
Extended Security Analysis of Hollow Captchas 1075

Extended Security Analysis of Hollow Captchas

Haichang Gao1, Ping Wang1, Jeff Yan2, Mengyun Tang1, Fang Cao1*

1 School of Computer Science and Technology, Xidian University, China
2 Department of Computer and Information Science, Linköping University, Sweden

hchgao@xidian.edu.cn, 497830219@qq.com, jeff.yan@liu.se,

MerryTangMengyun@gmail.com, 412602545@qq.com

*Corresponding Author: Haichang Gao; E-mail: hchgao@xidian.edu.cn

DOI: 10.3966/160792642018081904011

Abstract

Text-based Captchas are now most widely used

security technology for differentiating between

computers and humans. Hollow Captchas have emerged

as one of the latest designs, and they have been deployed

by more and more major companies. Besides Yahoo!,

Tencent, Sina, China Mobile and Baidu, some other

websites, especially for higher security requirement

shopping websites are also using this scheme. A main

feature of such schemes is to use contour lines to form

connected hollow characters with the aim of improving

security and usability simultaneously. It is hard for

standard techniques to segment and recognize such

connected characters, which are however easy for human

eyes. In this paper, we provide a systematic security

analysis of hollow Captchas. We show that with a simple

but novel attack, we can break most hollow Captchas

with a relatively high success rate, including those

deployed by the major companies. Our attack for the first

time combines segmentation and recognition in a single

step. We also discuss lessons and guidelines for

designing better Captchas.

Keywords: Captcha, Hollow, Graph search, Security

1 Introduction

Captcha (Completely Automated Public Turing Test

to Tell Computers and Humans Apart) has been widely

deployed for defending against undesirable and

malicious bot programs on the Internet [1]. Current

Captchas can be divides into three categories: text-

based Captchas, image-based Captchas and audio-

based Captchas. The most widely used Captchas are

text-based schemes [2], which typically require users

to solve a text recognition task.

If a Captcha is friendly for humans to solve but hard

for computers, it can be considered as a good one. It

turns out that the balance between security and

usability is hard to achieve. So far, many text-based

Captchas have been broken, including those deployed

by major websites such as Microsoft, Yahoo! and

Google [3-4]. However, [4] predicted that Captchas are

going through the same process of evolutionary

development, just like cryptography and digital

watermarking, with an iterative process in which

successful attacks lead to the development of next

generation of systems.

Hollow Captchas, as one of the latest text-based

designs, have emerged in the last couple of years They

have been deployed by major websites such as Yahoo!,

Baidu, Sina, Tencent and the online payment system of

China Mobile (CmPay), each serving tens of millions

of users on a daily basis. Such hollow Captchas use

contour lines to form connected characters (see Figure

1) with the aim of improving security and usability

simultaneously, as it is hard for state-of-the-art

character recognition programs to segment and

recognize such connected characters, which are

however easy to human eyes.

Figure 1. Hollow captchas

Given the high profiles of the companies that have

deployed hollow Captchas, it is of practical relevance

1076 Journal of Internet Technology Volume 19 (2018) No.4

to examine the robustness of such hollow schemes, i.e.

their resistance to automated attacks, which is an

important security property [12]. On the other hand, as

hollow Captchas represent a new type of text scheme,

it is also of academic interest to study their design and

security.

To our best knowledge, this is the first

systematically analysis of the security of hollow

Captchas. Though recently some research teams

(Vicarious [5], Elie Bursztein’s team [6] and Gao [26])

have declared that they have found a generic method to

break a whole family of latest Captchas, hollow

schemes included. But neither technique details

revealed nor did more hollow Captchas attack, we

can’t see more information on attacking the hollow

Captchas.

In this paper, we provide the specific analysis of the

robustness of hollow Captchas. With a novel and

generic attack, we can successfully break a whole

family of hollow Captchas (Except for Yandex, which

will discuss in Section 6). The success rates received

by our attack on the test set of Yahoo!, Tencent, Sina,

CmPay, Baidu and Yhd schemes are 36%, 89%, 59%,

66%, 51% and 36%, respectively, and with average

attack speed of 5.17, 1.14, 1.36, 3.70, 3.52, and 0.49

seconds respectively on a standard desktop computer

(with 2.53 GHz Intel Core 2 CPU, 4 GB RAM).

