
Recovery Support for Real-time Distributed Editing Systems 1119

Recovery Support for Real-time Distributed Editing Systems

Mohammed I. Alghamdi1, Xunfei Jiang2, Ji Zhang3, Jifu Zhang4, Xiao Qin3*

1 Department of Computer Science, Al-Baha University, Kingdom of Saudi Arabia
2 Department of Computer Science, Earlham College, USA

3 Department of Computer Science and Software Engineering, Auburn University, USA
4 School of Computer Science and Technology, Taiyuan University of Science and Technology, China

mialmushilah@bu.edu.sa, jiangxu@earlham.edu, jizhang@auburn.edu, jifuzh@sina.com, xqin@auburn.edu

*Corresponding Author: Xunfei Jiang; E-mail: jiangxu@earlham.edu

DOI: 10.3966/160792642018081904015

Abstract

Crash recovery techniques allow real-time distributed

editing systems to make progress in case of failures. In

this study, we propose a recovery scheme to manage a

local document state (a.k.a., checkpoint) in each node,

which periodically generates the checkpoint state. If a

transient failure occurs in a distributed editing system, a

node can rejoin the editing system by loading the local

document state rather than retrieving the state from

remote nodes. Our recovery scheme maintains the

consistency between a local state and a remote state

during the crash recovery procedure. The correctness of

the recovery algorithm is theoretically proved. We

evaluate the performance of our recovery scheme by

varying the elapsed time between a failed node joining

and leaving a system. The experimental results show that

our solution is superior to the traditional recovery

approach that regains document states from other peer

nodes.

Keywords: Distributed computing, Real-time systems,

System recovery

1 Introduction

Distributed real-time editing systems enable a group

of geographically distributed users to simultaneously

view and edit shared documents [3, 17, 24-25, 27].

Important features of a distributed editing system

include quick responsiveness, supporting unconstrained

collaboration, and tolerant failed processes. A

distributed system should allow nodes to freely rejoin

the system after any node or link failures, allowing

users at functioning nodes to continue their editing

work and failed nodes rejoin a group at any time.

It is indispensable for a distributed real-time editing

system to tolerate node and link failures [19]. Two

commonly adopted fault-tolerant techniques include

replication [7, 16] and persistence [20]. In a replication

scheme, hardware and software components redundantly

process the same messages in the same order. In case

of a failure of any component, the other components

are still able to continue processing tasks. Persistence-

based techniques rely on checkpointing whereby

during the normal execution, system states are

periodically saved on a stable storage; checkpoints will

be retrieved during a crash recovery process to rollback

to an earlier consistent state.

It is a traditional wisdom that the recovery of a

failed node is implemented through regaining system

document states from other surviving nodes. The

downside of retrieving document states from remote

nodes is that recovery latency becomes significantly

long if document state data is huge. Delays may be

substantially reduced when there is no need to start the

recovery from scratch. A failed node may rejoin a

distributed editing system without starting from the

very beginning if an appropriate checkpoint can be

locally loaded.

In this study, we investigate a new crash recovery

approach to maintaining a local document state in each

node, which periodically generates document

checkpoints. In doing so, if a failure occurs in a node

or network connections, the node is capable of

rejoining the editing system by loading its local

document state rather than obtaining the document

checkpoint from remote nodes. During the recovery

procedure, a recovery algorithm is responsible for

maintaining the consistency between a local state and a

remote state.

In this paper, we propose a crash recovery scheme

for distributed real-time editing systems by managing

local document states or checkpoints of each node.

Checkpoints are stored on permanent storage in nodes.

We focus on distributed editing systems without any

centralized server; therefore, there is need to provide a

fault-tolerant support for centralized servers [27].

If a node fails due to transient errors (e.g.,

disconnections from a distributed system), the node is

able to rejoin the editing system by loading document

checkpoints. To synchronize with the system’s current

document state, other peer nodes resend necessary

editing operations based on the loaded checkpoints. In

1120 Journal of Internet Technology Volume 19 (2018) No.4

this study, we pay attention to editing operations that

should be resent by all the other nodes. We describe a

system model and the crash recovery algorithms, the

correctness of which is theoretically proved. We

conduct extensive experiments to demonstrate that our

crash recovery approach outperforms conventional

recovery solutions that regain document states from

other nodes in a distributed system.

The rest of the paper is organized as follows. In

Section 2, we present the system model of distributed

editing systems. The crash recovery algorithms can be

found in Section 3. The performance evaluation of our

novel crash recovery is outlined in Section 4. Section 5

summarizes the related work. Section 6 concludes this

paper with future directions.

2 Problem Formulation

We model a real-time distributed editing system as a

pair, i.e., DES=<S, C>, where S is a finite set of nodes

S={s1, s2, ..., sn}. Node si is a node involved in editing

work. C is a finite set of channels, i.e., C = {cij, 1 ≤i ≤n,

i<j ≤n}, where cij is a point-to-point channel

connecting node si and node sj in a distributed system.

si's execution is represented in form of a sequence of

editing operations, including remote operations issued

from other nodes in the system. LDSi denotes the local

document state of node si, which periodically generates

and stores the states on permanent storage. In case of

the transient failures of node si, LDSiis loaded to

quickly initialize the node.

In what follows, we formally define editing

operations, execution forms, and execution times.

Definition 1. Given an operation O, then s(O) denotes

the node at which O is generated, ei(O) represents the

execution form of O at si, gti(O) denotes the time when

si generates O, and ati(O) represents the execution time

of O at the remote site si. It is certain that gti(O)→s(O)

= i, and ati(O)→s(O)≠i.

The above definition illustrates two implications.

First, gti(O) implies that the node of operation O is

node i (i.e., s(O) = i). Second, ati(O) suggests that the

node of operation O is not node i (i.e.s(O) ≠ i).

We define the causal order between two operations

below. It is worth mentioning that the causal order is

an important concept used to prove the correctness of

our crash recovering approach.

Definition 2. Given two operations OiandOj, Oi is

causal order preceding Oj, denoted by Oi Oj, iff:
(1) s(Oi) = s(Oj) = k, and gtk(Oi) < gtk(Oj); or

(2) s(Oi)≠ s(Oj), atk(Oi)<gtk(Oj), where k = s(Oj); or

(3) There exists an operation Ok, such that Oi Ok,

Ok Oj.

Definition 2 indicates that Oi is causal order

preceding Oj if and only if one of the following three

conditions is satisfied. First, if Oi and Oj are issued on

the same node (e.g., node k), then Oi is issued earlier

than Oj. Second, we consider a case where Oi and Ojare

created on two different nodes. For example, Oj is

created on node k and Oi is issued on a node other than

node k. In this case, the arrival time of Oi on node k

must be earlier than Oj's creation time (i.e. gtk(Oj)).

