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Abstract 

To date, the Android has an overwhelming share of the 

global smartphone market and an immense number of 

users. However, owing to their structural problems, 

Android applications are more vulnerable to reverse 

engineering attacks compared to other mobile 

applications. Attacks on Android applications not only 

infringe on the intellectual property rights of application 

developers, but they can lead to the theft of private user 

data and financial damage. Developers have applied 

several techniques to protect Android applications from 

these attacks. One method is the packing technique. 

However, because the packing technique is a protection 

technology for the entire code, the core code is 

continually exposed in dynamic memory until the process 

terminates. In other words, if the attacker succeeds in 

dynamic memory analysis, the attacker may easily obtain 

the logic of the core code. Therefore, in this paper, we 

propose a scheme that makes reverse engineering 

analysis difficult. This is achieved by wrapping and 

dropping the original bytecode after separating the 

original bytecode, thereby resolving the problem of 

exposing all the original bytecodes. The proposed scheme 

was applied to a sample application, and the security and 

performance were compared with those of existing 

techniques. 

Keywords:  Android, Packing, Mobile application 

security 

1 Introduction 

The smartphone operating system, such as Google’s 

Android and Apple’s iOS, can provide a variety of 

services by installing user-desired applications and 

basic communication functions, such as phone and 

Internet. These smartphones are increasingly used not 

only for personal information storage, but also for 

personal services, such as financial services. Among 

smartphone operating systems, the Android has the 

largest number of users (82.8%) [24]. However, it is 

subject to various attacks because its application 

structural problems and the way its applications are 

distributed. 

The Android application is developed with Java and 

compiled in a bytecode format to enable decompiling 

back to the Java source code level. However, this 

process is vulnerable to reverse engineering attacks. 

Moreover, to distribute Android applications, user 

sign-in is required. It is thereby possible for the 

attacker to redistribute by self-signing with a private 

key [7]. Attackers exploit these vulnerabilities to inject 

malicious code into an application and distribute it, 

causing indirect harm to both developers and users. To 

protect Android applications that are vulnerable to such 

attacks, some security vendors, including DexProtector 

[20], Bangle [18], and Ijiami [21], have applied a 

packing technique that encrypts and protects the code. 

Packing is a technique used by malicious code to 

prevent static analysis in personal computer (PC) 

environments [11]. Packers, such as UPX [23], 

increase static analysis resistance by executable 

compression using file format or loader characteristics 

[13]. However, the existing packing technique loads 

the entire original bytecode into memory at the time of 

loading the application. Thus, in a dynamic analysis 

environment, such as DECAF [9], DexHunter [12] and 

AppSpear [3], the original bytecode is extracted and 

analyzed. Therefore, existing packers cannot 

effectively protect the original bytecode. Recent PC 

based code protection studies [8, 10] have evolved 

packing into a form that reduces code exposure, 

preventing attackers from accessing the code, or 

protecting the code location. To effectively protect the 

code on mobile devices, it is necessary to protect the 

code from exposure to the attacker. 

In this paper, we propose a scheme to effectively 

increase the resistance to dynamic analysis by 

minimizing the exposure of original bytecode in 

memory. To address the limitation of existing packers, 

which expose all original bytecode, the proposed 

scheme wraps and drops the original bytecode. 

Specifically, the original bytecode is wrapped into 

several individual codes. The wrapped codes are 

unwrapped only when the code is called and loaded 

into memory. After using the code, it is removed from 

memory through dropping to minimize the exposure 
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time. 

The remainder of this paper is organized as follows. 

Section 2 introduces mobile application repackaging 

attacks and techniques for preventing them. Section 3 

describes the proposed multi-partitioned bytecode 

wrapping scheme. In Section 4, features of the 

proposed scheme are compared with those of existing 

packers. In Section 5, the experimental results are 

presented. Finally, our conclusions are provided in 

Section 6. 

2 Background 

In this section, we examine repackaging attacks 

against Android applications (apps) and techniques to 

protect the apps from them.  

