

above, the two cost function 
m
f  and 

,m r
f  are both non-

decreasing and convex. So, our work now is to build a 

mathematical model to minimize the sum of all these 

m
f  and 

,m r
f  under certain constraints. 

When a workload is generated by the user, its 

maximum delay window size is also specified.We use 

i
D  to represent one of multi-delay window sizes of 
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workloads. Let 
1 2

{ , , , }.
max i

D Max D D D= …  We use 
i

t
W  to represent each workload released at the user 

location at time slot t  with the delay window size 
i

D . 

Let ,

,

m i

t d
x  be a decision variable indicating the 

proportion of the workload i

t
W  assigned to the Mapper 

m  at time slot .t d+  According to the definition of 
,

,

m i

t d
x , we have: 

 ,

,

0 1,
m i

t d
x m M≤ ≤ ∀ ∈  (1) 

We denote 

 ,

,

0

, ,

i
D

m i

m t d

d

n x t m

=

= ∀∑  (2) 

To ensure all workloads can be uploaded to the 

cloud, we have: 

 1
m

m

n =∑  (3) 

In time slot t , the traffic volumn t

m
V  between the 

user and mapper is: 

 ,

,

0

i

i

i

D

Dt m i

m t d t d d

D d

V W x m
− −

=

= ∀∑∑  (4) 

max

m
V  is the maximum traffic volumn of 

m
ISP , so: 

 0
max t

m m
V V t− ≥ ∀  (5) 

Next, we calculate the traffic volumn between 

Mapper and Reducer. We assume that the ratio of the 

size of a mapper’s output data to the size of a reducer’s 

input data is β . Let 
,

t

m r
y  represents the portion of the 

output of Mapper m  that is transmitted to Reducer  at 

time slot t . So we have: 

 
, ,

t t t

m r m m r
V V yβ=  (6) 

Similarly, we know that 
,

t

m r
V  satisfies: 

 
, ,

0
max t

m r m r
V V t− ≥ ∀  (7) 

In general, the bandwidth cost of data centers can be 

calculated by adding the cost funtions of the user-to-

mapper part and the mapper-to-reducer part. Therefore, 

the expression of the overall traffic cost is 

, ,

,

( ) ( ).max max

m m m r m r

m m r

f V f V+∑ ∑  Taking the constraints 

into consideration, we obtain the mathematical model 

of the overall traffic cost-minimization problem under 

the MAX contract charge model as: 

 
, ,

,

( ) ( )max max

m m m r m r

m m r

min f V f V+∑ ∑  (8) 

Subject to 

 
,

0

, , ,

i
D

m,i

t d m

t

x n t i m

Δ =

= ∀∑  (8-1) 

 1
m

m

n =∑  (8-2) 

 
,

0 1, ,
m,i

t d
x m i M≤ ≤ ∀ ∈  (8-3) 

 0
max t

m m
V V t− ≥ ∀  (8-4) 

 
, ,

0
max t

m r m r
V V t− ≥ ∀  (8-5) 

3.3 Single ISP Case 

In the single ISP case, we assume that there is only 

one mapper and one reducer in the cloud, and all data 

centers employ a single ISP. In this case, the 

bandwidth cost minimization model can be simplified 

as: 

 min V  (9) 

Subject to 

 
,

0

, , ,

i
D

m,i

t d m

t

x n t i m

Δ =

= ∀∑  (9-1) 

 1
m

m

n =∑  (9-2) 

 
,

0 1, ,
m,i

t d
x m i M≤ ≤ ∀ ∈  (9-3) 

 0
max t

m m
V V t− ≥ ∀  (9-4) 

The workloads in this case are generated with 

multiple delay window sizes. Following the method in 

[12], we put the workloads with the same delay 

window size into a queue and try to smooth the peak 

volume of transmission in one charging cycle with 

respect to queues. We know from Theorem 4 in [12] 

that without considering whether max

i
V  (which 

represents the peak volume for each queue i ) is greater 

than max

V , max

V  can be reduced to a smaller value of 

peak volume for the time slot τ  if the principle 

proposed in [9] is used. Accordingly, we use Multi-

Heuristic Smoothing Algorithm to cope with the 

multiple window delay sizes that every workload might 

have. The main idea of this Multi-Heuristic Smoothing 

Algorithm was inspired by the Simple Smoothing 

Algorithm in [18] and the Heuristic Smoothing 

Algorithm in [9]. The workload is divided into uniform 

parts to upload so that unreasonable peaks, such as 

scheduling all workloads to be transmitted in one or 

few time slots, can be avoided. 

