
Moving Deferrable Big Data to the Cloud by Adopting an Online Cost-Minimization Approach 1209

Moving Deferrable Big Data to the Cloud by Adopting an Online

Cost-Minimization Approach

Baojiang Cui, Xiaohui Jin, Peilin Shi*

School of Cyberspace Security, Beijing University of Posts and Telecommunications, China

Nation Engineering Laboratory for Mobile Network, China

cuibj@bupt.edu.cn, jinxiaohui@bupt.edu.cn, noahstone@163.com

*Corresponding Author: Xiaohui Jin; E-mail: jinxiaohui@bupt.edu.cn

DOI: 10.3966/160792642018081904023

Abstract

As cloud computing gets popular in recent years, the

bandwidth cost of data centers becomes a hot research

topic. For the analysis jobs based on MapReduce

framework, locally generated big data usually does not

need uploading immediately. Instead, certain delay is

tolerable. Therefore, we can use the allowable delay time

to optimize the bandwidth usage and minimize the cost.

In this paper, we discuss how to use the allowable

delay window that a given workload has and propose two

algorithm to reduce peak volume by increasing the

maximum transmission of early stages. The experiments

show that the peak value can be reduced by choosing a

larger initial value.

Besides, we also discuss how to assign workloads

among data centers in the cloud scenario. We point out

that the total bandwidth cost of data centers will be

minimal when the maximum transmission capacity of

these data centers are generally equal to each other.

Keywords: Cloud computing, Bandwidth, Map reduce,

Zoom-heuristic smoothing algorithm, Fast

start heuristic smoothing algorithm

1 Introduction

There are many cloud service providers at present,

providing us with a wide variety of cloud service.

Among all these cloud service providers, Amazon [1],

Google [2], Microsoft [3] and Alibaba [4] are the best-

known vendors. Cloud computing is highly elastic and

allows on-demand access to computing resources. It

has already brought great convenience to users and is

well accepted in many ways. A great deal of Internet

applications are running on the cloud. Many medium

and small-sized enterprises tend to build their online

application systems by renting cloud services.

In addition to online application systems, data

analysis is also an important category of cloud

computing applications. As the fourth paradigm of

scientific research [5] is eventually accepted, people

are getting used to making decisions based on data

analysis. To cope with the big data challenge, the cloud

platform with highly flexible computing power is a

natural choice. However, cloud users have to upload a

great amount of local generated data to the cloud

before executing their data analysis jobs.

As we know, a large number of data centers, which

are typically geographically distributed, bear the cloud

services. In order to transmit data from cloud users to

data centers, we have to rent the transmission

bandwidth offered by Internet Service Providers (ISPs).

However, the bandwidth cost charged by ISPs is not

cheap. Like the power consumption problem, the

bandwidth cost is also not ignorable for the total cost

of data centers. Therefore, in order to provide cost-

effective cloud computing services to the users,

researchers are exploring methods to reduce the

bandwidth cost of data centers.

In general, Most ISPs do not use the total-volume

based charge model or the flat-rate charge model.

Instead, they have adopted a so-called θ-th percentile

charge model. In the θ-th percentile charge model, the

ISP divides the charge period, e.g., 30 days, into small

intervals of equal fixed length, e.g., 5 minutes.

Statistical logs summarize traffic volumes witnessed in

different time intervals, sorted in ascending order. The

traffic volume of the θ-th percentile interval is chosen

as the charge volume. For example, let θ=95, the cost

is proportional to the traffic volume sent in the 8208-th

(95% × 30 × 24 × 60/5 = 8208) interval in the sorted

list [6-8]. The MAX contract model is simply the 100-

th percentile charge scheme. Such percentile charge

models are perhaps less surprising when one considers

the fact that the cost of infrastructure is more closely

related to the peak than the average demand [9].

According to this kind of charge model, we can find

that peak usage determines not only the network

bandwidth of the month, but also the cost of data

centers. Therefore, we should try to work out the

optimization method by taking full advantage of the

characteristics of data analysis jobs. Luckily, different

from online applications, certain delay when uploading

data is tolerable in the most of analysis jobs. In this

1210 Journal of Internet Technology Volume 19 (2018) No.4

case, we can use the allowable delay window size to

optimize the bandwidth usage and minimize the cost.

