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Abstract 

Crash recovery techniques allow real-time distributed 

editing systems to make progress in case of failures. In 

this study, we propose a recovery scheme to manage a 

local document state (a.k.a., checkpoint) in each node, 

which periodically generates the checkpoint state. If a 

transient failure occurs in a distributed editing system, a 

node can rejoin the editing system by loading the local 

document state rather than retrieving the state from 

remote nodes. Our recovery scheme maintains the 

consistency between a local state and a remote state 

during the crash recovery procedure. The correctness of 

the recovery algorithm is theoretically proved. We 

evaluate the performance of our recovery scheme by 

varying the elapsed time between a failed node joining 

and leaving a system. The experimental results show that 

our solution is superior to the traditional recovery 

approach that regains document states from other peer 

nodes. 

Keywords:  Distributed computing, Real-time systems, 

System recovery 

1 Introduction 

Distributed real-time editing systems enable a group 

of geographically distributed users to simultaneously 

view and edit shared documents [3, 17, 24-25, 27]. 

Important features of a distributed editing system 

include quick responsiveness, supporting unconstrained 

collaboration, and tolerant failed processes. A 

distributed system should allow nodes to freely rejoin 

the system after any node or link failures, allowing 

users at functioning nodes to continue their editing 

work and failed nodes rejoin a group at any time. 

It is indispensable for a distributed real-time editing 

system to tolerate node and link failures [19]. Two 

commonly adopted fault-tolerant techniques include 

replication [7, 16] and persistence [20]. In a replication 

scheme, hardware and software components redundantly 

process the same messages in the same order. In case 

of a failure of any component, the other components 

are still able to continue processing tasks. Persistence-

based techniques rely on checkpointing whereby 

during the normal execution, system states are 

periodically saved on a stable storage; checkpoints will 

be retrieved during a crash recovery process to rollback 

to an earlier consistent state. 

It is a traditional wisdom that the recovery of a 

failed node is implemented through regaining system 

document states from other surviving nodes. The 

downside of retrieving document states from remote 

nodes is that recovery latency becomes significantly 

long if document state data is huge. Delays may be 

substantially reduced when there is no need to start the 

recovery from scratch. A failed node may rejoin a 

distributed editing system without starting from the 

very beginning if an appropriate checkpoint can be 

locally loaded. 

In this study, we investigate a new crash recovery 

approach to maintaining a local document state in each 

node, which periodically generates document 

checkpoints. In doing so, if a failure occurs in a node 

or network connections, the node is capable of 

rejoining the editing system by loading its local 

document state rather than obtaining the document 

checkpoint from remote nodes. During the recovery 

procedure, a recovery algorithm is responsible for 

maintaining the consistency between a local state and a 

remote state. 

In this paper, we propose a crash recovery scheme 

for distributed real-time editing systems by managing 

local document states or checkpoints of each node. 

Checkpoints are stored on permanent storage in nodes. 

We focus on distributed editing systems without any 

centralized server; therefore, there is need to provide a 

fault-tolerant support for centralized servers [27]. 

If a node fails due to transient errors (e.g., 

disconnections from a distributed system), the node is 

able to rejoin the editing system by loading document 

checkpoints. To synchronize with the system’s current 

document state, other peer nodes resend necessary 

editing operations based on the loaded checkpoints. In 
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this study, we pay attention to editing operations that 

should be resent by all the other nodes. We describe a 

system model and the crash recovery algorithms, the 

correctness of which is theoretically proved. We 

conduct extensive experiments to demonstrate that our 

crash recovery approach outperforms conventional 

recovery solutions that regain document states from 

other nodes in a distributed system. 

The rest of the paper is organized as follows. In 

Section 2, we present the system model of distributed 

editing systems. The crash recovery algorithms can be 

found in Section 3. The performance evaluation of our 

novel crash recovery is outlined in Section 4. Section 5 

summarizes the related work. Section 6 concludes this 

paper with future directions. 

2 Problem Formulation 

We model a real-time distributed editing system as a 

pair, i.e., DES=<S, C>, where S is a finite set of nodes 

S={s1, s2, ..., sn}. Node si is a node involved in editing 

work. C is a finite set of channels, i.e., C = {cij, 1 ≤i ≤n, 

i<j ≤n}, where cij is a point-to-point channel 

connecting node si and node sj in a distributed system. 

si's execution is represented in form of a sequence of 

editing operations, including remote operations issued 

from other nodes in the system. LDSi denotes the local 

document state of node si, which periodically generates 

and stores the states on permanent storage. In case of 

the transient failures of node si, LDSiis loaded to 

quickly initialize the node. 

In what follows, we formally define editing 

operations, execution forms, and execution times. 

Definition 1. Given an operation O, then s(O) denotes 

the node at which O is generated, ei(O) represents the 

execution form of O at si, gti(O) denotes the time when 

si generates O, and ati(O) represents the execution time 

of O at the remote site si. It is certain that gti(O)→s(O) 

= i, and ati(O)→s(O)≠i. 

The above definition illustrates two implications. 

First, gti(O) implies that the node of operation O is 

node i (i.e., s(O) = i). Second, ati(O) suggests that the 

node of operation O is not node i (i.e.s(O) ≠ i). 

We define the causal order between two operations 

below. It is worth mentioning that the causal order is 

an important concept used to prove the correctness of 

our crash recovering approach. 

