
A New Digital Paper Search Paradigm Based on FCA 1099 

 

A New Digital Paper Search Paradigm Based on FCA  

Haibin Yu1, Chongyang Shi1, Bai Yu2, Chunxia Zhang1, Ryan Hearne1* 

1 School of Computer Science, Beijing Institute of Technology, China,  
2 QCIS, University of Technology, Australia,  

{yuhaibin, cy_shi}@bit.edu.cn, yu.bai-3@ student.uts.edu.au, cxzhang@bit.edu.cn, itsryanhearne@gmail.com 

                                                           
*Corresponding Author: Chongyang Shi; E-mail: cy_shi@bit.edu.cn 

DOI: 10.3966/160792642018081904013 

Abstract 

This paper proposes a new digital paper search 

paradigm that controls the diversity of keyword-based 

search query topics based on Formal Concept Analysis 

(FCA). During pre-querying, papers are assigned to pre-

specified, lattice-based context patterns built by a 

selected partial dataset, and query-independent lattice 

context scores are attached to papers with respect to the 

assigned lattice contexts. When a query is executed, the 

relevant lattice contexts are selected, a search is 

performed within the selected lattice contexts, the context 

scores of the papers are revised to become relevancy 

scores with respect to the query and the lattice context 

they are in, and the query outputs are ranked within each 

relevant lattice context. In this way, we (1) provide FCA 

with a path to deal with middling or larger amounts of 

documents, (2) minimize query output topic diversity and 

reduce query output size, (3) decrease the user’s time 

spent scanning query results, and (4) increase query 

output ranking accuracy. Using China National 

Knowledge Infrastructure (CNKI) publications as the 

testbed, our experiments indicate that the proposed lattice 

context-based search approach produces search results 

with up to 50% higher precision, and reduces the query 

output size by up to 60% more than a CNKI search. 

Keywords:  Paper retrieval, Formal concept analysis, 

Concept lattice, Query context 

1 Introduction 

Currently, via the public (e.g. Google Scholar [1]), 

commercial (e.g. ACM [2]) or free (e.g. CiteSeer [3]) 

scholastic search engines, a myriad of papers are 

available to people in the research or study fields. 

Finding specific documents, such as papers, in the 

entirety of the scholastic data seas can be a challenge 

and is an important issue. Our goals are to achieve both 

efficient and effective searches. 

Formal Concept Analysis (FCA) was proposed by 

Wille in 1982 [4], and, since the 90s, FCA has been 

integrated with basic Information Retrieval (IR) 

techniques to build more comprehensive systems for 

the information access field. A concept lattice has been 

used as a support structure for IR. A number of 

researchers have proposed lattice-based structures for 

IR [5-10], but most of whom have only conducted 

research projects or practices using a variety of small 

datasets showing the mathematical aspect of FCA. A 

search application using FCA aiming at middling or 

more amounts of documents could not be found. 

In order to (1) provide FCA with a path to deal with 

middling or larger amounts of documents, (2) 

minimize the scope of query output for large numbers 

of papers, (3) provide controlled ways of eliminating 

query output topic diversity, and (4) present a new 

method that can effectively rank query output papers. 

We propose a new digital paper search paradigm, 

called the Formal Concept-Analysis-Based Search 

(FBS) approach, which is a context-based search 

model using a lattice, as follows: 

(1) We perform two query-independent pre-

processing steps before any query session starts, 

assigning papers to lattice based contexts; and compute 

the lattice (importance) scores for papers. Therefore, 

each lattice context contains two types of information: 

(a) the intrinsic lattice information for the paper set 

(object) and the term set (attribute) owned by the paper 

set, and (b) the context score for each paper. 

(2) Then, at the time of the search, we perform the 

following steps: 

(a) Automatically select the search lattice contexts. 

(b) Perform the search within the selected lattice 

contexts. 

(c) Within each lattice context, compute the 

relevancy scores for the located papers, re-rank the 

search results, and return the located papers. 

With the FBS approach, (1) search input includes 

only papers residing in the selected lattice contexts as 

opposed to all papers, (2) search output is enhanced by 

a highly useful, context-based paper classification, (3) 

topic diffusion across search results is controlled, and 

(4) query output sizes are reduced to include only the 

search results in the lattice contexts of interest. 

Since the FBS approach performs a search within 

the selected lattice contexts, some important results 

might be missing if they are not in the selected lattice 
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contexts. As an alternative, step 2 of the FBS approach 

can be modified to include all search results (FBSall) 

as follows: 

(1) Automatically select the search lattice contexts. 

(2) Perform the search across all papers to select the 

publications to be returned. 

(3) For the returned papers that reside in the selected 

lattice contexts, compute the relevancy scores of these 

papers in each lattice context. 

(4) Re-rank the search results and return the located 

papers. 

FBS is a contextual IR model, and contextual IR 

models always faces many new challenges, such as 

context modeling, contextual document ranking and 

the system’s effectiveness evaluation, and, in our work, 

we present several approaches to deal with them in 

Section.4. 

Section 2 summarizes and compares our approach 

with the related work. Section 3 introduces a kind of 

concept lattice using the paper context. Section 4 is an 

overview of our lattice context-based search approach. 