More specifically, we study the case when users use

MapReduce framework to do data analysis. Google

engineers originally propose the MapReduce

framework [10], which quickly becomes one of the

most popular computing models in the field of big data

analysis. Recently, Google claims they have already

abandoned MapReduce [11]. However, there is still a

large number of real world applications using this

framework. Moreover, MapReduce represents a

general pipeline model in cloud computing. Other

newly developed frameworks will continue to employ

the design philosophy behind it. In our research, we

assume that Mappers and Reducers are geographically

distributed, and they connect with each other by

employing the transmission services provided by

different ISPs. Cloud users will generate plenty of local

data, which needs to be uploaded to the data centers

while certain delay is tolerable.

In this paper, we focus on minimizing the bandwidth

cost when uploading deferrable big data. Deferrable

here means that all of the generated data has to be

uploaded to the cloud, but certain delay time is

allowable. We improved the online algorithm provided

in [12] to achieve a better result for reducing the

bandwidth cost of data centers. We will discuss related

work that other scholars have studied in Section 2, and

especially focus on the research of uploading

deferrable big data. Section 3 briefly introduces the

MapReduce framework at first, and then presents the

bandwidth cost model. We discuss two scenarios and

propose algorithms that can further reduce the

bandwidth cost. The evaluation results are in Section 4.

Finally, we conclude the paper in Section 5.

2 Related Work

In the era of cloud computing, the cost of large-scale

data centers has drawn a lot of attention. Many factors

will affect the total cost of data centers, while the

power consumption and the bandwidth occupation are

the two major ones. Comparatively speaking, the

research on how to reduce power consumption starts

earlier. Yao et al. [13] initially provide an optimal

offline algorithm, the YDS algorithm, to minimize the

power consumption by scaling CPU speed. They

assume that the power consumption is a convex

function of the CPU speed. After that, researchers

carry out several extension work from different aspects.

For example, by adopting the total volume based

energy charge, computed by integrating instantaneous

power consumption over time, Albers et al. [14] design

an online algorithm for multi-processor job scheduling

without inter-process job migration. Adnan et al. [15]

consider deadline constraints and analyze the energy

minimization problem in a data center when available

deadline information of the workload can be used to

defer job execution for reduced energy consumption.

The initial research on the cost of big data

transmission has a basic assumption that all the data

has to be uploaded immediately. Cho et al. [16] work

with total volume based charge model and design a

static cost-aware planning system for transferring large

amounts of data to the cloud provider via both the

Internet and courier services. Considering a dynamic

transfer scheme, Zhang et al. [17] propose two online

algorithms to minimize the total transfer cost.

However, as mentioned in the previous chapter, ISPs

tend to employ the percentile charge model. Therefore,

Goldenberg et al. [6] study the multi-homing problem

under 95-percentile traffic charge model. Grothey et al.

[8] investigate a similar problem through a stochastic

dynamic programming approach. They both leverage

ISP subscription switching for traffic engineering to

minimize the charge volume.

Golubchik et al. [18] carry out the first research

pointing out the deferrable data transmission problem.

The authors focus exclusively on the single point-to-

point link case. They propose an online algorithm

called Simple Smoothing Algorithm (SSA). This

algorithm involves evenly smoothing every input

across its window of tolerable delay for upload.

Although SSA is really a simple algorithm, it can

approach the offline optimum within a small constant

under the MAX model.

In [9], the authors assume that ISPs adopt the MAX

contract model and study how to minimize the

bandwidth cost for uploading deferral big data to a

cloud platform for processing by a MapReduce

framework. They first analyze the single ISP case and

then generalize to the MapReduce framework over a

cloud platform. In the single ISP case, they design a

Heuristic Smoothing Algorithm (HSA) whose worst-

case competitive ratio is proved to fall between

2 1/(1)D− + and 2(1 1/)e− , where D is the maximum

tolerable delay. In the cloud scenario, they employ the

HSA as a building block, and design an efficient

distributed randomized online algorithm, achieving a

constant expected competitive ratio.