Definition 2. Given two operations OiandOj, Oi is 

causal order preceding Oj, denoted by Oi Oj, iff: 
(1) s(Oi) = s(Oj) = k, and gtk(Oi) < gtk(Oj); or 

(2) s(Oi)≠ s(Oj), atk(Oi)<gtk(Oj), where k = s(Oj); or 

(3) There exists an operation Ok, such that Oi Ok, 

Ok Oj. 

Definition 2 indicates that Oi is causal order 

preceding Oj if and only if one of the following three 

conditions is satisfied. First, if Oi and Oj are issued on 

the same node (e.g., node k), then Oi is issued earlier 

than Oj. Second, we consider a case where Oi and Ojare 

created on two different nodes. For example, Oj is 

created on node k and Oi is issued on a node other than 

node k. In this case, the arrival time of Oi on node k 

must be earlier than Oj's creation time (i.e. gtk(Oj)). 

Third, there is a third operation (e.g., Ok) that has the 

causal order relations with Oiand Oj. Thus, Oi is causal 

order preceding Ok and Ok is causal order preceding Oj. 

The definition below specifies the independent 

relation between two operations. Thus, two operations 

are independent of each other if there is no causal order 

relation between the two operations. 

Definition 3. Operation Oi and Ojare independent if 

and only if neither Oi Oj, nor Oj Oi, which is 

defined as Oi|| Oj. 

In what follows, Definition 4 introduces the concept 

of a context associated with an operation. The context 

concept is a determining factor for crash recovery 

overhead (see also Section 4). 

Definition 4. An operation is associated with a context, 

denoted as CTO, which is the list of operations that 

need to be executed to bring the document from its 

initial states to the states on which O is defined. 

The definition below specifies the condition under 

which two operations are context equivalent. 

Definition 5. Given two operations Oi and Ojassociated 

with contexts 
i

O
CT  and 

jO
CT , Oi and Oj are context 

equivalent, i.e., Oi : Oj, if and only if 
i

O
CT  = 

jO
CT . 

We define the two editing operations’ relation in 

terms of context preceding below. 

Definition 6. Given two operations Oi and Oj 

associated with contexts 
i

O
CT  and 

jO
CT , Oi is context 

preceding Oj, i.e., Oi≻Oj, if and only if 
jO

CT  = 
i

O
CT + 

[Oj]. 

The total-order relation between two operations is 

defined as follows. 

Definition 7. We consider two operations Oi and Oj, 

s(Oi) = a, s(Oj) = b, and timestamped by 
i

O
SV  and 

jO
SV , respectively [25]. We say Oi is total order 

preceding Oj, (i.e., Oi⇒ Oj), iff (1) sum(
i

O
SV ) < 

sum(
jO

SV ) or (2) a<b when sum (
i

O
SV ) = sum (

jO
SV ), 

where sum (SV) =
1

[ ].
n

i

SV i

=

∑  

Definition 8. Let t

i
HB  be the history buffer of si at 

time t. In history buffer t

i
HB , ,j t

i
y  denotes the latest 

operation generated in node sj, iff ∀O∈
t

i
HB , O ≠

,j t

i
y : 

s(O) = j → (O ,j t

i
y ). 

In a distributed editing system, each node si 

maintains a status ξi, which can be one of the following 

six candidates, namely, join, run, checkpoint, recovery, 

fail, and finish. A crash recovery procedure begins by 

loading a local document state (a.k.a., document 
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checkpoint) from the permanent storage to the crashed 

node. If no local document state is available, the state 

is initialized to join and remains in the join state until 

the node receives a remote document state from the 

other nodes and executes operations according to the 

remote state. In contrast, if the node keeps a local 

document state, then the setting up of this node relies 

on the local state. The local state of finish means that 

this node has successfully exited during the past 

session. In this case, the local state changes from finish 

into join; the node obtains the remote document state 

from the other nodes; the local state changes from join 

into run after the node starts executing operations 

according to the remote document state. In case the 

local document state’s status is run, this node has not 

exited successfully due to a link failure or node failure. 

Hence, the state changes into recover followed by 

loading all data in the local document checkpoint. 

After the finish state, in which local document state is 

obtained and all missed operations entered at its own 

node are received, the state is set to run. The 

distributed editing system’s user interface is not 

enabled until the status of the node becomes run. We 

formally describe the state transitions in a theorem. 

Now we consider a case where the current state of a 

local node is join. The local node propagates a join 

message to all the other nodes in the editing system, 

then the node waits for the first remote node to reply 

this join message. After receiving the document state 

from this remote node and the node is initialized, the 

status of the node changes into run. If the local node 

does not receive any reply, the node simply assumes 

that it is the first one joining the system. In this case, a 

local document is loaded and the status of the local 

node is updated into run. 

If the node’s status is checkpoint, the node stores the 

local document state on its local permanent storage. 

After the document checkpoint has been made, the 

node’s status is transitioned into run. In case that the 

status is finish, the node saves the local document 

checkpoint, followed by broadcasting the finish 

message to all the other nodes. Such a notification 

informs the other nodes that the local node has finished 

making a document checkpoint. 

If an operation is a local finish operation, the node’s 

status is switched from run into finish. If the operation 

is other types of local operations, the node executes the 

operation, appends the operation into its history buffer, 

and broadcasts the operation to the system’s other 

nodes. If the operation is a remote operation originally 

issued at another remote node, the operation must be 

transformed before being locally executed (see details 

on operation transformation in [25]). The diagram of 

status transitions is depicted in Figure 1. 

 

Figure 1. Diagram of status transitions 

In a replicated scheme, concurrency control to 

maintain consistency in a replicated document is one of 

the key challenging issues. To solve the critical 

inconsistency problems, the consistency model 

addressed in our study has the following three vital 

properties [25]: 

Convergence Property. When the same set of 

operations have been executed at all participating 

nodes, all copies of a shared document are identical. 

