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Abstract 

Text-based Captchas are now most widely used 

security technology for differentiating between 

computers and humans. Hollow Captchas have emerged 

as one of the latest designs, and they have been deployed 

by more and more major companies. Besides Yahoo!, 

Tencent, Sina, China Mobile and Baidu, some other 

websites, especially for higher security requirement 

shopping websites are also using this scheme. A main 

feature of such schemes is to use contour lines to form 

connected hollow characters with the aim of improving 

security and usability simultaneously. It is hard for 

standard techniques to segment and recognize such 

connected characters, which are however easy for human 

eyes. In this paper, we provide a systematic security 

analysis of hollow Captchas. We show that with a simple 

but novel attack, we can break most hollow Captchas 

with a relatively high success rate, including those 

deployed by the major companies. Our attack for the first 

time combines segmentation and recognition in a single 

step. We also discuss lessons and guidelines for 

designing better Captchas. 
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1 Introduction 

Captcha (Completely Automated Public Turing Test 

to Tell Computers and Humans Apart) has been widely 

deployed for defending against undesirable and 

malicious bot programs on the Internet [1]. Current 

Captchas can be divides into three categories: text-

based Captchas, image-based Captchas and audio-

based Captchas. The most widely used Captchas are 

text-based schemes [2], which typically require users 

to solve a text recognition task. 

If a Captcha is friendly for humans to solve but hard 

for computers, it can be considered as a good one. It 

turns out that the balance between security and 

usability is hard to achieve. So far, many text-based 

Captchas have been broken, including those deployed 

by major websites such as Microsoft, Yahoo! and 

Google [3-4]. However, [4] predicted that Captchas are 

going through the same process of evolutionary 

development, just like cryptography and digital 

watermarking, with an iterative process in which 

successful attacks lead to the development of next 

generation of systems. 

Hollow Captchas, as one of the latest text-based 

designs, have emerged in the last couple of years They 

have been deployed by major websites such as Yahoo!, 

Baidu, Sina, Tencent and the online payment system of 

China Mobile (CmPay), each serving tens of millions 

of users on a daily basis. Such hollow Captchas use 

contour lines to form connected characters (see Figure 

1) with the aim of improving security and usability 

simultaneously, as it is hard for state-of-the-art 

character recognition programs to segment and 

recognize such connected characters, which are 

however easy to human eyes. 

 

Figure 1. Hollow captchas 

Given the high profiles of the companies that have 

deployed hollow Captchas, it is of practical relevance 
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to examine the robustness of such hollow schemes, i.e. 

their resistance to automated attacks, which is an 

important security property [12]. On the other hand, as 

hollow Captchas represent a new type of text scheme, 

it is also of academic interest to study their design and 

security. 

To our best knowledge, this is the first 

systematically analysis of the security of hollow 

Captchas. Though recently some research teams 

(Vicarious [5], Elie Bursztein’s team [6] and Gao [26]) 

have declared that they have found a generic method to 

break a whole family of latest Captchas, hollow 

schemes included. But neither technique details 

revealed nor did more hollow Captchas attack, we 

can’t see more information on attacking the hollow 

Captchas. 

In this paper, we provide the specific analysis of the 

robustness of hollow Captchas. With a novel and 

generic attack, we can successfully break a whole 

family of hollow Captchas (Except for Yandex, which 

will discuss in Section 6). The success rates received 

by our attack on the test set of Yahoo!, Tencent, Sina, 

CmPay, Baidu and Yhd schemes are 36%, 89%, 59%, 

66%, 51% and 36%, respectively, and with average 

attack speed of 5.17, 1.14, 1.36, 3.70, 3.52, and 0.49 

seconds respectively on a standard desktop computer 

(with 2.53 GHz Intel Core 2 CPU, 4 GB RAM). 

Therefore, our attack imposes a realistic threat, which 

might be misused by adversaries. 

As a variety of design features used in the hollow 

schemes, we also pinpoint which features contribute to 

security, and which do not. Our analysis provides a set 

of guidelines for designing Captchas, and a method 

from comparing security of different schemes. We also 

discuss how to design better hollow Captchas. 

An early version of this paper has been published in 

ACM CCS 2013 [22]. In this paper, we improved the 

graph search algorithm and compared the efficiency of 

the new algorithm and the previous in detail. We also 

tested our attack on two extra hollow Captcha schemes, 

YhD and Yandex. Especially the Yandex scheme 

which is deployed by the largest Russian search engine 

in its user password recovery mechanism, formed by 

seriously broken contour lines, is a new form of hollow 

Captcha that has not been analyzed in [22].  

This paper is organized as follows. Section 2 

discusses related work. Section 3 provides an overview 

of five representative hollow Captchas. Section 4 gives 

an overview of our attack, and Section 5 describes the 

attack in details. Section 6 evaluates our attack process 

and analyses the failures. Section 7 discusses lessons 

we have learnt, and how to design better hollow 

Captchas. Section 8 concludes the paper. 

2 Related Work 

Moni Naor first discussed the notion of Automated-

Turing-Tests [7], but they did not provide a formal 

definition or concrete designs. Alta Vista [8] developed 

the first practical Automated-Turing-Test to prevent 

bots from automatically registering web pages. This 

system was effective for a while but then was defeated 

by common OCR (Optical Character Recognition) 

technology. 

In 2003, Mori and Malik [9] utilized sophisticated 

object recognition algorithms to break Gimpy (which 

used clutter interference) and EZ-Gimpy (which used 

texture backgrounds) with a success rate of 33% and 

92% respectively. Moy et al. [10] developed distortion 

estimation techniques to attack EZ-Gimpy and 

achieved a success rate of 99% and four-letter Gimpy-r 

with a success rate of 78%.  

In 2005, Chellapilla and Simard [11] successfully 

broke a range of Captchas with a success rate ranging 

from 4.89% to 66.2%. Early attack efforts also include 

the PWNtcha project. 

In 2006, Yan and El Ahmad [13] broke most visual 

schemes provided at Captchaservice.org by simply 

counting the number of pixels of each segmented 

character and have achieved a success rate of nearly 

100%, although these schemes were all resistant to the 

best OCR software on the market. In 2008, new 

character segmentation techniques for attacking a 

number of text-based Captchas were developed by the 

same team [4], including the earlier mechanisms 

designed and deployed by Microsoft, Yahoo! and 

Google, and these have received a segmentation 

success rate of 92% against Microsoft Captcha. In 

2010, they broke the text-based Captchas that depend 

partially on the Gestalt Perception principle by 

merging black and shared white components to form 

individual characters [14]. 