Therefore, our attack imposes a realistic threat, which

might be misused by adversaries.

As a variety of design features used in the hollow

schemes, we also pinpoint which features contribute to

security, and which do not. Our analysis provides a set

of guidelines for designing Captchas, and a method

from comparing security of different schemes. We also

discuss how to design better hollow Captchas.

An early version of this paper has been published in

ACM CCS 2013 [22]. In this paper, we improved the

graph search algorithm and compared the efficiency of

the new algorithm and the previous in detail. We also

tested our attack on two extra hollow Captcha schemes,

YhD and Yandex. Especially the Yandex scheme

which is deployed by the largest Russian search engine

in its user password recovery mechanism, formed by

seriously broken contour lines, is a new form of hollow

Captcha that has not been analyzed in [22].

This paper is organized as follows. Section 2

discusses related work. Section 3 provides an overview

of five representative hollow Captchas. Section 4 gives

an overview of our attack, and Section 5 describes the

attack in details. Section 6 evaluates our attack process

and analyses the failures. Section 7 discusses lessons

we have learnt, and how to design better hollow

Captchas. Section 8 concludes the paper.

2 Related Work

Moni Naor first discussed the notion of Automated-

Turing-Tests [7], but they did not provide a formal

definition or concrete designs. Alta Vista [8] developed

the first practical Automated-Turing-Test to prevent

bots from automatically registering web pages. This

system was effective for a while but then was defeated

by common OCR (Optical Character Recognition)

technology.

In 2003, Mori and Malik [9] utilized sophisticated

object recognition algorithms to break Gimpy (which

used clutter interference) and EZ-Gimpy (which used

texture backgrounds) with a success rate of 33% and

92% respectively. Moy et al. [10] developed distortion

estimation techniques to attack EZ-Gimpy and

achieved a success rate of 99% and four-letter Gimpy-r

with a success rate of 78%.

In 2005, Chellapilla and Simard [11] successfully

broke a range of Captchas with a success rate ranging

from 4.89% to 66.2%. Early attack efforts also include

the PWNtcha project.

In 2006, Yan and El Ahmad [13] broke most visual

schemes provided at Captchaservice.org by simply

counting the number of pixels of each segmented

character and have achieved a success rate of nearly

100%, although these schemes were all resistant to the

best OCR software on the market. In 2008, new

character segmentation techniques for attacking a

number of text-based Captchas were developed by the

same team [4], including the earlier mechanisms

designed and deployed by Microsoft, Yahoo! and

Google, and these have received a segmentation

success rate of 92% against Microsoft Captcha. In

2010, they broke the text-based Captchas that depend

partially on the Gestalt Perception principle by

merging black and shared white components to form

individual characters [14].

In 2011, Bursztein et al. [15] carried out a

systematic study of existing visual Captchas based on

distorted characters and showed that 13 of the 15

Captchas on popular websites were vulnerable to

automated attacks, but they achieved zero success on

harder schemes such as reCAPTCHA and Google’s

own scheme. In the same year, Yan’s team published

an effective attack on both of these schemes [3]. The

Captcha using moving-images in NuCaptcha which

provided users with sloshing characters was analyzed

by Xu et al. in 2012 [16].

In 2014, Burszteins team [6] proposed a machine

learning algorithm to score all possible ways to

segment a Captcha and decide which combination is

the most likely to be the correct one. They break 8

different Captchas used by real world popular web

sites.

In 2015, Karthik et al. [25] proposed two methods to

automatically classify Microsoft Captcha samples. One

was based in a fine-grain segmentation combined with

template matching, and another was based on CNN and

used state-of-the-art recognition techniques. The

former achieved a success of 5.56%, and the later

achieved a success of 57.05%.

Extended Security Analysis of Hollow Captchas 1077

More recently, at NDSS’16, Gao et al. [26] reported

a simple generic attack that firstly used Gabor filters to

extract character components along four different

directions and then try different combinations of

adjacent character components to form individual

characters. It is the most recent research on Captcha

robustness analysis and is effective for many text-

based Captchas.

We note that hollow Captchas have never been

specifically discussed in the literature prior to our

current paper, and that they are distinct from other text-

based Captchas discussed to date.