Causality-preservation Property. We consider two 

operations Oi and Oj. If Oiis causal order preceding 

Oj(i.e., Oi Oj), then Oiexecutes before Oj at all nodes. 

Intention-preservation Property. The effect of an 

operation O at remote nodes is the same as that of the 

operation at its local node at the time of its generation; 

the effects of independent operations do not interfere 

with each other. 

3 Crash Recovery 

Prior to the description of our crash recovery 

algorithm, we propose an algorithm to determine the 

latest operation generated at node sj in t

i
HB  below. 

Given two local editing operations created at the 

same node, these operations satisfy three conditions, 

which are formally presented in the form of the 

following three lemmas. These lemmas not only clarify 

the relationships among locally generated operations 

but also help in proving our theorems (see Theorems 

3.4-3.8). 

Lemma 3.1. If two operations Oi and Oj are created at 

the same node (i.e., s(Oi) = s(Oj)), then either Oi is 

causal order preceding Oj (i.e., Oi Oj) or Oj is causal 

order preceding Oi (i.e., Oj Oi). 

Proof. The proof of this lemma is straightforward and 

skipped.  

Lemma 3.2. Given two operations Oiand Oj, if Oiis 

causal order preceding Oj (i.e., Oi Oj), then Oi is total 

order preceding Oj (i.e., Oj Oi). Thus, we have ∀Oi, 

Oj: (s(Oi) s(Oj)) → (Oi Oj). 

Proof. Please refer to [21] for the proof of this lemma. 

Lemma 3.3. Let us consider two operations Oi and Oj 

in the history buffer HB. If two operations are 

generated at the same node and Oi is total order 

proceeding to Oj (i.e., Oi⇒Oj), then Oi is causal order 

preceding Oj (i.e., Oi Oj). Thus, we have ∀Oi, Oj∈ 
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HB: (s(Oi) = s(Oj)∧Oi⇒Oj) → (Oi Oj). 

Proof. We prove this lemma by contradiction. 

Assuming that lemma 3.3 is incorrect, we show that 

either Oj is causal order preceding Oi (i.e., Oj Oi) or 

Oiand Ojare two independent operations (i.e., Oi || Oj). 

Because these two operations are issued on the same 

local node (i.e., s(Oi) = s(Oj)), lemma 3.1 suggests that 

Ojis causal order preceding Oi (i.e., Oj Oi). Thus, Ojis 

total order preceding Oi (i.e., Oj⇒Oi) (see lemma 3.2), 

which is a contradiction. This proves the lemma. □ 

Given t

i
HB  and sj, we design Algorithm 1 to 

determine the latest operation generated at node sj. We 

prove the correctness of Algorithm 1 in the following 

theorem. 

Theorem 3.4. Given t

i
HB  and node sj, Algorithm 

LO( t

i
HB , j) determines that the latest operation issued 

at node sj is
j

i
y . 

Proof. Because Algorithm LO( t

i
HB , j) scans history 

buffer t

i
HB  from right to left, we have ∀Ok ∈

t

i
HB , Ok 

= [ ]
t

i
HB a , O = [ ]

t

i
HB b , Ok ≠ O: s(Ok) = s(O) = j → a 

< b. Thus, it is proved that Ok is total order preceding 

O (i.e., Ok⇒O). Then, lemma 3.3 shows that Ok is 

causal order preceding O (i.e., Ok O). Hence, we have 

∀Ok∈
t

i
HB , Ok ≠ O:s(Ok) = j → (Ok O). According to 

Definition 8, operation O is (i.e., O = ), which 

concludes the proof of the theorem. □ 

 

 

Algorithm 1. LO( t

i
HB , j): Given a history buffer t

i
HB at 

node si, 
j

i
y  is the latest operation generated 

at sj; it is obtained as the follows 

1. j ← | t

i
HB |; 

2. while j> 0 do 

3.     O ← t

i
HB  [j]; 

4.     ifs(O) = jthen 

5.          return j

i
y  = O; 

6.     else 

7.          j ← j - 1; 

8.     end if 

9.end while 

10. returnφ; 

 

 

When a link or a node fails, the node will be allowed 

to rejoin the editing system without starting from 

scratch. In our crash recovery solution, we reduce the 

state transmission delay by loading a document state 

from the local permanent storage instead of a remote 

node. If the node is in the recovery status, the node 

rejoins the system by loading the local document state 

and propagating a recovery message r. Then, the node 

waits for replies from other peer nodes. Algorithm 2 

outlines the procedure for a node with transient failures 

rejoining the system by loading a local document state. 

Without losing generality, we assume that at time θ 

when node si has failed, si generates the latest 

document checkpoint at time σ, followed by the 

recovery procedure that loads the checkpoint and 

transmits the recovery message r at time γ. 

It is crucial for the restored node to decide when it 

can start generating the operations again. In fact, the 

failed node s can begin operations only if it has 

received all lost operations generated at sibetween σ 

and θ from the other nodes. To prove the correctness of 

this statement, we introduce and prove Theorem 3.6. 

Before presenting Theorem 3.6, we describe the 

property of time stamp and Lemma 3.5. 

Property 1. Let O be an operation generated at s and 

time stamped by SVO. After executing O at node s, 

state vector SVO[s] can be derived from SV[s] as SVO[s] 

= SV[s] + 1, where SV is the current local state vector. 