Third, there is a third operation (e.g., Ok) that has the

causal order relations with Oiand Oj. Thus, Oi is causal

order preceding Ok and Ok is causal order preceding Oj.

The definition below specifies the independent

relation between two operations. Thus, two operations

are independent of each other if there is no causal order

relation between the two operations.

Definition 3. Operation Oi and Ojare independent if

and only if neither Oi Oj, nor Oj Oi, which is

defined as Oi|| Oj.

In what follows, Definition 4 introduces the concept

of a context associated with an operation. The context

concept is a determining factor for crash recovery

overhead (see also Section 4).

Definition 4. An operation is associated with a context,

denoted as CTO, which is the list of operations that

need to be executed to bring the document from its

initial states to the states on which O is defined.

The definition below specifies the condition under

which two operations are context equivalent.

Definition 5. Given two operations Oi and Ojassociated

with contexts
i

O
CT and

jO
CT , Oi and Oj are context

equivalent, i.e., Oi : Oj, if and only if
i

O
CT =

jO
CT .

We define the two editing operations’ relation in

terms of context preceding below.

Definition 6. Given two operations Oi and Oj

associated with contexts
i

O
CT and

jO
CT , Oi is context

preceding Oj, i.e., Oi≻Oj, if and only if
jO

CT =
i

O
CT +

[Oj].

The total-order relation between two operations is

defined as follows.

Definition 7. We consider two operations Oi and Oj,

s(Oi) = a, s(Oj) = b, and timestamped by
i

O
SV and

jO
SV , respectively [25]. We say Oi is total order

preceding Oj, (i.e., Oi⇒ Oj), iff (1) sum(
i

O
SV) <

sum(
jO

SV) or (2) a<b when sum (
i

O
SV) = sum (

jO
SV),

where sum (SV) =
1

[].
n

i

SV i

=

∑

Definition 8. Let t

i
HB be the history buffer of si at

time t. In history buffer t

i
HB , ,j t

i
y denotes the latest

operation generated in node sj, iff ∀O∈
t

i
HB , O ≠

,j t

i
y :

s(O) = j → (O ,j t

i
y).

In a distributed editing system, each node si

maintains a status ξi, which can be one of the following

six candidates, namely, join, run, checkpoint, recovery,

fail, and finish. A crash recovery procedure begins by

loading a local document state (a.k.a., document

Recovery Support for Real-time Distributed Editing Systems 1121

checkpoint) from the permanent storage to the crashed

node. If no local document state is available, the state

is initialized to join and remains in the join state until

the node receives a remote document state from the

other nodes and executes operations according to the

remote state. In contrast, if the node keeps a local

document state, then the setting up of this node relies

on the local state. The local state of finish means that

this node has successfully exited during the past

session. In this case, the local state changes from finish

into join; the node obtains the remote document state

from the other nodes; the local state changes from join

into run after the node starts executing operations

according to the remote document state. In case the

local document state’s status is run, this node has not

exited successfully due to a link failure or node failure.

Hence, the state changes into recover followed by

loading all data in the local document checkpoint.

After the finish state, in which local document state is

obtained and all missed operations entered at its own

node are received, the state is set to run. The

distributed editing system’s user interface is not

enabled until the status of the node becomes run. We

formally describe the state transitions in a theorem.

Now we consider a case where the current state of a

local node is join. The local node propagates a join

message to all the other nodes in the editing system,

then the node waits for the first remote node to reply

this join message. After receiving the document state

from this remote node and the node is initialized, the

status of the node changes into run. If the local node

does not receive any reply, the node simply assumes

that it is the first one joining the system. In this case, a

local document is loaded and the status of the local

node is updated into run.

If the node’s status is checkpoint, the node stores the

local document state on its local permanent storage.

After the document checkpoint has been made, the

node’s status is transitioned into run. In case that the

status is finish, the node saves the local document

checkpoint, followed by broadcasting the finish

message to all the other nodes. Such a notification

informs the other nodes that the local node has finished

making a document checkpoint.

If an operation is a local finish operation, the node’s

status is switched from run into finish. If the operation

is other types of local operations, the node executes the

operation, appends the operation into its history buffer,

and broadcasts the operation to the system’s other

nodes. If the operation is a remote operation originally

issued at another remote node, the operation must be

transformed before being locally executed (see details

on operation transformation in [25]). The diagram of

status transitions is depicted in Figure 1.

Figure 1. Diagram of status transitions

In a replicated scheme, concurrency control to

maintain consistency in a replicated document is one of

the key challenging issues. To solve the critical

inconsistency problems, the consistency model

addressed in our study has the following three vital

properties [25]:

Convergence Property. When the same set of

operations have been executed at all participating

nodes, all copies of a shared document are identical.

Causality-preservation Property. We consider two

operations Oi and Oj. If Oiis causal order preceding

Oj(i.e., Oi Oj), then Oiexecutes before Oj at all nodes.

Intention-preservation Property. The effect of an

operation O at remote nodes is the same as that of the

operation at its local node at the time of its generation;

the effects of independent operations do not interfere

with each other.

3 Crash Recovery

Prior to the description of our crash recovery

algorithm, we propose an algorithm to determine the

latest operation generated at node sj in t

i
HB below.

Given two local editing operations created at the

same node, these operations satisfy three conditions,

which are formally presented in the form of the

following three lemmas. These lemmas not only clarify

the relationships among locally generated operations

but also help in proving our theorems (see Theorems

3.4-3.8).

Lemma 3.1. If two operations Oi and Oj are created at

the same node (i.e., s(Oi) = s(Oj)), then either Oi is

causal order preceding Oj (i.e., Oi Oj) or Oj is causal

order preceding Oi (i.e., Oj Oi).

Proof. The proof of this lemma is straightforward and

skipped.

Lemma 3.2. Given two operations Oiand Oj, if Oiis

causal order preceding Oj (i.e., Oi Oj), then Oi is total

order preceding Oj (i.e., Oj Oi). Thus, we have ∀Oi,

Oj: (s(Oi) s(Oj)) → (Oi Oj).

Proof. Please refer to [21] for the proof of this lemma.

Lemma 3.3. Let us consider two operations Oi and Oj

in the history buffer HB. If two operations are

generated at the same node and Oi is total order

proceeding to Oj (i.e., Oi⇒Oj), then Oi is causal order

preceding Oj (i.e., Oi Oj). Thus, we have ∀Oi, Oj∈

1122 Journal of Internet Technology Volume 19 (2018) No.4

HB: (s(Oi) = s(Oj)∧Oi⇒Oj) → (Oi Oj).

Proof. We prove this lemma by contradiction.