In 2011, Bursztein et al. [15] carried out a 

systematic study of existing visual Captchas based on 

distorted characters and showed that 13 of the 15 

Captchas on popular websites were vulnerable to 

automated attacks, but they achieved zero success on 

harder schemes such as reCAPTCHA and Google’s 

own scheme. In the same year, Yan’s team published 

an effective attack on both of these schemes [3]. The 

Captcha using moving-images in NuCaptcha which 

provided users with sloshing characters was analyzed 

by Xu et al. in 2012 [16]. 

In 2014, Burszteins team [6] proposed a machine 

learning algorithm to score all possible ways to 

segment a Captcha and decide which combination is 

the most likely to be the correct one. They break 8 

different Captchas used by real world popular web 

sites. 

In 2015, Karthik et al. [25] proposed two methods to 

automatically classify Microsoft Captcha samples. One 

was based in a fine-grain segmentation combined with 

template matching, and another was based on CNN and 

used state-of-the-art recognition techniques. The 

former achieved a success of 5.56%, and the later 

achieved a success of 57.05%.  
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More recently, at NDSS’16, Gao et al. [26] reported 

a simple generic attack that firstly used Gabor filters to 

extract character components along four different 

directions and then try different combinations of 

adjacent character components to form individual 

characters. It is the most recent research on Captcha 

robustness analysis and is effective for many text-

based Captchas.  

We note that hollow Captchas have never been 

specifically discussed in the literature prior to our 

current paper, and that they are distinct from other text-

based Captchas discussed to date. 

3 Hollow Captchas: Popular Real World 

Schemes 

To evaluate the effectiveness of our attack, we 

choose to study 7 hollow Captchas listed in Figure 1 

(including Yahoo!, Tencent, Sina, CmPay, Baidu, Yhd 

and Yandex), which represent the state of the art of 

hollow Captcha designs, for two main reasons. 

First, these schemes have been deployed by popular 

real world websites For example, Baidu, Yahoo!, 

Tencent and Sina, ranked by Alexa.com as top 

websites in the world respectively, are all among the 

most popular websites worldwide. Sina use its scheme 

on Weibo.com, the most popular micro blog platform 

in China with about 600 million users (also a Chinese 

equivalent to Twitter). CmPay [2] is the online 

payment system of China Mobile, which enjoys a 70% 

share of the domestic mobile service market in China 

and has nearly 700 million users. Yandex is the largest 

Russian search engine, it uses its Captcha in user 

password recovery mechanism. Yhd is a popular online 

shopping website in China. 

Second, these schemes are with distinct design 

features, and represent a range of different designs. For 

example, some schemes use interference arcs (e.g. 

CmPay, Baidu, and Yandex); others do not. Except for 

Yahoo! which uses character strings of a varied length, 

others all use a fixed string length. Some schemes (e.g. 

Yahoo! and Yhd) intentionally introduce a significant 

variation in the thickness of hollow portions across 

characters, and even in a single character; others do not 

vary this thickness much and it is more or less uniform. 

A common feature in all the Captchas above is that 

all characters are presented as hollow objects. 

Generally speaking, hollow schemes seem to be a 

clever idea. Crowding Characters Together (CCT), 

firstly proposed by Google, has been widely adopted. 

This standard security mechanism for text Captchas 

improves security but has usability issues. For example, 

confusing character pairs will appear when characters 

are crowded together too much and it is hard for people 

to recognize them [2]. However, hollow schemes allow 

characters connected or overlapped with each other, 

but maintain a reasonable usability. In a sense, this 

approach can be regarded as a clever variant of the 

CCT segmentation-resistant mechanism. Since there 

are only (or mainly) randomly-generated contours in 

each Captcha, it becomes difficult to detect each 

character’s features using standard technologies. 

Common character recognition methods, such as 

template matching and other feature-based algorithms, 

that are effective in recognizing solid characters, are 

inapplicable to hollow characters. Moreover, 

characters’ contour lines may connect or overlap with 

each other to prevent segmentation. When there are 

interference arcs, contour lines will be cut through or 

otherwise interrupted. Presumably, this will make it 

even harder for computers to recognize hollow 

characters. 

We also note that two main segmentation-resistant 

mechanisms, namely CCT and interference arcs, have 

never been used simultaneously in a single Captcha 

design before. However, some hollow Captchas apply 

the two mechanisms together, without introducing 

serious usability concerns in our experience. 

4 Our Attack: An Overview 

The key insight behind our attack is the following. 

We extract character strokes or components from 

hollow Captchas and convert them to solid ones. As for 

some schemes whose contour lines are broken, this 

process is not straightforward; we need to 

automatically repair them first. Furthermore, standard 

methods like Color Filling Segmentation (CFS, 

introduced in [4]) will pick up not just character 

strokes or components, but also those that do not 

belong to any character and which we call noise 

components. Therefore, it is essential to differentiate 

between legitimate character strokes and noise 

components automatically. Note that character strokes 

extracted this way are not linked with each other. 

Instead, they are scattered around. 

Next, we try different combinations of adjacent 

strokes, and use convolutional neural network (CNN) 

[17-19] recognition engine to determine which 

character a combination most likely to be. It has been 

already shown that CNN can work on classification 

[29-30]. With a graph search algorithm that we have 

designed, we can find the most likely combination as 

the right result with a good success rate. 

The high-level workflow of our attack includes three 

main sequential steps: 

‧ Pre-processing, processes each challenge image with 

standard techniques, like image binarization and 

contour lines repairing. 

‧ Extracting character strokes, relies on a number of 

techniques, such as using CFS to fill hollow parts, 

noise component removal, and contour line removal 

and clean up. 
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‧ Segmentation and recognition, which use CNN 

engine assisted graph search. 

Note the sub procedures listed may not necessary in 

some schemes. 

5 Our Attack: Technical Details 

5.1 Pre-processing 

Image binarization. This is to covert a color or gray-

scale image into black-and-white one. We use the 

standard Otsu’s threshold method [20]. The first step of 

Figure 2 (a) to Figure (g) show the binarized images. 

                        
(a) Yahoo! (b) Tencent (c) Sina (d) CmPay (e) Baidu (f) Yhd (g) Yandex 

Figure 2. The pipeline of our attack 

In the cases of CmPay and Baidu, binarization does 

not just convert an image into black-and-white, but 

also removes thin interference arcs whose colors differ 

significantly from both hollow characters and thick 

arcs. 

Repair contour lines. Some challenges use hollow 

characters whose contour lines are broken, for which 

CFS will fail filling the hollow parts. In some cases, 

binarization created broken contours, too. In order to 

make CFS work, it’s necessary to repair these broken 

contour lines. Lee’s algorithm [21], which was initially 

designed for solving maze routing problems, is used to 

automatically detect and then repair broken contours 

(Figure 3).  