3 Hollow Captchas: Popular Real World

Schemes

To evaluate the effectiveness of our attack, we

choose to study 7 hollow Captchas listed in Figure 1

(including Yahoo!, Tencent, Sina, CmPay, Baidu, Yhd

and Yandex), which represent the state of the art of

hollow Captcha designs, for two main reasons.

First, these schemes have been deployed by popular

real world websites For example, Baidu, Yahoo!,

Tencent and Sina, ranked by Alexa.com as top

websites in the world respectively, are all among the

most popular websites worldwide. Sina use its scheme

on Weibo.com, the most popular micro blog platform

in China with about 600 million users (also a Chinese

equivalent to Twitter). CmPay [2] is the online

payment system of China Mobile, which enjoys a 70%

share of the domestic mobile service market in China

and has nearly 700 million users. Yandex is the largest

Russian search engine, it uses its Captcha in user

password recovery mechanism. Yhd is a popular online

shopping website in China.

Second, these schemes are with distinct design

features, and represent a range of different designs. For

example, some schemes use interference arcs (e.g.

CmPay, Baidu, and Yandex); others do not. Except for

Yahoo! which uses character strings of a varied length,

others all use a fixed string length. Some schemes (e.g.

Yahoo! and Yhd) intentionally introduce a significant

variation in the thickness of hollow portions across

characters, and even in a single character; others do not

vary this thickness much and it is more or less uniform.

A common feature in all the Captchas above is that

all characters are presented as hollow objects.

Generally speaking, hollow schemes seem to be a

clever idea. Crowding Characters Together (CCT),

firstly proposed by Google, has been widely adopted.

This standard security mechanism for text Captchas

improves security but has usability issues. For example,

confusing character pairs will appear when characters

are crowded together too much and it is hard for people

to recognize them [2]. However, hollow schemes allow

characters connected or overlapped with each other,

but maintain a reasonable usability. In a sense, this

approach can be regarded as a clever variant of the

CCT segmentation-resistant mechanism. Since there

are only (or mainly) randomly-generated contours in

each Captcha, it becomes difficult to detect each

character’s features using standard technologies.

Common character recognition methods, such as

template matching and other feature-based algorithms,

that are effective in recognizing solid characters, are

inapplicable to hollow characters. Moreover,

characters’ contour lines may connect or overlap with

each other to prevent segmentation. When there are

interference arcs, contour lines will be cut through or

otherwise interrupted. Presumably, this will make it

even harder for computers to recognize hollow

characters.

We also note that two main segmentation-resistant

mechanisms, namely CCT and interference arcs, have

never been used simultaneously in a single Captcha

design before. However, some hollow Captchas apply

the two mechanisms together, without introducing

serious usability concerns in our experience.

4 Our Attack: An Overview

The key insight behind our attack is the following.

We extract character strokes or components from

hollow Captchas and convert them to solid ones. As for

some schemes whose contour lines are broken, this

process is not straightforward; we need to

automatically repair them first. Furthermore, standard

methods like Color Filling Segmentation (CFS,

introduced in [4]) will pick up not just character

strokes or components, but also those that do not

belong to any character and which we call noise

components. Therefore, it is essential to differentiate

between legitimate character strokes and noise

components automatically. Note that character strokes

extracted this way are not linked with each other.

Instead, they are scattered around.

Next, we try different combinations of adjacent

strokes, and use convolutional neural network (CNN)

[17-19] recognition engine to determine which

character a combination most likely to be. It has been

already shown that CNN can work on classification

[29-30]. With a graph search algorithm that we have

designed, we can find the most likely combination as

the right result with a good success rate.

The high-level workflow of our attack includes three

main sequential steps:

‧ Pre-processing, processes each challenge image with

standard techniques, like image binarization and

contour lines repairing.

‧ Extracting character strokes, relies on a number of

techniques, such as using CFS to fill hollow parts,

noise component removal, and contour line removal

and clean up.

1078 Journal of Internet Technology Volume 19 (2018) No.4

‧ Segmentation and recognition, which use CNN

engine assisted graph search.

Note the sub procedures listed may not necessary in

some schemes.

5 Our Attack: Technical Details

5.1 Pre-processing

Image binarization. This is to covert a color or gray-

scale image into black-and-white one. We use the

standard Otsu’s threshold method [20]. The first step of

Figure 2 (a) to Figure (g) show the binarized images.