2.1 Repackaging Attack 

The repackaging attack by malicious Android app 

producers [2] adds malware code to normal apps and 

redistributes them. These attacks are possible because 

of the process of building the app and its structural 

problems. The process of building an Android app is 

described as follows. When compiling the app in the 

Java language, a Dalvik executable (DEX) file is 

created that consists of several class files. The DEX 

file consists of a Dalvik bytecode that runs in the 

Dalvik virtual machine (VM). The result of adding a 

developer’s signature to this DEX file and distributing 

it is an Android app is called an Android application 

package (APK) [16]. 

In this app-building process, it is apparent that the 

code containing the actual behavior is the Dalvik 

bytecode. As shown in Figure 1, this Dalvik bytecode 

is easily disassembled into an intermediate code form 

called Smali [2] by using an open-source tool, such as 

Apktool [17]. Smali code is more human-readable than 

native code; thus, it is easy for an attacker to insert 

malicious code in the proper place after analyzing the 

code. Therefore, the attacker can self-sign the modified 

application and redistribute it by repackaging it. 

 

Figure 1. Repackaging attack and structural problem vulnerability 

To counter this repackaging attack, developers have 

applied various techniques, such as obfuscation and 

packing, to Android apps. Obfuscation and packing are 

described below. 

2.2 Obfuscation 

Obfuscation is a scheme that protects the Java 

bytecode, which is vulnerable to reverse engineering 

[5, 15]. This obfuscation can be categorized as 

respective layer, control-flow, and data obfuscation. 

Layer obfuscation is the most basic obfuscation 

technique. It cannot recover original information by 

omitting or deleting specific information of original 

code. A typical example is an identifier obfuscation 

that replaces an identifier with a simple character, 

thereby removing information that is easy to perceive 

from the identifier. Control-flow obfuscation makes 

analysis difficult by complicating the process without 

changing the results of the original code. Typical 

examples are adding dead code that is not actually 

executed, dummy code that does not affect execution 

results, or a loop statement that is broken into multiple 

jump statements (such as goto). Data obfuscation is an 

obfuscation technique that encrypts the data or code, 

such as important strings in the executable code. 

Accordingly, the original information cannot be known 

during static analysis, making it impossible to grasp 

important parts. A typical example is string encryption, 

which is used to decrypt the original string when the 

string is called. 

2.3 Packing 

The packing technique was originally applied to 

malicious code in a PC environment to hinder 

detection by anti-virus software [11]. Recently, it has 

been actively used to protect mobile apps. The packing 

technique differs in the implementation details 

according to each tool. Nonetheless, the principles of 

packing and unpacking remain basically the same, as 

shown in Figure 2 and Figure 3. The process of 
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applying packing is the following. First, the original 

bytecode is packed by encryption and placed inside the 

app. Then, the code is added and unpacked, and the 

entry point of the app is changed to the unpacked code. 

This ensures that the unpacked code, which is specified 

as the entry point, is executed first when the app is 

executed. Finally, after the unpacked bytecode is 

loaded into memory, the original bytecode is called 

[14]. 

 

Figure 2. Packing process for Android apps 

 

Figure 3. Unpacking process for Android apps 

By analyzing the basic operations of the existing 

packing techniques [18, 21] that are applied to Android 

apps, it is evident that they share processes. First, they 

pack the original classes.dex and add the launcher class. 

Then, they modify the AndroidManifest.xml file to 

change the execution flow to the launcher class and 

add the unpacked related files. Furthermore, unique 

implementations of existing packers exist at each stage, 

which makes it easier to identify a specific packer 

during reverse engineering. In this regard, representative 

features of each packer can be identified in the 

launcher class for changing the program execution 

flow and adding files for unpacking. 