 

 

 

 

 

We take Yahoo! scheme as an example. First, we 

identify break points in contour lines. Just like solving 

the maze problem, a contour is regarded as the corridor, 

and break points as dead-ends in the maze. We use 

Lee’s algorithm to traverse the contour line and mark 

the dead-end pixel of each path in red (e.g. Figure 3 

(c)). Then, we examine the relative positions of each 

pair of break points and draw a one-pixel-thick line to 

connect those pairs that look valid (see Figure 3 (d)). 

Incorrect connections may be created, e.g. Figures 

3(d), but our attack can cope with them, as explained 

later. The second step of Figure 2 shows the images 

after repairing contour lines. Note that this step is only 

necessary for Yahoo!, Baidu, Yhd and Yandex. 
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(a) The original image (b) A blue rectangle 

indicates some identified 

break points 

  

(c) The amplified blue 

rectangle where break 

points are highlighted in 

red 

(d) The image with 

breakpoints connected 

Figure 3. Repair contour lines 

5.2 Extracting Character Strokes 

Fill hollow parts with CFS. CFS uses a flooding 

algorithm to detect connected non-black pixel blocks. 

It will pick up both character components and noise 

ones if they have closed contours. We use a distinct 

color to fill so that readers can easily distinguish them 

from each other. After this step, the background color 

in an image is set to light gray, but contour lines and 

other solid parts such as thick interference arcs remain 

in black. The third step of Figure 2 shows the images 

after CFS. 

Noise component removal. In Figure 4, there are at 

least three types of undesirable components (or chunks) 

which we consider as noise: (1) the closed part within a 

character, (2) those formed by two connected 

characters, and (3) those formed by wrong connections 

introduced by the contour repair algorithm. 

 

Figure 4. Three types of noise components 

We first define parameters θ and δ for each color 

component: θ = Cg/C and δ= C/S, where Cg denotes 

the number of edge pixels that have a light gray 

neighbor, C denotes the total number of edge pixels in 

this component, and S denotes the total number of 

pixels in this component. 

With properly chosen threshold values a and b, we 

have the following: if θ < a for a component, it is a 

noise component of the first two types; if δ< b, it is a 

noise component of the third type. We determine the 

values a and b via a learning algorithm that analyzes a 

small sample set of data. 

In schemes like CmPay, an additional type of noise 

components was introduced by thick interference arcs. 

However, they are easy to remove by detecting such 

arcs’ existence. 

We have tested our noise component removal on all 

the hollow schemes, and it works on most of them 

(except for Yandex). Components surviving our noise 

removal are considered to belong to character bodies, 

and are thus preserved. 

Contour line removal. In most schemes except for 

Yahoo!, black pixels are the interference arcs and 

contour lines, and all character strokes are in non-black 

colors after removing the noise components. So it is 

straightforward to remove both contour lines and the 

interference arcs by switching all black pixels to the 

background color. 

However, it requires more subtle techniques for the 

Yahoo! scheme. We have also implemented the more 

subtle approaches. Which approach is needed for 

handling a particular Captcha scheme can be 

automatically determined. In the Yahoo! scheme, after 

removing noise components, black pixels in an image 

are character contours, incorrect connecting lines 

introduced by our contour repair algorithm, or a 

character stroke. We need to remove the first two types 

of black pixels, but keep the third. The second type is 

always of one-pixel thickness, and easy to remove first. 

Then we perform image dilation on each stroke filled 

with a non-black color. The stroke is dilated to cover 

its surrounding contour line. That is, the dilation 

algorithm switches the contour line to the color of the 

stroke body to merge them. After this step, all 

remaining large blocks of black pixels have to be 

character strokes, as illustrated in fifth step of Figure 2. 

Clean-up. Tiny pixel blocks might be created by 

contour line removal (Figure 2(a)). In clean-up, they 

are either removed directly or merged with adjacent 

larger strokes via an automated algorithm. The sixth 

step of Figure 2 shows the resulting images. After this 

step, what remain in an image are all character strokes 

or components. 

5.3 Segmentation and Recognition 

The next step is to find how to form strokes into 

individual characters and recognize what the characters 

are. The problem is similar to a jigsaw puzzle in that 

each stroke is a piece of a master design. However, 

there is no fixed pattern for us to exploit for finding the 

right combination. The number of strokes is always 

larger than the number of characters to be formed, and 

the latter is a variable in schemes such as Yahoo!; so 

there can be many possible combinations. Our 

approach is to combine adjacent strokes into possible 

characters and determine the most likely result. This 

step is the same for all the schemes. Here we use 

Yahoo! and CmPay as examples. 

First, all strokes in an image are numbered in an 

incremental order from the upper left to lower right 

(Figure 5). 
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(a) Yahoo! (b) CmPay 

Figure 5. What remains are all character strokes, rank 

ordered 

Then we attempt to combine strokes or components 

following the incremental rank order. An n × n table is 

built for each image to record whether a combination is 

legitimate to form an individual character, where n is 

the total number of strokes in the image.  

If it is infeasible to combine strokes i, i+1, ..., k 

altogether to form a single character, the cell at the 

intersection of row i and column k in the table (cell (i; 

k) ) will be set to NULL. This occurs when its row 

index i is larger than its column index k (we try 

combinations only in a monotonic order), or the width 

of the combination is greater than the largest possible 

character width, or less than the smallest possible 

character width, which is also empirically established 

with a simple analysis of the sample set. 

If such a combination is feasible, we let the CNN 

decide which character this component is likely to be, 

and the cell (i; k) stores the neural network’s 

recognition result, along with a confidence level the 

CNN feels about this result. This feasibility condition 

is met in all situations except the above. 

In our implementation, an image input to the CNN is 

normalized to the size of 28×28 pixels; the output 

confidence level is calculated after layer-by-layer 

forward propagation. Since the activation function used 

is a scaled version of the hyperbolic tangent [17], 

scaling causes the confidence level to vary between -

1.7159 and 1.7159. The larger a confidence value is, 

the more likely the recognition result is correct. 

Table 1 and Table 2 show the n × n table built for 

the Yahoo! sample and the CmPay sample, 

respectively. For example, in Table 1, the cell (1, 1) 

indicates that the CNN recognize this single stroke as 

‘r’ with a confidence level of 0.479; the cell (1, 3) 

indicates that the combination of strokes 1, 2 and 3 is 

recognized as ‘M’ with a confidence level of 0.432. 

Each empty cell (i; k) indicates that a combination of 

strokes i, i + 1, ..., k is infeasible for one reason or 

another. 