(a) Yahoo! (b) Tencent (c) Sina (d) CmPay (e) Baidu (f) Yhd (g) Yandex

Figure 2. The pipeline of our attack

In the cases of CmPay and Baidu, binarization does

not just convert an image into black-and-white, but

also removes thin interference arcs whose colors differ

significantly from both hollow characters and thick

arcs.

Repair contour lines. Some challenges use hollow

characters whose contour lines are broken, for which

CFS will fail filling the hollow parts. In some cases,

binarization created broken contours, too. In order to

make CFS work, it’s necessary to repair these broken

contour lines. Lee’s algorithm [21], which was initially

designed for solving maze routing problems, is used to

automatically detect and then repair broken contours

(Figure 3).

We take Yahoo! scheme as an example. First, we

identify break points in contour lines. Just like solving

the maze problem, a contour is regarded as the corridor,

and break points as dead-ends in the maze. We use

Lee’s algorithm to traverse the contour line and mark

the dead-end pixel of each path in red (e.g. Figure 3

(c)). Then, we examine the relative positions of each

pair of break points and draw a one-pixel-thick line to

connect those pairs that look valid (see Figure 3 (d)).

Incorrect connections may be created, e.g. Figures

3(d), but our attack can cope with them, as explained

later. The second step of Figure 2 shows the images

after repairing contour lines. Note that this step is only

necessary for Yahoo!, Baidu, Yhd and Yandex.

Extended Security Analysis of Hollow Captchas 1079

(a) The original image (b) A blue rectangle

indicates some identified

break points

(c) The amplified blue

rectangle where break

points are highlighted in

red

(d) The image with

breakpoints connected

Figure 3. Repair contour lines

5.2 Extracting Character Strokes

Fill hollow parts with CFS. CFS uses a flooding

algorithm to detect connected non-black pixel blocks.

It will pick up both character components and noise

ones if they have closed contours. We use a distinct

color to fill so that readers can easily distinguish them

from each other. After this step, the background color

in an image is set to light gray, but contour lines and

other solid parts such as thick interference arcs remain

in black. The third step of Figure 2 shows the images

after CFS.

Noise component removal. In Figure 4, there are at

least three types of undesirable components (or chunks)

which we consider as noise: (1) the closed part within a

character, (2) those formed by two connected

characters, and (3) those formed by wrong connections

introduced by the contour repair algorithm.

Figure 4. Three types of noise components

We first define parameters θ and δ for each color

component: θ = Cg/C and δ= C/S, where Cg denotes

the number of edge pixels that have a light gray

neighbor, C denotes the total number of edge pixels in

this component, and S denotes the total number of

pixels in this component.

With properly chosen threshold values a and b, we

have the following: if θ < a for a component, it is a

noise component of the first two types; if δ< b, it is a

noise component of the third type. We determine the

values a and b via a learning algorithm that analyzes a

small sample set of data.

In schemes like CmPay, an additional type of noise

components was introduced by thick interference arcs.

However, they are easy to remove by detecting such

arcs’ existence.

We have tested our noise component removal on all

the hollow schemes, and it works on most of them

(except for Yandex). Components surviving our noise

removal are considered to belong to character bodies,

and are thus preserved.

Contour line removal. In most schemes except for

Yahoo!, black pixels are the interference arcs and

contour lines, and all character strokes are in non-black

colors after removing the noise components. So it is

straightforward to remove both contour lines and the

interference arcs by switching all black pixels to the

background color.

However, it requires more subtle techniques for the

Yahoo! scheme. We have also implemented the more

subtle approaches. Which approach is needed for

handling a particular Captcha scheme can be

automatically determined. In the Yahoo! scheme, after

removing noise components, black pixels in an image

are character contours, incorrect connecting lines

introduced by our contour repair algorithm, or a

character stroke. We need to remove the first two types

of black pixels, but keep the third. The second type is

always of one-pixel thickness, and easy to remove first.

Then we perform image dilation on each stroke filled

with a non-black color. The stroke is dilated to cover

its surrounding contour line. That is, the dilation

algorithm switches the contour line to the color of the

stroke body to merge them. After this step, all

remaining large blocks of black pixels have to be

character strokes, as illustrated in fifth step of Figure 2.

