
Multi-partitioned Bytecode Wrapping Scheme for Minimizing Code Exposure on Android 1199

Multi-partitioned Bytecode Wrapping Scheme for Minimizing

Code Exposure on Android

Yongjin Park, Taeyong Park, Jeong Hyun Yi*

School of Software, Soongsil University, South Korea

{absolujin, taeyong88}@gmail.com, jhyi@ssu.ac.kr

*Corresponding Author: Jeong Hyun Yi; E-mail: jhyi@ssu.ac.kr

DOI: 10.3966/160792642018081904022

Abstract

To date, the Android has an overwhelming share of the

global smartphone market and an immense number of

users. However, owing to their structural problems,

Android applications are more vulnerable to reverse

engineering attacks compared to other mobile

applications. Attacks on Android applications not only

infringe on the intellectual property rights of application

developers, but they can lead to the theft of private user

data and financial damage. Developers have applied

several techniques to protect Android applications from

these attacks. One method is the packing technique.

However, because the packing technique is a protection

technology for the entire code, the core code is

continually exposed in dynamic memory until the process

terminates. In other words, if the attacker succeeds in

dynamic memory analysis, the attacker may easily obtain

the logic of the core code. Therefore, in this paper, we

propose a scheme that makes reverse engineering

analysis difficult. This is achieved by wrapping and

dropping the original bytecode after separating the

original bytecode, thereby resolving the problem of

exposing all the original bytecodes. The proposed scheme

was applied to a sample application, and the security and

performance were compared with those of existing

techniques.

Keywords: Android, Packing, Mobile application

security

1 Introduction

The smartphone operating system, such as Google’s

Android and Apple’s iOS, can provide a variety of

services by installing user-desired applications and

basic communication functions, such as phone and

Internet. These smartphones are increasingly used not

only for personal information storage, but also for

personal services, such as financial services. Among

smartphone operating systems, the Android has the

largest number of users (82.8%) [24]. However, it is

subject to various attacks because its application

structural problems and the way its applications are

distributed.

The Android application is developed with Java and

compiled in a bytecode format to enable decompiling

back to the Java source code level. However, this

process is vulnerable to reverse engineering attacks.

Moreover, to distribute Android applications, user

sign-in is required. It is thereby possible for the

attacker to redistribute by self-signing with a private

key [7]. Attackers exploit these vulnerabilities to inject

malicious code into an application and distribute it,

causing indirect harm to both developers and users. To

protect Android applications that are vulnerable to such

attacks, some security vendors, including DexProtector

[20], Bangle [18], and Ijiami [21], have applied a

packing technique that encrypts and protects the code.

Packing is a technique used by malicious code to

prevent static analysis in personal computer (PC)

environments [11]. Packers, such as UPX [23],

increase static analysis resistance by executable

compression using file format or loader characteristics

[13]. However, the existing packing technique loads

the entire original bytecode into memory at the time of

loading the application. Thus, in a dynamic analysis

environment, such as DECAF [9], DexHunter [12] and

AppSpear [3], the original bytecode is extracted and

analyzed. Therefore, existing packers cannot

effectively protect the original bytecode. Recent PC

based code protection studies [8, 10] have evolved

packing into a form that reduces code exposure,

preventing attackers from accessing the code, or

protecting the code location. To effectively protect the

code on mobile devices, it is necessary to protect the

code from exposure to the attacker.

In this paper, we propose a scheme to effectively

increase the resistance to dynamic analysis by

minimizing the exposure of original bytecode in

memory. To address the limitation of existing packers,

which expose all original bytecode, the proposed

scheme wraps and drops the original bytecode.

Specifically, the original bytecode is wrapped into

several individual codes. The wrapped codes are

unwrapped only when the code is called and loaded

into memory. After using the code, it is removed from

memory through dropping to minimize the exposure

1200 Journal of Internet Technology Volume 19 (2018) No.4

time.

The remainder of this paper is organized as follows.

Section 2 introduces mobile application repackaging

attacks and techniques for preventing them. Section 3

describes the proposed multi-partitioned bytecode

wrapping scheme. In Section 4, features of the

proposed scheme are compared with those of existing

packers. In Section 5, the experimental results are

presented. Finally, our conclusions are provided in

Section 6.