Section 5 presents how to classify papers with scores 

for lattice contexts. In Section 6, we describe the 

methods used to select the search contexts for a given 

query term. Section 7 explains alternatives used to 

search and to rank the search results within contexts, 

and gives ways of merging results from multiple 

contexts. Section 8 presents the experiment setup and 

experiment results, respectively. Section 9 concludes 

this article. 

2 Related Works 

FCA can be used broadly in IR. In 1996, Carpineto 

[10] presented Galois, a system that automates and 

applies FCA with respect to IR via browsing. He also 

describes a prototype user interface for browsing using 

the concept lattice of a document-term relation. And, in 

2005, Carpineto [9] further discussed the application of 

FCA in IR from different aspects. Qadi et al. [7] 

describes a mechanism based on FCA that determines 

semantical relations during the queries, and allows a 

reorganization, in the shape of a lattice of concepts, of 

the answers provided by a search engine. It proposes 

an incremental algorithm based on Galois lattice for 

the IR. This algorithm allows a formal clustering of the 

data sources, and the results that it retrieves are 

classified by order of relevance. 

While in the process of IR preparation, documents 

can be organized by concept lattice, which has a fine 

view of document-document relations. Kovics and 

Baranyi [11] developed a document query system that 

clusters the documents into groups using a generated 

concept lattice. The users can start the query by 

entering a set of keywords. Then the system returns the 

concepts closest to the query vector. The users get a list 

of neighboring concepts too, and thus they can select 

the way to navigate to reach the result document set. 

After fulfilling a search request, FCA can also be 

applied to clustering and ranking the query results. 

Zhang [12] proposes a method based on FCA to build a 

two-level hierarchy for the retrieved search results of a 

query. After the formal concepts are extracted using 

FCA, the proposed algorithm will extract the concepts 

most relevant to the query, and a two-level hierarchy is 

built and presented to the user. Cigarrn et al. [13] 

present the JBraindead Information Retrieval System, 

which combines a free-text search engine with online 

FCA to organize the results of a query. This paper 

focuses on the automatic selection of attributes and 

shows that conceptual lattices can be very useful for 

grouping relevant information in free-text search tasks. 

Tang et al. [14] discuss and compare Concept Lattice-

based Ranking (CLR) and presents a combination CLR 

approach by measuring the similarity among the query, 

user profile and document according to the relation 

between the query and user interest, based on the 

concept lattice. The experiment shows that the 

documents retrieved by their combination CLR 

approach achieve a higher measure of precision than 

the traditional CLR approach. 

Rough set theory can be employed in combination 

with Fuzzy Formal Concept Analysis (FFCA) to 

perform a semantic Web search to discover 

information in the Web. According to this proposal, the 

required data is not modeled by any formal concept, 

but the user can search for and discover information in 

the Web that is closer to his/her preferences by 

following a twofold approach [5]. De Maio et al. [6] 

present an ontology-based retrieval approach that 

supports data organization and visualization, and 

provides a friendly navigation model. It exploits the 

fuzzy extension of the FCA theory to elicit 

conceptualizations from datasets and generate a 

hierarchy-based representation of the extracted 

knowledge. An intuitive graphical interface provides a 

multi-faceted view of the built ontology. Through a 

transparent query-based retrieval, the end users 

navigate across concepts, relations and population. 

Some FCA tools have been developed in IR, such as 

Search Sleuth [15], which is a program developed to 

experiment with the automated, local analysis of a Web 

search using FCA. Search Sleuth extends a standard 

search interface to include a conceptual neighborhood 

centered on a formal concept derived from the initial 

query. The neighborhood for the concept derived from 

the search terms is bordered with its upper and lower 

neighbors representing more general and special 

concepts respectively. The focus is on understanding 

the use and meaning of proximity and semantic 

distance in the context of IR using FCA. 

Most of the above research and applications face the 

problem of a data sea in which we need to spend too 

much time to build a search concept lattice and so on. 

The first important issue is to make the FCA more 

practicable and usable in a real search environment. In 



A New Digital Paper Search Paradigm Based on FCA 1101 

 

our work, a new means is presented to solve this issue. 

3 Formal Concept by Papers’ Context 

In FCA, the use of object and attribute is indicative 

because in many applications it may be useful to 

choose object-like items as formal objects and then 

choose their features as formal attributes [6]. For 

instance, in our paper-searching work, papers could be 

considered to be object-like and terms considered to be 

attribute-like. The formal context (here “formal 

context” just means a table distinguishing the lattice 

context) is often represented as a cross table: the rows 

represent the papers and the columns are terms; the 

intersections represent the relations between them. In 

this paper, the papers and terms play the role of objects 

and attributes, respectively. 

3.1 Formal Context of a Paper 

Let U  and A  be two finite and nonempty sets. The 

U  elements are papers (objects) from the dataset, and 

the A  elements are terms (attributes) extracted from 

the papers. The relationships between papers and terms 

are described by binary relation I between U and A , 

which is a subset of the Cartesian product of U A× . 

For a pair of elements x U∈ and a A∈ , if ( , )x a I∈ , 

also written as xIa , we say that paper x has the term 

a , or the term a is possessed by paper x . Here, 

( , )x a I∈ is denoted by 1, and ( , )x a I∉ is denoted by 0. 

Thus, the formal context of a paper dataset can be 

represented by a table only containing 0 and 1. 