Lemma 3.5. Given two operations O and O' issued at 

the same node si, the ith sector in their time stamp are 

different. Thus, we have ∀O, O', 1 ≤ i ≤ n: s(O) = s(O') 

= i, O ≠ O' → SVO[i] ≠ SVO'[i]. 

Proof. Because the two operations are issued at the 

same node (e.g., s(O) = s(O') = i), either O is causal 

order preceding O' or vice versa (i.e., O O' or O' O) 

(see also Lemma 3.1). Assume O O' and that between 

O and O', si generates other k-1 (k> 0) operations; thus, 

O Ok-1  ...  O2  O1  O', then we have SVO[i] = 

1k
O

SV
−

[i] + 1 = 
2k

O
SV

−

[i] + 2 = ... = 
'O

SV [i] + k, where 

k> 0 (Property 1). Hence, we prove that 

SVO[i] ≠ SVO'[i]. We prove Lemma 3.5 in the same 

manner when O'  O. 
 
 

Algorithm 2.  Let t

i
HB  be the history buffer associated 

with the latest checkpoint that generated at 

time t. Local operation generation is disabled 

1. ,i t

i
y  ← LO( t

i
HB , j): 

2. for 1 ≤ i ≤ n, where i ≠  jdo 

3.     ,j t

i
y  ← LO( t

i
HB , j); 

4.     put ,i t

i
y  and ,j t

i
y  into the recovery message; 

5.     send the recovery message to node si; 

6. end for 

7. while True do 

8.     waiting for the operations sent from peer nodes; 

9. if O is the operation which satisfied: SVO[S(O)]← 

SVi[S(O)]+1 and SVO[k] ≤ SVi[k], ∀ k∈ [1, n]; then 

10. if (S(O)= i and ∀O'∈HBi: SVO' ≠  SVO) or S(O) ≠ ithen  

11. use Undo/Transform-Do/Transform-Redo 

[25] scheme to execute O; 

12.     end if 

13.   else 

14.       O is delayed until two conditions are satisfied; 

15.   end if 

16.   if all missed operations generated at si has been  

        executed at si again then 

17.       Local operation generation is enabled; 

18.   end if 

19. end while 
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Theorem 3.6. Let σ, θ, and γ be the latest checkpoint 

time, rash time, and crash recovery time at node si. si 

can only issue operations after time t (t > γ), when all 

operations generated at sibetween σ<gti(O)<θ execute 

at node siagain; that is, ∀ O: σ < gti(O) < θ → 

ei(O)∈ t

i
HB . 

Proof. We prove this theorem by contradiction. Let us 

assume that Theorem 3.6 is incorrect, then node si 

generates an operation Os at time t'>γ, when at least 

one operation generated at si between σ<gti(O)<θ does 

not execute at node si again. Thus, we have ∃ O: 

σ<gti(O)<θ → ei(O)∉
t

i
HB

′

. Let O1 O2  ... Ok be k 

(k> 0) operations generated at si between σ<gti(O)<θ, 

so we prove that ∀  1 ≤ j≤ h : ei(O)∈ t

i
HB

′

 and ∀  h+1 

≤ j≤ k, ei(O)∉
t

i
HB

′

. Assume that when si generates the 

latest checkpoint at time σ, the local state vector is SV[i] 

= d, then after executing Oh on si again, SV[i] becomes 

d+h. So, the operation 
s

O
SV [i] = d + h + 1. The 

timestamp of the operation Oh+1 that has not executed 

at si again is: 
1h

O
SV

+

[i] = d + h + 1. Hence, we prove 

that 
s

O
SV [i] = 

1h
O

SV
+

[i]. Because Os ≠ Oh+1, we have 

s
O

SV [i] ≠
1h

O
SV

+

[i](see Lemma 3.5), which is a 

contradiction. This concludes the proof of theorem 3.6. 

If after time σ, there is at least one operation from 

another node that is executed at si or si generates at 

least one operation, then the saved local state is 

inconsistent with the remote state at the other nodes. 

We articulate this feature in Theorem 3.7. Before the 

proof of Theorem 3.7, we address five properties 

pertinent to history buffer as follows. 

Property 2. If the generation time of O at node siis 

earlier than time t, then ei(O) is in history buffer t

i
HB ; 

thus, we have ∀O, 1 ≤ i ≤ n: gti(O) < t → ei(O)∈ t

i
HB . 

Property 3. If the execution time of O (s(O) ≠  i) at 

node si is earlier than time t, then ei(O) is in history 

buffer t

i
HB . Formally, we have ∀O, 1 ≤ i ≤ n: ati(O) 

< t → ei(O)∈ t

i
HB . 

Property 4. If the generation time of O at si is later 

than time t, then ei(O) is not in history buffer t

i
HB . 

Thus, we formally describe this statement as ∀O, 1 ≤ i 

≤ n: gti(O) > t → ei(O)∉ t

i
HB . 

Property 5. If the execution time of O (s(O) ≠ i) at si is 

later than time t, then ei(O) is not in history buffer t

i
HB . 

More formally, we have ∀O, 1≤i ≤ n: ati(O) > t → 

ei(O)∉ t

i
HB . 

Property 6. Let θ be the time when si fails, σ be the 

time when node si generates the latest checkpoint, and 

γ be the time when si begins its crash recovery 

procedure. For node si, history buffer at time γ is the 

same as that at time δ. We formally describe this 

statement as 
i

HB
γ  = 

i
HB

σ . 