Assuming that lemma 3.3 is incorrect, we show that

either Oj is causal order preceding Oi (i.e., Oj Oi) or

Oiand Ojare two independent operations (i.e., Oi || Oj).

Because these two operations are issued on the same

local node (i.e., s(Oi) = s(Oj)), lemma 3.1 suggests that

Ojis causal order preceding Oi (i.e., Oj Oi). Thus, Ojis

total order preceding Oi (i.e., Oj⇒Oi) (see lemma 3.2),

which is a contradiction. This proves the lemma. □

Given t

i
HB and sj, we design Algorithm 1 to

determine the latest operation generated at node sj. We

prove the correctness of Algorithm 1 in the following

theorem.

Theorem 3.4. Given t

i
HB and node sj, Algorithm

LO(t

i
HB , j) determines that the latest operation issued

at node sj is
j

i
y .

Proof. Because Algorithm LO(t

i
HB , j) scans history

buffer t

i
HB from right to left, we have ∀Ok ∈

t

i
HB , Ok

= []
t

i
HB a , O = []

t

i
HB b , Ok ≠ O: s(Ok) = s(O) = j → a

< b. Thus, it is proved that Ok is total order preceding

O (i.e., Ok⇒O). Then, lemma 3.3 shows that Ok is

causal order preceding O (i.e., Ok O). Hence, we have

∀Ok∈
t

i
HB , Ok ≠ O:s(Ok) = j → (Ok O). According to

Definition 8, operation O is (i.e., O =), which

concludes the proof of the theorem. □

Algorithm 1. LO(t

i
HB , j): Given a history buffer t

i
HB at

node si,
j

i
y is the latest operation generated

at sj; it is obtained as the follows

1. j ← | t

i
HB |;

2. while j> 0 do

3. O ← t

i
HB [j];

4. ifs(O) = jthen

5. return j

i
y = O;

6. else

7. j ← j - 1;

8. end if

9.end while

10. returnφ;

When a link or a node fails, the node will be allowed

to rejoin the editing system without starting from

scratch. In our crash recovery solution, we reduce the

state transmission delay by loading a document state

from the local permanent storage instead of a remote

node. If the node is in the recovery status, the node

rejoins the system by loading the local document state

and propagating a recovery message r. Then, the node

waits for replies from other peer nodes. Algorithm 2

outlines the procedure for a node with transient failures

rejoining the system by loading a local document state.

Without losing generality, we assume that at time θ

when node si has failed, si generates the latest

document checkpoint at time σ, followed by the

recovery procedure that loads the checkpoint and

transmits the recovery message r at time γ.

It is crucial for the restored node to decide when it

can start generating the operations again. In fact, the

failed node s can begin operations only if it has

received all lost operations generated at sibetween σ

and θ from the other nodes. To prove the correctness of

this statement, we introduce and prove Theorem 3.6.

Before presenting Theorem 3.6, we describe the

property of time stamp and Lemma 3.5.

Property 1. Let O be an operation generated at s and

time stamped by SVO. After executing O at node s,

state vector SVO[s] can be derived from SV[s] as SVO[s]

= SV[s] + 1, where SV is the current local state vector.

Lemma 3.5. Given two operations O and O' issued at

the same node si, the ith sector in their time stamp are

different. Thus, we have ∀O, O', 1 ≤ i ≤ n: s(O) = s(O')

= i, O ≠ O' → SVO[i] ≠ SVO'[i].

Proof. Because the two operations are issued at the

same node (e.g., s(O) = s(O') = i), either O is causal

order preceding O' or vice versa (i.e., O O' or O' O)

(see also Lemma 3.1). Assume O O' and that between

O and O', si generates other k-1 (k> 0) operations; thus,

O Ok-1 ... O2 O1 O', then we have SVO[i] =

1k
O

SV
−

[i] + 1 =
2k

O
SV

−

[i] + 2 = ... =
'O

SV [i] + k, where

k> 0 (Property 1). Hence, we prove that

SVO[i] ≠ SVO'[i]. We prove Lemma 3.5 in the same

manner when O' O.

Algorithm 2. Let t

i
HB be the history buffer associated

with the latest checkpoint that generated at

time t. Local operation generation is disabled

1. ,i t

i
y ← LO(t

i
HB , j):

2. for 1 ≤ i ≤ n, where i ≠ jdo

3. ,j t

i
y ← LO(t

i
HB , j);

4. put ,i t

i
y and ,j t

i
y into the recovery message;

5. send the recovery message to node si;

6. end for

7. while True do

8. waiting for the operations sent from peer nodes;

9. if O is the operation which satisfied: SVO[S(O)]←

SVi[S(O)]+1 and SVO[k] ≤ SVi[k], ∀ k∈ [1, n]; then

10. if (S(O)= i and ∀O'∈HBi: SVO' ≠ SVO) or S(O) ≠ ithen

11. use Undo/Transform-Do/Transform-Redo

[25] scheme to execute O;

12. end if

13. else

14. O is delayed until two conditions are satisfied;

15. end if

16. if all missed operations generated at si has been

 executed at si again then

17. Local operation generation is enabled;

18. end if

19. end while

Recovery Support for Real-time Distributed Editing Systems 1123

Theorem 3.6. Let σ, θ, and γ be the latest checkpoint

time, rash time, and crash recovery time at node si. si

can only issue operations after time t (t > γ), when all

operations generated at sibetween σ<gti(O)<θ execute

at node siagain; that is, ∀ O: σ < gti(O) < θ →

ei(O)∈ t

i
HB .

Proof. We prove this theorem by contradiction. Let us

assume that Theorem 3.6 is incorrect, then node si

generates an operation Os at time t'>γ, when at least

one operation generated at si between σ<gti(O)<θ does

not execute at node si again. Thus, we have ∃ O:

σ<gti(O)<θ → ei(O)∉
t

i
HB

′

. Let O1 O2 ... Ok be k

(k> 0) operations generated at si between σ<gti(O)<θ,

so we prove that ∀ 1 ≤ j≤ h : ei(O)∈ t

i
HB

′

 and ∀ h+1

≤ j≤ k, ei(O)∉
t

i
HB

′

. Assume that when si generates the

latest checkpoint at time σ, the local state vector is SV[i]

= d, then after executing Oh on si again, SV[i] becomes

d+h. So, the operation
s

O
SV [i] = d + h + 1. The

timestamp of the operation Oh+1 that has not executed

at si again is:
1h

O
SV

+

[i] = d + h + 1. Hence, we prove

that
s

O
SV [i] =

1h
O

SV
+

[i]. Because Os ≠ Oh+1, we have

s
O

SV [i] ≠
1h

O
SV

+

[i](see Lemma 3.5), which is a

contradiction. This concludes the proof of theorem 3.6.