Table 1. The n × n table generated by CNN for the Yahoo! sample in Figure 5  

 1 2 3 4 5 6 7 8 9 10 11 

1 r/0.479 A/-0.157 M/0.432         

2  A/-0.027 M/-0.358 M/1.025        

3    T/0.01 W/-0.43       

4    L/0.255 W/0.216       

5     A/0.482 V/-0.2 V/-0.242     

6      V/0.238 p/1.087 A/-0.384    

7       y/-0.151 w/-0.462 V/-0.127   

8        V/0.358 V/1.11 H/-0.088 w/0.238 

9         r/-0.035 6/-0.519 M/-0.255 

10          c/0.554 d/1.075

11            

Table 2. The n × n table generated by CNN for the CmPay sample in Figure 5 

 1 2 3 4 5 6 7 8 9 

1  K/0.935 K/0.781 H/-0.229      

2  K/0.647 4/0.493 4/0.445      

3     6/0.593 U/0.692    

4     6/0.006 U/0.688    

5     J/0.093 U/-0.332    

6          

7       Q/1.102   

8        R/0.229 R/1.057 

9         S/1 

 

A n × n table gives all plausible stroke combinations 

for an image. Our task now is to use information in the 

table to find the most likely way of forming characters, 

i.e., finding the best segmentation or partition. 

We convert each n × n table to an equivalent 

directed and weighted graph. Figure 6 gives such 

graphs that are equivalent to Tables 1 and 2, 

respectively. Each non-empty cell (i; j) in the table is 

represented as an arc < i; j+1 > (i.e. a directed edge 

linking vertexes i and j+1) in the graph, and the 

associated weight on the edge gives both the 

recognition result of this combination and the 

confidence level calculated by the neural network for 

this result. In each graph, the nodes are numbered from 

1 to n + 1, and nodes 1,2,...n represent the 

corresponding strokes, respectively. Clearly, the 
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number of arcs in a graph equals to the number of non-

empty cells in its corresponding table. 

 

(a) 

 

(b) 

Figure 6. The equivalent graphs of Table 1 and Table 2 

Now, we search the graph to find an optimal 

partition. We define the target problem is to select a 

path as following:  

‧ Find a path that starts from node 1 and ends at node 

n + 1, and in which each node is traversed only once, 

and a node always has a larger index number than all 

its predecessor(s). 

‧ The path’s length (i.e. the number of edges on the 

path) is exactly the same as the number of characters 

that are supposed to be in a Captcha image.  

Note: the rationales are the following: all the strokes 

in an image will be used to form individual characters, 

but each stroke will be used only once and no stroke is 

shared in adjacent characters. 

‧ The sum of confidence levels along the path is the 

largest possible in the graph. 

In our previous work [22], we used Depth-First-

Search (DFS) algorithm to get the final result. It starts 

from node 1 in the graph and explores along each 

branch until the path length reaches the Captcha string 

length before backtracking. All paths of a length 

equaling to the Captcha string length in a graph are 

traversed using DFS, and then the path ending at the 

n+1 node with the largest confidence level sum is 

selected. 

 

DepthFirstSearch() 

1  i ← 1 

2  step ← 0 

3 p ← 0 

4 sum ← 0 

5 R ← NIL 

6 S ← NIL 

7 Traverse(i, step, sum, S) 

8 print R 

 

Traverse(i, step, sum, S) 

1 for j ← i to n  

2      do  if  ai, j ≠ NULL then  

3                 sum ← sum + ai, j 

4                 S ← strcat(S, Si, j) 

5                 step ← step + 1 

6            else  

7                   if step ∈ Captcha  length and p < sum 

then 

8                       p ← sum 

9                      R ← S 

10                    if step ≤ max Captcha length  then 

11                       Traverse(j + 1, step, sum, S) 

 

This DFS algorithm is not optimal, since it will both 

explore paths that cannot reach the last node of the 

graph and will re-explore previously visited nodes after 

their best following partition has been discovered. 

Here we introduce a new algorithm, which uses an 

Integer Partition (IP) algorithm to select the optimal 

partition which has the highest confidence sum. It is 

also a graph search algorithm, but better than DFS [22]. 

This algorithm reduces the search space by skipping 

paths that do not end at the n+1 node. 

The rationale is the following. Assume that m is the 

Captcha length, our task is to find the most likely way 

of forming m characters using n components, i.e., 

finding the best partition. This task is similar to the 

classical integer partition problem: in number theory 

and combinatorics, a partition of a positive integer n, is 

a way of representing n as a sum of m positive integers. 

We first work out all partitions that divide integer n 

into m parts, then select the partition with the largest 

sum of confidence levels. 

The length of Captcha strings is 6 to 8 in Yahoo! 

scheme, 6 in Yandex scheme and 4 in Tencent, Sina, 

CmPay, Baidu and Yhd schemes. 

We still utilize the n × n tables to implement the 

graph search algorithm. The search always starts from 

the first row in table, and progresses from the smallest 

index number to the largest in an incremental order. In 

the partition, each part denotes the number of 

components to be combined. For example, for the 

sample CmPay challenge in Figure 5, a candidate 

partition of the integer is 9=2+4+1+2 (n=9, m=4), 

which indicates the partition of components is 1 ~ 

2(‘K’/ 0.935), 3 ~ 6(‘U’/ 0.692), 7 ~ 7(‘Q’/ 1.102), 8 ~ 

9(‘R’/ 1.057). That is to say, each part in the partition 

is corresponding to a cell in the n × n table generated 

by CNN. While in the procedure of figuring out all the 

partitions, if a part in the partition is invalid (the 

corresponding cell in the table is null), this partition is 

ignored directly. 

The pseudo code in the below sketches the 
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recognition process, with key variables defined as 

follows. 

 

,

S
i j

: the character recognized by the CNN as the 

combination of components i, i+1,· · ·, j 

,

a
i j

 : the confidence level of 
,

S
i j

 

p : The parts that has been partitioned 

index : The length of p 

s : The sum of all the elements in p 

sum: the confident value sum of a partition 

S: the recognition result of this partition 

R: the final result string 

V : the confident value sum of R 

 

Recognition() 

1 R ← NIL, v ← -99, num ← n 

2 foreach m ∈ Captcha length 

3      do length(p) ← m 

4           Partition(num, m, 0) 

5 Print R 

 

Partition(num, m, index) 

1 if m≠1 then 

2     for j ← 1 to num – 1 

3          do s ← 0 

4               for jj ← 0 to index − 1 

5                    do s ← s + p[jj] 

6               if as+1, s+j ≠ NULL then  

7                  p[index] ← j 

8                   Partition(num−j, m−1, index+1) 

9 else 

10      s ← 0 

11      for jj ← 0 to index − 1 

12           do s ← s + p[jj] 

13      if  a s+1, n≠ NULL then  

14           p[index] ← n − s 

15           Select(length(p)) 

 

Select(m) 

1 S ← NIL, sum ← 0, s ← 0 

2 for j ← 0 to m − 1 

3     do s ← s + p[j] 

4         S ← strcat(S, Ss+1, s+p[j]) 

5         sum ← sum + as+1, s+p[j] 

6 if sum > v then 

7     v ← sum 

8     R ← S 

 

As generated by our attack program, Table 3 and 

Table 4 show all likely partitions and for each partition, 

its results and sum of confidence levels. The italicized 

items highlighted in red in each table indicate the 

optimal partition that has the highest sum of 

confidence levels and that matches a legitimate length 

of Captcha strings. In both cases, “rMApVd” and 

“KUQR” are correct recognition results. 