Inspired by [9], our research team successively

propose Dynamic Self-adaption Algorithm (DSA) [19]

and Improved Dynamic Self-adaption Algorithm

(IDSA) [20] for the cloud scenario, and compare the

experimental results with the randomized online

algorithm in [9]. On this basis, [12] extends the HSA to

support multiply deferrable big data, which are

produced by local cloud users and have its own delay

window sizes. The paper studies a basic single ISP

case at first and proposes a Multi-Heuristic Smoothing

Algorithm (MHSA) for the single case. It is proved

that the worst-case competitive ratio of the MHSA falls

between 2(1 (1))max
D

max
D− − and 2, where

max
D is the

maximum delay window size. For the cloud scenario,

Moving Deferrable Big Data to the Cloud by Adopting an Online Cost-Minimization Approach 1211

[12] designs the Multi-Dynamic Self-Adaption

Algorithm (MDSA) to optimize the cloud scenario

based on the Multi-Heuristic Smoothing Algorithm.

The simulation experiments demonstrate that the total

cost can be reduced by 12% when adopting the Multi-

Dynamic Self-Adaption Algorithm.

3 System Model

In order to go on with the previous research work in

[12], we assume that cloud users keep generating large

amounts of local data at all hours and employ the

MapReduce framework on the cloud computing

platform to carry out their big data analysis jobs. The

cloud computing platform is made up of

geographically distributed data centers. Some of these

data centers work as Mappers, while others work as

Reducers. During a MapReduce processing job, the

first thing that users have to do is uploading data to a

data center, which works as a Mapper. After that, the

intermediate data generated by Mappers will be sent to

certain data centers which are responsible for the

reducing jobs. The ISPs employed between users and

Mappers, Mappers and Reducers are probably different,

and have their own charge models.

Moreover, the most important hypothesis here is that

the data generated by users is deferrable. In other

words, a reasonable amount of uploading delay (often

specified in service level agreement, or SLA) is

tolerable by cloud users. In our research, we will not

restrict the allowable delay time to the same value.

Inside, we focus on the deferrable big data which has

different delay window sizes.

Later in this chapter, we will define the

mathematical model of bandwidth cost minimization

problem. Two simplified scenarios will be discussed

based on this model. First, we will consider the single

ISP case which means there is only one Mapper and

one Reducer with only one ISP between them. After

that, we will extend the single ISP case to the cloud

scenario that contains multiple Mappers and Reducers

with different ISPs between these data centers. Figure

1 shows the network structure used to carry out

experiments in the cloud scenario. There are five data

centers in this cloud computing platform. As shown in

the figure, DC1, DC2 and DC3 are Mappers, while

DC4 and DC5 are Reducers.

But before all of these, we will make a brief

introduction to the MapReduce framework.

3.1 MapReduce

MapReduce is a parallel architecture for large scale

data processing [10]. A typical MapReduce program

contains two critical functions called Map and Reduce.

The Map function maps a key/value pair (K1, V1) of

the input data to a temporary key/value pair (K2, V2).

Each key/value is independent of the operation and

Figure 1. Data centers of MapReduce framework

does not modify the original data, so the Map operation

can be highly parallel.

The Reduce function receives keys for specific K2

of a group of temporary key/value pairs, merging these

results to obtain the final result (K2, V3), where key

K2 is constant. It is relatively difficult to achieve a

number of parallel reductions.

Besides these two functions, there are some more

functions available. For example, there are some

optional steps before the Reduce function, such as

Combine, Shuffle and Sort. We will ignore these steps

in our discussion. In addition, the time consumption of

the Map function is also ignored in our following

model.

3.2 Mathematical Model of Bandwidth Cost

Minimization

Let M and R represent the set of Mapper data

centers and Reducer data centers.
m

ISP (m M∈) is the

ISP employed between the user and Mapper m . The

maximum traffic volumn of
m

ISP in a charging cycle is

denoted as .

max

m
V Similarly, we use

m,r
ISP

(,)m M r R∈ ∈ to represent the ISP employed between

Mapper m and Reducer r , and the maximum traffic

volumn of
m,r

ISP in a charging cycle is denoted as

,

.

max

m r
V

We assume that all the ISPs employ the MAX

contract model. Therefore, the cost function of
m

ISP

can be denoted as (),max

m m
f V and the cost function of

m,r
ISP can be denoted as

, ,

().max

m r m r
f V As discussed

above, the two cost function
m
f and

,m r
f are both non-

decreasing and convex. So, our work now is to build a

mathematical model to minimize the sum of all these

m
f and

,m r
f under certain constraints.