Let us assume that ,j

i
y

σ = ei(Ok). We observe that 

operations O generated at node sj, (1 ≤ j ≤ n; j ≠ i), 

where gtj(Ok) < gtj(O) < atj(r), are also missing in 

history buffer
i

HB
γ . The purpose of the crash recovery 

algorithm is to figure out all the lost operations in node 

si and the effect of their executions is remained 

unchanged. Hence, we introduce the consistency of the 

crash recovery as the definition below. 

Definition 9. Let σ, θ, and γ be the latest checkpoint 

time, crash time, and recovery time at node si, the crash 

recovery is consistent iff, 

∃ t>γ, ∀O : 

(σ<gti(O)<θ∨gtj(Ok)<gtj(O)<atj(r)) 

→ ei(O)∈ t

i
HB , where ,j

i
y

σ = ei(Ok) 

(1)

We devise the GORT algorithm (see Algorithm 3) to 

obtain the original form of an operation in history 

buffer. 

Let sj be a node that receives recovery message r 

from node si, (i ≠ j), sj responds to the message r at time 

t.  The pseudo code of the GORT algorithm is described 

below. 

 

 

Algorithm 3. The Generic Operation Revise Transform 

algorithm (GORT) 

1. Given the history buffer of si at time t, t

i
HB  = 

[ei(O1), ei(O2),..., ei(Ok)], and an operation ei(Oj) in t

i
HB , 

the original form of Oj is obtained as follows,  

2. Scan t

i
HB  from left to right to find the oldest 

operation t

i
HB [a] that is independent to ei(Oj); 

3. if no such operation is found then 

4.     return Oj ← ei(Oj); 

5. end if 

6. Scan t

i
HB [a, j-1] to find all operations that are 

causally preceding ei(Oj). 

7. if no such operation is found then 

8.     return Oj ← LET (ei(Oj)), 
t

j
HB [a, j-1]-1); 

9.end if 

10. 
1
b

EO′ ←LET(
1

,

t

b i
EO HB [a, b1-1]-1); 

11. for 2 ≤ i ≤ rdo 

12.     TO ← LET(
1

,

t

b i
EO HB [a, bi-1]

-1); 

13.     
1
b

EO′ ←IT(TO, [
1 2 1

, , ...,

i
b b b

EO EO EO
−

′ ′ ′ ]); 

14. end for 

15. TO ←LET(
1

,

t

b i
EO HB [a, j-1]-1); 

16. returnOj ←IT(TO, EOL'); 

 

 

Let t

i
HB  be the history buffer of node si at time t, 

t

i
HB  = [ei(O1), ei(O2),..., ei(Om)], and ei(Oj) is an 

operation in t

i
HB . 

In case that ∀ 1 ≤ k≤ j-1, ei(Ok) ei(Oj), then the 

original form of Oj is the same as its execution form. 



1124 Journal of Internet Technology Volume 19 (2018) No.4 

 

Thus, we have Oj = ei(Oj). 

Let ei(Oa) be the oldest operation that is independent 

of ei(Oj). In the simple case that ∀ 1 ≤ k≤ a-1, 

ei(Ok) ei(Oj), and ∀a≤ k≤ j-1, ei(Oa) || ei(Oj), then we 

can directly obtain Oj by applying the list of exclusion 

transformation function (LET) [25]. Therefore, we 

obtain Oj = LET(ei(Oj), 
t

i
HB  [a, j-1]-1). 

The complicated case is that there is a mixture of 

independent and dependent operations in the range of 
t

i
HB  [a, j-1]. Let EOL = [

1 2

, , ...,

r
b b b

EO EO EO ] be the 

list of operations in the range of t

i
HB [a+1, j-1], which 

are causally preceding ei(Oj). EOL' = [
1 2

, , ...,
b b

EO EO′ ′  

r
b

EO′ ], 
i
b

EO′  is the original form of operation 
i
b

EO′ . 

For the first operation in list EOL, 
1
b

EO′  is derived as 

1
b

EO′  = LET(
1
b

EO , t

i
HB  [a, b1-1]-1). 

For the second operation in list EOL, 
1
b

O is 

determined by two steps as follows, in which IT is the 

inclusion transformation function. The detailed 

information on IT is proposed in [25]. 

‧TO = LET(
2
b

EO , t

i
HB  [a, b2-1]-1); 

‧

2
b

EO′ =IT(TO,
1
b

EO′ ). 

For the ith operation in list EOL, (2 ≤ i≤ r), the 

following two steps are applied to obtain the 

corresponding form of operation in EOL. 

‧TO = LET(
i
b

EO′ , t

i
HB  [a, bi-1]-1); 

‧

1
b

EO′ =IT(TO, [
1 2 1

, , ...,

i
b b b

EO EO EO
−

′ ′ ′ ]). 

If the operation list EOL' is obtained, Oj can be easily 

obtained by applying the following two steps. 

‧TO = LET(
1
b

EO , t

i
HB  [a, j-1]-1); 

‧Oj=IT(TO, EOL'). 

After each node sj executes Algorithm 4, all the lost 

operations in node si will be executed again at node si, 

and the effect of their execution is remained unchanged. 

Theorem 3.8 below proves the correctness of this 

statement. 

Assumption 1. There is at least one node sj that, before 

time atj(r), has executed all operations generated at the 

failed si between time σ and θ, thus, ∃1 ≤ j ≤ n, j ≠ i, 

t<atj(r): ∀O: σ < gti(O) < θ→ej(O)∈ t

i
HB . 

Assumption 1 is very essential for the following 

reason. If no node executes all the lost operations when 

a recovery message arrives, then some lost operations 

will never be executed at node si again. Consequently, 

the consistency of the crash recovery cannot be 

guaranteed. 