Table 3. Each partition and the corresponding result for the Yahoo! sample in Figure 5 

Partitions Result Confidence Partitions Result Confidence Partitions Result Confidence Partitions Result Confidence 
1+1+2+1+2+4 rATApw 2.15 1+3+2+1+1+3 rMVJVM 1.26 1+1+2+1+2+3 rATAVwM .45 2+2+1+1+1+3 ATAVJVM 0.44 
1+1+2+1+3+3 rATAAM 0.32 1+3+2+1+2+2 rMVJVd 3.33 1+1+2+1+3+2 rATAVVd 2.06 2+2+1+1+2+2 ATAVJVd 2.51 
1+1+2+2+1+4 rATVJw 0.19 1+3+2+2+1+2 rMVwrd 1.97 1+1+2+2+1+3 rATApVM 2.10 2+2+1+2+1+2 ATAVwrd 1.16 
1+1+2+2+2+3 rATVwM -0.35 1+3+3+1+1+2 rMVVrd 2.69 1+1+2+2+2+2 rATApVd 4.17 2+2+1+1+1+2 ATApVrd 2.81 
1+1+2+2+3+2 rATVVd 1.26 2+2+1+1+1+4 ATAWJw 0.49 1+1+2+3+1+2 rATAArd 1.52 2+2+2+1+1+2 ATVJVrd 0.85 
1+1+2+3+1+3 rATVVM 0.37 2+2+1+1+2+3 ATAVwM -0.05 1+1+2+1+1+3 Ratvjvm 0.14 2+3+1+1+1+2 AVVJVrd 0.81 
1+1+2+3+2+2 rATVVd 2.44 2+2+1+1+3+2 ATAVVd 1.56 1+1+2+1+2+2 rATVJVd 2.21 3+1+1+1+1+3 MLAVJVM 1.18 
1+1+3+1+1+4 rAVVJw 0.15 2+2+1+2+1+3 ATApVM 1.61 1+1+2+2+1+2 rATVwrd 0.85 3+1+1+1+2+ MLAVJVd 3.25 
1+1+3+1+2+3 rAVVwM -0.39 2+2+1+2+2+2 ATApVd 3.67 1+1+2+1+1+2 rATVVrd 1.57 3+1+1+2+1+2 MLAVwrd 1.89 
1+1+3+1+3+2 rAVVVd 1.22 2+2+1+3+1+2 ATAArd 1.03 1+1+2+1+1+3 rAVVJVM 0.10 3+1+1+1+1+2 MLApVrd 3.54 
1+1+3+2+1+3 rAVpVM 1.26 2+2+2+1+1+3 ATVJVM -0.36 1+1+3+1+2+2 rAVVJVd 2.17 3+1+2+1+1+2 MLVJVrd 1.58 
1+1+3+2+2+2 rAVpVd 3.33 2+2+2+1+2+2 ATVJVd 1.71 1+1+3+2+1+2 rAVVwrd 0.81 3+2+1+1+1+2 MwVJVrd 1.52 
1+1+3+3+1+2 rAVArd 0.68 2+2+2+2+1+2 ATVwrd 0.35 1+1+3+1+1+2 rAVpVrd 2.47 1+1+2+1+1+1+3 rATAVJVM 0.94 
1+2+1+1+2+4 rMLApw 2.15 2+2+3+1+1+2 ATVVrd 1.074 1+1+3+1+1+4 rMLAVJw 0.99 1+1+2+1+1+2+2 rATAVJVd 3.01 
1+2+1+1+3+3 rMLAAM 0.32 2+3+1+1+1+3 AVVJVM -0.39 1+2+1+1+2+3 rMLAVwM 0.45 1+1+2+1+2+1+2 rATAVwrd 1.65 
1+2+1+2+1+4 rMLVJw 0.19 2+3+1+1+2+2 AVVJVd 1.67 1+2+1+1+3+2 rMLAVVd 2.06 1+1+2+1+1+1+2 rATApVrd 3.31 
1+2+1+2+2+3 rMLVwM -0.35 2+3+1+2+1+2 AVVwrd 0.32 1+2+1+2+1+3 rMLApVM 2.11 1+1+2+2+1+1+2 rATVJVrd 1.34 
1+2+1+2+3+2 rMLVVd 1.26 2+3+2+1+1+2 AVpVrd 1.97 1+2+1+2+2+2 rMLApVd 4.18 1+1+3+1+1+1+2 rAVVJVrd 1.31 
1+2+1+3+1+3 rMLVVM 0.37 3+1+1+1+1+4 MLAVJw 1.22 1+2+1+3+1+2 rMLAArd 1.53 1+2+1+1+1+1+3 Rmlavjvm 0.95 
1+2+1+3+2+2 rMVVd 2.44 3+1+1+1+2+3 MLAVwM 0.68 1+2+1+1+1+3 rMLVJVM 0.145 1+2+1+1+1+2+2 rMLAVJVd 3.02 
1+2+2+1+1+4 rMwVJw 0.13 3+1+1+1+3+2 MLAVVd 2.29 1+2+1+1+2+2 rMLVJVd 2.21 1+2+1+1+2+1+2 rMLAVwrd 1.66 
1+2+2+1+2+3 rMwVwM -0.41 3+1+1+2+1+3 MLApVM 2.34 1+2+1+2+1+2 rMLVwrd 0.86 1+2+1+1+1+1+2 rMLApVrd 3.31 
1+2+2+1+3+2 rMwVVd 1.20 3+1+1+2+2+2 MLApVd 4.41 1+2+1+1+1+2 rMLVVrd 1.58 1+2+1+2+1+1+2 rMLVJVrd 1.35 
1+2+2+2+1+3 rMwpVM 1.25 3+1+1+3+1+2 MLAArd 1.76 1+2+2+1+1+3 rMwVJVM 0.088 1+3+2+1+1+1+2 rMwVJVrd 1.29 
1+2+2+2+2+2 rMwpVd 3.32 3+1+2+1+1+3 MLVJVM 0.37 1+2+2+1+2+2 rMwVJVd 2.16 1+3+1+1+1+1+2 rMAVJVrd 3.27 
1+2+2+3+1+2 rMwArd 0.67 3+1+2+1+2+2 MLVJVd 2.44 1+2+2+2+1+2 rMwVwrd 0.80 2+2+1+1+1+1+2 ATAVJVrd 1.65 
1+3+1+1+1+4 rMAVJw 2.11 3+1+2+2+1+2 MLVwrd 1.09 1+2+2+1+1+2 rMwpVrd 2.45 3+1+1+1+1+1+2 MLAVJVrd 2.38 
1+3+1+1+2+3 rMAVwM 1.57 3+1+3+1+1+2 MLVVrd 1.81 1+3+1+1+1+3 rMAVJVM 2.06    
1+3+1+1+3+2 rMAVVD 3.18 3+2+1+1+1+3 MwVJVM 0.317 1+3+1+1+2+2 rMAVJVd 4.13    
1+3+1+2+1+3 rMApVM 3.23 3+2+1+1+2+2 MwVJVd 2.39 1+3+1+2+1+2 rMAVwrd 2.78    
1+3+1+2+2+2 rMApVd 5.29 3+2+2+1+1+2 MwpVrd 2.68 1+3+1+1+1+2 rMApVrd 4.43    
1+3+1+3+1+2 rMAArd 2.65 3+2+1+2+1+2 MwVwrd 1.03 1+3+2+1+1+2 rMVJVrd 2.47    
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Table 4. Each partition and the corresponding result 