For example, DexProtector divides the original 

bytecode into several packing codes. In unpacking, 

after integrity is secured through tamper detection, the 

decryption key is dynamically generated using the 

application signature information. Then, unpacking the 

entire original bytecode is performed [1]. Bangcle 

packs the original bytecode into one and places it in the 

asset path. Next, when the app is executed, the packed 

code is copied to the temporary path, unpacked, and 

the entire original bytecode is loaded. When loading is 

completed, the original bytecode unpacked in the 

temporary path is repacked to prevent exposure of the 

original bytecode file of the temporary path [3]. Ijiami, 

like Bangcle, packs the original bytecode into a single 

packed code, places it in the asset path, and unpacks 

and loads the entire original bytecode at launch time. 

Unlike other packers, Ijiami makes it difficult to 

identify the original bytecode in memory by loading 

the modified code with a different magic number or 

header size with the original bytecode header [3].  

2.4 Dynamic Loading 

Dynamic loading techniques unpack and load 

statically packed original code into memory and 

change the execution flow to the original code. All 

class files based on Java are dynamically loaded into a 

virtual machine. They can be divided into either load-

time or run-time dynamic loading, depending on the 

moment that code is loaded. Load-time dynamic 

loading is a mandatory procedure for loading code; it is 

necessary for the initial execution. Run-time dynamic 

loading is an explicit loading of additional code by the 

developer at run-time to solve problems, such as 

dynamic code execution or heap memory limitation, 

according to the execution condition. Among them, the 

technology used for packing is run-time dynamic 

loading. It is possible to determine if packing is applied 

based on whether dynamic loading is performed at the 

time of the app analysis. 

There are two ways to apply dynamic loading in 

Android apps: using the Java application programming 

interface (API) (Dalvik.system.DexClassLoader) 

provided by the Android framework, and calling the 

native API (openDexFileNative()) directly from the 

Dalvik virtual machine. There is no difference between 

the two methods because the method using the Java 

API is eventually connected to the native API. The 

relationship between the Java API and native API is 

shown in Figure 4. 

 

Figure 4. Relationships in the dynamic loading API 

Because dynamic loading is basically requested by 

Java code, it is common to use the Java API. However, 

when using the Java API, the Dalvik bytecode is not 

suitable for code protection because its dynamic 

loading and location are easily exposed by its 

vulnerability to reverse engineering. On the other hand, 

using the native API provides a higher resistance to 

reverse engineering than Dalvik bytecode. Additionally, 
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when dynamic loading is applied using the native API, 

it is difficult to identify the position of the dynamic 

loading code and whether dynamic loading is used. 

This is because the part that calls the native API in 

Java is the same as the general JNI call. As a result, it 

becomes difficult to judge whether the packing is 

applied. 

3 Proposed Scheme 

As mentioned earlier, the existing packer technique 

packs the entire original bytecode, unpacks the entire 

packed code at runtime, and loads it into memory. This 

reduces resistance to dynamic analysis because the 

entire original bytecode is exposed in memory from the 

start of the app to the end. In the proposed approach, 

we protect the original bytecode in memory by 

reducing the exposure size and time of the original 

bytecode. To this end, we propose a packing technique 

that separates the core code from the entire code 

without applying packing to the entire code. In the 

following, we use the term wrapping instead of 

packing to distinguish it from existing packers that 

target the entire original code. The proposed scheme 

greatly reduces the exposure size by consisting of core 

bytecode with more than one method or class and by 

separately wrapping several core bytecodes. The core 

bytecode is exposed only from the time the call is 

made until the execution is completed. After execution 

completion, the core bytecode is dropped from 

memory to minimize the exposure time. The separated 

core bytecode is wrapped inside the native library (.so) 

file. Furthermore, as mentioned above, it is difficult to 

identify dynamic loading. Moreover, the execution 

speed is faster than that of the Java API because 

dynamic loading is performed using the native API 

through the JNI call. The core functions of the 

proposed scheme—wrapping and dropping—are 

described below.  

3.1 Wrapping 

The wrapping technique encrypts core bytecode 

selected for a class or method and hides it in the native 

module. It is decrypted by calling the stub code. The 

process of applying wrapping to the core bytecode 

selected in the original bytecode is shown in Figure 5. 