2 Background

In this section, we examine repackaging attacks

against Android applications (apps) and techniques to

protect the apps from them.

2.1 Repackaging Attack

The repackaging attack by malicious Android app

producers [2] adds malware code to normal apps and

redistributes them. These attacks are possible because

of the process of building the app and its structural

problems. The process of building an Android app is

described as follows. When compiling the app in the

Java language, a Dalvik executable (DEX) file is

created that consists of several class files. The DEX

file consists of a Dalvik bytecode that runs in the

Dalvik virtual machine (VM). The result of adding a

developer’s signature to this DEX file and distributing

it is an Android app is called an Android application

package (APK) [16].

In this app-building process, it is apparent that the

code containing the actual behavior is the Dalvik

bytecode. As shown in Figure 1, this Dalvik bytecode

is easily disassembled into an intermediate code form

called Smali [2] by using an open-source tool, such as

Apktool [17]. Smali code is more human-readable than

native code; thus, it is easy for an attacker to insert

malicious code in the proper place after analyzing the

code. Therefore, the attacker can self-sign the modified

application and redistribute it by repackaging it.

Figure 1. Repackaging attack and structural problem vulnerability

To counter this repackaging attack, developers have

applied various techniques, such as obfuscation and

packing, to Android apps. Obfuscation and packing are

described below.

2.2 Obfuscation

Obfuscation is a scheme that protects the Java

bytecode, which is vulnerable to reverse engineering

[5, 15]. This obfuscation can be categorized as

respective layer, control-flow, and data obfuscation.

Layer obfuscation is the most basic obfuscation

technique. It cannot recover original information by

omitting or deleting specific information of original

code. A typical example is an identifier obfuscation

that replaces an identifier with a simple character,

thereby removing information that is easy to perceive

from the identifier. Control-flow obfuscation makes

analysis difficult by complicating the process without

changing the results of the original code. Typical

examples are adding dead code that is not actually

executed, dummy code that does not affect execution

results, or a loop statement that is broken into multiple

jump statements (such as goto). Data obfuscation is an

obfuscation technique that encrypts the data or code,

such as important strings in the executable code.

Accordingly, the original information cannot be known

during static analysis, making it impossible to grasp

important parts. A typical example is string encryption,

which is used to decrypt the original string when the

string is called.

2.3 Packing

The packing technique was originally applied to

malicious code in a PC environment to hinder

detection by anti-virus software [11]. Recently, it has

been actively used to protect mobile apps. The packing

technique differs in the implementation details

according to each tool. Nonetheless, the principles of

packing and unpacking remain basically the same, as

shown in Figure 2 and Figure 3. The process of

Multi-partitioned Bytecode Wrapping Scheme for Minimizing Code Exposure on Android 1201

applying packing is the following. First, the original

bytecode is packed by encryption and placed inside the

app. Then, the code is added and unpacked, and the

entry point of the app is changed to the unpacked code.

This ensures that the unpacked code, which is specified

as the entry point, is executed first when the app is

executed. Finally, after the unpacked bytecode is

loaded into memory, the original bytecode is called

[14].

Figure 2. Packing process for Android apps

Figure 3. Unpacking process for Android apps

By analyzing the basic operations of the existing

packing techniques [18, 21] that are applied to Android

apps, it is evident that they share processes. First, they

pack the original classes.dex and add the launcher class.

Then, they modify the AndroidManifest.xml file to

change the execution flow to the launcher class and

add the unpacked related files. Furthermore, unique

implementations of existing packers exist at each stage,

which makes it easier to identify a specific packer

during reverse engineering. In this regard, representative

features of each packer can be identified in the

launcher class for changing the program execution

flow and adding files for unpacking.