Paper x U∈  has the set of terms: 

 { }xI a V xIa A= ∈ ∈  (1) 

Term a V∈  is possessed by the set of papers: 

 { }Ia x U xIa U= ∈ ⊂  (2) 

The triplet ( , , )U A I  is called a binary formal 

context. For simplicity, we only consider the binary 

formal context in the subsequent discussion. 

3.2 Formal Concept Analysis of Papers’ 

Formal Context 

Remark 1. For formal context ( , , )U A I , for set 

X U⊆  of papers and set B A⊆  of terms, we define a 

set-theoretic operator *[16]: 

 { }* , ( , )X a A x X x a I= ∈ ∀ ∈ ∈  (3) 

It associates subset of terms *

X  to the subset of 

papers X . Similarly, for any subset of terms B A⊆ , 

we can associate a subset of papers *

B : 

 { }* , ( , )B x U a B x a I= ∈ ∀ ∈ ∈  (4) 

*

X  is the set of all the terms shared by all the papers 

in X , and *

B  is the set of all the papers that fulfil all 

the terms in B . 

Remark 2. Let ( , , )U A I  be a paper’s formal context. 

A pair ( , )X B  is called a formal concept deduced from 

the paper’s context (for short, a concept of ( , , )U A I ), 

if and only if X U⊆ , B A⊆ , *

X B=  and *

B A= . 

X  is called the extension and B  is called the intension 

of ( , )X B . The set of all concepts in ( , , )U A I is 

denoted by ( , , )L U A I . 

The operator * has the following terms: for all of 

1 2
X X， , X U⊆ , and all of 

1 2
B B， , B A⊆ , 

 * * * *

1 2 2 1 1 2 2 1
,X X X X B B B B⊆ ⇒ ⊆ ⊆ ⇒ ⊆  (5) 

 ** **

.X X B B⊆ ⊆  (6) 

 * *** * ***

,X X B B= =  (7) 

 * *

X B B X⊆ ⇔ ⊆  (8) 

 * * * * * *

1 2 1 2 1 2 1 2
( ) ,( )X X X X X B B B= =∪ ∩ ∪ ∩  (9) 

 * * * * * *

1 2 1 2 1 2 1 2
( ) ,( )X X X X B B B B⊇ ⊇∩ ∪ ∩ ∪  (10) 

Remark 3. Let ( , , )U A I  be a paper’s formal context, 

and 
1 1

( , )X B  and 
2 2

( , )X B  be concepts of the context; 

the concepts of a formal context ( , , )U A I  are ordered 

by: 

 
1 1 2 2 1 2 1 2

( , ) ( , ) ( )X B X B X X B B≤ ⇔ ⊆ ⇔ ⊇  (11) 

Where 
1 1

( , )X B  and 
2 2

( , )X B  are concepts, 
1 1

( , )X B  

is called a sub-concept of 
2 2

( , )X B , and 
2 2

( , )X B  is 

called a super-concept of 
1 1

( , )X B . The notation 

1 1 2 2
( , ) ( . )X B X B≺  denotes the fact that if 

1 1 2 2
( , ) ( . )X B X B≺  and concept ( , )Y C  does not exist 

such that
1 1 2 2

( , ) ( , ) ( . )X B Y C X B≺ ≺ , then
1 1

( , )X B  is 

called a child-concept (immediate sub-concept) of 

2 2
( , )X B and 

2 2
( , )X B  is called a parent-concept 

(immediate super-concept) of
1 1

( , )X B ; this is denoted 

by 
1 1 2 2

( , ) ( . )X B X B≺ .  

Remark 4. Let ( , , )U A I  be a formal context, then 

( , , )L U A I  is a complete lattice. The infimum and 

supremum are given by:  

 **

1 1 2 2 1 2 1 2
( , ) ( , ) ( ,( ) )X B X B X X B B∧ = ∩ ∪  (12)  

 **

1 1 2 2 1 2 1 2
( , ) ( , ) (( ) , )X B X B X X B B∨ = ∪ ∩  (13)  

Remark 5. Let 
1 1

( , , )L U A I  and 
2 2

( , , )L U A I  be two 

concept lattices. If, for any
2 2

( , ) ( , , )X B L U A I∈ , 
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' '

1 1
( , ) ( , , )X B L U A I∈  exists such that '

X X= , then 

1 1
( , , )L U A I  is said to be finer than 

2 2
( , , )L U A I , which 

is denoted by: 

 
1 1 2 2

( , , ) ( , , )L U A I L U A I≤  (14)  

If, in addition, we say that the two concept lattices 

are isomorphic, this is denoted by: 

 
1 1 2 2

( , , ) ( , , )L U A I L U A I≅  (15) 

Example 1: A formal context ( , , )U A I  is given in 

Table 1, where { }1 2
. , ,

n
U x x x= …  and { }1 2

, , ,
m

A a a a= … : 

Table 1. A small paper dataset formal context  

 a b c d e 

1 0 1 0 0 1 

2 1 0 1 0 0 

3 1 0 1 1 1 

4 0 1 0 0 1 

5 1 0 0 0 0 

6 1 1 0 0 1 

(3,acde)

(23,ac)

(2356,a)

(146,be)

(1346,e)

(36,ae)

( , )U

( , )A

(6,abc)

 

Figure 1. The paper concept lattice of ( , , )U A I  from 

Example 1 

4 Approach Overview 

Figure 2 summarizes all the processes for the FBS 

and FBSall methods. The following sequence of 

algorithms is used to describe our proposed lattice 

context-based search approach. The explanations for 

the algorithms will be detailed in the next few sections: 

 

Figure 2. Whole Process for the FBS and FBSall 

Methods 

(1) “Build_Contexts” and “Locate_Papers”: Construct 

lattice context patterns from the part of the dataset 

selected using a manually chosen interval and use these 

patterns to locate the rest of the papers for the lattice 

context (a lattice context is a node of the concept 

lattice).  