Clean-up. Tiny pixel blocks might be created by

contour line removal (Figure 2(a)). In clean-up, they

are either removed directly or merged with adjacent

larger strokes via an automated algorithm. The sixth

step of Figure 2 shows the resulting images. After this

step, what remain in an image are all character strokes

or components.

5.3 Segmentation and Recognition

The next step is to find how to form strokes into

individual characters and recognize what the characters

are. The problem is similar to a jigsaw puzzle in that

each stroke is a piece of a master design. However,

there is no fixed pattern for us to exploit for finding the

right combination. The number of strokes is always

larger than the number of characters to be formed, and

the latter is a variable in schemes such as Yahoo!; so

there can be many possible combinations. Our

approach is to combine adjacent strokes into possible

characters and determine the most likely result. This

step is the same for all the schemes. Here we use

Yahoo! and CmPay as examples.

First, all strokes in an image are numbered in an

incremental order from the upper left to lower right

(Figure 5).

1080 Journal of Internet Technology Volume 19 (2018) No.4

(a) Yahoo! (b) CmPay

Figure 5. What remains are all character strokes, rank

ordered

Then we attempt to combine strokes or components

following the incremental rank order. An n × n table is

built for each image to record whether a combination is

legitimate to form an individual character, where n is

the total number of strokes in the image.

If it is infeasible to combine strokes i, i+1, ..., k

altogether to form a single character, the cell at the

intersection of row i and column k in the table (cell (i;

k)) will be set to NULL. This occurs when its row

index i is larger than its column index k (we try

combinations only in a monotonic order), or the width

of the combination is greater than the largest possible

character width, or less than the smallest possible

character width, which is also empirically established

with a simple analysis of the sample set.

If such a combination is feasible, we let the CNN

decide which character this component is likely to be,

and the cell (i; k) stores the neural network’s

recognition result, along with a confidence level the

CNN feels about this result. This feasibility condition

is met in all situations except the above.

In our implementation, an image input to the CNN is

normalized to the size of 28×28 pixels; the output

confidence level is calculated after layer-by-layer

forward propagation. Since the activation function used

is a scaled version of the hyperbolic tangent [17],

scaling causes the confidence level to vary between -

1.7159 and 1.7159. The larger a confidence value is,

the more likely the recognition result is correct.

Table 1 and Table 2 show the n × n table built for

the Yahoo! sample and the CmPay sample,

respectively. For example, in Table 1, the cell (1, 1)

indicates that the CNN recognize this single stroke as

‘r’ with a confidence level of 0.479; the cell (1, 3)

indicates that the combination of strokes 1, 2 and 3 is

recognized as ‘M’ with a confidence level of 0.432.

Each empty cell (i; k) indicates that a combination of

strokes i, i + 1, ..., k is infeasible for one reason or

another.

Table 1. The n × n table generated by CNN for the Yahoo! sample in Figure 5

 1 2 3 4 5 6 7 8 9 10 11

1 r/0.479 A/-0.157 M/0.432

2 A/-0.027 M/-0.358 M/1.025

3 T/0.01 W/-0.43

4 L/0.255 W/0.216

5 A/0.482 V/-0.2 V/-0.242

6 V/0.238 p/1.087 A/-0.384

7 y/-0.151 w/-0.462 V/-0.127

8 V/0.358 V/1.11 H/-0.088 w/0.238

9 r/-0.035 6/-0.519 M/-0.255

10 c/0.554 d/1.075

11

Table 2. The n × n table generated by CNN for the CmPay sample in Figure 5

 1 2 3 4 5 6 7 8 9

1 K/0.935 K/0.781 H/-0.229

2 K/0.647 4/0.493 4/0.445

3 6/0.593 U/0.692

4 6/0.006 U/0.688

5 J/0.093 U/-0.332

6

7 Q/1.102

8 R/0.229 R/1.057

9 S/1

A n × n table gives all plausible stroke combinations

for an image. Our task now is to use information in the

table to find the most likely way of forming characters,

i.e., finding the best segmentation or partition.