For example, DexProtector divides the original

bytecode into several packing codes. In unpacking,

after integrity is secured through tamper detection, the

decryption key is dynamically generated using the

application signature information. Then, unpacking the

entire original bytecode is performed [1]. Bangcle

packs the original bytecode into one and places it in the

asset path. Next, when the app is executed, the packed

code is copied to the temporary path, unpacked, and

the entire original bytecode is loaded. When loading is

completed, the original bytecode unpacked in the

temporary path is repacked to prevent exposure of the

original bytecode file of the temporary path [3]. Ijiami,

like Bangcle, packs the original bytecode into a single

packed code, places it in the asset path, and unpacks

and loads the entire original bytecode at launch time.

Unlike other packers, Ijiami makes it difficult to

identify the original bytecode in memory by loading

the modified code with a different magic number or

header size with the original bytecode header [3].

2.4 Dynamic Loading

Dynamic loading techniques unpack and load

statically packed original code into memory and

change the execution flow to the original code. All

class files based on Java are dynamically loaded into a

virtual machine. They can be divided into either load-

time or run-time dynamic loading, depending on the

moment that code is loaded. Load-time dynamic

loading is a mandatory procedure for loading code; it is

necessary for the initial execution. Run-time dynamic

loading is an explicit loading of additional code by the

developer at run-time to solve problems, such as

dynamic code execution or heap memory limitation,

according to the execution condition. Among them, the

technology used for packing is run-time dynamic

loading. It is possible to determine if packing is applied

based on whether dynamic loading is performed at the

time of the app analysis.

There are two ways to apply dynamic loading in

Android apps: using the Java application programming

interface (API) (Dalvik.system.DexClassLoader)

provided by the Android framework, and calling the

native API (openDexFileNative()) directly from the

Dalvik virtual machine. There is no difference between

the two methods because the method using the Java

API is eventually connected to the native API. The

relationship between the Java API and native API is

shown in Figure 4.

Figure 4. Relationships in the dynamic loading API

Because dynamic loading is basically requested by

Java code, it is common to use the Java API. However,

when using the Java API, the Dalvik bytecode is not

suitable for code protection because its dynamic

loading and location are easily exposed by its

vulnerability to reverse engineering. On the other hand,

using the native API provides a higher resistance to

reverse engineering than Dalvik bytecode. Additionally,

1202 Journal of Internet Technology Volume 19 (2018) No.4

when dynamic loading is applied using the native API,

it is difficult to identify the position of the dynamic

loading code and whether dynamic loading is used.

This is because the part that calls the native API in

Java is the same as the general JNI call. As a result, it

becomes difficult to judge whether the packing is

applied.

3 Proposed Scheme

As mentioned earlier, the existing packer technique

packs the entire original bytecode, unpacks the entire

packed code at runtime, and loads it into memory. This

reduces resistance to dynamic analysis because the

entire original bytecode is exposed in memory from the

start of the app to the end. In the proposed approach,

we protect the original bytecode in memory by

reducing the exposure size and time of the original

bytecode. To this end, we propose a packing technique

that separates the core code from the entire code

without applying packing to the entire code. In the

following, we use the term wrapping instead of

packing to distinguish it from existing packers that

target the entire original code. The proposed scheme

greatly reduces the exposure size by consisting of core

bytecode with more than one method or class and by

separately wrapping several core bytecodes. The core

bytecode is exposed only from the time the call is

made until the execution is completed. After execution

completion, the core bytecode is dropped from

memory to minimize the exposure time. The separated

core bytecode is wrapped inside the native library (.so)

file. Furthermore, as mentioned above, it is difficult to

identify dynamic loading. Moreover, the execution

speed is faster than that of the Java API because

dynamic loading is performed using the native API

through the JNI call. The core functions of the

proposed scheme—wrapping and dropping—are

described below.

3.1 Wrapping

The wrapping technique encrypts core bytecode

selected for a class or method and hides it in the native

module. It is decrypted by calling the stub code. The

process of applying wrapping to the core bytecode

selected in the original bytecode is shown in Figure 5.

Figure 5. Wrapping process of the proposed scheme

First, we create the stub code that can call the

selected bytecode from the original bytecode and the

fake bytecode required for dropping. Now, the stub

code and fake bytecode are generated with a

dependency according to the core bytecode signature.