for the CmPay sample in Figure 5 

Partitions Result Confidence 

4+2+1+2 HUQR 1.598 

3+3+1+2 KUQR 3.628 

2+4+1+2 KUQR 3.786 
 

Note that the techniques we used are generically 

applicable to all the hollow schemes. Figure 2 includes 

the pipeline of our attack on seven schemes. 

6 Evaluations 

6.1 Analysis of Our Attack 

We have implemented our attack and tested it on all 

the 7 hollow schemes. We present our evaluations as 

follows.  

Data collection. For each of the schemes, we collected 

1000 random Captchas as a sample set by mining from 

the corresponding websites, and another 500 as a test 

set.  

Training neural network. The template library for 

training our convolutional neural network was 

prepared manually. We extracted 4244 characters from 

Yahoo! samples, 3754 characters from Tencent 

samples, 2680 characters from Sina samples, 3670 

characters from CmPay samples, and 2940 characters 

from Baidu samples, 3333 characters from Yhd 

samples, and 4115 characters from Yandex samples to 

train the CNN. 

Success rate. We test our attack both on the sample set 

and the test set of the all schemes. The success rates 

are listed in Table 5. For the Yahoo! scheme, we 

achieved a success rate of 56% on the sample set. Then 

we ran our attack on the test set, about which our 

program had no prior knowledge about any particular 

sample within; we achieved a success rate of 36%. 

Similarly, for the Tencent scheme, we achieved 93% 

success on the sample set and 89% on the test set. For 

Sina, we achieved 63% success on the sample set and 

59% on the test set. For CmPay, our success was 73% 

on the sample set and 66% on the test set. For Baidu, 

our success was 57% on the sample set and 51% on the 

test set. For Yhd, our success was 36% on the sample 

set and 35% on the test set. But for Yandex, our 

approach does not work (we will discuss it later). 

Table 5. The success rate and speed of our attack 

Avg time per 

challenge 

Avg time per

success(T/R)Scheme 
Success 

on sample 

set 

Success  

on test 

set(T) DFS IP DFS IP 

Yahoo! 56% 36% 5.30s 5.17s 14.72s 14.36s 

Tencent 93% 89% 1.23s 1.14s 1.38s 1.28s 

Sina 63% 59% 1.77s 1.36s 3.00s 2.31s 

CmPay 73% 66% 4.25s 3.70s 6.43s 5.61s 

Baidu 57% 51% 3.87s 3.52s 7.58s 6.91s 

Yhd 36% 35% 0.56s 0.49s 0.78s 0.69s 

Yandex 0 0 - - - - 

A commonly accepted goal for Captcha robustness 

is to prevent automated attacks from achieving a 

success rate of higher than 0.01% [4]. But this goal is 

considered too ambitious by some researchers. [15] 

suggested that a Captcha scheme is broken when the 

attacker achieves an accuracy rate of at least 1%. 

According to either criterion, six hollow schemes are 

successfully and terribly broken by our attack. 

In reality, an attacker could achieve a success rate 

even higher than reported here, as he could simply skip 

a challenge if the confidence level for recognizing it is 

not large enough. Instead, he could keep requesting 

new challenges, and only when he is confident enough 

with a recognition result, he submits the answer to the 

Captcha. 

Attack speed. We implemented our attack in C# and 

tested it on a desktop computer with a 2.53 GHz Intel 

Core 2 CPU and 4 GB RAM. The attack was run ten 

times on each data set, and the average speed was 

recorded. Table 5 summarizes the speed of our attack 

on each scheme. On average, it takes only seconds to 

attack a Captcha in any of these schemes. Besides, we 

also estimate an average time for successfully breaking 

a Captcha in each scheme: on average, it takes 1 to 15 

seconds. Clearly, our attack is efficient and poses a 

realistic threat to all the hollow schemes.  

Table 5 also compares the speed of precious DFS 

algorithm and our IP search algorithm. It is clearly that 

our IP Search algorithm is better than the previous DFS 

algorithm in attack speed, because the IP algorithm 

reduces the search space. With the same success rates, 

our attack speeds on Yahoo!, Tencent, Sina, CmPay 

and Baidu in table 5 are all faster than before. 

Specifically, the time consumption of Yahoo!, Tencent, 

Sina, CmPay, Baidu and Yhd was decreased by 2.5%, 

5.7%, 23.2%, 12.9%, 9.0% and 12.5%. 

Other classifiers. We also tested other classifiers such 

as Support Vector Machine, Back-Propagation Neural 

Network and template matching. The CNN engine has 

achieved the best overall performance for both attack 

speed and success rate. 

6.2 Faliures of Our Attack 

The experiments show our attack is general for 

attacking most hollow schemes, except for Yandex. 

For Yandex scheme, there are two main reasons for the 

failure results. See Figure 2(g). First, the contour lines 

are seriously broken, and there are many break points 

marked after using Lee’s algorithm [21]. Second, the 

interference arcs are similar to the contour line. Badly 

broken and partially overlap with the character strokes, 

make it especially difficult to segment. 

Besides, we also test our approach on some non-

hollow schemes and find it not suitable for these 

schemes without change. We test our approach on 

Amazon and Yahoo! non-hollow Captchas, the success 

rate are all 0%, as the key component of our attack is 

using CFS to extract character strokes from hollow 
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fonts. The solid stroke means we can’t use CFS to 

extract the stroke components. The only few color 

chunks we extracted are the noise chunks (Figure 7). 

  

(a) Amazon (b) Yahoo! 

