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Abstract 

The Active Queue Management (AQM) algorithm is 

one of most important research fields in network 

congestion control. To adjust the maximum dropping 

probability (maxp) according to the network situation the 

maxp calculation based on the RED algorithm is 

improved using the Q-learning algorithm, and a new 

algorithm, known as QRED (Q-learning RED), is 

proposed. The self-adaptive adjustment for the maxp is 

achieved using the QRED algorithm and the queue length 

stability in a dynamic network environment is realized. In 

addition, the QRED algorithm not only avoids the 

sensitivity of the RED algorithm parameters, but also 

adapts the packet loss rate according to the specific 

network service type. Results based on the NS2 

simulation show that the QRED algorithm has better 

stability in complex network environments, and hence, 

are superior to the RED active queue management 

algorithm. 

Keywords:  Network congestion control, Active queue 

management, Q-learning, RED algorithm, 

5G 

1 Introduction 

The increasing number of Internet users brings 

growing congestion to the Internet. In order to solve 

the network congestion problem [1-5], it is not enough 

to rely solely on the TCP congestion control 

mechanism [6] provided by the source node, so that the 

network itself is also involved in congestion control. 

Congestion control based on the intermediate node 

includes two parts: queue scheduling and queue 

management [7]. The former is used to solve the data 

network bandwidth distribution problem, focusing on 

network fairness. The latter aims at maintaining 

routing squadron stability by choosing a certain packet 

drop probability based on the route circumstance. 

Queue management algorithms can be divided into two 

categories: passive queue management (PQM) and 

active queue management (AQM). The traditional 

Drop-Tail algorithm is based on the PQM algorithm 

mechanism, in which the packet drop probability is 

controlled by setting a maximum value for the queue. 

The Drop-Tail, however, may cause several problems, 

such as network deadlock, full queue, global 

synchronization and delay due to a continuously full 

queue. In 1993 Floyd proposed the famous RED [8] 

congestion control mechanism which effectively 

improved the Drop-Tail. The RED algorithm evaluates 

the changes in network congestion by calculating the 

average queue. When the average queue length 

increases rapidly, it will increase the labeled packet 

drop probability to inform the sender to appropriately 

reduce the transmission rate, to ease network 

congestion. However, for the reason that RED is 

sensitive to the parameter settings, a sudden increase in 

the packet drop probability up to 1 may occur when the 

average queue length is greater than the queue length 

upper limit. Subsequently, the Floyd and Feng groups 

proposed the GentleRED [9] and ARED [10], [11] 

algorithms, respectively. The former improves the 

RED algorithm design patterns for packet drop 

probability calculation. When the average queue length 

is greater than the upper queue threshold, the packet 

drop probability linearly increases to 1 with the 

increase in queue length. The latter introduces 

increasing and decreasing coefficients, to adaptively 

adjust the packet drop probability according to the 

degree of congestion. Although GentleRED improves 

RED algorithm performance in some ways, the 

sensitivity to parameters defect still exists in 

GentleRED, and consequently the stability and 

robustness is poor when encountering sudden flow. 

With more complex parameter settings the ARED is 

more sensitive to the parameters. 

1.1 Related Work 

To our knowledge, relatively few researches have 

been conducted on congestion control based on the 

learning algorithm. In [12] a new algorithm, known as 

DEEP BLUE, is proposed to improve the conventional 

BLUE algorithm [13], in which the fuzzy theory and 

reinforcement learning theory are applied to the 

congestion control algorithm. Using the fuzzy Q-

Learning algorithm to adaptively select the BLUE 
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algorithm parameters according to the network 

circumstances, DEEP BLUE solves the lack of 

adaptability problem in the BLUE algorithm. It also 

improves the convergence speed and algorithm 

precision. Integrating the reinforcement learning idea 

and gradient descent method, the AQM algorithm is 

proposed in [14]. The AQM uses the link rate matching 

and queue length as the optimization objective. It was 

shown that through adaptive update step size 

adjustment and packet drop probability direction, the 

queue length can quickly converge to the target value 

with a smaller jitter. [15] combined with reinforcement 

learning and neural networks to solve the congestion 

problem of Broadband Integrated Services Digital 

Networks (BISDN). [16] proposed the AHC (Adaptive 

Heuristic Critic) algorithm based on reinforcement 

learning, using the idea of Temporal-Difference 

learning to learn the original experience for congestion 

control, without considering the dynamic model of the 

environment. [17] solved the dynamic high-speed 

network congestion problem using multi-agent 

reinforcement learning methods. 