If after time σ, there is at least one operation from

another node that is executed at si or si generates at

least one operation, then the saved local state is

inconsistent with the remote state at the other nodes.

We articulate this feature in Theorem 3.7. Before the

proof of Theorem 3.7, we address five properties

pertinent to history buffer as follows.

Property 2. If the generation time of O at node siis

earlier than time t, then ei(O) is in history buffer t

i
HB ;

thus, we have ∀O, 1 ≤ i ≤ n: gti(O) < t → ei(O)∈ t

i
HB .

Property 3. If the execution time of O (s(O) ≠ i) at

node si is earlier than time t, then ei(O) is in history

buffer t

i
HB . Formally, we have ∀O, 1 ≤ i ≤ n: ati(O)

< t → ei(O)∈ t

i
HB .

Property 4. If the generation time of O at si is later

than time t, then ei(O) is not in history buffer t

i
HB .

Thus, we formally describe this statement as ∀O, 1 ≤ i

≤ n: gti(O) > t → ei(O)∉ t

i
HB .

Property 5. If the execution time of O (s(O) ≠ i) at si is

later than time t, then ei(O) is not in history buffer t

i
HB .

More formally, we have ∀O, 1≤i ≤ n: ati(O) > t →

ei(O)∉ t

i
HB .

Property 6. Let θ be the time when si fails, σ be the

time when node si generates the latest checkpoint, and

γ be the time when si begins its crash recovery

procedure. For node si, history buffer at time γ is the

same as that at time δ. We formally describe this

statement as
i

HB
γ =

i
HB

σ .

Let us assume that ,j

i
y

σ = ei(Ok). We observe that

operations O generated at node sj, (1 ≤ j ≤ n; j ≠ i),

where gtj(Ok) < gtj(O) < atj(r), are also missing in

history buffer
i

HB
γ . The purpose of the crash recovery

algorithm is to figure out all the lost operations in node

si and the effect of their executions is remained

unchanged. Hence, we introduce the consistency of the

crash recovery as the definition below.

Definition 9. Let σ, θ, and γ be the latest checkpoint

time, crash time, and recovery time at node si, the crash

recovery is consistent iff,

∃ t>γ, ∀O :

(σ<gti(O)<θ∨gtj(Ok)<gtj(O)<atj(r))

→ ei(O)∈ t

i
HB , where ,j

i
y

σ = ei(Ok)

(1)

We devise the GORT algorithm (see Algorithm 3) to

obtain the original form of an operation in history

buffer.

Let sj be a node that receives recovery message r

from node si, (i ≠ j), sj responds to the message r at time

t. The pseudo code of the GORT algorithm is described

below.

Algorithm 3. The Generic Operation Revise Transform

algorithm (GORT)

1. Given the history buffer of si at time t, t

i
HB =

[ei(O1), ei(O2),..., ei(Ok)], and an operation ei(Oj) in t

i
HB ,

the original form of Oj is obtained as follows,

2. Scan t

i
HB from left to right to find the oldest

operation t

i
HB [a] that is independent to ei(Oj);

3. if no such operation is found then

4. return Oj ← ei(Oj);

5. end if

6. Scan t

i
HB [a, j-1] to find all operations that are

causally preceding ei(Oj).

7. if no such operation is found then

8. return Oj ← LET (ei(Oj)),
t

j
HB [a, j-1]-1);

9.end if

10.
1
b

EO′ ←LET(
1

,

t

b i
EO HB [a, b1-1]-1);

11. for 2 ≤ i ≤ rdo

12. TO ← LET(
1

,

t

b i
EO HB [a, bi-1]

-1);

13.
1
b

EO′ ←IT(TO, [
1 2 1

, , ...,

i
b b b

EO EO EO
−

′ ′ ′]);

14. end for

15. TO ←LET(
1

,

t

b i
EO HB [a, j-1]-1);

16. returnOj ←IT(TO, EOL');

Let t

i
HB be the history buffer of node si at time t,

t

i
HB = [ei(O1), ei(O2),..., ei(Om)], and ei(Oj) is an

operation in t

i
HB .

In case that ∀ 1 ≤ k≤ j-1, ei(Ok) ei(Oj), then the

original form of Oj is the same as its execution form.

1124 Journal of Internet Technology Volume 19 (2018) No.4

Thus, we have Oj = ei(Oj).

Let ei(Oa) be the oldest operation that is independent

of ei(Oj). In the simple case that ∀ 1 ≤ k≤ a-1,

ei(Ok) ei(Oj), and ∀a≤ k≤ j-1, ei(Oa) || ei(Oj), then we

can directly obtain Oj by applying the list of exclusion

transformation function (LET) [25]. Therefore, we

obtain Oj = LET(ei(Oj),
t

i
HB [a, j-1]-1).

The complicated case is that there is a mixture of

independent and dependent operations in the range of
t

i
HB [a, j-1]. Let EOL = [

1 2

, , ...,

r
b b b

EO EO EO] be the

list of operations in the range of t

i
HB [a+1, j-1], which

are causally preceding ei(Oj). EOL' = [
1 2

, , ...,
b b

EO EO′ ′

r
b

EO′],
i
b

EO′ is the original form of operation
i
b

EO′ .

For the first operation in list EOL,
1
b

EO′ is derived as

1
b

EO′ = LET(
1
b

EO , t

i
HB [a, b1-1]-1).

For the second operation in list EOL,
1
b

O is

determined by two steps as follows, in which IT is the

inclusion transformation function. The detailed

information on IT is proposed in [25].

‧TO = LET(
2
b

EO , t

i
HB [a, b2-1]-1);

‧

2
b

EO′ =IT(TO,
1
b

EO′).

For the ith operation in list EOL, (2 ≤ i≤ r), the

following two steps are applied to obtain the

corresponding form of operation in EOL.

‧TO = LET(
i
b

EO′ , t

i
HB [a, bi-1]-1);

‧

1
b

EO′ =IT(TO, [
1 2 1

, , ...,

i
b b b

EO EO EO
−

′ ′ ′]).

If the operation list EOL' is obtained, Oj can be easily

obtained by applying the following two steps.

‧TO = LET(
1
b

EO , t

i
HB [a, j-1]-1);

‧Oj=IT(TO, EOL').

After each node sj executes Algorithm 4, all the lost

operations in node si will be executed again at node si,

and the effect of their execution is remained unchanged.

Theorem 3.8 below proves the correctness of this

statement.

Assumption 1. There is at least one node sj that, before

time atj(r), has executed all operations generated at the

failed si between time σ and θ, thus, ∃1 ≤ j ≤ n, j ≠ i,

t<atj(r): ∀O: σ < gti(O) < θ→ej(O)∈ t

i
HB .

Assumption 1 is very essential for the following

reason. If no node executes all the lost operations when

a recovery message arrives, then some lost operations

will never be executed at node si again. Consequently,

the consistency of the crash recovery cannot be

guaranteed.