Note that “Build_Contexts” and “Locate_Papers” 

are pre-executed and not dependent on the queries. 

 

1. Algorithm Pattern_Based Paper_Lattice_Context 

Assignment  

2. Input: all the papers  

3. Output: lattice context, which contains  

4.                the assigned papers  

5. Construct lattice context patterns from the selected dataset 

6. foreach paper p  do  

7.    foreach lattice context 
i
c  in patterns do  

8.      if 
i
c  is p’s neighbor then  

9.         add p  to 
i
c ;  

10.   end for  

11. end for 

 

This algorithm will be introduced in Section 5. 

(2) Evaluate_Query  

(2.1) Select_Query_Lattice_Contexts: Using the 

search term, we first select the lattice contexts to search 

for. 
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1. Algorithm Select_Query_Contexts  

2. Input:  

3.       q : query term (possibly multiple words)  

4.       t : similarity threshold  

5. Output: a set of query lattice contexts for query q   

6.    foreach lattice context 
i
c  do  

7.       compute q’s lower attribute approximations and  

8.       corresponding approximated object set;  

9.       compute ( , )
i

Sim q c ;  

10.          if ( , )
i

Sim q c t≥   

11.     then  

12.         add 
i
c  to query context set;  

13.   end for 

 

This algorithm will be introduced in Section 6. 

(2.2) Perform_Search_per_Selected_Lattice_Context: 

The search within each lattice context is performed 

using a text-based measure of similarity between the 

given query term and the papers in the selected query 

context. The paper results are ranked using their 

relevancy (scores) to the query. The relevancy score of 

a paper in a lattice context is defined as a combination 

of the paper-to-query matching score and the pre-

computed lattice context score for the paper. 

 

 

1. Algorithm Search_FBS  

2. Input:  

3.     q : query term (possibly multiple words)  

4.     query_contexts: set of selected query contexts  

5. Output: a set of search results within selected query 6.      

contexts  

7.   foreach paper p  in each lattice context c  in  

8.      query_contexts do  

9.    compute ( , )sim p q  as a text based similarity  

10.          between p  and q ;  

11.   compute _ ( , , )relevancy score p q c  as a  

12.      combination of ( , )sim p q  and the lattice 

13.      context score of p  in c ;  

14.  end for  

15. Rank papers in each lattice context in descending  

16.     order of their relevancy_scores and return; 

 
 

This algorithm and related definitions of ( , )sim p q , 

_ ( , , )relevancy score p q c and ( , )sim p q  will be 

introduced in Section 6 and Section 7. 

(2.3) Merge_Query_Results: When multiple lattice 

contexts are selected for a search, the results are 

displayed separately under different lattice contexts. In 

the case that the user wants to merge these results, a 

merging function that assigns only one aggregate score 

to each paper is presented. The new aggregate score of 

a paper is computed using (a) the relevancy score of 

the paper for the query in each lattice context, and (b) 

the similarity between each lattice context and the 

query.  

1. Algorithm Merge_All_Results  

2. Input:  

3.       q : query term  

4.       lattice_context_relevancy: list of similarity  

5.       scores of each lattice context to the query term 

6.        paper_context_relevancy: list of relevancy  

7.        scores of each paper in each lattice context 

8.        to the query term  

9. Output: array of search results from all selected  

10.     lattice context.  

11.     foreach paper p  in the output of q  do  

12.      forselected lattice context 
i
c  where paper p   

13.          resides do  

14.      compute across _ relevancy _ score( )p  as a  

15.     combination of lattice _ context _ relevancy( , )
i
c q  

16.         and paper _ context _ relevancy(p,c ,q)
i

; 

17.        Add p  and across _ relevancy _ score( )p   

18.        to the merged_result;  

19.       end for  

20.    end for  

21.   rank merged_results and return; 

5 Classifying Papers with Scores as Lattice 

Contexts 

This section presents some details for automatically 

locating the papers of lattice contexts and scores, 

assigning the algorithms shown in Section 4. 

5.1 Lattice Context Pattern Building and the 

Papers’ Lattice Context Assignment 

Our approach constructs lattice context patterns 

from a partial data set and uses those patterns to locate 

the rest of the paper set of the lattice context. Lattice 

context pattern building is a process for actually 

building concept lattices and every pattern is a node (or 

a formal concept) of the concept lattice. We select the 

typical terms (in our experiments, we select the 40 

most frequent terms from the key-word part of the 

papers) from these papers as the attributes of the 

papers’ formal context to construct the paper’ concept 

lattice. Traditionally, the concept lattice’s building 

depends on the entire dataset. Due to having too many 

papers in the dataset, it needs a lot of time to construct 

the lattice in which there are enormous nodes from 

which we could not find the results easily. Then we just 

use part of the dataset to generate the patterns. 