Many scholars have improved the AQM algorithm 

in recent years. An active queue management 

algorithm based on the fuzzy neural PID (FNPID) 

algorithm is presented in [18]. The fuzzy logic part is 

used to calculate the learning rate, while the neural 

network PID calculates the packet drop probability 

using the weighted momentum gradient learning 

algorithm. [19] presented an improved algorithm called 

FlowRED based on this type of protocol. The 

algorithm is based on the original RED algorithm for 

increased UDP packet drop probability to improve the 

algorithm fairness. In [20] an improved gCHOKe 

algorithm, sgCHOKe (Sampling based gCHOKe) is 

proposed, through analyzing the non-response flows hit 

low responsiveness, which samples several packets 

from the queue and compares them with the packet 

arrival and employs a new packet-drop mechanism. 

The above methods improved the congestion control 

algorithms in some respects but did not obviously 

improve other network performances, such as 

throughput, delay, etc., and cannot adapt to different 

network service type transmission. Some algorithms 

increased the complexity. There are also some 

congestion control algorithms based on learning 

algorithms such as [15-17], did not consider the 

learning convergence problem.  

The present paper proposes a new algorithm, known 

as QRED (Q-learning RED), based on the intelligent 

processing ability characteristics of the Q-learning 

algorithm. The QRED algorithm optimizes the 

maximum dropping probability (maxp) calculation 

method by designing a learning controller based on the 

Q-learning algorithm [21], [22] to adaptively select 

maxp, it partly eliminates the parameter sensitivity in 

the RED algorithm and improves the overall network 

performance. Moreover, the QRED algorithm can 

adaptive adjustment parameters according to the 

different types of network service transmission, so it 

can support the network slicing scene [23-26] in 5G 

network. 

1.2 Our Contributions 

In this paper, the problem of RED algorithm is 

deeply studied, especially the parameter sensitive 

problem. Aiming at this problem, this paper proposes 

A Q-Learning-based Active Queue Management 

Scheme: QRED. This algorithm adaptively learn RED 

parameter maxp in the current network scene through 

the Q-learning algorithm. And the RED algorithm 

parameters are selected according to the optimal value 

after learning iteration. In addition, we propose an 

actions selection strategy based on the RED algorithm: 

G-Policy. This policy can speed up the Q-value 

convergence and improve learning efficiency. In 

general, The QRED algorithm eliminates the parameter 

sensitive problem, improves the throughput of the 

system, and reduces the end-to-end transmission delay. 

The paper is organized as follows. Section 1 covers 

the related work. In Section 2, we mainly introduce the 

RED Algorithm and analysis its existing problems. In 

addition, we propose an active queue management 

algorithm based on Q-learning. Performance 

evaluation has been conducted in Section 3. Finally, 

the paper is concluded in Section 4. 

2 QRED Algorithm 

2.1 RED Algorithm 

The RED algorithm was proposed by Floyd Van and 

Jacobson Sally to realize router congestion control. A 

router using the RED algorithm will mark the data 

packets that arrive at the router. It will send packets 

that exceed its buffering zone to the sender so that the 

sending end can reduce the transmission window to 

avoid congestion. The algorithm marks the data 

packets with certain randomness to avoid congestion in 

the early stage. This approach is called the random 

early detection (RED) algorithm. 

The RED scheme drops packets with a certain 

probability by computing the average queue length 

(avg) to notify traffic sources about the early stages of 

network congestion. The average queue length is 

calculated as the result of the exponentially weighted 

moving average (EWMA) [27], which really acts as a 

low-pass filter that smoothes out the burstiness of the 

instantaneous queue length [28] to provide a more 

stable measure. The degree of smoothing is determined 

by weighting factor wq. In addition, the average queue 

length is expressed as： 
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where q is the current queue length, wq ∈[0,1] is the 

weight equivalent to the low pass filter time constant, 

m is the number estimated by some function which is 

dependent on idle time of the router. The value of wq is 

very important. If it is set too large temporary 

congestion cannot be filtered out. On the contrary, if it 

is set too small the avg response to changes in the 

actual queue length will be too slow for the router to 

detect the initial congestion stages.  