When a workload is generated by the user, its

maximum delay window size is also specified.We use

i
D to represent one of multi-delay window sizes of

1212 Journal of Internet Technology Volume 19 (2018) No.4

workloads. Let
1 2

{ , , , }.
max i

D Max D D D= … We use
i

t
W to represent each workload released at the user

location at time slot t with the delay window size
i

D .

Let ,

,

m i

t d
x be a decision variable indicating the

proportion of the workload i

t
W assigned to the Mapper

m at time slot .t d+ According to the definition of
,

,

m i

t d
x , we have:

 ,

,

0 1,
m i

t d
x m M≤ ≤ ∀ ∈ (1)

We denote

 ,

,

0

, ,

i
D

m i

m t d

d

n x t m

=

= ∀∑ (2)

To ensure all workloads can be uploaded to the

cloud, we have:

 1
m

m

n =∑ (3)

In time slot t , the traffic volumn t

m
V between the

user and mapper is:

 ,

,

0

i

i

i

D

Dt m i

m t d t d d

D d

V W x m
− −

=

= ∀∑∑ (4)

max

m
V is the maximum traffic volumn of

m
ISP , so:

 0
max t

m m
V V t− ≥ ∀ (5)

Next, we calculate the traffic volumn between

Mapper and Reducer. We assume that the ratio of the

size of a mapper’s output data to the size of a reducer’s

input data is β . Let
,

t

m r
y represents the portion of the

output of Mapper m that is transmitted to Reducer at

time slot t . So we have:

, ,

t t t

m r m m r
V V yβ= (6)

Similarly, we know that
,

t

m r
V satisfies:

, ,

0
max t

m r m r
V V t− ≥ ∀ (7)

In general, the bandwidth cost of data centers can be

calculated by adding the cost funtions of the user-to-

mapper part and the mapper-to-reducer part. Therefore,

the expression of the overall traffic cost is

, ,

,

() ().max max

m m m r m r

m m r

f V f V+∑ ∑ Taking the constraints

into consideration, we obtain the mathematical model

of the overall traffic cost-minimization problem under

the MAX contract charge model as:

, ,

,

() ()max max

m m m r m r

m m r

min f V f V+∑ ∑ (8)

Subject to

,

0

, , ,

i
D

m,i

t d m

t

x n t i m

Δ =

= ∀∑ (8-1)

 1
m

m

n =∑ (8-2)

,

0 1, ,
m,i

t d
x m i M≤ ≤ ∀ ∈ (8-3)

 0
max t

m m
V V t− ≥ ∀ (8-4)

, ,

0
max t

m r m r
V V t− ≥ ∀ (8-5)

3.3 Single ISP Case

In the single ISP case, we assume that there is only

one mapper and one reducer in the cloud, and all data

centers employ a single ISP. In this case, the

bandwidth cost minimization model can be simplified

as:

 min V (9)

Subject to

,

0

, , ,

i
D

m,i

t d m

t

x n t i m

Δ =

= ∀∑ (9-1)

 1
m

m

n =∑ (9-2)

,

0 1, ,
m,i

t d
x m i M≤ ≤ ∀ ∈ (9-3)

 0
max t

m m
V V t− ≥ ∀ (9-4)

The workloads in this case are generated with

multiple delay window sizes. Following the method in

[12], we put the workloads with the same delay

window size into a queue and try to smooth the peak

volume of transmission in one charging cycle with

respect to queues. We know from Theorem 4 in [12]

that without considering whether max

i
V (which

represents the peak volume for each queue i) is greater

than max

V , max

V can be reduced to a smaller value of

peak volume for the time slot τ if the principle

proposed in [9] is used. Accordingly, we use Multi-

Heuristic Smoothing Algorithm to cope with the

multiple window delay sizes that every workload might

have. The main idea of this Multi-Heuristic Smoothing

Algorithm was inspired by the Simple Smoothing

Algorithm in [18] and the Heuristic Smoothing

Algorithm in [9]. The workload is divided into uniform

parts to upload so that unreasonable peaks, such as

scheduling all workloads to be transmitted in one or

few time slots, can be avoided.