After observing the experimental results in [12], we 

can find out there is still space to reduce the peak of 
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transmission. Let D  represent the number of 

deferrable time slots in an entire charging cycle. If 
max

V D×  is greater than the sum of all workloads 

generated in this charge cycle, it indicates that some 

capacity of transmission is wasted. For example, when 

the Multi-Heuristic Smoothing Algorithm is applied, 

there is just a few workloads need to be uploaded in the 

first time slot. Therefore, the maximum transmission of 

the first time slot is the lowest in the whole charging 

cycle. The following few time slots are generally lower 

than the latter slots, and the latter slots tend to have a 

greater value of transmission. This is because max

V  is 

calculated based on both accumulation and the capacity 

of transmission. If the transmission capacity left can 

not guarantee to upload all the data on time, we have to 

increase max
V  further. 

Inspired by the analysis above, we try to enlarge the 

capacity of transmission of the first slot several times 

by simply multiplying a factor ψ , and design a new 

algorithm called the Zoom-Heuristic Smoothing 

Algorithm. The Zoom-Heuristic Smoothing Algorithm 

is shown below: 

 

 

Algorithm 1. The Zoom-Heuristic Smoothing Algorithm 

(ZHSA) 

1: 0, , 1, ..., ;
max max,

V V i
λ
λ= =  

2: 0, 1, ..., ; 1, ..., ;
T

W T D T i
λ

λ
τ λ= ∀ = − + =  

3: 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =  

4: for τ  = 1 to T do  

5:    for 1λ =  to i  do  

6:        1

d

max, d

W H

V
D

τ

λ λ

τ

λ

τ

λ

=

+

=

∑
 

7:    end for 

8:    
,

,{ } , 1, ...,
max

max

max

V D
V Max Max V i

D

λ

τ λ λ τ λ

τ
λ

⎧ ⎫∑
= =⎨ ⎬

⎩ ⎭
 

9:    if ,

max

V V
τ

<  then  

10:       max

V V
τ

<  

11:       if 1,τ =  then 

12:         max max

V V ψ= ×  

13:       end if 

14:   end if 

15:   for 1λ =  to i  do 

16:       Transfer the workload following Earliest Deadline  

First (EDF) strategy under the maximum volume  

.

max

V  

17:       update 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =  

18:   end for 

19: end for 

 

 

Different from the smoothing strategy used in the 

former research, we now try to reduce the bandwidth 

cost by choosing a better initial value of max

V . 

The Zoom-Heuristic Smoothing Algorithm shows 

that a larger initial value is able to improve the total 

transmission volume of an entire charging cycle. On 

the other hand, if the initial value is set too high, the 

bandwidth for transmission will eventually be wasted. 

Therefore, choosing a reasonable initial value is quite 

necessary.  

According to different research purposes and 

assumptions, several models have been developed to 

describe the variation of network traffic. Since our 

focus in this paper is on minimizing the cost in the 

charging cycles of ISPs, we assume the network traffic 

varies corresponding to the charging cycle. The total 

transmission volume in a charging cycle is periodic. 

According to the Zoom Algorithm, the initial value is 

calculated as max

V  multiplied by a factor. However, 

this algorithm does not take the variation of network 

traffic into account. Therefore, we take V λ

τ
ω×  as the 

initial value for charging cycles, and fine-tune the 

factor ω  based on the features of input workloads. 