We convert each n × n table to an equivalent

directed and weighted graph. Figure 6 gives such

graphs that are equivalent to Tables 1 and 2,

respectively. Each non-empty cell (i; j) in the table is

represented as an arc < i; j+1 > (i.e. a directed edge

linking vertexes i and j+1) in the graph, and the

associated weight on the edge gives both the

recognition result of this combination and the

confidence level calculated by the neural network for

this result. In each graph, the nodes are numbered from

1 to n + 1, and nodes 1,2,...n represent the

corresponding strokes, respectively. Clearly, the

Extended Security Analysis of Hollow Captchas 1081

number of arcs in a graph equals to the number of non-

empty cells in its corresponding table.

(a)

(b)

Figure 6. The equivalent graphs of Table 1 and Table 2

Now, we search the graph to find an optimal

partition. We define the target problem is to select a

path as following:

‧ Find a path that starts from node 1 and ends at node

n + 1, and in which each node is traversed only once,

and a node always has a larger index number than all

its predecessor(s).

‧ The path’s length (i.e. the number of edges on the

path) is exactly the same as the number of characters

that are supposed to be in a Captcha image.

Note: the rationales are the following: all the strokes

in an image will be used to form individual characters,

but each stroke will be used only once and no stroke is

shared in adjacent characters.

‧ The sum of confidence levels along the path is the

largest possible in the graph.

In our previous work [22], we used Depth-First-

Search (DFS) algorithm to get the final result. It starts

from node 1 in the graph and explores along each

branch until the path length reaches the Captcha string

length before backtracking. All paths of a length

equaling to the Captcha string length in a graph are

traversed using DFS, and then the path ending at the

n+1 node with the largest confidence level sum is

selected.

DepthFirstSearch()

1 i ← 1

2 step ← 0

3 p ← 0

4 sum ← 0

5 R ← NIL

6 S ← NIL

7 Traverse(i, step, sum, S)

8 print R

Traverse(i, step, sum, S)

1 for j ← i to n

2 do if ai, j ≠ NULL then

3 sum ← sum + ai, j

4 S ← strcat(S, Si, j)

5 step ← step + 1

6 else

7 if step ∈ Captcha length and p < sum

then

8 p ← sum

9 R ← S

10 if step ≤ max Captcha length then

11 Traverse(j + 1, step, sum, S)

This DFS algorithm is not optimal, since it will both

explore paths that cannot reach the last node of the

graph and will re-explore previously visited nodes after

their best following partition has been discovered.

Here we introduce a new algorithm, which uses an

Integer Partition (IP) algorithm to select the optimal

partition which has the highest confidence sum. It is

also a graph search algorithm, but better than DFS [22].

This algorithm reduces the search space by skipping

paths that do not end at the n+1 node.

The rationale is the following. Assume that m is the

Captcha length, our task is to find the most likely way

of forming m characters using n components, i.e.,

finding the best partition. This task is similar to the

classical integer partition problem: in number theory

and combinatorics, a partition of a positive integer n, is

a way of representing n as a sum of m positive integers.

We first work out all partitions that divide integer n

into m parts, then select the partition with the largest

sum of confidence levels.

The length of Captcha strings is 6 to 8 in Yahoo!

scheme, 6 in Yandex scheme and 4 in Tencent, Sina,

CmPay, Baidu and Yhd schemes.

We still utilize the n × n tables to implement the

graph search algorithm. The search always starts from

the first row in table, and progresses from the smallest

index number to the largest in an incremental order. In

the partition, each part denotes the number of

components to be combined. For example, for the

sample CmPay challenge in Figure 5, a candidate

partition of the integer is 9=2+4+1+2 (n=9, m=4),

which indicates the partition of components is 1 ~

2(‘K’/ 0.935), 3 ~ 6(‘U’/ 0.692), 7 ~ 7(‘Q’/ 1.102), 8 ~

9(‘R’/ 1.057). That is to say, each part in the partition

is corresponding to a cell in the n × n table generated

by CNN. While in the procedure of figuring out all the

partitions, if a part in the partition is invalid (the

corresponding cell in the table is null), this partition is

ignored directly.

The pseudo code in the below sketches the

1082 Journal of Internet Technology Volume 19 (2018) No.4

recognition process, with key variables defined as

follows.