After observing the experimental results in [12], we

can find out there is still space to reduce the peak of

Moving Deferrable Big Data to the Cloud by Adopting an Online Cost-Minimization Approach 1213

transmission. Let D represent the number of

deferrable time slots in an entire charging cycle. If
max

V D× is greater than the sum of all workloads

generated in this charge cycle, it indicates that some

capacity of transmission is wasted. For example, when

the Multi-Heuristic Smoothing Algorithm is applied,

there is just a few workloads need to be uploaded in the

first time slot. Therefore, the maximum transmission of

the first time slot is the lowest in the whole charging

cycle. The following few time slots are generally lower

than the latter slots, and the latter slots tend to have a

greater value of transmission. This is because max

V is

calculated based on both accumulation and the capacity

of transmission. If the transmission capacity left can

not guarantee to upload all the data on time, we have to

increase max
V further.

Inspired by the analysis above, we try to enlarge the

capacity of transmission of the first slot several times

by simply multiplying a factor ψ , and design a new

algorithm called the Zoom-Heuristic Smoothing

Algorithm. The Zoom-Heuristic Smoothing Algorithm

is shown below:

Algorithm 1. The Zoom-Heuristic Smoothing Algorithm

(ZHSA)

1: 0, , 1, ..., ;
max max,

V V i
λ
λ= =

2: 0, 1, ..., ; 1, ..., ;
T

W T D T i
λ

λ
τ λ= ∀ = − + =

3: 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =

4: for τ = 1 to T do

5: for 1λ = to i do

6: 1

d

max, d

W H

V
D

τ

λ λ

τ

λ

τ

λ

=

+

=

∑

7: end for

8:
,

,{ } , 1, ...,
max

max

max

V D
V Max Max V i

D

λ

τ λ λ τ λ

τ
λ

⎧ ⎫∑
= =⎨ ⎬

⎩ ⎭

9: if ,

max

V V
τ

< then

10: max

V V
τ

<

11: if 1,τ = then

12: max max

V V ψ= ×

13: end if

14: end if

15: for 1λ = to i do

16: Transfer the workload following Earliest Deadline

First (EDF) strategy under the maximum volume

.

max

V

17: update 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =

18: end for

19: end for

Different from the smoothing strategy used in the

former research, we now try to reduce the bandwidth

cost by choosing a better initial value of max

V .

The Zoom-Heuristic Smoothing Algorithm shows

that a larger initial value is able to improve the total

transmission volume of an entire charging cycle. On

the other hand, if the initial value is set too high, the

bandwidth for transmission will eventually be wasted.

Therefore, choosing a reasonable initial value is quite

necessary.

According to different research purposes and

assumptions, several models have been developed to

describe the variation of network traffic. Since our

focus in this paper is on minimizing the cost in the

charging cycles of ISPs, we assume the network traffic

varies corresponding to the charging cycle. The total

transmission volume in a charging cycle is periodic.

According to the Zoom Algorithm, the initial value is

calculated as max

V multiplied by a factor. However,

this algorithm does not take the variation of network

traffic into account. Therefore, we take V λ

τ
ω× as the

initial value for charging cycles, and fine-tune the

factor ω based on the features of input workloads.

According to this idea, a new algorithm is designed,

which is called Fast Start Heuristic Smoothing

Algorithm. The new algorithm is shown below:

Algorithm 2. The Fast Start Heuristic Smoothing

Algorithm (FSHSA)

1: 0, , 1, ..., ;
max max,

V V i
λ
λ= =

2: 0, 1, ..., ; 1, ..., ;
T

W T D T i
λ

λ
τ λ= ∀ = − + =

3: 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =

4: for τ = 1 to T do

5: for 1λ = to i do

6: 1

d

max, d

W H

V
D

τ

λ λ

τ

λ

τ

λ

=

+

=

∑

7: end for

8:
,

,{ } , 1, ...,
max

max

max

V D
V Max Max V i

D

λ

τ λ λ τ λ

τ
λ

⎧ ⎫∑
= =⎨ ⎬

⎩ ⎭

9: if ,

max

V V
τ

< then

10: max

V V
τ

<

11: if 1,τ = then

12: max

V V
λ

τ
ω= ×

13: end if

14: end if

15: for 1λ = to i do

16: Transfer the workload following Earliest Deadline

First (EDF) strategy under the maximum volume

.

max

V

17: update 0, 1, ..., ; 1, ..., ;
d

H d D i
λ

λ
λ= ∀ = =

18: end for

19: end for

1214 Journal of Internet Technology Volume 19 (2018) No.4

3.4 Cloud Scenario

Now we extend the single ISP case to the cloud

scenario.