Then, we wrap the core bytecode and fake bytecode

with encryption and add it to the protection module

along with the stub code. The protection module

consists of an unwrapper, dropper, dex_loader, and the

added code. The module is created as a native one and

is included in the app. Finally, the remaining bytecode,

except for the core bytecode, is regenerated to call the

core bytecode, and it is included in the app.

When the core bytecode is called after the app is

executed, it is loaded into memory through the

unwrapping process, as shown in Figure 6. First, the

native protection module is loaded using the JNI call in

the remaining bytecode. The call is connected to the

stub code. The stub code first calls the unwrapper to

unwrap the wrapped core bytecode. Second,

dex_loader is called to load the unwrapped core

bytecode into memory. Finally, the core bytecode,

which is loaded in memory, is called from the stub

code.

Figure 6. Unwrapping process of the proposed scheme

Multi-partitioned Bytecode Wrapping Scheme for Minimizing Code Exposure on Android 1203

This process minimizes the exposed code size in

memory. In addition, the following advantages are

obtained as the core bytecode is encrypted in the native

protection module and invoked through the JNI call.

In general, developers use the framework’s

DexClassLoader class to dynamically load bytecode in

Android apps. When using this API, it is easy to

identify the dynamic loading and calling code of the

wrapped core bytecode. If the core bytecode with

protection is easy to identify, the analysis time is

decreased, which is advantageous to the attacker. Thus,

we add dex_loader, a native dynamic loading module

that uses dvm_Dalvik_system_DexFile, the native API

of the Dalvik VM, to make it difficult to identify the

core bytecode. The remaining bytecode calls the

wrapped core bytecode through a JNI call and the core

bytecode is dynamically loaded into the memory via

dex_loader after unwrapping by unwrapper. Because

JNI calls are commonly used to improve the reusability

and performance of native modules in Android apps, it

is difficult to identify the proposed technique, which

can delay the attacker’s analysis time.

3.2 Dropping

The dropping technique ameliorates the disadvantages

of existing packers, specifically the exposing of the

original bytecode until the application is terminated.

After the loaded core bytecode is completed through

the wrapping process, it is individually unloaded from

memory through the dropping process to decrease the

exposure time.

As shown in Figure 7, dropping can minimize the

exposure time by removing the used core bytecode

from memory. Now, the fake bytecode generated in the

wrapping process is loaded, and the stub code is linked

to the fake bytecode. This fake bytecode has a

signature like that of the core bytecode; however, it

contains completely different logic, causing confusion

in the dynamic analysis of the attacker.

Figure 7. Dropping process of the proposed scheme

In the case of the signature, the Java language

consists largely of classes and methods. Each class and

method can be identified and converted by the type of

each type or parameter. Now, it is converted by using

the defined identification symbols. This is called

“signature”. The reason why this signature should be

like fake bytecode and core bytecode is as follows. The

first is to prevent the attacker from noticing that the

proposed scheme has been applied, and the second is to

make it easier to apply the proposed scheme.

4 Feature Comparison

In this section, we compare the advantages and

disadvantages of the proposed scheme with those of

the existing packing schemes. We compare the

commonly used products—DexProtector and Ijiami—

in terms of packer type identification, unpacking time,

in-memory code identification, and in-memory code

exposure. Table 1 lists and describes the features.

Table 1. Feature comparison

 DexProtector Ijiami
Proposed

Scheme

Packer type

identification
Easy Easy Difficult

Unpacking

time
Launch-time

Launch-

time

Core code

calling time

Original code

identification
Easy Difficult Difficult

In-memory

code exposure
Entire dex Entire dex

Only working

code (temporary

exposure)

4.1 Packer Type Identification

The Android’s packer changes the application entry

point to a specific class to perform anti-analysis and

unpacking, which restores the execution flow as the

starting point of the original application. These classes

commonly inherit and implement the android.app.

Application class because the latter is the first

execution on the Android system. In addition, it marks

the earliest point at which the developers can intervene.

Specifically, Application (DexProtector) and Super

Application (Ijiami) classes inherit the android.app.

Application and act as unpackers. Therefore, in these

packers, the entry point is changed to a specific class

and the files generated for performing this task are

added to the ‘/assets’ directory. These characteristics

provide an opportunity for attackers to determine what

methods are applied to protected applications.