Theorem 3.8. Our crash recovery algorithm offers a

consistent crash recovery.

Proof. Let us assume that ,i

i
y

σ = ei(Ok). For node sj(1 ≤

j≤ n, and j ≠ i), ,j

j
y

δ = ej(LOj) is the latest operation,

where δ = atj(r) is the arrival time of recovery message

r from si to sj. At time tj = ati(LOj), ei(LOj) is residing

in history buffer tj

i
HB (i.e., ei(LOj)∈

tj

i
HB) (see also

Definition 5). Since the crash recovery algorithm re-

sends operations, which satisfy s(O) = j and O ,j

i
y

δ ,

to si;
,j

i
y

σ ,j

j
y

δ ; hence, ,j

j
y

δ is sent to si again.

Because ∀ ej(O)∈
j

HB
δ : s(O) = j → (O ,j

j
y

δ) (see

Definition 8), we prove that at time tj, ∀ O:

gtj(Ok)<gtj(O)<atj(r) → ei(O)∈ tj

i
HB (see the property

of causality preservation). Thus, we obtain

1 , 1 ,
max () max (())

j i j
j n j i j n j i

t t at LO
α

≤ ≤ ≠ ≤ ≤ ≠

= = (2)

At time tα, we have ∀ O, 1 ≤ j≤ n, j ≠ i:

gtj(Ok)<gtj(O)<atj(r)→ei(O)∈ t

i
HB

α . (1)

Algorithm 4. The algorithm in sj to respond to the message

r. Get Oa ← ,i

i
y

σ and Ob ← ,j

i
y

σ from the

recovery message.

1. k ← 1

2. bi ← false;

3. bj ← false;

4. if ,i

i
y

σ = φthen

5. bi← true;

6. end if

7. if ,j

i
y

σ = φthen

8. bj← true;

9.end if

10. while k ≤ | t

j
HB | do

11. O← t

j
HB [k];

12. if bi = false then

13. if SVO =
a

O
SV then

14. bi ← true;

15. end if

16. else

17. if S(O) = ithen

18. send O' ← GORT(O) to si;

19. end if

20. end if

21. if bj = false then

22.if SVO =
b

O
SV then

23. bj← true;

24. end if

25. else

26. if S(O) = jthen

27. send O' ← GORT(O) to si;

28. end if

29. end if

30. k ← k + 1;

31. end while

According to assumption 1, let sk be the node that

has executed all operations issued at node si between σ

and θ; thus, we have ∃ t<δ: ∀ O: σ<gti(O)<θ →

ek(O)∈ t

k
HB . Therefore, we obtain ∀O : σ<gti(O)<θ→

Recovery Support for Real-time Distributed Editing Systems 1125

ek(O)
k

HB
δ
∈ (2).

Let δ be the arrival time of the crash recovery

message from si to sk, δ = atk(r), and ,i

k
y

δ = ek(k
LO′) is

the latest operation from si in
k

HB
δ . As described in

our algorithm, these operations are delivered back to

node si again; we then obtain ∃ tβ = ati(k
LO′) >δ :

ei(k
LO′)∈ t

i
HB

β . Because ∀ ek(O)∈
k

HB
δ , s(O) = i→

(O
k

LO′), we prove that at time tβ, it is true that

∀ ek(O)∈
k

HB
δ : s(O) = i→ei(O)∈ t

i
HB

β (3) (see the

causality property).

Based on items (2) and (3) above, we prove that at

time tβ, ∀ O : σ<gti(O)<θ → ei(O) ∈
t

i
HB

β (4).

According to items (1) and (4), we have ∃ t = max(tα,

tβ)>γ : ∀ O : (s(O) = i∧σ<gti(O)<θ)∨(s(O) =

j ≠ i∧gtj(Ok)<gtj(O)<atj(r)) → ei(O) ∈
t

i
HB , where

,j

i
y

δ = ei(Ok). Thus, the crash recovery is consistent,

which concludes the proof of the theorem.

4 Performance Analysis

Now we are in a position to evaluate the

performance of our new approach of recovery support

for distributed editing systems. We assume that when a

node leaves the distributed editing system successfully,

it has created m document checkpoints. The expected

interval between the time a node joins and leaves the

system reflects the performance of the editing system.

Pi(2 ≤ i≤ m) in Figure 2 represents the execution

time on a node, it is the nominal measured in CPU

cycles between (i-1)th and ith checkpoints. P1 indicates

the interval between the beginning of the node and its

first checkpoint without any transient failure. The total

execution time is measured as P =
1

.

m

i

i

P

=

∑

Figure 2. Definition for ci, Hi, TL, and TR

Let ci(1≤ i≤ m) be the execution time from the

beginning of a node to the ith checkpoint in presence

of the node or link failures. Let Ci denote the expected

value of ci, Ci = E(ci). Thus, the expected interval

between the time a node joins and leaves the

distributed editing system is Cm = E(cm).

Transient failures of a node and a network link can

be recovered by either loading local document states or

remote document states. Let p and q be the probability

of recovering a node by using our new LDS approach

and the traditional RDS approach, respectively; it is

clear that p+q = 1. Let TL and TR denote time overhead

for retrieving local document states and remote

document states, respectively. fi(t)(i∈ [2, m]) denotes

the probability of a node/link failure in t units of time

from the time of the (i-1)th checkpoint. f1(t) is the

failure probability from the very beginning. Then, we

have

1

1 1 1

1 1

L

R

P

C P T C

P T C

⎧
⎪

= + +⎨
⎪ + +⎩

with probability 1 ()

with probability ()

with probability ()

i i

i i

i i

f P

p f P

q f P

−

×

×

 (3)

Let Hi represent the time interval between (i-1)th

and ith checkpoint. Thus, we have

1i i i C

C C H T
−

= + + (4)

1 1

H c= (5)

i

i i L i

i R i

P

H P T C

P T C

⎧
⎪

= + +⎨
⎪ + +⎩

with probability 1 ()

with probability ()

with probability ()

i i

i i

i i

f P

p f P

q f P

−

×

×

 (6)

where 2 ≤ i ≤ m.

Ci is derived from Equation 6 as the equation below,

where 2 ≤ i ≤ m,

 1
() ()

1 ()

i i L R i i

i

i i

C P pT qT f P
C

f P

−

+ + +

=

−

 (7)

Cm represents the expected interval between the time

the node joins and leaves the system; Cm is obtained by

repeatedly applying the above equation m-1 times,

1

() ()

1 ()

mm
j L R j j

m

j i j i i

P pT qT f P
C

f P
= =

+ +

=

−
∑∏ (8)

The value of Cm represents the performance of the

evaluated distributed editing system. Hence, in order to

optimize the performance, one can minimize Cm by

determining the proper checkpointing frequency. The

value of m that minimizes the equation 8 is an optimal

one.