In addition to EWMA weight wq, RED has three 

more parameters, i.e., minimum threshold minth, 

maximum threshold maxth, and the maximum dropping 

probability maxp at maxth. If the average queue length 

is below minth, RED drops no packets. However, if the 

average queue length increases above minth but is 

below maxth, RED drops incoming packets with a 

probability proportional to the average queue length 

linearly. When the average queue length exceeds maxth, 

all the arriving packets are dropped. The dropping 

probability pb 

can be calculated using the algorithm’s 

internal data variables and the average queue obtained 

by reading the buffer, i.e., 
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The packet number between the first and second 

packet drop probability settings should not be too large 

so that the packet drop probability should vary with the 

number of packets between the two packet drop 

probability settings, 
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where count is the number of unmarked packets 

between the two packet drop probability settings and pa 

is the packet drop probability. The packet drop 

probability should be a function of avg, since avg can 

reflect the degree of congestion. Based on the above 

analysis one can plot the curve of pb varying with avg 

as Figure 1. 
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maxthminth

maxp

0 avg

pb

 

Figure 1. RED’s packet dropping probability curve 

The RED algorithm solved the global synchronization 

problem in the Drop-Tail algorithm, but there were still 

several problems remaining which include: 

(1) Parameter sensitivity [29]: In order to achieve 

good packet loss rate, time delay and throughput 

performances under various network loads it is 

necessary to configure appropriate parameters. 

(2) Fairness issue [30]: The RED algorithm did not 

effectively solve the fair competition problem for the 

network resources between the TCP and UDP flows in 

the transport layer. 

2.2 Q-Learning Algorithm 

As one of the main reinforcement learning 

algorithms [34], Q-learning is a model-free learning 

method which provides the intelligent system with the 

ability to select the optimal action according to the 

action sequences from experience in the Markov 

environment [32]. A key assumption of Q-learning is 

that the interaction between the agents and the 

environment can be treated as a Markov decision 

process (MDP), i.e., the current state and action of the 

agent will determine the state transfer probability 

distribution and the next state with an immediate 

reward. The goal of Q-learning is to find a policy that 

can maximize the reward. 

The Q-value is an important parameter in Q-learning. 

It is defined as the sum of rewards for executing the 

current related actions and those to be performed 

subsequently in accordance with a certain strategy. A 

given state s and action a correspond to a given Q-

value Q(s,a). Q-value is used in the learning process to 

select the action. If the subsequent actions are 

performed according to the optimal polices the 

corresponding Q-value is referred to as the optimal Q 

value Q*, 

 
* *( , ) ( , ) ( , , ) ( , ),Q s a r s a T s a s maxQ s aγ ′ ′ ′= + ∑  (4) 

where T(s, a, s') represents the transfer probability 

from state s to state s' via action a, r(s,a) represents the 

reward for executing action a from state s, γ∈(0,1) is 

the discount factor, which indicates the degree of 

farsightedness. If the γ value is small, the system pays 

attention to only the recent actions. If γ is large the 

actions during a relatively long period of time are 

involved. An agent learning process can be viewed as 

selecting an action from a random state using a strategy. 

The value of Q(s,a) is updated according to 

 
1
( , ) (1 ) ( , ) [ ( , )],

t t
Q s a a Q s a a max s aγ

+
′ ′= − + +  (5) 

where α∈(0,1) is the learning factor used to control the 

speed of learning: the greater the value of α, the faster 

the convergence speed. After performing the selected 

action the agent observes the new state and the reward 

obtained, and then updates the Q-value of the state and 

action based on the maximum Q-value of the new state. 