Figure 7. Non-hollow captchas using CFS  

7 Discussions 

7.1 Novelty 

To our best knowledge, this is the most detailed 

security analysis on the state of the art of hollow 

Captchas. We used some standard techniques in pre-

processing, and also used CFS, which has been a 

standard method for analyzing text Captcha robustness 

since its introduction in [4]. However, the key 

component of our attack, the graph search algorithm 

based segmentation and recognition, is novel. Overall, 

the combination of these and other techniques has led 

to a novel attack. 

State of the art attacks on the CCT based Captchas, 

such as [15], [3] and [27], do not work on the hollow 

Captchas studied in this paper. On the other hand, 

hollow Captchas are converted into CCT schemes after 

filling hollow part with CFS. Admittedly, it is possible 

to use those anti-CCT techniques to break the filled 

hollow Captchas. However, it also introduces the issue 

of segmentation which is the major challenge of 

breaking Captchas, as [28] suggested that the 

robustness of text-based Captchas should rely on the 

difficulty of finding where each character is 

(segmentation). After extracting character strokes, our 

method has segment adjacent characters totally, but 

each character is also separated into a few components. 

It is easy for our IP algorithm to find the best 

combinations of the extracted character components. In 

a word, our method is more simple and effective than 

using anti-CCT algorithms after CFS. 

Among all the related work we have discussed 

earlier, two attacks have some similarity with ours. 

One is the attack reported in [14] on a MegaUpload 

Captcha. However, that attack was designed for a 

single Captcha; it is ad hoc and not applicable to 

attacking hollow Captchas. Moreover, that attack 

focused on segmentation, and did not involve character 

recognition at all. The other is [6], their idea of 

combining segmentation and recognition in a single 

step is somewhat like ours. But different from ours, 

they use a brute-force similar approach with five steps 

included to look for possible segmenting points. 

The most recent attack reported in [26] also 

analyzed two hollow Captcha schemes, Yahoo! and 

QQ (Tencent), which are same with the Yahoo! and 

Tencent schemes presented in this paper. It utilized 

Gabor filters to extract character components. However, 

this method doesn’t work well on hollow Captchas 

formed by thin contour lines. The Yahoo! scheme 

received the lowest success rate (5.0%) in [26] since its 

extraction method breaks a thin text string into a large 

number of tiny components, which produces a huge 

possible set of combination, whereas ours achieved a 

much higher success rate of 36%. Even for Tencent 

which is formed by thick contour lines, our approach is 

also much effective than theirs (89% vs. 56%). 

7.2 Generic Value 

Our attack is applicable to a variety of hollow 

Captchas. It works on schemes with thin contours (e.g. 

Yahoo!) and on schemes with thick contours (e.g. 

Tencent and Yhd); on schemes with interference arcs 

(e.g CmPay) and on schemes without such arcs (e.g. 

Yahoo!); on schemes with a fixed length (e.g. Sina) 

and on schemes with a varied length (e.g. Yahoo!). 

Table 6 summarizes the main features of these schemes. 

As they represent different designs, each with 

distinctive features, our attack is of some generic value. 

Table 6. Main features of seven hollow Captchas 

Scheme 
Interference 

Arcs 

Broken 

Contour Line 

Contour Line 

Thickness 
Hollow Styles String Length

Character 

Overlap 

Aplhabet 

Size 

Yahoo! No Sometimes Uniform Varied Varied (6-8) Yes 28 

Tencent No No Varied Uniform Fixed (4) Yes 25 

Sina No No Varied Uniform Fixed (4) Yes 28 

CmPay Yes After binarization Varied Uniform Fixed (4) Yes 30 

Baidu Yes No Varied Uniform Fixed (4) Yes 51 

Yhd No Yes Varied Uniform Fixed (4) Yes 32 

Yandex Yes Yes Uniform Uniform Fixed (6) Yes 10 

 

C. Lessons 

We also analyze which design features contribute to 

a hollow Captcha’s security, and which do not. Design 

features that do help security include the following. 

Overlapped or connected characters are still the 

most crucial security feature, as by design it provides 

(some) segmentation resistance. It significantly 

contributes to the security of all the 7 schemes. 

String length matters. This was first observed in [4] 

and then confirmed in [15]. First, it is good to use a 



Extended Security Analysis of Hollow Captchas 1085 

 

relatively large length. The more characters used in a 

Captcha image, the more components remain after 

preprocessing, and the larger the solution space will be. 

This will decrease an attack’s success and speed. The 

more characters used, the harder for brute-force 

guessing, too. Second, it is good to use a varied length, 

which does not give away useful information to aid 

attackers.  

Attackers have to try multiple possible lengths, 

which increases the search space for our graph 

algorithm, and could decrease its success and speed. 

Broken contours considerably increase the difficulty 

level of designing and implementing an effective attack. 

In particular, they disable the otherwise powerful CFS. 

Our failure on Yandex, which formed by seriously 

broken contour lines, is a good explanation. Broken 

contours introduced by design or after binarization are 

both good for security, but the former wins our 

recommendation as it is probably easier to control by a 

Captcha generator. 

Interference arcs cut across characters, not just 

dividing characters to fragments but also introducing 

noise components. This considerably increases the 

difficulty level of designing and implementing an 

effective attack. 

Hollow styles. Varying thickness of hollow portions is 

an important style feature that contributes to security. 

Some hollow portions in the Yahoo! scheme were so 

thin that their contour lines were squashed together, 

which prevents the portions from being picked up by 

CFS. This not only increases the number of strokes in 

an image, but also makes it a challenge to cope with 

those squashed strokes. 

In the Yahoo! scheme, another variation in hollow 

styles is heavily used. Namely, two font types are used, 

creating two styles: one we call the ‘thick strokes’, and 

the other the “thin strokes” (Figure 8). Until now, what 

is explicitly discussed in this paper is the ‘thin strokes’. 

In the “thick strokes”, character strokes can be 

completely picked up by CFS, leading to not just fewer 

components than in the ‘thin strokes’, but also a 

simplified treatment by the follow-up attack 

procedures. That is, “thick strokes” is a weaker design 

than ‘thin strokes’ in terms of security. Note that our 

attack is applicable to both types, and our program 

automatically handles both the types. 

  

(a) thick strokes vs (b) thin strokes  

(both after CFS) 

Figure 8. Yahoo!’s hollow styles 

Having multiple designs and deploying them 

alternately in a random order is good for security, as 

first suggested in [23] and then confirmed in [15]. 

However, randomly alternating two hollow styles in 

the Yahoo! scheme is probably only marginally useful 

for improving security, as the alternatives are not 

equally strong. 

Varying width of individual characters is a design 

feature that is somehow related to hollow styles but 

beyond that. It contributes to security for the following 

reasons. The larger the width difference between the 

thinnest character and the fattest one, the larger a 

search space faces our graph search algorithm, and the 

more likely it will give inaccurate results. 

Design features that do not help security include: 

Complete contours, which help CFS to pick up 

character strokes. 