Accordingly, a specific attack method can be devised

after only superficial inspection. However, the

proposed scheme not only maintains the existing

execution flow of the original application, but it also

makes it difficult to recognize the application type

because the core code call is the same as the native

1204 Journal of Internet Technology Volume 19 (2018) No.4

method call of a general application.

Like the reverse engineering of other programs,

reverse engineering an Android app usually involves

static analysis and dynamic analysis. When an attacker

reverse-engineer Android apps using existing

commercial protection techniques, it is easy to identify

them using the characteristics of each packer. This

allows the attacker to perform a faster analysis by

applying known analysis methods for each protection

technique. However, if it is not possible to identify the

application of the protection scheme or the type of

technique as in the proposed scheme, it is not possible

to use a known analysis method and the initial static

analysis process is delayed because the start point

cannot be set. Considering the attacker’s analysis

process, identifying the packer type is a good indicator

of the performance of the packer.

4.2 Unpacking Time

A difference between the existing packing scheme

and the proposed scheme is the protected code

management unit where the management unit indicates

the size of the exposure code. This unit determines the

point at which unpacking occurs. Existing packing

schemes unpack the entire code at once; thus,

unpacking is inevitably performed at the start of the

application. On the other hand, when the proposed

scheme is applied, unwrapping is not performed at a

certain time because it is managed by a class or method

unit. Therefore, it is difficult for an attacker to

designate an analysis point and recognize the method

through static analysis.

4.3 Original Code Identification

All Android applications are forked and executed

from the Zygote process. Moreover, they all have

similar virtual memory spaces. In addition, the

executable files and libraries of the target application

are loaded in a similar area of memory. Thus, it is

possible to search the memory space of a specific area

and find the original bytecode by using the magic

number and header information of the unpacked DEX

file. In the case of Ijiami, it is difficult to find the

original byte code simply by a magic number because

the header information, including the DEX magic

number, is mapped in memory, which is modified to

protect against such analysis. However, after the

application continues running, the entire bytecode is

retained in memory. Thus, it is possible to obtain all

bytecode by only seeking the location. On the other

hand, the proposed scheme restricts the exposure time

and size of the core bytecode by using wrapping and

dropping, and it exposes fake bytecode when the core

bytecode is not executed.

4.4 In-Memory Code Exposure

Ijiami packs the entire bytecode and unpacks it at

the start of the application. DexProtector performs

packing by class; however, like all packers, it unpacks

all classes at the start of the application and loads them

into the memory. For this reason, existing packers have

a vulnerability in exposing the original bytecode to

memory from the time that the application starts.

However, in the proposed scheme, it is only exposed

during the execution of the core bytecode, and it is

replaced by fake bytecode when the execution is

complete. Therefore, for an attacker to acquire all

bytecode, it is necessary to capture the respective

execution times of each core bytecode. Figure 8

compares the times of code exposure in memory.

Figure 8. Comparison of core code exposure duration

5 Experiments

The core concept of the proposed scheme is to

minimize the exposure of code in memory. Therefore,

in this section, the code exposure of the proposed

scheme is confirmed through static and dynamic

analyses, and its performance is compared to those of

the existing packers.

The experiment was performed on Android 4.4.

Android Runtime (ART) has been newly introduced

since version 4.4 and only ART has been supported

since version 5.0 [4]. Considering these aspects, the

proposed scheme uses APIs that are compatible up to

version 7.1.

Multi-partitioned Bytecode Wrapping Scheme for Minimizing Code Exposure on Android 1205

5.1 Experimental Setup

In the experiment, the proposed scheme was applied

to a sample application. Then, static and dynamic

analysis were performed to check whether the core

bytecode was exposed. As shown in Figure 9, the

sample application was created by adding a module

that validates the serial key value to the Notepad

application in the Google Android API sample. In this

experiment, the checkSerial() function, which checks

the validity, was classified as core code and the

proposed scheme was applied to this part. Therefore,

the main purpose of this experiment was to analyze

whether the code of the checkSerial() function was

exposed.