First, we sort the papers by attribute number and 

order (the attributes’ affix order), and then we combine 

the papers with the same attributes. The papers are then 

selected using a manually appointed interval through 

which the scale of the data set is cut down, as is the 

time consumption and the number of lattice nodes. We 

name the selected papers as seeds, then the rest of the 

unselected papers will be assigned to the lattice context 

after the completion of lattice building only the seed 

papers. If we use the incremental lattice building  
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Figure 3. Sort the papers’ formal context by attribute number and attribute affix order 

algorithms [17], when new papers are added to the 

lattice patterns, according the incremental lattice 

building method, the patterns for the lattice contexts 

should be updated. To avoid this updating problem and 

ensure all the papers are included by the lattice 

contexts, the rest of the papers are assigned to the 

neighboring papers, such as the “4” and “4” in Figure 4, 

to the seed papers by which all lattice contexts could 

hold the line. 

Example 2: In the top-left corner of Figure 3 is the 

original papers’ formal context. The table of the 

papers’ formal context is sorted by attribute number 

(top-right corner) and attribute affix order (bottom-

right corner). Finally, the papers with the same 

attributes are merged into one line in bottom left corner.  

After sorting and merging the papers, the formal 

contexts with intervals 3 and 4 are as shown in Figure 

4 and Figure 5. 

 

Figure 4. Interval 3 

 

Figure 5. Interval 4 

As shown in Figure 4 and Figure 5, the rest of the 

unselected papers are assigned to the neighboring 

selected papers. With the exception of the first and last 

papers, the previous 
1

2

s −⎢ ⎥
⎢ ⎥
⎣ ⎦

paper and the following 

1

2

s −⎡ ⎤
⎢ ⎥
⎢ ⎥

 papers are distributed to one selected paper 

(where s  is the interval). 

Table 2 shows some numerical values for the 

papers’ formal context by different intervals. Where 

o
N  is the number of papers, 

ln
N  is the number of 

lattice nodes, 
c
T  is the time consumed to construct the 

lattice and AS is the average similarities between the 

attached papers and seed papers. We employ some 

strategies to choose the interval where (1) AS is more 

than 0.5 and (2) 
ln

N  is less than 500,000. From the 

Table 2, we can see the interval 5 is eligible for the 

requirements. 
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Table 2. Some numerical values of paper formal 

context by different interval 

Interval N0 Nln Tc (Minutes) AS 

1 10000 8455398 2853 1 

3 3334 938745 1087 0.79 

4 2501 549373 623 0.68 

5 2001 458292 489 0.63 

6 1667 283943 399 0.61 

7 1429 194328 317 0.54 

8 1251 83049 252 0.51 

9 1112 31987 209 0.41 

10 1001 24745 181 0.33 

5.2 Assigning Lattice Context Scores to 

Papers 

In [18], the lattice context score of a paper in each 

context is computed using text-based similarity 

measures based on the Term Frequency-Inverse 

Document Frequency (TFIDF) model [19]. In each 

lattice context c , a paper '

p s  lattice context score is 

defined as the text-based similarity score between the 

lattice context’s centroid and p . The centroid of the 

lattice context is computed by averaging all of the 

papers scores in the lattice context. In other words, the 

papers in the lattice context that are highly similar to 

the centroid of c  receive high lattice context scores. 

Based on the papers in a lattice context, one centroid is 

constructed. After counting the occurrences of a term 

in each paper, Shi et al. [18] approach is used to 

determine the average score for all of the occurrences, 

which is stored as an attachment within the lattice 

context. The average occurrences score for the centroid 

is defined as: 

 Avg _Occurrences _Score=
*

iM
n

N M

∑
 (16)  

Where 
i
n  is the number of times the lattice context 

term appears in paper i , and N  is the length of a 

vector representing the paper. M  is the number of 

papers in the lattice context. 

 ( ) ( , )
c

Score p sim p p=  (17)  

Where 
c
p  is the centroid of c , and ( , )

c
sim p p  is 

the text-based similarity between p  and 
c
p .  

However, the centroid of a lattice context needs to 

be frequently updated after adding each new paper. 

Calculating the scores of the papers can be tedious, so, 

in our case, a direct score that has been modified for a 

paper in the lattice context is obtained without getting 

the centroid and comparing the other papers with the 

centroid. Then the lattice context score of p  in c  is 

computed as: 

 1

1 1

_ *

N

kk

M N

ij

i j

weight N
Context Score

S
weight

=

= =

=

∑

∑∑
 (18) 

Where N  is number of terms in the lattice context 

and M  is the number of papers in the lattice context. 

S  is the number of all terms in the paper p , not 

merely in the lattice context, 
1

N

kk
weight

=

∑  is the 

weight of all the terms for paper p in the lattice 

context, and 
1 1

M N

ij

i j

weight
= =

∑∑  is the weight of all of the 

terms for all of the papers in the lattice context. Here 

the TFIDF model is also used for the weights of terms 

in papers.  

Next, the attached papers’ scores for seeds can be 

calculated using a text-based cosine value, which are 

computed between the papers’ and the seed’s vectors. 

According the seed’s lattice context score, the attached 

paper’s score is shown as: 

 
score

1
_ *

1

score

score

score

SR
Attach Score S S

SR

−

= −

+

 (19) 

Where 
score

S  is the lattice context score for a seed, 

and 
score

SR  is the cosine value between the attached 

paper and the seed.  