In this way the agent continually updates the action 
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according to the new state until it arrives at the 

terminal state with an optimal Q-value Q*. A block 

diagram of the Q-learning algorithm is given in Figure 

2. 
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Q-value 

Calculation

Action 

Selection

Action 

Execution

 

Figure 2. Q-learning process diagram 

2.3 QRED Algorithm 

In the RED algorithm the relationship between the 

packet drop probability and the average queue length is 

linear, so that a relatively high packet drop probability 

may occur near the minimum threshold when the 

network is not in a serious congestion state. However, 

when the network is in a serious congestion state near 

the maximum threshold and there is a need for higher 

packet drop probability to ease network congestion, the 

parameter maxp is the maximum drop probability 

before the packet dropping probability jumps to 1. In 

this stage too large a value for maxp may lead to a 

heavy congestion indication, serious grouped packet 

dropping, and hence decrease in the network 

throughput and buffer occupation. Conversely, too 

small a value for maxp will result in a light congestion 

indicator and buffer overflow, forming the Drop-Tail 

mode. For these reasons it is difficult to find an 

appropriate parameter maxp that can adapt to a variety 

of network environments and deal with a burst in 

traffic, so it is necessary to improve the packet drop 

probability function.  

In this paper, Q-learning algorithm is used to solve 

the parameter sensitivity problem of RED algorithm, 

considering that Q-learning has model-independent 

characteristics, it can obtain the optimal system 

strategy under the condition that the environment 

transfer function and the return expectation cannot be 

get, conform the actual situation of network congestion. 

The basic idea of the QRED algorithm is: by 

introducing an offline Q-learning controller into the 

RED algorithm, the maxp is adjusted according to the 

network congestion, so as to achieve reducing the RED 

algorithm parameter sensitivity. The system model 

performance goal is to maximize throughput or 

minimize the delay. The system model can be 

established as follows: 
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where T is the total simulation time of the system. Ct 

represents the throughput at t. Dt is the transmission 

delay at t. 

The learning process of Q-learning algorithm will 

affect the system delay, so we choose the offline 

learning, it means that the learning block is set out of 

the system. The flow chart of the QRED algorithm is 

shown in Figure 3. 

Sender Policy RED

Q-learning

State

Quantization

Reward

Q-Value 

Converge？

Optimal 

Q-Value

Replace

Receiver

Y

N Offline learning

Action

 

Figure 3. QRED algorithm 

In the QRED algorithm, the learning process is 

defined by the triplet {s, a, R}, where s is the set of 

states, the set of average queue lengths (avg), a is the 

set of actions, that is, the set of maxp, R is the reward 

function. Q-learning controller to perceive the current 

network, its corresponding agent, states, actions, 

reward function, policy is defined as follows: 

Agent. Take the Q-learning controller as an agent, the 

agent store a table for the Q-value based on the state-

action pair of the network, as shown in Table 1. 

Table 1. Q-value 

Action 

State 

a1 a2 ... a13 a14 

s1 Q(s1,a1) Q(s1,a2) ... Q(s1,a13) Q(s1,a14)

s2 Q(s2,a1) Q(s2,a2) ... Q(s2,a13) Q(s2,a14)

... ... ... ... ... ... 

s13 Q(s13,a1) Q(s13,a2) ... Q(s13,a13) Q(s13,a14) 

s14 Q(s14,a1) Q(s14,a2) ... Q(s14,a13) Q(s14,a14) 

 

The input the controller is the current network state, 

i.e., the average queue length (avg). The output is the 

action adaptively adjusted according to the action 

selection strategy. The router then processes the data 

packets by discarding some of them according to the 

adjusted drop probability function. The maxp value 
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reflects the degree of network congestion, i.e., the 

more serious the congestion the larger maxp value and 

vice versa. The curve for the packet drop probability vs 

the average queue length is shown in Figure 4. 

1

maxthminth

maxp2

0 avg

pb

maxp14

maxp13

maxp1

...

 

Figure 4. QRED’s packet dropping probability curve  

States. In order to reduce the system complexity, the 

state s(avg) in the Q-learning controller is quantized 

into 14 classes, thus the learning unit state set is given 

by s = {si}, i = 1, 2, 3... 14. The state is set to 14 ×14 

groups, as shown in Table 2. 

Table 2. 14 States groups 

No. State No. State 

s1 0.3maxth－0.35maxth s8 0.65maxth－0.7maxth 

s2 0.35maxth－0.4maxth s9 0.7maxth－0.75maxth 

s3 0.4maxth－0.45maxth s10 0.75maxth－0.8maxth 

s4 0.45maxth－0.5maxth s11 0.8maxth－0.85maxth 

s5 0.5maxth－0.55maxth s12 0.85maxth－0.9maxth 

s6 0.55maxth－0.6maxth s13 0.9maxth－0.95maxth 

s7 0.6maxth－0.65maxth s14 0.95maxth－maxth 

 

Actions. Similarly, the action a(maxp) is divided into 

14 classes and the learning unit action set is a={aj}, j = 

1, 2, 3... 14. The action is also set to 14×14 groups, as 

shown in Table 3. 