 

Figure 5. Wrapping process of the proposed scheme 

First, we create the stub code that can call the 

selected bytecode from the original bytecode and the 

fake bytecode required for dropping. Now, the stub 

code and fake bytecode are generated with a 

dependency according to the core bytecode signature. 

Then, we wrap the core bytecode and fake bytecode 

with encryption and add it to the protection module 

along with the stub code. The protection module 

consists of an unwrapper, dropper, dex_loader, and the 

added code. The module is created as a native one and 

is included in the app. Finally, the remaining bytecode, 

except for the core bytecode, is regenerated to call the 

core bytecode, and it is included in the app. 

When the core bytecode is called after the app is 

executed, it is loaded into memory through the 

unwrapping process, as shown in Figure 6. First, the 

native protection module is loaded using the JNI call in 

the remaining bytecode. The call is connected to the 

stub code. The stub code first calls the unwrapper to 

unwrap the wrapped core bytecode. Second, 

dex_loader is called to load the unwrapped core 

bytecode into memory. Finally, the core bytecode, 

which is loaded in memory, is called from the stub 

code. 

 

Figure 6. Unwrapping process of the proposed scheme 
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This process minimizes the exposed code size in 

memory. In addition, the following advantages are 

obtained as the core bytecode is encrypted in the native 

protection module and invoked through the JNI call. 

In general, developers use the framework’s 

DexClassLoader class to dynamically load bytecode in 

Android apps. When using this API, it is easy to 

identify the dynamic loading and calling code of the 

wrapped core bytecode. If the core bytecode with 

protection is easy to identify, the analysis time is 

decreased, which is advantageous to the attacker. Thus, 

we add dex_loader, a native dynamic loading module 

that uses dvm_Dalvik_system_DexFile, the native API 

of the Dalvik VM, to make it difficult to identify the 

core bytecode. The remaining bytecode calls the 

wrapped core bytecode through a JNI call and the core 

bytecode is dynamically loaded into the memory via 

dex_loader after unwrapping by unwrapper. Because 

JNI calls are commonly used to improve the reusability 

and performance of native modules in Android apps, it 

is difficult to identify the proposed technique, which 

can delay the attacker’s analysis time. 

3.2 Dropping 

The dropping technique ameliorates the disadvantages 

of existing packers, specifically the exposing of the 

original bytecode until the application is terminated. 

After the loaded core bytecode is completed through 

the wrapping process, it is individually unloaded from 

memory through the dropping process to decrease the 

exposure time. 

As shown in Figure 7, dropping can minimize the 

exposure time by removing the used core bytecode 

from memory. Now, the fake bytecode generated in the 

wrapping process is loaded, and the stub code is linked 

to the fake bytecode. This fake bytecode has a 

signature like that of the core bytecode; however, it 

contains completely different logic, causing confusion 

in the dynamic analysis of the attacker. 

 

Figure 7. Dropping process of the proposed scheme 

In the case of the signature, the Java language 

consists largely of classes and methods. Each class and 

method can be identified and converted by the type of 

each type or parameter. Now, it is converted by using 

the defined identification symbols. This is called 

“signature”. The reason why this signature should be 

like fake bytecode and core bytecode is as follows. The 

first is to prevent the attacker from noticing that the 

proposed scheme has been applied, and the second is to 

make it easier to apply the proposed scheme. 

4 Feature Comparison 

In this section, we compare the advantages and 

disadvantages of the proposed scheme with those of 

the existing packing schemes. We compare the 

commonly used products—DexProtector and Ijiami—

in terms of packer type identification, unpacking time, 

in-memory code identification, and in-memory code 

exposure. Table 1 lists and describes the features. 