6 Selecting Lattice Contexts for a Search 

Request 

A context-based search query could be any set of 

keywords. In [20], we are introduced to a novel 

similarity evaluating model based on rough formal 

concept analysis and the information content similarity 

method. Given an arbitrary query term, it can therefore 

be viewed as an undefinable set of attributes in a 

formal concept. Following the theory of a rough set, 

such a set of attributes can be approximated by a 

definable set of attributes; namely, the intentions of 

formal concepts. Since a lower approximation is the 

greatest definable set for the concept, we build our 

similarity measure on the lower approximation. In this 

way, the particular contexts to query are selected. 

Remark 6. For a query term q , its lower attribute 

approximations and corresponding approximated paper 

set are defined as:  

 { }int ( ( , ) )
LA

q ent X Y L q Y= ∧ ∈ ⊂  (20)  

 { }( ( , ) )
LO

q extent X Y L q Y= ∧ ∈ ⊂  (21) 

The similarity model between the term and the 

lattice context c , which is expressed by lattice 

information and ( , )O D  based on the lower attribute 

approximations is: 
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q O m l
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ω

ω
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+ −

−

+ −

∩

∩

∩

∩

 (22) 

You can find more details of the similarity model in 

[20].  

Finally, given a query term q , and using the above 

similarity model, then those lattice contexts (formal 

concepts) with sufficiently high similarity (higher than 

a threshold t ) are selected to be the query lattice 

contexts for q . 

7 Search and Ranking Search Results 

After mapping a given query to a set of query 

contexts, we perform the search and rank the search 

results within these lattice contexts. The search results 

returned from the lattice-based search are ranked using 

the irrelevancy scores with respect to the lattice context 

and the query term. The relevancy score of paper p  to 

query q  in lattice context 
i
c  is computed as: 

( , , ) . _ ( , )

. _ _ ( , )

i context i

matching

R p q c w Context Score p c

w Text Matching Score p q

= +

 (23) 

Where _ ( , )
i

Context Score p c  is the lattice context 

score for p  in lattice context 
i
c , text matching 

( , )Score p q  computes the similarity between p  and q , 

and 
context

w  and matchingw
 

are the weights of the lattice 

context score and the text matching score, respectively. 

+ 1.context matchingw w =  By default, we define .matching contextw w�  

In this definition, the text-matching scores calculated 

between the query term and the papers are considered 

to be more important than the lattice context scores of 

the papers. However, the weights can be adjusted 

based on users’ preferences. For example, if the user 

wants to increase the significance of the lattice contexts, 

matchingw  will be reduced while 
context

w  will be increased, 

and the search results within the lattice contexts will be 

ranked with respect to the new weights. In our work, 

we give an experimental adjustment to 
context

w  using 

this to get a higher precision in Subsection 8.3.  

However, the users may want to view a single result 

set independent of the individually searched lattice 

contexts. To effectively rank search results for the 

latter case, the scores for a paper residing in multiple 

lattice contexts need to be merged into a final score. 

When appearing in multiple lattice contexts, paper p ’s 

overall relevancy score ( , )R p q  for the query q  is 

computed using (1) the relevancy score of p  to q  in 

each lattice context, and (2) the relevancy of each 

lattice context containing p  to q , as follows:  

Re 1 21
( ( , , ) ( , ))

( , )

np

Paper levancy i context ii

p

w R p q c w R c q
R p q

n

=

+

=
∑

 (24) 

Where 
1
( , , )

i
R p q c  is the relevancy score of p  to q  

in the lattice context 
i
c , 

2
( , )

i
R c q  is the relevancy 

score of the lattice context 
i
c  to the query q , np  is the 

number of lattice contexts that contain p , 
RePaper levancyw  

and 
context

w  are the weights of 
1

R  and 
2

R , respectively, 

and 
Re

1.Paper levancy contextw w+ =  We define 
RePaper levancy contextw w�  

(i.e. we used 
Re

=0.6Paper levancyw  and =0.4
context

w  in the 

experiments). 

8 Experimental Setup 

We downloaded, parsed and populated our dataset 

with information from 10,000 full-text CNKI [21] 

papers. All selected papers came from the computer 

science area of IR. The 40 most frequent terms 

extracted from the keyword part of these papers were 

selected as the attributes to construct the papers’ 

concept lattice, as shown in Table 3. 

Table 3. Top 40 terms 

Information 

Retrieval 
Query 

Data 

Retrieval
Searching 

Information Knowledge Relevance Web 

Document  

Retrieval 

Term Weighting Browsing Pulling 

Filtering Full Text Stop Word Stemming 

Text Operation Indexing Logs Clustering 

Inverted 

File 

User Need Query  

Operation 

Likelihood 

User  

Feedback 

Human  

Computer 

Interaction 

Textual 

Images 

Retrieval  

Model 

Evaluation Visualization Interface Multimedia 

Modeling Parallel Navigation User Interface

Literature Push User Task Scanning 

8.1 Accuracy Evaluation 

To evaluate the accuracy of the lattice context-based 

search approach, the recall and precision scores for the 

selected queries were used. Given a search term t  as a 

query, its recall and precision are defined as: 

 ecall
t t

t

t

S R
R

R
=

∩
 (25)  

 Pr
t t

t

t

S R
ecision

S
=

∩
 (26)  

Where 
t

S  is the search result set for query term t , 

and 
t

R  is the correct answer set for t . In addition to 
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recall and precision, we used the harmonic mean F1, 

which combines recall and precision. F1 is defined as: 

 
1

1
1 1

Re Pr

t

t t

F

call ecision

=

+

 (27) 

8.2 AB-evaluating Set 

To evaluate and compare the different approaches 

for keyword-based querying, clearly, the best approach 

is to obtain true answer sets for queries manually via 

domain expert judgments. However, such an approach 

is not always available and precludes using large 

numbers of queries to evaluate the overall methodology. 