Figure 9. Sample app used for experiments

5.2 Code Exposure

We obtained the results for whether the code leaked

when static and dynamic analyses were performed on

the application with the proposed scheme. Static

analysis decomposed the bytecode to determine

whether core strings were exposed; dynamic analysis

verified whether core code was exposed through a

memory dump.

Static Analysis. Figure 10 and Figure 11 show the

source code level by decompiling classes.dex of the

protected application using the original scheme and the

proposed scheme, respectively, without applying the

proposed scheme. The tools used in decompilation

were dex2jar (v.2.0) [19] and JD-GUI (v.1.4) [22].

package com.example.android.notepad;
public class Loader
{
public static final String isRegistString =
“isRegist”;

 private static boolean checkSerial(String
paramString)
 {
 boolean bool = false;
 if(paramString.equals(“msec”)) {
 bool = true;
 }
 return bool;
 }

 public static Boolean registSerial(String
paramString)
 {
 return checkSerial(paramString);
 }
}

Figure 10. Decompiled source code before DexWrapper

package com.example.android.notepad;
public class Loader
{
public static final String isRegistString =
“isRegist”;

static {
 System.loadLibrary(“obfuscated”);
}
 private static native boolean
checkSerial(String paramString);

 public static Boolean registSerial(String
paramString)
 {
 return checkSerial(paramString);
 }
}

Figure 11. Decompiled source code after DexWrapper

In the case of the original application, the contents

of the checkSerial() function could be analyzed with a

simple decompilation. However, in the case of the

protected application, the checkSerial() function could

check only the native method declaration for the JNI

call. Furthermore, adding the System.loadlibrary()

function for native library loading and dynamically

loading the core bytecode was identical to the normal

JNI call. Thus, it was difficult to identify the proposed

scheme. Therefore, it was confirmed that the static

code analysis could not identify the core code of the

application to which the proposed scheme was applied.

Dynamic Analysis. To check whether the core

bytecode of the application with the proposed scheme

was exposed to memory, we dumped the memory after

core code execution, as shown in Figure 12.

1206 Journal of Internet Technology Volume 19 (2018) No.4

Figure 12. Result of memory dump

After executing the core code, the core bytecode was

dropped from memory and could not be checked; only

the fake bytecode was dumped. In other words, in the

proposed scheme, both the core code and fake code

were wrapped, and both were loaded into memory at

the time of execution. At this point, the core code was

immediately dropped from memory after execution;

only the fake code remained in memory. Therefore, if

the attacker attempted to perform dynamic analysis

through a memory dump, only the fake code would be

obtained. Thus, the experiment showed that the core

code was more securely protected.

5.3 Performance

Table 2 shows the results of the comparison of the

launch time, core code execution time, and file size

overhead by applying DexProtector, Ijiami, and the

proposed scheme.

Table 2. Performance comparison

Core code

execution time (ms)

Launchin

g time

(ms)
CPU

time

Actual

processin

g time

File size

(Byte)

Original 338 265.144 276.609 65,106

DexProtector 742 304.678 354.461 910,275

Ijiami 506 276.306 296.027 979,809

Proposed scheme 255 278.738 394.767 87,175

Launching time. The launching time was measured by

using Logcat to show the time when the main activity

was displayed after the execution of the application.

The times are shown in Figure 13. For DexProtector

and Ijiami, the initial unpacking process required

considerable time. However, in the case of the

proposed scheme, the measurement time was shorter

than that of the original. This is because the number of

classes loaded at the beginning of the application was

reduced as much as it was for the core bytecode

separated by the proposed scheme.

07-05 14:04:35.394: D/NotesList(19348):

current timestamp:1467695075407

07-05 14:04:35.524: I/Adreno-EGL(19348):

<qeglDrvAPI_eglInitialize:320>:

EGL 1.4 QUALCOMM Build:

I0404c4692afb8623f95c43aeb6d5e13ed4b30ddb

Date: 11/06/13

07-05 14:04:35.554: D/OpenGLRenderer(19348):

Enabling debug mode 0

07-05 14:04:35.634: D/dalvikvm(19348):

GC_FOR_ALLOC freed 188K, 2% free

17018K/17240K, paused 17ms, total 17ms

07-05 14:04:35.694: I/ActivityManager(845):

Displayed com.example.android.notepad/.