Table 1. Feature comparison 

 DexProtector Ijiami 
Proposed 

Scheme 

Packer type 

identification 
Easy Easy Difficult 

Unpacking 

time 
Launch-time 

Launch-

time 

Core code 

calling time 

Original code 

identification 
Easy Difficult Difficult 

In-memory 

code exposure 
Entire dex Entire dex

Only working 

code (temporary 

exposure) 

4.1 Packer Type Identification 

The Android’s packer changes the application entry 

point to a specific class to perform anti-analysis and 

unpacking, which restores the execution flow as the 

starting point of the original application. These classes 

commonly inherit and implement the android.app. 

Application class because the latter is the first 

execution on the Android system. In addition, it marks 

the earliest point at which the developers can intervene. 

Specifically, Application (DexProtector) and Super 

Application (Ijiami) classes inherit the android.app. 

Application and act as unpackers. Therefore, in these 

packers, the entry point is changed to a specific class 

and the files generated for performing this task are 

added to the ‘/assets’ directory. These characteristics 

provide an opportunity for attackers to determine what 

methods are applied to protected applications. 

Accordingly, a specific attack method can be devised 

after only superficial inspection. However, the 

proposed scheme not only maintains the existing 

execution flow of the original application, but it also 

makes it difficult to recognize the application type 

because the core code call is the same as the native 
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method call of a general application. 

Like the reverse engineering of other programs, 

reverse engineering an Android app usually involves 

static analysis and dynamic analysis. When an attacker 

reverse-engineer Android apps using existing 

commercial protection techniques, it is easy to identify 

them using the characteristics of each packer. This 

allows the attacker to perform a faster analysis by 

applying known analysis methods for each protection 

technique. However, if it is not possible to identify the 

application of the protection scheme or the type of 

technique as in the proposed scheme, it is not possible 

to use a known analysis method and the initial static 

analysis process is delayed because the start point 

cannot be set. Considering the attacker’s analysis 

process, identifying the packer type is a good indicator 

of the performance of the packer. 

4.2 Unpacking Time 

A difference between the existing packing scheme 

and the proposed scheme is the protected code 

management unit where the management unit indicates 

the size of the exposure code. This unit determines the 

point at which unpacking occurs. Existing packing 

schemes unpack the entire code at once; thus, 

unpacking is inevitably performed at the start of the 

application. On the other hand, when the proposed 

scheme is applied, unwrapping is not performed at a 

certain time because it is managed by a class or method 

unit. Therefore, it is difficult for an attacker to 

designate an analysis point and recognize the method 

through static analysis.  

4.3 Original Code Identification 

All Android applications are forked and executed 

from the Zygote process. Moreover, they all have 

similar virtual memory spaces. In addition, the 

executable files and libraries of the target application 

are loaded in a similar area of memory. Thus, it is 

possible to search the memory space of a specific area 

and find the original bytecode by using the magic 

number and header information of the unpacked DEX 

file. In the case of Ijiami, it is difficult to find the 

original byte code simply by a magic number because 

the header information, including the DEX magic 

number, is mapped in memory, which is modified to 

protect against such analysis. However, after the 

application continues running, the entire bytecode is 

retained in memory. Thus, it is possible to obtain all 

bytecode by only seeking the location. On the other 

hand, the proposed scheme restricts the exposure time 

and size of the core bytecode by using wrapping and 

dropping, and it exposes fake bytecode when the core 

bytecode is not executed.  

4.4 In-Memory Code Exposure 

Ijiami packs the entire bytecode and unpacks it at 

the start of the application. DexProtector performs 

packing by class; however, like all packers, it unpacks 

all classes at the start of the application and loads them 

into the memory. For this reason, existing packers have 

a vulnerability in exposing the original bytecode to 

memory from the time that the application starts. 

However, in the proposed scheme, it is only exposed 

during the execution of the core bytecode, and it is 

replaced by fake bytecode when the execution is 

complete. Therefore, for an attacker to acquire all 

bytecode, it is necessary to capture the respective 

execution times of each core bytecode. Figure 8 

compares the times of code exposure in memory. 