In the real world, cloud computing platforms usually

have multiple Mappers and multiple Reducers, with

multiple different ISPs employed between these data

centers. To simplify the discussion, we assume that all

the ISPs between cloud users and Mappers use the

same cost function
m
f . Similarly, we assume that all

the cost function between Mappers and Reducers are

also identical. We further assume that
,m m r

f f= . Since

the cost function is non-decreasing and convex, we

choose the cost function as 2

,
.

m m r
f f x= =

After the charging function is fixed, we can further

improve the algorithm in [12] by using a variation of

the Cauchy inequality. The Cauchy inequality is shown

below:

 2 2 2

1 1 1

()
n n n

i i i i

i i i

a b a b

= = =

≥∑ ∑ ∑ (10)

Let 1,
i
b = then we have 2 2 2

0 1
()

n
a a a+ + ≥�

2

0 1
()

.n
a a a

n

+ +
≥

�

 The condition of equality is

0 1
.

n
a a a= = =�

Let
i
a represent the final max

V of each data center.

Then, when the max

V of these data centers are

generally equal to each other, the total cost on

bandwidth of data centers will be minimized.

Based on the analysis above, we use a two-step

dynamic programming to optimize the transmission

cost in the cloud scenario. First, we decide the

workload assigned to each Mapper. Then, the method

in the single ISP case is used, which eventually helps

to improve the entire effect.

In order to decide the workload assignment in the

first step, a function Φ(ϕ) is defined.

()

(,)
()

max,m

max d

max,m

V D H
V D

V D

× − ∑
Φ =

×
 (11)

According to the conclusion of Cauchy inequality,

which claims that the total cost on bandwidth of data

centers will be minimized when the max

V of these data

centers are generally equal to each other, we use a

greedy algorithm and assign workload to the data

center whose current transmission capacity is relatively

lower than others with higher priority. In the second

step, we use the Fast Start Heuristic Smoothing

Algorithm provided in the former section to optimize

the peak transmission volumn for each data center.

The updated algorithm for cloud scenario is shown

below:

Algorithm 3. The Updated Muti-Dynamic Self-Adaption

Algorithm

1: Workload queue is generated:
m

E n=

2: while(
m

E)

3: 1, 0
max

χ = Δ =

4: for 1M = to m

5:
()

(,)
()

max,m

max,m max d

max max,m

max

V D H
V D

V D

λ
× −∑∑

Φ =
×

6: if (,)max,m

max
V DΔ < Φ

7: (,)max,m

max
V DΔ = Φ

8: Mχ =

9: end if

10: end for

11: For each ISP χ , apply the single ISP algorithm, e.g.,

FSHSA to schedule the traffic.

12: update
m

E

4 Performance Evaluation

We implement the experiment to simulate the peak

trend. The simulation environment built in [12] is

updated according to the new algorithms proposed in

this paper. The default input is generated uniformly at

random, as shown in Figure 2, where all data are

normalized. We set the charging cycle to have 130

time slots and the max delay size to be 30 time slots.

First, we make a comparison between the Zoom-

Heuristic Algorithm and the Multi-Heuristic

Smoothing Algorithm. Figure 3 to Figure 6 show the

trend of max

V when the number of deferrable upload

queues equals to 3, 6, 9 and 15.

Figure 2. Data input of Gaussian distribution

Figure 3. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=3

Moving Deferrable Big Data to the Cloud by Adopting an Online Cost-Minimization Approach 1215

Figure 4. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=6

Figure 5. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=9

Figure 6. Zoom-Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=15

We find that the performance optimization achieved

varies according to different numbers of queues. The

best optimization result of 9.3% is achieved when the

number of queues is 9. However, the optimized result

is only 2.5% in the worst case. These results show that

the initial value plays an important role during a

charging cycle. As a user’s uploading job proceeds, the

peak volume of each queue has to be increased

accordingly in order to guarantee that all the data

uploading tasks can be finished in the allowable delay

window sizes. The initial value for the difference

queue is generally not the same, but in the Zoom-

Heuristic Smoothing Algorithm, the initial value is

positively related to the task volume.