Thus, we developed an approach to find the artificially 

built evaluating set (AB-evaluating set) of a query 

automatically. The AB-evaluating set was used to 

evaluate queries with no human judgments on their 

search results. Through domain expert evaluations of a 

small number of queries, we refined the AB-evaluating 

set creation process, and manually verified its 

correctness. Then the AB-evaluating set was used 

extensively in the experiments to evaluate the search 

query recall and precision scores. 

AB-evaluating set construction. To construct an AB-

evaluating set, we use an approach similar to the pearl-

growing search strategy [22]. That is, we locate a 

highly relevant paper set for a given query and expand 

it iteratively through a highly compute-intensive 

expansion process. Given a query q , the database is 

queried for papers using a text-based similarity 

measure, and papers with similarity scores above 

threshold t are included in the initial answer set S1. By 

utilizing a high value of t, we ensure that the papers in 

S1 are highly relevant to the query term. After our 

initial construction, we expand S1 by using a citation-

based approach.  

This approach expands the AB-evaluating set with 

any citations for a paper in S1. Since a paper usually 

cites or is cited by other papers that are relevant to it, 

citations of a paper in S1 are potentially relevant to the 

query term. There are two approaches involving the 

citation-based expansion.  

(1) Text-based expansion: This approach uses the 

text-based similarity measure to locate additional 

papers. Since a paper in S1 is highly relevant to the 

keyword query, papers that are cited in the paper are 

also potentially relevant to the query. Thus, papers 

cited with high similarity scores to p  are added to the 

AB-evaluating set.  

(2) Citation-similarity-based expansion: Citation 

similarity [23] is computed using co-citation [24] and 

bibliographic coupling [25]. Bibliographic coupling 

gives a high similarity score to a pair of papers 

( 1, 2)p p with a large number of common citations. Co-

citation gives a high similarity score to a pair of papers 

( 1, 2)p p  if the number of papers that cite both 1p  and 

2p  is large. In this approach, papers in the database 

with high citation-similarity scores to a publication in 

S1 are added to the AB-evaluating set. Citation 

similarity [23] is computed as follows:  

( 1, 2) * ( 1, 2)

(1 )* ( 1, 2)

Citation bib

coc

Sim p p BitWeight Sim p p

BibWeight Sim p p

= +

−

 (28)  

Where 1p  and 2p  are papers, 1 1, 2 1p S p S∈ ∉ , 

bib
Sim  is the bibliographic coupling score, 

coc
Sim  is the 

co-citation score, BibWeight  is the bibliographic 

coupling weight, 1CocWeight BibWeight= −  is the 

co-citation weight, and 0 1BibWeight≤ ≤ . 
bib

Sim  is 

defined as: 

 1( 1, 2)
bib

b

k
sim p p

M
=  (29)  

Where 
1
k  is the number of common citations 

between 1p  and 2p , and 
b

M  is the maximum 

number of common citations between any pair of 

papers in the database. 
coc

Sim  is defined as:  

 2

coc

c

( 1, 2)
k

sim p p
M

=  (30)  

Where 
2
k  is the number of papers that co-cite 1p  

and 2p , and 
c

M  is the maximum number of papers 

that co-cite any pair of papers in the database. 

AB-evaluating set verification. We manually verified 

the AB-evaluating set accuracy in terms of precision. 

From all of the papers’ attributes in the lattice context, 

we randomly chose ten search terms as a test set. Then 

the AB-evaluating set for each search term was 

constructed.  

From our manual evaluation, the noise of the 

expansion (i.e. changes in the accuracy due to the 

expansion) depends on the choice of the initial set (S1). 

More specifically, when S1 includes only papers with 

high similarity scores to the query (i.e. the threshold 

for S1 is high), the papers retrieved after the expansion 

steps are at least 95% accurate. When relaxing the 

threshold for S1, the accuracy is reduced both in the 

initial set S1 and in the paper set from the expansion 

step. All of the expansion steps from the high-threshold 

S1 produce results with higher accuracy than S1 itself, 

which has a lower threshold. 

8.3 Adjusting the 
context

w  in Relevancy Score 

We use the precision as the criterion on which to 

adjust 
context

w  with different points. Adjusting '

context
w s  

is an interactive training process between 
context

w  and 

precision. The precision values illustrated in Figure 6 

are averages from varying the 
context

w  from 0.1 to 1.0 
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throughout the testing of the CNKI paper set with the 

resulting papers from the top 50 to 150 terms.  

 

Figure 6. Adjusting the 
context

w  to achieve good 

precision 

From Figure 6, we can see that when 
context

w  reaches 

approximately 0.2, the highest level of average 

precision is achieved. When 
context

w  decreases from 0.2 

to 0.1 or increases from 0.2 to 0.9, the precision falls. 

8.4 Experimental Results 

In this section, we compare the recall, precision and 

harmonic mean of recall and precision (F1) when 

performing different search approaches. 