 

Figure 8. Comparison of core code exposure duration 

5 Experiments 

The core concept of the proposed scheme is to 

minimize the exposure of code in memory. Therefore, 

in this section, the code exposure of the proposed 

scheme is confirmed through static and dynamic 

analyses, and its performance is compared to those of 

the existing packers. 

The experiment was performed on Android 4.4. 

Android Runtime (ART) has been newly introduced 

since version 4.4 and only ART has been supported 

since version 5.0 [4]. Considering these aspects, the 

proposed scheme uses APIs that are compatible up to 

version 7.1. 
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5.1 Experimental Setup 

In the experiment, the proposed scheme was applied 

to a sample application. Then, static and dynamic 

analysis were performed to check whether the core 

bytecode was exposed. As shown in Figure 9, the 

sample application was created by adding a module 

that validates the serial key value to the Notepad 

application in the Google Android API sample. In this 

experiment, the checkSerial() function, which checks 

the validity, was classified as core code and the 

proposed scheme was applied to this part. Therefore, 

the main purpose of this experiment was to analyze 

whether the code of the checkSerial() function was 

exposed. 

 

Figure 9. Sample app used for experiments 

5.2 Code Exposure 

We obtained the results for whether the code leaked 

when static and dynamic analyses were performed on 

the application with the proposed scheme. Static 

analysis decomposed the bytecode to determine 

whether core strings were exposed; dynamic analysis 

verified whether core code was exposed through a 

memory dump. 

Static Analysis. Figure 10 and Figure 11 show the 

source code level by decompiling classes.dex of the 

protected application using the original scheme and the 

proposed scheme, respectively, without applying the 

proposed scheme. The tools used in decompilation 

were dex2jar (v.2.0) [19] and JD-GUI (v.1.4) [22]. 

 

 

 

 

 

 

 

 

 

 

 

package com.example.android.notepad; 
public class Loader 
{ 
public static final String isRegistString = 
“isRegist”; 
 
  private static boolean checkSerial(String 
paramString) 
  { 
    boolean bool = false; 
    if(paramString.equals(“msec”)) { 
      bool = true; 
    } 
    return bool; 
  } 
 
  public static Boolean registSerial(String 
paramString) 
  { 
    return checkSerial(paramString); 
  } 
} 
 

Figure 10. Decompiled source code before DexWrapper 

 

package com.example.android.notepad; 
public class Loader 
{ 
public static final String isRegistString =  
“isRegist”; 
 
static { 
  System.loadLibrary(“obfuscated”); 
} 
  private static native boolean 
checkSerial(String paramString); 
 
  public static Boolean registSerial(String 
paramString) 
  { 
    return checkSerial(paramString); 
  } 
} 
 

Figure 11. Decompiled source code after DexWrapper 

In the case of the original application, the contents 

of the checkSerial() function could be analyzed with a 

simple decompilation. However, in the case of the 

protected application, the checkSerial() function could 

check only the native method declaration for the JNI 

call. Furthermore, adding the System.loadlibrary() 

function for native library loading and dynamically 

loading the core bytecode was identical to the normal 

JNI call. Thus, it was difficult to identify the proposed 

scheme. Therefore, it was confirmed that the static 

code analysis could not identify the core code of the 

application to which the proposed scheme was applied. 

Dynamic Analysis. To check whether the core 

bytecode of the application with the proposed scheme 

was exposed to memory, we dumped the memory after 

core code execution, as shown in Figure 12. 
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Figure 12. Result of memory dump 

After executing the core code, the core bytecode was 

dropped from memory and could not be checked; only 

the fake bytecode was dumped. In other words, in the 

proposed scheme, both the core code and fake code 

were wrapped, and both were loaded into memory at 

the time of execution. At this point, the core code was 

immediately dropped from memory after execution; 

only the fake code remained in memory. Therefore, if 

the attacker attempted to perform dynamic analysis 

through a memory dump, only the fake code would be 

obtained. Thus, the experiment showed that the core 

code was more securely protected. 

5.3 Performance 

Table 2 shows the results of the comparison of the 

launch time, core code execution time, and file size 

overhead by applying DexProtector, Ijiami, and the 

proposed scheme. 