Contour thickness. Thinning [24] contour lines to a 

uniform thickness is useful for our attack, but not 

essential. Therefore, we do not consider variations in 

contour thickness contribute much to security. 

Thin interference arcs, which are easily removed by 

binarization. Note that ‘thin’ here means the arcs are 

much thinner than the character contour lines. 

Fixed string length, which gives away useful 

information to aid segmentation. 

Short string length, which reduces an attack’s search 

space and increase its chance of success. 

This set of “Do” and “Don’t” constitutes a set of 

design guidelines for the security of hollow Captchas. 

It also provides a method for comparing different 

designs, as well as explaining and pinpointing why one 

scheme is better than the other in terms of security. 

Apparently, Yandex is the best among all the 7 

schemes. Overlapped, seriously broken contour lines, 

interference arcs and variations in the width of 

individual characters width, all make great 

contributions to its unique strength. 

The Yahoo! scheme is the most time consuming 

among all the 6 broken schemes, and the following 

features contribute to it: (1) Using a relatively large 

string length, and the length is not fixed. (2) Variations 

in hollow portions thickness. (3) Variations in the 

width of individual characters width. To the contrary, 

Tencent is the worst design, as it made the worst 

choices for almost all security features. 

7.3 Towards Better Designs 

From our attack process and the above lessons, we 

can see that Yandex scheme has the most security 

mechanism, and Yahoo! scheme, although broken, 

have some good security features. Yhd scheme, though 

not recommended, provides a new thought of security 

mechanism. We will follow their success design and 

explore how to evolve these schemes into better 

designs. Plausible options include the following. 

Using broken contours more often. In Yandex, 

Yahoo! and Yhd, the broken contours are used. Among 

them, the Yandex scheme used this design in all of its 

challenges. But not all of the Yahoo! and Yhd 
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challenges contain broken contours. Using broken 

contours is meaningful, since this will likely decrease 

our attack’s success rate and increase the time it takes 

to succeed. 

More fundamentally, introducing more broken 

points in each challenge will likely significantly 

increase security. Breaking contour lines badly or at 

least creating a large number of broken points at 

random locations will make it hard to repair the 

contours. If the repair algorithm does not work, 

attackers will be unable to rely on the otherwise 

effective CFS method to extract character strokes any 

more. 

Introducing interference arcs which similar to 

character strokes to cut through characters so that when 

adjacent strokes are combined for tests, combined 

characters contain extra strokes parts. This will confuse 

the CNN engine, leading to incorrect recognition 

results. Also, cutting-through arcs can be used to create 

a large number of components in an image. The more 

components the CNN engine has to try to combine, the 

lower the attack’s success rate and speed. 

Increasing the alphabet size. This is a simple but 

effective solution, and with little negative impact on 

usability (if confusing characters are excluded from the 

alphabet). 

Increasing the length of each Captcha string helps, 

too, for the same reason as above. 

Increasing the variation in character widths. The 

larger the gap between the smallest and largest width 

of individual characters in an image, the more possible 

combinations it will produce, and the larger a solution 

set our graph search algorithm is required to go 

through. This might significantly slow down our attack 

and decrease the attack success rate. 

Some of these measures (such as increasing the 

string length) only have a linear effect on the search 

space, but methods such as ‘using broken contours 

more often’ theoretically would be much more 

effective in thwarting attacks. 

Careful studies are still needed to establish how well 

these advised measures will work, and more 

importantly, some measures may decrease recognition 

success for humans. It is important to strike the right 

balance between security and usability. It remains an 

open problem what design will be eventually both 

secure and usable, and whether this design is mission 

impossible. Nonetheless, our discussions offer practical 

suggestions for improving hollow Captcha designs. 

8 Summary and Conclusion  

8.1 About Hollow Schemes 

We proposed a simple attack on hollow Captchas 

and have shown that this new type of text scheme has 

serious security problems. With an effective attack, we 

have broken the hollow schemes deployed by Yahoo!, 

Tencent, Sina, CmPay, Baidu and Yhd with a success 

rate of 36%, 89%, 59%, 66%, 51% and 35% 

respectively, and it only takes just seconds for our 

attack to break each of the scheme on a standard 

desktop computer. As these schemes are different from 

each other, and each with distinctive design features, 

our work casts serious doubt on the current generation 

of hollow Captchas. 

Hollow Captcha is a clever idea in that it improves 

usability while keeping characters connected or 

touching each other, but this idea is not as secure as 

expected. A key issue in text Captcha design is to find 

a segmentation-resistant mechanism that is secure and 

user-friendly simultaneously. The hollow Captcha 

approach does not achieve this goal yet. 

Our attack helped to identify good design features 

for better security by comparing representative designs 

of popular hollow Captchas, we have also discussed 

how to create next generation of better designs. 

However, it remains an open problem how to design 

Captchas that are both secure and usable, and this is 

our ongoing work.  

8.2 Application Extension 

Our attack inherently leverages the components 

information to segment the Captchas. As our 

segmentation algorithms are designed for hollow 

schemes, our attack is only suitable for hollow schemes 

specifically. The attack cannot be directly applied to 

attack non-hollow schemes, but the attack procedure 

reveals useful insights, find a generic method to get the 

character components’ information, whether it is 

hollow or non-hollow, and then get the best partition. 

Specifically, the segmentation is not limited to 

segmenting between characters. If we can find a 

method that can divide a Captcha challenge into many 

components, then we can use this information to 

reconstruct the character, and then find the most likely 

string. 

After the traditional segmentation algorithms failed 

in separating the hollow characters apart, we use the 

CFS algorithms to get the strokes of each character 

successfully. By analyzing all possible combinations, 

we get the most likely to be the correct one. So, for the 

non-hollow characters, if we find a method to get the 

information of each character, then our approach will 

likely be extended to non-hollow schemes. 

What’s more important, the attack approaches are no 

longer confined to the segment then recognize 

approach. The boundaries between segmenting and 

recognizing become fuzzy. 

8.3 Future Work 

Given the practical relevance and intellectual 

interest of the hollow Captcha technology, we have 

proved the insecurity of hollow Captchas. However, 

there have emerged many other Captchas with 

sophisticated design features, e.g. complex background, 
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using both hollow and solid characters and two-layer 

Captchas. It is therefore natural to ask an essential 

question: Are these Captchas as secure as their 

designers expected? This is our ongoing work. 

On the other hand, a lot of text-based Captchas had 

have been broken, especially some state-of-art works 

claimed that they can attack a variety of text-based 

Captchas deployed in the wild via a single step method 

[26]. It is clearly the common practice in text-based 

Captcha designs is dubious and shaking. The 

increasing insecurity of text-based Captchas creates a 

radical question: Can text Captchas still take the 

responsibility of Internet security? This is an open 

problem we share with whole research communities. 
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