Comparing lattice context-based results against the 

CNKI results. Here, we compare the recall and 

precision scores from the FBS and FBSall approaches 

to CNKI’s general keyword-based search. Papers that 

are in the CNKI search results may include some 

papers that are not in our experiment dataset, which 

should be filtered out before our evaluations because 

our experiment dataset is only a part of CNKI’s papers. 

While this experiment’s FBS results include only 

papers with scores above a certain threshold, t , the 

CNKI search results include all papers since CNKI 

lacks a scoring function. Figure 7 shows the average 

number of papers from the CNKI, FBS and FBSall 

approaches.  

We selected three sets of cut-off thresholds. The first 

set ( 0 0.15t≤ ≺  or low threshold values) contains a 

large number of results. With the first set, we expect 

high recall. The second set ( 0.15 0.35t≤ ≺  or 

moderate threshold values) contains a moderate 

number of search results. We expect a high F1 for the 

second set. The last set ( 0.35t ≥ ) contains high-

ranking results, and we expect high precision for this 

set.  

Figure 8 illustrates the average F1 scores for the 

CNKI, FBS and FBSall approaches. 

 

Figure 7. The average number of papers returned from 

the CNKI, FBS and FBSall approaches 

 

Figure 8. Average F1 scores for the CNKI, FBS, and 

FBSall approaches 

The experiment’s results show the following:  

(1) At 0.20t � , CNKI’s recall is higher than the 

lattice context-based (FBS and FBSall) recall. This is 

due to CNKI searching and returning more papers on 

average than the lattice context-based search 

approaches.  

(2) The lattice context-based approaches produce 

approximately 50% higher precision at high thresholds 

and approximately 25% higher precision at moderate 

thresholds.  

(3) At moderate thresholds, the lattice context-based 

approaches yield approximately 25% higher F1 scores 

than CNKI. Moreover, from Figure 7, there is a much 

smaller number of lattice context-based search results 

at moderate thresholds (approximately 10 times) than 

for the CNKI search results.  

(4) The FBS approach reduces the query output size 

by up to 60% compared to the CNKI results.  

(5) The FBSall approach has a similar or higher F1 

compared to the FBS approach. 
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9 Conclusion 

At the present time, a major problem in searching 

for scholastic papers within some search engines, such 

as digital libraries, is the lack of effective paper scoring 

and ranking systems. For a keyword-based scholastic 

search, the number of returned papers can be very large. 

Search results may also contain various topics, not all 

of which are of interest to the users. In order to solve 

the problems, we proposed a lattice context-based 

searching paradigm for paper finding.  

In our approach, digital papers are classified as 

lattice contexts through a pre-processing step that uses 

lattice context pattern-extraction-based techniques. The 

lattice context scores are also assigned to papers within 

each lattice context, where high lattice context scores 

mean that papers are highly relevant to a given lattice 

context. After a user has specified a query term, we 

present to the user a set of lattice contexts that are 

relevant to the query. A search is performed within the 

selected lattice contexts, and the search results are 

ranked and returned to the user based on the strength of 

match to the query and their lattice context scores.  

Our context-based approach improves on the various 

shortcomings of the present search methods, as follows: 

(1) Since papers are classified as relevant contexts 

through a pre-processing step, the complete lattice 

paper context information is available before 

performing a search. After the users define the search 

queries, the queries are automatically matched against 

the lattice context information, and only the relevant 

lattice contexts are presented to the users. With this 

information, the users can define a scope for their 

contexts of interest before viewing the search results. 

Thus, the selected contexts are highly meaningful since 

they are (a) relevant to the queries and (b) interesting 

to the users. In contrast to many existing categorization 

techniques, context-based search results are grouped 

within only contexts that are of interest as opposed to a 

large number of all possible topics (contexts). This 

solves the topic-diffusion problem across search results.  

(2) Using recall and precision analysis, we evaluated 

our two approaches and compared them with a 

traditional scholastic search engine. The experiment’s 

results demonstrate that our approach produces 

comparable recall for the search results and higher 

precision for high-ranking papers. Moreover, the 

number of search results and contexts returned is much 

smaller in our approach. For any keyword query 

executed on a search engine, most users view only the 

top results. Therefore, high precision for high-ranking 

results is crucial.  

(3) Our context-based approach is general and can 

be applied to other domains. A lattice context-based 

search engine allows for any set of keywords, as 

opposed to some systems that allow only specific types 

of keywords. Although we initially group the search 

results within the lattice contexts that they belong to, if 

the user likes the traditional approach and wants to 

view only a single ranked list of search results, we 

provide an approach to merge the relevancy scores 

from different contexts into one final score, and use the 

new scores to rank the search results. We present ways 

to generalize paper classification techniques to non-

domain-specific methods that do not utilize any 

specific terms. Thus, our approach can be applied to 

any sets of papers.  

Although we present a complete lattice context-

based search framework, there are still possibilities for 

further improvement. First, in our experiments, only 40 

keywords were selected, which will have resulted in 

losing some useful information. Second, although a 

simple, formal context selecting and cutting method is 

proposed in our work, there are other methods, such as 

a distributed sub-formal context, that could be explored. 

Finally, we just compared our work to the CNKI 

search engine from which our experiments’ dataset was 

built. Our future work will be applied to more public 

and various other domains’ datasets. 
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