Theorem 3.8. Our crash recovery algorithm offers a 

consistent crash recovery. 

Proof. Let us assume that ,i

i
y

σ = ei(Ok). For node sj(1 ≤ 

j≤ n, and j ≠ i), ,j

j
y

δ  = ej(LOj) is the latest operation, 

where δ = atj(r) is the arrival time of recovery message 

r from si to sj. At time tj = ati(LOj), ei(LOj) is residing 

in history buffer tj

i
HB  (i.e., ei(LOj)∈

tj

i
HB ) (see also 

Definition 5). Since the crash recovery algorithm re-

sends operations, which satisfy s(O) = j and O ,j

i
y

δ , 

to si; 
,j

i
y

σ ,j

j
y

δ ; hence, ,j

j
y

δ  is sent to si again. 

Because ∀ ej(O)∈
j

HB
δ : s(O) = j → (O ,j

j
y

δ ) (see 

Definition 8), we prove that at time tj, ∀ O: 

gtj(Ok)<gtj(O)<atj(r) → ei(O)∈ tj

i
HB  (see the property 

of causality preservation). Thus, we obtain 

 
1 , 1 ,
max ( ) max ( ( ))

j i j
j n j i j n j i

t t at LO
α

≤ ≤ ≠ ≤ ≤ ≠

= =  (2) 

At time tα, we have ∀ O, 1 ≤ j≤ n, j ≠ i: 

gtj(Ok)<gtj(O)<atj(r)→ei(O)∈ t

i
HB

α . (1) 

 

 

Algorithm 4.  The algorithm in sj to respond to the message 

r. Get Oa ← ,i

i
y

σ  and Ob ← ,j

i
y

σ  from the 

recovery message. 

1. k ← 1 

2. bi ← false; 

3. bj ← false; 

4. if ,i

i
y

σ  = φthen 

5. bi← true; 

6. end if 

7. if ,j

i
y

σ = φthen 

8.     bj← true; 

9.end if 

10. while k ≤ | t

j
HB | do 

11. O← t

j
HB [k]; 

12.     if bi = false then 

13.   if SVO = 
a

O
SV then 

14. bi ← true;  

15. end if 

16.     else 

17.     if S(O) = ithen 

18.             send O' ← GORT(O) to si; 

19.         end if 

20.      end if  

21. if bj = false then 

22.if SVO = 
b

O
SV then 

23.              bj← true; 

24.           end if 

25.      else 

26.          if S(O) = jthen 

27.              send O' ← GORT(O) to si; 

28.          end if 

29.       end if 

30.        k ← k + 1; 

31. end while 

 

 

According to assumption 1, let sk be the node that 

has executed all operations issued at node si between σ 

and θ; thus, we have ∃ t<δ: ∀ O: σ<gti(O)<θ →

ek(O)∈ t

k
HB . Therefore, we obtain ∀O : σ<gti(O)<θ→
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ek(O)
k

HB
δ
∈ (2). 

Let δ be the arrival time of the crash recovery 

message from si to sk, δ = atk(r), and ,i

k
y

δ = ek( k
LO′ ) is 

the latest operation from si in 
k

HB
δ . As described in 

our algorithm, these operations are delivered back to 

node si again; we then obtain ∃ tβ  = ati( k
LO′ ) >δ : 

ei( k
LO′ )∈ t

i
HB

β . Because ∀ ek(O)∈
k

HB
δ , s(O) = i→

(O
k

LO′ ), we prove that at time tβ, it is true that 

∀ ek(O)∈
k

HB
δ : s(O) = i→ei(O)∈ t

i
HB

β  (3) (see the 

causality property). 

Based on items (2) and (3) above, we prove that at 

time tβ, ∀ O : σ<gti(O)<θ → ei(O) ∈
t

i
HB

β  (4). 

According to items (1) and (4), we have ∃ t = max(tα, 

tβ)>γ : ∀ O : (s(O) = i∧σ<gti(O)<θ)∨(s(O) = 

j ≠ i∧gtj(Ok)<gtj(O)<atj(r)) → ei(O) ∈
t

i
HB , where 

,j

i
y

δ = ei(Ok). Thus, the crash recovery is consistent, 

which concludes the proof of the theorem. 

4 Performance Analysis 

Now we are in a position to evaluate the 

performance of our new approach of recovery support 

for distributed editing systems. We assume that when a 

node leaves the distributed editing system successfully, 

it has created m document checkpoints. The expected 

interval between the time a node joins and leaves the 

system reflects the performance of the editing system.  

Pi(2 ≤ i≤ m) in Figure 2 represents the execution 

time on a node, it is the nominal measured in CPU 

cycles between (i-1)th and ith checkpoints. P1 indicates 

the interval between the beginning of the node and its 

first checkpoint without any transient failure. The total 

execution time is measured as P = 
1

.

m

i

i

P

=

∑  

 

Figure 2. Definition for ci, Hi, TL, and TR 

Let ci(1≤ i≤ m) be the execution time from the 

beginning of a node to the ith checkpoint in presence 

of the node or link failures. Let Ci denote the expected 

value of ci, Ci = E(ci). Thus, the expected interval 

between the time a node joins and leaves the 

distributed editing system is Cm = E(cm). 