NotesList: +383ms

07-05 14:05:00.094: D/audio_hw_primary(187):

select_devices: out_snd_device(2: speaker)

in_snd_device(0:)

07-05 14:05:00.154: D/dalvikvm(845):

GC_FOR_ALLOC freed 914K, 24% free

31838K/41428K, paused 57ms, total 57ms

Figure 13. Time required to display the main activity

on Logcat

Core code execution time. In this experiment, the

execution time of the checkSerial() function was

measured by Eclipse’s method profiling function. Thus,

comparing the core code execution time, the existing

packers and proposed scheme showed no difference in

the CPU time based on the original. However, in the

case of the actual processing time, the delay time of

approximately 100 to 120 ms was measured for the

proposed scheme. This is because the context switch

process caused by the JNI call occurred twice (i.e.,

core bytecode and fake bytecode loading). This

overhead is not a problem for practical use, compared

to the problematic overhead of DexProtector.

Additional file size. Owing to the technical nature of

the packing technique, additional files were added to

increase the application size. This increase in file size

also serves as overhead in applying real protection

schemes. In this experiment, we measured the

additional file size and found that the existing packers

added an additional file that was significantly larger

than the original file. In the case of the proposed

scheme, we confirmed that the size increased partially

because it was only applied to partial files.

6 Conclusion

Among existing mobile application protection

schemes, the commercial packing technique can

effectively protect against static analysis. However, the

existing packing technique alone cannot provide

sufficient dynamic analysis resistance. This is because

the existing packing technique unpacks the entire

original bytecode at the application startup and retains

it in memory until the application terminated. To

Multi-partitioned Bytecode Wrapping Scheme for Minimizing Code Exposure on Android 1207

overcome this drawback, the proposed scheme

separates and wraps the core bytecode from the

original bytecode into a method or class unit. The

exposure size and time of this protected code is

effectively reduced because it is removed from

memory via dropping after the operation is completed

at run-time. As a result, we conclude that the proposed

scheme has a strong resistance to dynamic analysis

compared to the existing packing methods and it shows

excellent execution performance.

In the future, we plan to apply more categories of

apps to compare performance with existing packers.

Through these various experiments, we expect to see

the practicality of the proposed scheme and broaden

the application range.

Acknowledgments

This research was supported by Institute for

Information & communications Technology Promotion

(IITP) grant funded by the Korea government (MSIT)

(2017-0-00168, Automatic Deep Malware Analysis

Technology for Cyber Threat Intelligence).

This is an extended version of a paper presented at

MobiSec’16 in Taiwan, 2016 [6].

References

[1] H. Cho, J. Lim, H. Kim, J. H. Yi, Anti-debugging Scheme for

Protecting Mobile Apps on Android Platform, The Journal of

Supercomputing, Vol. 72, No. 1, pp. 232-246, January, 2016.

[2] J.-H. Jung, J. Y. Kim, H.-C. Lee, J. H. Yi, Repackaging

Attack on Android Banking Applications and Its

Countermeasures, Wireless Personal Communications, Vol.

73, No. 4, pp. 1421-1437, December, 2013.

[3] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, D. Gu,

Appspear: Bytecode Decrypting and Dex Reassembling for

Packed Android Malware, Research in Attacks, Intrusions,

and Defenses, Kyoto, Japan, 2015, pp. 359-381.

[4] G. Na, J. Lim, K. Kim, J. H. Yi, Comparative Analysis of

Mobile App Reverse Engineering Methods on Dalvik and

ART, Journal of Internet Services and Information Security,

Vol. 6, No. 3, pp. 27-39, August, 2016.

[5] J. Park, H. Kim, Y. Jeong, S.-j. Cho, S. Han, M. Park, Effects

of Code Obfuscation on Android App Similarity Analysis,

Journal of Wireless Mobile Networks, Ubiquitous Computing,

and Dependable Applications, Vol. 6, No. 4, pp. 86-98,

December, 2015.