Table 3. 14 Actions groups 

No. Action No. Action 

a1 0.1maxp a8 0.8maxp 

a2 0.2maxp a9 0.9maxp 

a3 0.3maxp a10 maxp 

a4 0.4maxp a11 1.5maxp 

a5 0.5maxp a12 2maxp 

a6 0.6maxp a13 2.5maxp 

a7 0.7maxp a14 3maxp 

 

Reward. The reward function can be defined by the 

following formula: 

 ,

ave min max min

T D

max min max ave

C C D D
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C C D D

− −

= +

− −
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where Cmax is the maximum value of system 

throughput during the learning cycle and Cmin is the 

minimum value of system throughput during the 

learning cycle. Cave is the average of the system 

throughput during the learning cycle. Dmax is the 

maximum value of the system delay in the learning 

cycle, and Dmin is the minimum value of the system 

delay in the learning cycle. Dave is the average of the 

system delay during the learning cycle. KT is the 

throughput weight, and KD is the delay weight. The 

weight can be set according to the particular network 

service type. For example, if the uRLLC (Ultra-

Reliable Low latency Communications) service [24] in 

the 5G network scene is transmitted, the KD value can 

be set higher. 

The reward function consider the overall network 

throughput performance and network delay factors, 

making the system throughput as large as possible, the 

delay as small as possible. In this reward function, the 

Q-learning strategy is chosen to iterate in the direction 

of high throughput and low delay. 

Policy. In the agent, the choice of action in the state is 

actually a process of exploring the unknown. In this 

process, the agent cannot always choose the current 

action of maximum Q-value, to avoid falling into the 

local optimal, and cannot always choose the new action, 

ignoring the experience accumulated before. Therefore, 

Q-learning generally through some policy to ensure the 

balance between conservative and aggressive, the main 

methods include ε-greedy algorithm and Boltzmann 

algorithm [34]. 

Because we have already known the linear 

relationship between the avg and the maxp, the QRED 

algorithm can be set a new policy according to 

experience, G-policy, the G-policy can be expressed by 

the formula (9). Before the end of the study, the system 

selects the action with the largest G-value in the 

current state. 

 
1
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| |

G i j
i j k
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Where i and j are, respectively, the ordinal numbers 

of the current state s group and the action under the 

current s, and k∈(0,1) is the return coefficient. The 

value of k determines the state sensitivity to the action, 

i.e., the smaller the k-value the more sensitive the 

current state is to the current action. We set | |,m i j= −  

then: 
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We can know from (10) (11) that ( )G m  is a 

monotonically decreasing function with respect to m, 

so Equation (9) shows that the closer the values of i 

and j are, the larger the G-value is. As shown (k = 0.1) 

in Figure 5. 

 

Figure 5. G-Policy’s 3D curve 

Because according to Table 2 and Table 3 we can 

see the mapping relationship of (i, j) and (avg, maxp), 

the G-policy indicates that, according to experience, 

when the average queue length is small, the current 

network congestion is low, and at this time we can 

choose a smaller maxp. when the average queue length 

is small, the current network congestion is low, then 

we can choose a smaller maxp. When the average 

queue length is large, the current network congestion is 

high, then we can choose a larger maxp. So this policy 

is in line with the empirical conclusion. The system 

selects the action by the G-policy according to the G-

value Table before the Q-value is converged. The G-

value Table is shown as in Table 4. 

Table 4. G-value 

j

i 
1 2 ... 13 14 

1 G(1,1) G(1,2) ... G(1,13) G(1,14) 

2 G(2,1) G(2,2) ... G(2,13) G(2,14) 

... ... ... ... ... ... 

13 G(13,1) G(13,2) ... G(13,13) G(13,14)

14 G(14,1) G(14,2) ... G(14,13) G(14,14)

 

Simulation shows if use this policy, can not only 

improve the network congestion problem in the 

learning phase, and can greatly reduce the learning 

time. 