According to this idea, a new algorithm is designed, 

which is called Fast Start Heuristic Smoothing 

Algorithm. The new algorithm is shown below: 
 

 

Algorithm 2.  The Fast Start Heuristic Smoothing 

Algorithm (FSHSA) 

1: 0, , 1, ..., ;
max max,

V V i
λ
λ= =  

2: 0, 1, ..., ; 1, ..., ;
T

W T D T i
λ

λ
τ λ= ∀ = − + =  

3: 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =  

4: for τ  = 1 to T do  

5:    for 1λ =  to i  do  

6:        1

d

max, d

W H

V
D

τ

λ λ

τ

λ

τ

λ

=

+

=

∑
 

7:    end for 

8:    
,

,{ } , 1, ...,
max

max

max

V D
V Max Max V i

D

λ

τ λ λ τ λ

τ
λ

⎧ ⎫∑
= =⎨ ⎬

⎩ ⎭
 

9:    if ,

max

V V
τ

<  then  

10:       max

V V
τ

<  

11:       if 1,τ =  then 

12:         max

V V
λ

τ
ω= ×  

13:       end if 

14:   end if 

15:   for 1λ =  to i  do 

16:       Transfer the workload following Earliest Deadline  

First (EDF) strategy under the maximum volume  

.

max

V  

17:       update 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =  

18:   end for 

19: end for 
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3.4 Cloud Scenario 

Now we extend the single ISP case to the cloud 

scenario.  

In the real world, cloud computing platforms usually 

have multiple Mappers and multiple Reducers, with 

multiple different ISPs employed between these data 

centers. To simplify the discussion, we assume that all 

the ISPs between cloud users and Mappers use the 

same cost function 
m
f . Similarly, we assume that all 

the cost function between Mappers and Reducers are 

also identical. We further assume that 
,m m r

f f= . Since 

the cost function is non-decreasing and convex, we 

choose the cost function as 2

,
.

m m r
f f x= =  

After the charging function is fixed, we can further 

improve the algorithm in [12] by using a variation of 

the Cauchy inequality. The Cauchy inequality is shown 

below: 

 2 2 2

1 1 1

( )
n n n

i i i i

i i i

a b a b

= = =

≥∑ ∑ ∑  (10) 

Let 1,
i
b =  then we have 2 2 2

0 1
( )

n
a a a+ + ≥�  

2

0 1
( )

.n
a a a

n

+ +
≥

�

 The condition of equality is 

0 1
.

n
a a a= = =�  

Let 
i
a  represent the final max

V  of each data center. 

Then, when the max

V  of these data centers are 

generally equal to each other, the total cost on 

bandwidth of data centers will be minimized. 

Based on the analysis above, we use a two-step 

dynamic programming to optimize the transmission 

cost in the cloud scenario. First, we decide the 

workload assigned to each Mapper. Then, the method 

in the single ISP case is used, which eventually helps 

to improve the entire effect. 

In order to decide the workload assignment in the 

first step, a function Φ(ϕ) is defined.  

 
( )

( , )
( )

max,m

max d

max,m

V D H
V D

V D

× − ∑
Φ =

×
 (11) 

According to the conclusion of Cauchy inequality, 

which claims that the total cost on bandwidth of data 

centers will be minimized when the max

V  of these data 

centers are generally equal to each other, we use a 

greedy algorithm and assign workload to the data 

center whose current transmission capacity is relatively 

lower than others with higher priority. In the second 

step, we use the Fast Start Heuristic Smoothing 

Algorithm provided in the former section to optimize 

the peak transmission volumn for each data center. 

The updated algorithm for cloud scenario is shown 

below: 

 

 

Algorithm 3. The Updated Muti-Dynamic Self-Adaption 

Algorithm 

1: Workload queue is generated: 
m

E n=  

2: while(
m

E ) 

3:    1, 0
max

χ = Δ =  

4:    for 1M =  to m  

5:        
( )

( , )
( )

max,m

max,m max d

max max,m

max

V D H
V D

V D

λ
× −∑∑

Φ =
×

 

6:        if ( , )max,m

max
V DΔ < Φ  

7:            ( , )max,m

max
V DΔ = Φ  

8:            Mχ =  

9:        end if 

10:   end for  

11:   For each ISP χ , apply the single ISP algorithm, e.g.,  

FSHSA to schedule the traffic. 