Table 2. Performance comparison 

Core code 

execution time (ms) 
 

Launchin

g time 

(ms) 
CPU 

time 

Actual 

processin

g time 

File size 

(Byte)

Original 338 265.144 276.609 65,106 

DexProtector 742 304.678 354.461 910,275

Ijiami 506 276.306 296.027 979,809

Proposed scheme 255 278.738 394.767 87,175 

 

Launching time. The launching time was measured by 

using Logcat to show the time when the main activity 

was displayed after the execution of the application. 

The times are shown in Figure 13. For DexProtector 

and Ijiami, the initial unpacking process required 

considerable time. However, in the case of the 

proposed scheme, the measurement time was shorter 

than that of the original. This is because the number of 

classes loaded at the beginning of the application was 

reduced as much as it was for the core bytecode 

separated by the proposed scheme. 

 

07-05 14:04:35.394: D/NotesList(19348): 

current timestamp:1467695075407 

07-05 14:04:35.524: I/Adreno-EGL(19348): 

<qeglDrvAPI_eglInitialize:320>:  

EGL 1.4 QUALCOMM Build: 

I0404c4692afb8623f95c43aeb6d5e13ed4b30ddb 

Date: 11/06/13 

07-05 14:04:35.554: D/OpenGLRenderer(19348): 

Enabling debug mode 0 

07-05 14:04:35.634: D/dalvikvm(19348): 

GC_FOR_ALLOC freed 188K, 2% free 

17018K/17240K, paused 17ms, total 17ms 

07-05 14:04:35.694: I/ActivityManager(845): 

Displayed com.example.android.notepad/. 

NotesList: +383ms 

07-05 14:05:00.094: D/audio_hw_primary(187): 

select_devices: out_snd_device(2: speaker) 

in_snd_device(0: ) 

07-05 14:05:00.154: D/dalvikvm(845): 

GC_FOR_ALLOC freed 914K, 24% free 

31838K/41428K, paused 57ms, total 57ms 

Figure 13. Time required to display the main activity 

on Logcat 

Core code execution time. In this experiment, the 

execution time of the checkSerial() function was 

measured by Eclipse’s method profiling function. Thus, 

comparing the core code execution time, the existing 

packers and proposed scheme showed no difference in 

the CPU time based on the original. However, in the 

case of the actual processing time, the delay time of 

approximately 100 to 120 ms was measured for the 

proposed scheme. This is because the context switch 

process caused by the JNI call occurred twice (i.e., 

core bytecode and fake bytecode loading). This 

overhead is not a problem for practical use, compared 

to the problematic overhead of DexProtector. 

Additional file size. Owing to the technical nature of 

the packing technique, additional files were added to 

increase the application size. This increase in file size 

also serves as overhead in applying real protection 

schemes. In this experiment, we measured the 

additional file size and found that the existing packers 

added an additional file that was significantly larger 

than the original file. In the case of the proposed 

scheme, we confirmed that the size increased partially 

because it was only applied to partial files. 

6 Conclusion 

Among existing mobile application protection 

schemes, the commercial packing technique can 

effectively protect against static analysis. However, the 

existing packing technique alone cannot provide 

sufficient dynamic analysis resistance. This is because 

the existing packing technique unpacks the entire 

original bytecode at the application startup and retains 

it in memory until the application terminated. To 
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overcome this drawback, the proposed scheme 

separates and wraps the core bytecode from the 

original bytecode into a method or class unit. The 

exposure size and time of this protected code is 

effectively reduced because it is removed from 

memory via dropping after the operation is completed 

at run-time. As a result, we conclude that the proposed 

scheme has a strong resistance to dynamic analysis 

compared to the existing packing methods and it shows 

excellent execution performance. 

In the future, we plan to apply more categories of 

apps to compare performance with existing packers. 

Through these various experiments, we expect to see 

the practicality of the proposed scheme and broaden 

the application range. 
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