The Q-learning controller process can be 

summarized as follows: 

 

 

 

 

 

Algorithm. QRED Algorithm 

1: Initialize the Q-value, state, action for the agent  

2:  for time t do 

3:      for each s do 

4:        obtain corresponding information  

           (Cmax/Cmin/Cave/Dmax/Dmin /Dave) 

5:         calculate the state 
t
s  and reward R as give in (8) (9)  

            (10)  

6:          update Q-value Table as given in (11)  

7:           if the Q-value not converges then  

8:              select action according to G-policy  

9:           else  

10:            choose 
1 1 1

argmax ( , )
t t t
a Q s a

+ + +
=  

11:         end if  

12:     end for  

13: t = t +1  

14: end for 

15: If the network topology changes, start learning again 

3 Simulation Analysis 

3.1 Simulation Scene and Parameter Setting 

This section validates the validity and performance 

of the designed QRED algorithm by NS2 [33] 

simulation experiment, the simulation use the typical 

single-bottleneck network topology as shown in Figure 

6. There are n senders (S1~Sn), n receivers (D1~Dn) and 

2 routers (R1, R2) in the network. The bandwidth and 

delay between each sender and R1 are 10Mbps and 

10ms, the bandwidth and delay between each receiver 

and R2 are also 10Mbps and 10ms. The link between 

R1 and R2 is a bottleneck link, the bandwidth and delay 

are 20Mbps and 20ms respectively. For comparison, 

we respectively analyzed respectively the queue length, 

throughput, delay and packet loss rate [31] of RED 

algorithm and QRED algorithm under low load, mid 

load, high load and changing load.  

S1

S2

Sn

R1

D1

D2

Dn

R220Mbps, 20ms

10Mbps, 10ms 10Mbps, 10ms

 

Figure 6. Simulation topology 

In the simulation, the common parameters of the two 

algorithms are set as follows: minth=24, maxth=72, 

ωq=0.002, the buffer size is 120 packets, the 

application layer uses TCP-based FTP services. In the 

learning module, the α value is set to 0.01 and γ is set 

to 0.8. KT and KD are set to 0.5, the learning cycle is set 
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to 10s. RED algorithm and QRED algorithm in the 

implementation of the link between the two routers. 

The other links perform the Drop-Tail algorithm. In 

order to fully reflect the performance of QRED 

algorithm, this performance of the simulation after 

learning is completed. 

3.2 Low Load 

The performance of the algorithm in low load, that is, 

the number of network connections is fixed at 16, the 

simulation time is 100 seconds. Figure 7 shows the 

queue length of the RED algorithm and the QRED 

algorithm. As can be seen from the figure, the average 

queue length of the QRED algorithm is larger than that 

of the RED algorithm. This is because when the 

network is low loaded, the network is less congested, 

so the QRED algorithm reduces the drop probability by 

reducing maxp, and increasing the average queue length 

to improve network throughput. 

 

(a) RED 

 

(b) QRED 

Figure 7. Queue length of the two algorithms in low 

load 

Table 5 shows the statistical results of the 

throughput, latency, and packet loss rate of the RED 

algorithm and QRED algorithm under the low load. As 

can be seen from Table 5, the average throughput of 

the QRED algorithm is larger than the RED algorithm, 

but the cost is to increase the delay. 

Table 5. Network performance in low load 

Performance 

Algorithm 

Throughput

(Kbps) 

Delay 

(ms) 

Packet loss 

rate (%) 

RED 19900.99 53.85 0.36 

QRED 19940.93 55.78 0.33 

3.3 Mid Load 

The performance of the algorithm in mid load, that 

is, the number of network connections is fixed at 64, 

the simulation time is 100 seconds. Figure 8 shows the 

queue length of the RED algorithm and the QRED 

algorithm. It can be seen from the figure that the 

average queue length of the QRED algorithm is not 

much different from the RED algorithm. This is 

because when the network is mid loaded, the network 

congestion is moderate, the drop probability of the 

QRED algorithm does not need to be adjusted 

compared to the RED algorithm, so the performance of 

the network performance is not much difference. 