Let CL(P, k) denote the execution time of the node in

the presence of up to k recovering by loading a local

document state, let S

i
p and U

i
p be the probability of the

ith LDS approach becoming successful and

unsuccessful, respectively, where 1
S U

i i
p p+ = . CL(P, k)

is given as below,

CL(P, k) =

(P+TL)
1

S
p + 2(P+TL)

1 2

U U
p p + ... + k(P+TL)

1

1

k

U S

i k

i

p p

−

=

∏ + [k(P+TL) +
1

1 ()

R
p T

f p

+

−

]
1

k

U

i

i

p

=

∏

=
1

1

[()]
k

L

j

j P T
−

=

+ +∑
1

1

j
U S

i j

i

p p

−

=

∏ + k(P+TL)

(9)

1126 Journal of Internet Technology Volume 19 (2018) No.4

1

1

k

U

i

i

p

−

=

∏ +[
1 ()

R

i

p T

f p

+

−

]
1

1

k

U

i

i

p

−

=

∏

The values of S

i
p and U

i
p are not known until the (i-

1)th unsuccessful LDS recovery occurs. We derive the

approximate probability for S

i
p and U

i
p . With an

increased number of unsuccessful crash recoveries, the

probability of permanent rises. Thus,

1 2

U U U

k
p p p< < <� and

1 2

S S S

k
p p p< < <� (10)

We assume that
1

S

i

S

i

p

p
−

 = wi< 1, and for the simplicity,

it is assumed that w1 = w2 = ... = wk = w, and = p.

Equation 11 is derived from Equation 10 as follows.

CL(P, k) =
11

1

1 1

[()] (1)
jk

i

L

j i

j P T pw
−

−

−

= =

+ −∑ ∏ + k(P+TL)

1

1

1

(1)
k

i

i

pw

−

−

=

−∏ + k(P+TL)
1

1

1

(1)
k

i

i

pw

−

−

=

−∏

(11)

The time overhead of LDS recovery is determined

by P and the arrival rate of operations λ. Suppose the

operation arrival rate is constant, hence, with the

increase of P, the probability of successful LDS

recovery decreases, and the time overhead of the

unsuccessful LDS also increases. On the other hand,

the time overhead of RDS recovery is decided by the

data volume associated with the context of the

document. For the simplicity, we assume that the cost

of the RDS recovery remains constant, and it is

modelled as follows,

1

()
1 ()

R R
P T

C R
f P

+

=

−

 (12)

LDS crash recovery is an efficient method to recover

the temporary failures in node and links. It continues

working until the permanent failure occurs (checkpoint

stored on local storage is missing) or the time overhead

of LDS recovery is larger than RDS recovery. Thus,

given value P, CL(P, k) can be determined by k, which

must satisfy CL(P, k)<CR(P).

Table 1 describes the relation between k and CL(P, k).

P is set to 100, 200, and 300, respectively. CL first

decreases with the increase of k, and when k = 12, CL is

then minimized. After k = 12, CL rises with the increase

of k. In this case, 12 is the optimal value for k.

Table 1. TL=20, TR=40, w=0.8, p=0.8, f1(P)=0.1

k 2 4 6 8 10 12

P=100 179.2 177.6 170.5 167.7 166.7 166.1

P=200 327.2 325.2 312.3 307.3 305.5 305.0

P=300 475.2 473.9 454.2 447.0 444.3 443.6

k 14 16 18 30 50 100

P=100 166.5 166.9 167.4 171.6 179.6 199.8

P=200 305.2 305.9 306.8 314.6 329.1 366.2

P=300 443.9 444.9 446.2 457.4 478.7 532.6

To evaluate the impact of the probability of the first

successful LDS recovery on CL(P, k), we fix TL, TR, w,

and f1(P), and increased k from 10 to 30 with an

increment of10. Table 2 shows the execution time of

the node in thepresence of up to k LDS recovery as a

function of p. The higher the probability p is, the less

execution time of the node in the presence of up to k

LDS recovery is. It suggests that a higher probability

of the first successful LDS recovery results in a better

performance.

Table 2. P = 100, TL = 20, TR = 40, w = 0.8, f1(P) = 0.1

p 0.65 0.70 0.75 0.80 0.85 0.90

k=10 208.5 192.9 179.2 166.7 154.8 143.3

k=20 217.4 197.9 181.8 168.0 155.4 143.4

k=30 234.3 208.5 188.2 171.6 157.3 144.3

Table 3 illustrates the relation between w and CL(P,

k). TL, TR, p, and f1(P) are fixed, and k is set to 10, 20,

and 30, respectively. Like the effect of p on CL, as the

value of w rises, the execution time of the failed node

in the presence of up to k LDS recovery decreases.

This is because with the increase of value w, the

probability of ith unsuccessful LDS recovery decreases,

and as U

i
p drops, CL decreases. This suggests that if we

could increase the probability of the successful LDS

recovery, the performance of the system would be

enhanced.

Table 3. P = 100, TL = 20, TR = 40, w = 0.8, f1(P) = 0.1

w 0.65 0.70 0.75 0.80 0.85 0.90

k=10 195.1 181.9 172.5 166.7 164.9 166.0

k=20 232.0 202.7 180.7 168.0 164.0 165.5

k=30 270.7 226.1 192.1 171.6 164.4 165.4

5 Related Work

Distributed editing systems have been studied

deeply [4, 8, 12, 18, 26]. Real-time distributed editing

systems are most effective during the initial and

integration/reviewing stages of distributed authoring [6,

23]. On the other hand, non-real-time distributed

systems work efficiently for cooperation in authoring

team. Table 4 displays a comparison between these

real-time and non-real-time systems.

5.1 Non-real-time Systems

Non-real-time distributed editing systems have

shared documents that can be accessed and locked

separately. A shared repository, such as distributed file

system, serves as the infrastructure for many non-real-

time distributed systems [5, 13-14]. WebDAV is an

application-layer network protocol offering capabilities

to support remote collaborative authoring, metadata

management, version control, and configuration

management [5]. Unique operations implemented in

Recovery Support for Real-time Distributed Editing Systems 1127

Table 4. Method comparison

Whitehead and

Goland [5]
PREP

[13]
Pacull et al.

[14]

Koch

[9]
Sun et al.

[25]
Yang et al.

[27]
Beck and

Bellotti [2]

Shim and

Prakash [19]

Our

method

Non-real-time � � �

Real-time � � � � � �

Fault tolerance � � �

Consistency

maintenance
 � �

Fail recovery � �

WebDAV include overwrite prevention, properties,

and namespace management.