Transient failures of a node and a network link can 

be recovered by either loading local document states or 

remote document states. Let p and q be the probability 

of recovering a node by using our new LDS approach 

and the traditional RDS approach, respectively; it is 

clear that p+q = 1. Let TL and TR denote time overhead 

for retrieving local document states and remote 

document states, respectively. fi(t)(i∈ [2, m]) denotes 

the probability of a node/link failure in t units of time 

from the time of the (i-1)th checkpoint. f1(t) is the 

failure probability from the very beginning. Then, we 

have 

 

1

1 1 1

1 1

L

R

P

C P T C

P T C

⎧
⎪

= + +⎨
⎪ + +⎩

 

with probability 1 ( )

with probability ( )

with probability ( )

i i

i i

i i

f P

p f P

q f P

−

×

×

 (3) 

Let Hi represent the time interval between (i-1)th 

and ith checkpoint. Thus, we have 

 
1i i i C

C C H T
−

= + +  (4) 

 
1 1

H c=  (5) 

 

i

i i L i

i R i

P

H P T C

P T C

⎧
⎪

= + +⎨
⎪ + +⎩

 

with probability 1 ( )

with probability ( )

with probability ( )

i i

i i

i i

f P

p f P

q f P

−

×

×

 (6) 

where 2 ≤ i ≤ m. 

Ci is derived from Equation 6 as the equation below, 

where 2 ≤ i ≤ m, 

 1
( ) ( )

1 ( )

i i L R i i

i

i i

C P pT qT f P
C

f P

−

+ + +

=

−

 (7) 

Cm represents the expected interval between the time 

the node joins and leaves the system; Cm is obtained by 

repeatedly applying the above equation m-1 times, 

 
1

( ) ( )

1 ( )

mm
j L R j j

m

j i j i i

P pT qT f P
C

f P
= =

+ +

=

−
∑∏  (8) 

The value of Cm represents the performance of the 

evaluated distributed editing system. Hence, in order to 

optimize the performance, one can minimize Cm by 

determining the proper checkpointing frequency. The 

value of m that minimizes the equation 8 is an optimal 

one. 

Let CL(P, k) denote the execution time of the node in 

the presence of up to k recovering by loading a local 

document state, let S

i
p  and U

i
p  be the probability of the 

ith LDS approach becoming successful and 

unsuccessful, respectively, where 1
S U

i i
p p+ = . CL(P, k) 

is given as below, 

CL(P, k) = 

(P+TL)
1

S
p  + 2(P+TL)

1 2

U U
p p  + ... + k(P+TL) 

1

1

k

U S

i k

i

p p

−

=

∏  + [k(P+TL) + 
1

1 ( )

R
p T

f p

+

−

]
1

k

U

i

i

p

=

∏  

= 
1

1

[ ( )]
k

L

j

j P T
−

=

+ +∑
1

1

j
U S

i j

i

p p

−

=

∏  + k(P+TL)  

(9) 
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1

1

k

U

i

i

p

−

=

∏ +[
1 ( )

R

i

p T

f p

+

−

]
1

1

k

U

i

i

p

−

=

∏     

The values of S

i
p  and U

i
p  are not known until the (i-

1)th unsuccessful LDS recovery occurs. We derive the 

approximate probability for S

i
p  and U

i
p . With an 

increased number of unsuccessful crash recoveries, the 

probability of permanent rises. Thus, 

 
1 2

U U U

k
p p p< < <�  and 

1 2

S S S

k
p p p< < <�  (10) 

We assume that 
1

S

i

S

i

p

p
−

 = wi< 1, and for the simplicity, 

it is assumed that w1 = w2 = ... = wk = w, and  = p. 

Equation 11 is derived from Equation 10 as follows. 

CL(P, k) = 
11

1

1 1

[ ( )] (1 )
jk

i

L

j i

j P T pw
−

−

−

= =

+ −∑ ∏ + k(P+TL)  

                 
1

1

1

(1 )
k

i

i

pw

−

−

=

−∏ + k(P+TL) 
1

1

1

(1 )
k

i

i

pw

−

−

=

−∏  

(11)

The time overhead of LDS recovery is determined 

by P and the arrival rate of operations λ. Suppose the 

operation arrival rate is constant, hence, with the 

increase of P, the probability of successful LDS 

recovery decreases, and the time overhead of the 

unsuccessful LDS also increases. On the other hand, 

the time overhead of RDS recovery is decided by the 

data volume associated with the context of the 

document. For the simplicity, we assume that the cost 

of the RDS recovery remains constant, and it is 

modelled as follows, 

 
1

( )
1 ( )

R R
P T

C R
f P

+

=

−

 (12) 

LDS crash recovery is an efficient method to recover 

the temporary failures in node and links. It continues 

working until the permanent failure occurs (checkpoint 

stored on local storage is missing) or the time overhead 

of LDS recovery is larger than RDS recovery. Thus, 

given value P, CL(P, k) can be determined by k, which 

must satisfy CL(P, k)<CR(P). 

Table 1 describes the relation between k and CL(P, k). 

P is set to 100, 200, and 300, respectively. CL first 

decreases with the increase of k, and when k = 12, CL is 

then minimized. After k = 12, CL rises with the increase 

of k. In this case, 12 is the optimal value for k. 

Table 1. TL=20, TR=40, w=0.8, p=0.8, f1(P)=0.1 

k 2 4 6 8 10 12 

P=100 179.2 177.6 170.5 167.7 166.7 166.1 

P=200 327.2 325.2 312.3 307.3 305.5 305.0 

P=300 475.2 473.9 454.2 447.0 444.3 443.6 

k 14 16 18 30 50 100 

P=100 166.5 166.9 167.4 171.6 179.6 199.8 

P=200 305.2 305.9 306.8 314.6 329.1 366.2 

P=300 443.9 444.9 446.2 457.4 478.7 532.6 

To evaluate the impact of the probability of the first 

successful LDS recovery on CL(P, k), we fix TL, TR, w, 

and f1(P), and increased k from 10 to 30 with an 

increment of10. Table 2 shows the execution time of 

the node in thepresence of up to k LDS recovery as a 

function of p. The higher the probability p is, the less 

execution time of the node in the presence of up to k 

LDS recovery is. It suggests that a higher probability 

of the first successful LDS recovery results in a better 

performance. 