[6] Y. Park, T. Park, S. T. Kim, J. H. Yi, Mobile Code Packing

Scheme based on Multi-partitioned Bytecode Wrapping,

Research Briefs on Information & Communication

Technology Evolution, Vol. 2, Article No. 12, September,

2016.

[7] W. Enck, D. Octeau, P. McDaniel, S. Chaudhuri, A Study of

Android Application Security, USENIX Security Symposium,

San Francisco, CA, 2011, p. 21.

[8] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R.

Sadeghi, S. Brunthaler, M. Franz, Readactor: Practical Code

Randomization Resilient to Memory Disclosure, IEEE

Symposium on Security and Privacy, San Jose, CA, 2015, pp.

763-780.

[9] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R.

Zhou, H. Yin, Make It Work, Make It Right, Make It Fast:

Building a Platform-neutral Whole-system Dynamic Binary

Analysis Platform, The ACM International Symposium on

Software Testing and Analysis, San Jose, CA, 2014, pp. 248-

258.

[10] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, W. Lee, Aslr-

guard: Stopping Address Space Leakage for Code Reuse

Attacks, The 22nd ACM SIGSAC Conference on Computer

and Communications Security, New York, NY, 2015, pp.

280-291.

[11] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, P. G. Bringas,

Sok: Deep Packer Inspection: A Longitudinal Study of the

Complexity of Run-time Packers, IEEE Symposium on

Security and Privacy, San Jose, CA, 2015, pp. 659-673.

[12] Y. Zhang, X. Luo, H. Yin, Dexhunter: Toward Extracting

Hidden Code from Packed Android Applications, European

Symposium on Research in Computer Security, Vienna,

Austria, 2015, pp. 293-311.

[13] Y. Park, We Can Still Crack you! General Unpacking Method

for Android Packer (No Root), in: Black Hat Asia 2015,

Marina Bay, 2015.

[14] T. Strazzere, J. Sawyer, Android Hacker Protection Level 0,

DEF CON 22, August, 2014.

[15] C. Collberg, C. Thomborson, D. Low, A Taxonomy of

Obfuscating Transformations, Technical Report, July, 1997.

[16] Android Build Guide, https://developer.android.com/studio/

build/index.html.

[17] Apktool, https://ibotpeaches.github.io/Apktool/.

[18] Bangcle, http://www.bangcle.com.

[19] dex2jar, https://bitbucket.org/pxb1988/dex2jar.

[20] Dexprotector, http://www.dexprotector.com.

[21] Ijiami, http://www.ijiami.cn.

[22] Jd-gui, http://jd.benow.ca/.

[23] Upx, http://upx.sourceforge.net.

[24] IDC Research, Smartphone OS Market Share, q2, http://www.

idc.com/prodserv/smartphone-os-market-share.jsp.

Biographies

Yongjin Park received the B.S. and

M.S. degrees in Computer Science

and Engineering from Soongsil

University in 2014 and 2016,

respectively. He is now working for

National Security Research in Korea.

His research interests include mobile security, Android

platform, and IoT .

1208 Journal of Internet Technology Volume 19 (2018) No.4

Taeyong Park received the B.S. and

M.S. degrees in Computer Science

and Engineering from Soongsil

University in 2015 and 2017,

respectively. His research interests

include mobile security, code

obfuscation and system programming.

Jeong Hyun Yi is an Associate

Professor in the School of Software

and the Director of Cyber Security

Research Center at Soongsil

University, Seoul, Korea. He received

the B.S. and M.S. degrees in computer

science from Soongsil University, Seoul, Korea, in

1993 and 1995, respectively, and the Ph.D. degree in

information and computer science from the University

of California, Irvine, in 2005. He was a Principal

Researcher at Samsung Advanced Institute of

Technology, Korea, from 2005 to 2008, and a member

of research staff at Electronics and Telecommunications

Research Institute (ETRI), Korea, from 1995 to 2001.

Between 2000 and 2001, he was a guest researcher at

National Institute of Standards and Technology (NIST),

Maryland, U.S. His research interests include mobile

security and privacy, IoT security, and applied

cryptography.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