The flexible diff system reports differences among

multiple text versions. This system provides flexible

control operations, allowing users to configure reported

changes [13]. Our editing system is distinct from the

aforementioned systems in the way that ours facilitates

collaborative authoring in a real-time manner.

5.2 Real-time Systems

Most existing studies in real-time distributed editing

systems focus on user intention preservation [10],

consistency maintenance [2, 21, 25, 27], group undo

[22], and group awareness [7, 15, 28]. Fault tolerance

and crash recovery issues, however, have not been

studied extensively. If a real-time distributed editing

system is to be efficiently used over a wide area

network, the fault-tolerant issues must be taken into

account, for the reason that wide area networks are

usually unreliable [19]. If group communication

subsystems are designed and implemented properly,

they can provide an infrastructure for building

distributed and reliable services on top of their

message broadcasting and membership services [1]

[11]. The drawback of these systems is that they do not

directly manage group-shared application state and

transfer group state to new nodes.

Koch [9] studied the requirements for distributed

editing systems; Koch also proposed a model, in which

fault tolerance is introduced. This technique is also

discussed in [1]. Zhao et al. [30] investigated

Byzantine fault tolerance for collaborative editing

systems with commutative operations. But they do not

consider the consistency maintenance, which is fully

taken into account in our approach. PREP [13] is a

distributed writing system that uses the concept of

flexible diffing for reporting differences between

versions of texts. But our algorithm is devised for real-

time distributed editing systems. Nicolaescu et al. [29]

studied multiple communication protocols, and

developed a near real-time lightweight framework for

collaborative editing of arbitrary data types in peer-to-

peer settings. But we investigate the real-time

distributed editing systems in a general distributed

environment.

6 Conclusion and Future Work

We address the crash recovery issues in the context

of real-time distributed systems. An efficient recovery

algorithm is presented to make the real-time distributed

systems more reliable. In our new approach, each node

maintains a local document state, which is generated

periodically. If a failure occurs in the node or links, the

node is able to rejoin the distributed editing systems.

We studied the factors that affect this interval time

and derived an equation to determine such interval

time, and the performance of the system can be

optimized by determining a proper frequency of

generating a document state.

In future, we will extend this work by devising

garbage collection techniques for reclaiming the

history buffer.

Acknowledgements

The authors want to thank Mojen Lau for

proofreading the final presentation of this paper. Xiao

Qin’s work was supported by the US National Science

Foundation under Grants CCF-0845257(CA-REER),

CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-

0917137 (CSR), CNS-0831502 (CyberTrust), CNS-

0855251 (CRI), OCI-0753305 (CI-TEAM), DUE-

0837341 (CCLI), and DUE-0830831 (SFS).

Mohammed I. Alghamdi’s work was supported by Al-

Baha University.

References

[1] Y. Amir, D. Dolev, S. Kramer, D. Malki, Transis: A

Communication Sub-System for High Availability, Technical

Report TR CS91-13, April, 1992.

[2] E. E. Beck, V. M. E. Bellotti, Informed Opportunism as

Strategy: Supporting Coordination in Distributed Collaborative

Writing, Proceedings of the Third European Conference on

Computer-Supported Cooperative Work, Milan, Italy, 1993,

pp. 233-248.

[3] D. Chen and C. Sun, A Distributed Algorithm for Graphic

Objects Replication in Real-time Group Editors, Proceedings

of the International ACM SIGGROUP Conference on

Supporting Group Work, Phoenix, AZ, 1999, pp. 121-130.

1128 Journal of Internet Technology Volume 19 (2018) No.4

[4] A. Craig, A. Davoust, B. Esfandiari, A Distributed Wiki

System based on Peer-to-peer File Sharing Principles, 2011

IEEE/WIC/ACM International Conference on Web Intelligence

and Intelligent Agent Technology (WI-IAT), Lyon, France,

2011, pp. 364-371.

[5] Jr. E. J. Whitehead, Y. Y. Goland, WebDAV: A Network

Protocol for Remote Collaborative Authoring on the Web,

Proceedings of the Sixth European Conference on Computer-

Supported Cooperative Work, Copenhagen, Denmark, 1999,

pp. 291-310.

[6] H. Fan, C. Sun, Dependency-based Automatic Locking for

Semantic Conflict Prevention in Real-time Collaborative

Programming, Proceedings of the 27th Annual ACM

Symposium on Applied Computing, Trento, Italy, 2012, pp.

737-742.

[7] H. Higaki, K. Tanaka, M. Takizawa, Protocol for Pseudo-

active Replication in Wide-area Networks, Proceedings of the

Tenth International Workshop on Database and Expert

Systems Applications, Florence, Italy, 1999, pp. 678-682.

[8] T. Kärkkäinen, J. Ott, Shared Content Editing in Opportunistic

Networks, Proceedings of the 9th ACM MobiCom Workshop

on Challenged Networks, Maui, HI, 2014, pp. 61-64.

[9] M. Koch, Design Issues and Model for a Distributed Multi-

user Editor, Computer Supported Cooperative Work (CSCW),

Vol. 3, No. 3-4, pp. 359-378, September, 1994.

[10] D. Li, L. Zhou, R. R. Muntz, A New Paradigm of User

Intention Preservation in Realtime Collaborative Editing

Systems, Proceedings of the Seventh International Conference

on Parallel and Distributed Systems, Iwate, Japan, 2000, pp.

401-408.

[11] S. Mishra, L. L. Peterson, R. D. Schlichting, Consul: A

Communication Substrate for Fault-Tolerant Distributed

Programs, Distributed Systems Engineering, Vol. 1, No. 2, pp.

87-103, December, 1993.

[12] B. Nédelec, P. Molli, A. Mostefaoui, E. Desmontils, Lseq: An

Adaptive Structure for Sequences in Distributed Collaborative

Editing, Proceedings of the 2013 ACM Symposium on

Document Engineering, Florence, Italy, 2013, pp. 37-46.

[13] C. M. Neuwirth, R. Chandhok, D. S. Kaufer, P. Erion, J.

Morris, D. Miller, Flexible Diff-ing in a Collaborative

Writing System, Proceedings of the the 1992 ACM Conference

on Computer-supported Cooperative Work, Toronto, Canada,

1992, pp. 147-154.

[14] F. Pacull, A. Sandoz, A. Schiper, Duplex: A Distributed

Collaborative Editing Environment in Large Scale, Proceedings

of the 1994 ACM Conference on Computer Supported

Cooperative Work, Chapel Hill, North Carolina, 1994, pp.

165-173.

[15] W. Prinz, NESSIE: An Awareness Environment for

Cooperative Settings, Proceedings of the Sixth European

Conference on Computer Supported Cooperative Work,

Copenhagen, Denmark, 1999, pp. 391-410.