For the Fast Start Heuristic Smoothing Algorithm,

we implement the experiment where the number of

window size queues is 3, 6, 9 and 15 in the single ISP

case, and we compare these results with Multi-

Heuristic Smoothing Algorithm. We carry out

experiments and fine-tune the factor .ω The

experiment shows that the best optimization result can

be achieved when ω equals to 0.43. The comparison

between Fast Start Heuristic Smoothing Algorithm and

MHSA are shown in Figure 7 to Figure 10.

Figure 7. Fast Start Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=3

Figure 8. Fast Start Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=6

Figure 9. Fast Start Heuristic Smoothing vs. Multi-

Heuristic Smoothing num=9

1216 Journal of Internet Technology Volume 19 (2018) No.4

Figure 10. Fast Start Heuristic Smoothing vs Multi-

Heuristic Smoothing num=15

The improvement of Fast Start Heuristic Smoothing

Algorithm is obvious. Since it tends to choose a larger

initial value, the bandwidth in the earlier time slots are

used efficiently. The bandwidth saved in the early

stage can reduce the maximum value needed to get the

whole data uploading job done.

For the cloud scenario, we assume there are five data

centers with the MapReduce framework applied, as

shown in Figure 1. The Updated Multi-Dynamic Self-

Adaption Algorithm is implemented. The charge

function that we adopt is 2

,
() () ,

m m r
f x f x x= = and we

assume β = 1. The normalized scheduled traffic of

five data centers is shown in Figure 11.

Figure 11. The normalized scheduled traffic of 5 data

centers with Multi-ISPs using the Updated Muti-

Dynamic Self-Adaption Algorithm.

As illustrated, after about 20 time slots, the traffic of

the five data centers become almost identical, which

means the total cost on bandwidth is minimized.

5 Conclusion

This paper focuses on minimizing the bandwidth

cost of data centers in the cloud environment and tries

to reduce the cost by leveraging the deferrable

characteristic of big data. Based on the previous work,

we further study the influence of initial maximum

transmission capacity to the bandwidth cost of data

centers. We propose the Zoom-Heuristic Smoothing

Algorithm and the Fast Start Heuristic Smoothing

Algorithm. Both algorithms try to increase the initial

transmission capacity to leverage the space in the

earlier time slots. The experiments show that the peak

value can be reduced by choosing a larger initial value.

We also discuss how to assign workloads among

data centers in the cloud scenario. We point out that the

total bandwidth cost of data centers will be minimal

when max

V of these data centers are generally equal to

each other. Besides, we propose an Updated Multi-

Dynamic Self-Adaption Algorithm for the cloud

scenario and carry out validation experiments.

In order to do our work, we make many assumptions

to the model. Some of these assumptions are too

idealistic and inappropriate for real world scenarios. In

future work, we will extend the model and continue to

study how to reduce the bandwidth cost of data centers.

Acknowledgment

This work was supported by the Fundamental

Research Funds for the Central Universities

(2014ZD03-03).

References

[1] Amazon Cloud Front, http://aws.amazon.com/cn/cloudfront/.

[2] Google Datacenter, http://www.google.com/about/datacenters.

[3] Windows Azure, http://www.microsoft.com/windowsazure/.

[4] Alibaba Cloud Service, https://www.aliyun.com/.

[5] T. Hey, S. Tansley, K. Tolle, The Fourth Paradigm: Data-

Intensive Scientific Discovery, Microsoft Research, 2009.

[6] D. K. Goldenberg, L. Qiuy, H. Xie, Y. R. Yang, Y. Zhang,

Optimizing Cost and Performance for Multihoming,

Proceedings of the 2004 Conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communications, Portland, OR, 2004, pp. 79-92.

[7] H. Wang, H. Xie, L. Qiu, A. Silberschatz, Y. R. Yang,

Optimal ISP Subscription for Internet Multihoming:

Algorithm Design and Implication Analysis, IEEE

INFOCOM 2005: 24th Annual Joint Conference of the IEEE

Computer and Communications Societies, Miami, FL, 2005,

pp. 2360-2371.