12:   update 
m

E  

4 Performance Evaluation 

We implement the experiment to simulate the peak 

trend. The simulation environment built in [12] is 

updated according to the new algorithms proposed in 

this paper. The default input is generated uniformly at 

random, as shown in Figure 2, where all data are 

normalized. We set the charging cycle to have 130 

time slots and the max delay size to be 30 time slots. 

First, we make a comparison between the Zoom-

Heuristic Algorithm and the Multi-Heuristic 

Smoothing Algorithm. Figure 3 to Figure 6 show the 

trend of max

V  when the number of deferrable upload 

queues equals to 3, 6, 9 and 15. 

 

Figure 2. Data input of Gaussian distribution 

 

Figure 3. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=3 
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Figure 4. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=6 

 

Figure 5. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=9 

 

Figure 6. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=15 

We find that the performance optimization achieved 

varies according to different numbers of queues. The 

best optimization result of 9.3% is achieved when the 

number of queues is 9. However, the optimized result 

is only 2.5% in the worst case. These results show that 

the initial value plays an important role during a 

charging cycle. As a user’s uploading job proceeds, the 

peak volume of each queue has to be increased 

accordingly in order to guarantee that all the data 

uploading tasks can be finished in the allowable delay 

window sizes. The initial value for the difference 

queue is generally not the same, but in the Zoom-

Heuristic Smoothing Algorithm, the initial value is 

positively related to the task volume. 

For the Fast Start Heuristic Smoothing Algorithm, 

we implement the experiment where the number of 

window size queues is 3, 6, 9 and 15 in the single ISP 

case, and we compare these results with Multi-

Heuristic Smoothing Algorithm. We carry out 

experiments and fine-tune the factor .ω  The 

experiment shows that the best optimization result can 

be achieved when ω  equals to 0.43. The comparison 

between Fast Start Heuristic Smoothing Algorithm and 

MHSA are shown in Figure 7 to Figure 10. 

 

Figure 7. Fast Start Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=3 

 

Figure 8. Fast Start Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=6 

 

Figure 9. Fast Start Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=9 
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Figure 10. Fast Start Heuristic Smoothing vs Multi-

Heuristic Smoothing num=15 

The improvement of Fast Start Heuristic Smoothing 

Algorithm is obvious. Since it tends to choose a larger 

initial value, the bandwidth in the earlier time slots are 

used efficiently. The bandwidth saved in the early 

stage can reduce the maximum value needed to get the 

whole data uploading job done. 

For the cloud scenario, we assume there are five data 

centers with the MapReduce framework applied, as 

shown in Figure 1. The Updated Multi-Dynamic Self-

Adaption Algorithm is implemented. The charge 

function that we adopt is 2

,
( ) ( ) ,

m m r
f x f x x= =  and we 

assume β  = 1. The normalized scheduled traffic of 

five data centers is shown in Figure 11.  

 

Figure 11. The normalized scheduled traffic of 5 data 

centers with Multi-ISPs using the Updated Muti-

Dynamic Self-Adaption Algorithm. 

As illustrated, after about 20 time slots, the traffic of 

the five data centers become almost identical, which 

means the total cost on bandwidth is minimized. 

5 Conclusion 

This paper focuses on minimizing the bandwidth 

cost of data centers in the cloud environment and tries 

to reduce the cost by leveraging the deferrable 

characteristic of big data. Based on the previous work, 

we further study the influence of initial maximum 

transmission capacity to the bandwidth cost of data 

centers. We propose the Zoom-Heuristic Smoothing 

Algorithm and the Fast Start Heuristic Smoothing 

Algorithm. Both algorithms try to increase the initial 

transmission capacity to leverage the space in the 

earlier time slots. The experiments show that the peak 

value can be reduced by choosing a larger initial value. 

We also discuss how to assign workloads among 

data centers in the cloud scenario. We point out that the 

total bandwidth cost of data centers will be minimal 

when max

V  of these data centers are generally equal to 

each other. Besides, we propose an Updated Multi-

Dynamic Self-Adaption Algorithm for the cloud 

scenario and carry out validation experiments. 

In order to do our work, we make many assumptions 

to the model. Some of these assumptions are too 

idealistic and inappropriate for real world scenarios. In 

future work, we will extend the model and continue to 

study how to reduce the bandwidth cost of data centers. 
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