[16] X. Qin, Z. Han, H. Jin, L. Pang, S. Li, Real-time Fault-

tolerant Scheduling in Heterogeneous Distributed Systems,

Proceedings of the 2000 International Conference on Parallel

and Distributed Processing Techniques and Applications, Las

Vegas, NV, 2000, pp. 26-29.

[17] M. Ressel, D. Nitsche-Ruhland, R. Gunzenhäuser, An

Integrating, Transformation-oriented Approach to Concurrency

Control and Undo in Group Editors, Proceedings of the 1996

ACM Conference on Computer Supported Cooperative Work,

Boston, Massachusetts, 1996, pp. 288-297.

[18] M. A. Sasse, M. J. Handley, Collaborative Writing With

Synchronous and Asynchronous Support Environments, in: R.

Rada (Ed.), Groupware and Authoring, Academic Press, 1996,

pp. 205-218.

[19] H. S. Shim, A. Prakash, Tolerating Client and Communication

Failures in Distributed Groupware Systems, Proceeding of

the 17th IEEE Symposium on Reliable Distributed Systems,

West Lafayette, IN, 1998, pp. 221-227.

[20] K.-F. Ssu, B. Yao, W. K. Fuchs, An Adaptive Checkpointing

Protocol to Bound Recovery Time with Message Logging,

Proceeding of the 18th IEEE Symposium on Reliable

Distributed Systems, Lausanne, Switzerland, 1999, pp. 244-

252.

[21] C. Sun, Y. Yang, Y. Zhang, D. Chen, Distributed Concurrency

Control in Real-time Cooperative Editing Systems, Proceedings

of the Second Asian Computing Science Conference on

Concurrency and Parallelism, Programming, Networking,

and Security, Singapore, 1996, pp. 84-95.

[22] C. Sun, Undo Any Operation at Any Time in Group Editors,

Proceedings of the 2000 ACM Conference on Computer

Supported Cooperative Work, CSCW '00, Philadelphia, PA,

2000, pp. 191-200.

[23] C. Sun, D. Chen, Consistency Maintenance in Real-time

Collaborative Graphics Editing Systems, ACM Transactions

on Computer-Human Interaction (TOCHI), Vol. 9, No. 1, pp.

1-41, March, 2002.

[24] C. Sun, C. Ellis, Operational Transformation in Real-time

Group Editors: Issues, Algorithms, and Achievements,

Proceedings of the 1998 ACM Conference on Computer

Supported Cooperative Work, Seattle, WA, 1998, pp. 59-68.

[25] C. Sun, X. Jia, Y. Zhang, Y. Yang, D. Chen, Achieving

Convergence, Causality Preservation, and Intention Preservation

in Real-time Cooperative Editing Systems, ACM Transactions

on Computer-Human Interaction, Vol. 5, No. 1, pp. 63-108,

March, 1998.

[26] D. Sun, C. Sun, Context-based Operational Transformation in

Distributed Collaborative Editing Systems, IEEE Transactions

on Parallel and Distributed Systems, Vol. 20, No. 10, pp.

1454-1470, October, 2009.

[27] Y. Yang, C. Sun, Y. Zhang, X. Jia, Real-Time Cooperative

Editing on the Internet, IEEE Internet Computing, Vol. 4, No.

3, pp. 18-25, May/June, 2000.

[28] Y. Yokota, H. Tarumi, and Y. Kambayashi, Extended

Awareness Support for Cooperative Work in Non-WYSIWIS

Condition, Proceedings of 5th International Computer

Science Conference, Hong Kong, China, 1999, pp. 186-195.

[29] P. Nicolaescu, K. Jahns, M. Derntl, R. Klamma, Yjs: A

Framework for Near Real-Time P2P Shared Editing on

Arbitrary Data Types, 15th International Conference on Web

Engineering (ICWE'15), Rotterdam, The Netherlands, 2015,

Recovery Support for Real-time Distributed Editing Systems 1129

pp. 675-678.

[30] W. Zhao, M. Babi, W. Yang, X. Luo, Y. Zhu, J. Yang, C. Luo,

M. Yang, Byzantine Fault Tolerance for Collaborative

Editing with Commutative Operations, IEEE International

Conference on Electro Information Technology (EIT), Grand

Forks, ND, 2016, pp. 246-251.

Biographies

Mohammed I. Alghamdi received

the B.S. degree in Computer Science

from King Saud University, Riyadh,

Saudi Arabia in 1999. He received the

M.S. degrees in Computer Science

from Colorado Technical University,

Denver, Colorado in 2003. He

received the Ph.D. degree in

Computer Science from New Mexico Institute of

Mining and Technology in 2008. Currently, he is an

Assistant Professor with the Department of Computer

Science, Al-Baha University, Kingdom of Saudi

Arabia. His research interests include wireless

networks, storage systems, parallel and distributed

systems, and computer system security. He is a senior

member of IEEE.

Xunfei Jiang is an Assistant

Professor in the Department of

Computer Science at Earlham College.

She received the B.S. and M.S.

degrees in Computer Science from

Huazhong University of Science and Technology

(HUST), China, in 2004 and 2007. She received the

Ph.D. degree in the Department of Computer Science

and Software Engineering at Auburn University in

2014. Her research interests include parallel and

distributed systems, energy-efficient storage systems,

thermal modeling, and hybrid data storage systems.

Ji Zhang received his B.S. and M.S.

degrees in Computer Science from

Huazhong University of Science and

Technology, Wuhan, China in 2004

and 2007, respectively. He also

obtained the Ph.D. degree in

Computer Science from Auburn University in 2013.

Currently, he is working as a senior software engineer

at Doxpop LLC. His research interests include I/O-

intensive computation, parallel and distributed file

systems, and geographic information systems.

Jifu Zhang received the BS and MS

in Computer Science and Technology

from Hefei University of Technology,

China, in 1983 and 1989, respectively.

He received the Ph.D. degree in

Pattern Recognition and Intelligence

Systems from Beijing Institute of

Technology in 2005. He is currently a

Professor in the School of Computer Science and

Technology at TYUST. His research interests include

data mining and artificial intelligence, parallel and

distributed systems.

Xiao Qin received the B.S. and M.S.

degrees in Computer Science from the

Huazhong University of Science and

Technology, Wuhan, China, and the

Ph.D. degree in Computer Science

from the University of Nebraska-

Lincoln, Lincoln, in 1992, 1999, and

2004, respectively. Currently, he is an Associate

Professor with the Department of Computer Science

and Software Engineering, Auburn University, Auburn,

AL. His research interests include parallel and

distributed systems, storage systems, fault tolerance,

real-time systems, and performance evaluation.

1130 Journal of Internet Technology Volume 19 (2018) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