[8] A. Grothey, X. Yang, Top-percentile Traffic Routing Problem

by Dynamic Programming, Optimization and Engineering,

Vol. 12, No. 4, pp. 631-655, December, 2011.

[9] L. Zhang, Z. Li, C. Wu, M. Chen, Online Algorithms for

Uploading Deferrable Big Data to the Cloud, The 33rd IEEE

Conference on Computer Communications, Toronto, Canada,

2014, pp. 2022-2030.

[10] J. Dean, S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, The 6th Conference on

Symposium on Operating Systems Design & Implementation-

Volume 6, San Francisco, CA, 2004, pp. 10-10.

Moving Deferrable Big Data to the Cloud by Adopting an Online Cost-Minimization Approach 1217

[11] J. L. U. Gonzalez, S. P. T. Krishnan, Building Your Next Big

Thing with Google Cloud Platform, Apress, 2015.

[12] B. Cui, P. Shi, W. Qi, M. Li, Uploading Multiply Deferrable

Big Data to the Cloud Platform using Cost-effective Online

Algorithms, Future Generation Computer Systems, Vol. 67,

pp. 276-285, February, 2017.

[13] F. Yao, A. Demers, S. Shenker, A Scheduling Model for

Reduced CPU Energy, IEEE 36th Annual Foundations of

Computer Science, Milwaukee, WI, 1995, pp. 374-382.

[14] S. Albers, F. Muller, S. Schmelzer, Speed Scaling on Parallel

Processors, The 19th ACM Symposium on Parallelism in

Algorithms & Architectures, San Diego, CA, 2007, pp. 289-

298.

[15] M. A. Adnan, R. Sugihara, Y. Ma, R. K. Gupta, Energy-

optimized Dynamic Deferral of Workload for Capacity

Provisioning in Data Centers, 2013 International Green

Computing Conference, Arlington, VA, 2013, pp. 1-10.

[16] B. Cho, I. Gupta, New Algorithms for Planning Bulk Transfer

via Internet and Shipping Networks, IEEE 30th International

Conference on Distributed Computing Systems, Genova, Italy,

2010, pp. 305-314.

[17] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, F. C. M. Lau,

Moving Big Data to The Cloud: An Online Cost-Minimizing

Approach, IEEE Journal on Selected Areas in Communications,

Vol. 31, No. 12, pp. 2710-2721, December, 2013.

[18] L. Golubchik, S. Khuller, K. Mukherjee, Y. Yao, To Send or

not to Send: Reducing the Cost of Data Transmission, IEEE

INFOCOM 2013: The 32nd IEEE International Conference

on Computer Communications, Turin, Italy, 2013, pp. 2472-

2480.

[19] B. Cui, P. Shi, H. Jin, A Dynamic Self-Adaptive Algorithm

for Uploading Deferrable Big Data to the Cloud Cost-

Effectively, The 9th International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing,

Blumenau, Brazil, 2015, pp. 292-295.

[20] B. Cui, P. Shi, J. Yang, Y. Hao, Uploading Deferrable Big

Data to the Cloud by Improved Dynamic Self-Adaption

Algorithm, The 10th International Conference on P2p,

Parallel, Grid, Cloud and Internet Computing, Krakow,

Poland, 2015, pp. 116-120.

Biographies

Baojiang Cui received B.S. in Hebei

University of Technology, China, in

1994, M.S. in Harbin Institute of

Technology, China, in 1998 and Ph.D.

in Control Theory and Control

Engineering in Naikai University,

China in 2014. He is a Professor in the

School of Computer Science at Beijing University of

Posts and Telecommunications, China. His main

research areas are detection of software, cloud

computing and big data.

Xiaohui Jin is a Ph.D. candidate in

the School of Cyberspace Security,

Beijing University of Posts and

Telecommunications. His research

mainly focuses on machine learning,

cloud computing and big data security.

Peilin Shi now is studying for a

master’s degree in Computer

technology at the Beijing University

of Posts and Telecommunications in

China. His work mainly involves

cloud computing and big data.

1218 Journal of Internet Technology Volume 19 (2018) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