Table 2. P = 100, TL = 20, TR = 40, w = 0.8, f1(P) = 0.1 

p 0.65 0.70 0.75 0.80 0.85 0.90

k=10 208.5 192.9 179.2 166.7 154.8 143.3 

k=20 217.4 197.9 181.8 168.0 155.4 143.4 

k=30 234.3 208.5 188.2 171.6 157.3 144.3 

 

Table 3 illustrates the relation between w and CL(P, 

k). TL, TR, p, and f1(P) are fixed, and k is set to 10, 20, 

and 30, respectively. Like the effect of p on CL, as the 

value of w rises, the execution time of the failed node 

in the presence of up to k LDS recovery decreases. 

This is because with the increase of value w, the 

probability of ith unsuccessful LDS recovery decreases, 

and as U

i
p drops, CL decreases. This suggests that if we 

could increase the probability of the successful LDS 

recovery, the performance of the system would be 

enhanced. 

Table 3. P = 100, TL = 20, TR = 40, w = 0.8, f1(P) = 0.1 

w 0.65 0.70 0.75 0.80 0.85 0.90

k=10 195.1 181.9 172.5 166.7 164.9 166.0 

k=20 232.0 202.7 180.7 168.0 164.0 165.5 

k=30 270.7 226.1 192.1 171.6 164.4 165.4 

5 Related Work 

Distributed editing systems have been studied 

deeply [4, 8, 12, 18, 26]. Real-time distributed editing 

systems are most effective during the initial and 

integration/reviewing stages of distributed authoring [6, 

23]. On the other hand, non-real-time distributed 

systems work efficiently for cooperation in authoring 

team. Table 4 displays a comparison between these 

real-time and non-real-time systems. 

5.1 Non-real-time Systems 

Non-real-time distributed editing systems have 

shared documents that can be accessed and locked 

separately. A shared repository, such as distributed file 

system, serves as the infrastructure for many non-real-

time distributed systems [5, 13-14]. WebDAV is an 

application-layer network protocol offering capabilities 

to support remote collaborative authoring, metadata 

management, version control, and configuration 

management [5]. Unique operations implemented in  
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Table 4. Method comparison 

 
Whitehead and 

Goland [5] 
PREP 

[13] 
Pacull et al. 

[14] 

Koch 

[9] 
Sun et al. 

[25] 
Yang et al.

[27] 
Beck and 

Bellotti [2]

Shim and 

Prakash [19]

Our  

method 

Non-real-time � � �       

Real-time    � � � � � � 

Fault tolerance    �    � � 

Consistency 

maintenance 
    �    � 

Fail recovery  �       � 

  

WebDAV include overwrite prevention, properties, 

and namespace management. 

The flexible diff system reports differences among 

multiple text versions. This system provides flexible 

control operations, allowing users to configure reported 

changes [13]. Our editing system is distinct from the 

aforementioned systems in the way that ours facilitates 

collaborative authoring in a real-time manner. 

5.2 Real-time Systems 

Most existing studies in real-time distributed editing 

systems focus on user intention preservation [10], 

consistency maintenance [2, 21, 25, 27], group undo 

[22], and group awareness [7, 15, 28]. Fault tolerance 

and crash recovery issues, however, have not been 

studied extensively. If a real-time distributed editing 

system is to be efficiently used over a wide area 

network, the fault-tolerant issues must be taken into 

account, for the reason that wide area networks are 

usually unreliable [19]. If group communication 

subsystems are designed and implemented properly, 

they can provide an infrastructure for building 

distributed and reliable services on top of their 

message broadcasting and membership services [1] 

[11]. The drawback of these systems is that they do not 

directly manage group-shared application state and 

transfer group state to new nodes.  

Koch [9] studied the requirements for distributed 

editing systems; Koch also proposed a model, in which 

fault tolerance is introduced. This technique is also 

discussed in [1]. Zhao et al. [30] investigated 

Byzantine fault tolerance for collaborative editing 

systems with commutative operations. But they do not 

consider the consistency maintenance, which is fully 

taken into account in our approach. PREP [13] is a 

distributed writing system that uses the concept of 

flexible diffing for reporting differences between 

versions of texts. But our algorithm is devised for real-

time distributed editing systems. Nicolaescu et al. [29] 

studied multiple communication protocols, and 

developed a near real-time lightweight framework for 

collaborative editing of arbitrary data types in peer-to-

peer settings. But we investigate the real-time 

distributed editing systems in a general distributed 

environment.  

6 Conclusion and Future Work 

We address the crash recovery issues in the context 

of real-time distributed systems. An efficient recovery 

algorithm is presented to make the real-time distributed 

systems more reliable. In our new approach, each node 

maintains a local document state, which is generated 

periodically. If a failure occurs in the node or links, the 

node is able to rejoin the distributed editing systems. 

We studied the factors that affect this interval time 

and derived an equation to determine such interval 

time, and the performance of the system can be 

optimized by determining a proper frequency of 

generating a document state.  

In future, we will extend this work by devising 

garbage collection techniques for reclaiming the 

history buffer.  
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