 

(a) RED 

 

(b) QRED 

Figure 8. Queue length of the two algorithms in mid 

load 
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Table 6 shows the statistical results of the 

throughput, latency, and packet loss rate of the RED 

algorithm and QRED algorithm under the mid load. As 

can be seen from Table 6, the performance of the 

QRED algorithm is almost the same as that of RED. 

Table 6. Network performance in mid load 

Performance 

Algorithm 

Throughput 

(Kbps) 

Delay 

(ms) 

Packet loss 

rate (%) 

RED 19963.92 65.75 4.51 

QRED 19969.71 65.70 4.47 

3.4 High Load  

The performance of the algorithm in high load, that 

is, the number of network connections is fixed at 128, 

the simulation time is 100 seconds. Figure 9 shows the 

queue length of the RED algorithm and the QRED 

algorithm. It can be seen from the figure that the 

average queue length of the QRED algorithm is 

smaller than that of the RED algorithm. This is because 

when the network is high loaded, network congestion 

is more serious. Therefore, the QRED algorithm 

increases the drop probability by increasing maxp, 

which reduce the average queue length and reduce the 

network delay. 

 

(a) RED 

 

(b) QRED 

Figure 9. Queue length of the two algorithms in high 

load 

Table 7 shows the statistical results of the 

throughput, latency, and packet loss rate of the RED 

algorithm and QRED algorithm under the high load. 

As can be seen from Table 7, the delay of the QRED 

algorithm is smaller than that of the RED algorithm, 

and the average throughput is slightly higher than the 

RED algorithm. 

Table 7. Network performance in high load 

Performance

Algorithm 

Throughput 

(Kbps) 

Delay 

(ms) 

Packet loss 

rate (%) 

RED 19970.88 71.72 13.15 

QRED 19971.51 69.04 11.69 

3.5 Changing Load  

The performance in the case of changing load, that is, 

the number of connections is changed between 64, 16 

and 128 every 40 seconds, the simulation time is 120 

seconds. 

Figure 10 shows the queue length of the QRED 

algorithm under the changing load. As can be seen 

from the figure, when the load changes, the queue of 

QRED algorithm can be adjusted adaptively, the 

overall queue length is more stable. 

 

(a) RED 

 

(b) QRED 

Figure 10. Queue length of the two algorithms in 

changing load 
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The statistics of the throughput, delay, and packet 

loss rate of the RED algorithm and QRED algorithm 

are shown in Table 8. It can be found that in the 

dynamic network environment, the performance of the 

QRED algorithm is better than that of the RED 

algorithm. 

Table 8. Network performance in changing load 

Performance 

Algorithm 

Throughput 

(Kbps) 

Delay 

(ms) 

Packet loss 

rate (%) 

RED 19854.53 67.76 6.26 

QRED 19892.71 66.51 5.83 

 

Through the aforementioned simulations and 

analysis, the performance of QRED algorithm include 

throughput, delay, and packet loss rate is consistent 

with the expected results. Although unilateral 

performance improvement is not too much, the overall 

performance in different network scenarios is better 

than the RED algorithm. Therefore, QRED algorithm 

can improve the sensitive parameters of RED 

algorithm to a certain extent, so that the QRED 

algorithm achieve better network performance and can 

select appropriate parameters adaptively according to 

different network scenarios. 

4 Conclusion 

In order to improve the RED algorithm parameter 

settings, make the algorithm achieve better network 

performance, the RED algorithm adaptively selects the 

appropriate parameters according to different network 

scenarios. This paper presents an improved RED 

algorithm, known as QRED. In this algorithm, the Q-

learning algorithm is used to select the maximum 

packet drop probability parameter. The RED algorithm 

parameters are sensitive to defects and can predict 

dynamic changes in network systems. The optimal 

network performance control strategy is obtained by 

the learning unit. It can adaptively adjust the 

algorithm’s maximum packet drop probability, 

achieving improved network performance by avoiding 

congestion. The simulation experiments verify the 

advantages of the QRED algorithm, which can be 

implemented in the network to maintain stability, 

reduce delay, improve the throughput and so on. The 

QRED algorithm overall network performance is better 

than that produced by the RED algorithm. In our future 

work, we will consider improving the accuracy of 

adjustment of actions, such as considering Fuzzy Q-

learning. On the other hand, we will consider the 

fairness issue of the RED algorithm. 
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