,

S
i j

: the character recognized by the CNN as the

combination of components i, i+1,· · ·, j

,

a
i j

 : the confidence level of
,

S
i j

p : The parts that has been partitioned

index : The length of p

s : The sum of all the elements in p

sum: the confident value sum of a partition

S: the recognition result of this partition

R: the final result string

V : the confident value sum of R

Recognition()

1 R ← NIL, v ← -99, num ← n

2 foreach m ∈ Captcha length

3 do length(p) ← m

4 Partition(num, m, 0)

5 Print R

Partition(num, m, index)

1 if m≠1 then

2 for j ← 1 to num – 1

3 do s ← 0

4 for jj ← 0 to index − 1

5 do s ← s + p[jj]

6 if as+1, s+j ≠ NULL then

7 p[index] ← j

8 Partition(num−j, m−1, index+1)

9 else

10 s ← 0

11 for jj ← 0 to index − 1

12 do s ← s + p[jj]

13 if a s+1, n≠ NULL then

14 p[index] ← n − s

15 Select(length(p))

Select(m)

1 S ← NIL, sum ← 0, s ← 0

2 for j ← 0 to m − 1

3 do s ← s + p[j]

4 S ← strcat(S, Ss+1, s+p[j])

5 sum ← sum + as+1, s+p[j]

6 if sum > v then

7 v ← sum

8 R ← S

As generated by our attack program, Table 3 and

Table 4 show all likely partitions and for each partition,

its results and sum of confidence levels. The italicized

items highlighted in red in each table indicate the

optimal partition that has the highest sum of

confidence levels and that matches a legitimate length

of Captcha strings. In both cases, “rMApVd” and

“KUQR” are correct recognition results.

Table 3. Each partition and the corresponding result for the Yahoo! sample in Figure 5

Partitions Result Confidence Partitions Result Confidence Partitions Result Confidence Partitions Result Confidence
1+1+2+1+2+4 rATApw 2.15 1+3+2+1+1+3 rMVJVM 1.26 1+1+2+1+2+3 rATAVwM .45 2+2+1+1+1+3 ATAVJVM 0.44
1+1+2+1+3+3 rATAAM 0.32 1+3+2+1+2+2 rMVJVd 3.33 1+1+2+1+3+2 rATAVVd 2.06 2+2+1+1+2+2 ATAVJVd 2.51
1+1+2+2+1+4 rATVJw 0.19 1+3+2+2+1+2 rMVwrd 1.97 1+1+2+2+1+3 rATApVM 2.10 2+2+1+2+1+2 ATAVwrd 1.16
1+1+2+2+2+3 rATVwM -0.35 1+3+3+1+1+2 rMVVrd 2.69 1+1+2+2+2+2 rATApVd 4.17 2+2+1+1+1+2 ATApVrd 2.81
1+1+2+2+3+2 rATVVd 1.26 2+2+1+1+1+4 ATAWJw 0.49 1+1+2+3+1+2 rATAArd 1.52 2+2+2+1+1+2 ATVJVrd 0.85
1+1+2+3+1+3 rATVVM 0.37 2+2+1+1+2+3 ATAVwM -0.05 1+1+2+1+1+3 Ratvjvm 0.14 2+3+1+1+1+2 AVVJVrd 0.81
1+1+2+3+2+2 rATVVd 2.44 2+2+1+1+3+2 ATAVVd 1.56 1+1+2+1+2+2 rATVJVd 2.21 3+1+1+1+1+3 MLAVJVM 1.18
1+1+3+1+1+4 rAVVJw 0.15 2+2+1+2+1+3 ATApVM 1.61 1+1+2+2+1+2 rATVwrd 0.85 3+1+1+1+2+ MLAVJVd 3.25
1+1+3+1+2+3 rAVVwM -0.39 2+2+1+2+2+2 ATApVd 3.67 1+1+2+1+1+2 rATVVrd 1.57 3+1+1+2+1+2 MLAVwrd 1.89
1+1+3+1+3+2 rAVVVd 1.22 2+2+1+3+1+2 ATAArd 1.03 1+1+2+1+1+3 rAVVJVM 0.10 3+1+1+1+1+2 MLApVrd 3.54
1+1+3+2+1+3 rAVpVM 1.26 2+2+2+1+1+3 ATVJVM -0.36 1+1+3+1+2+2 rAVVJVd 2.17 3+1+2+1+1+2 MLVJVrd 1.58
1+1+3+2+2+2 rAVpVd 3.33 2+2+2+1+2+2 ATVJVd 1.71 1+1+3+2+1+2 rAVVwrd 0.81 3+2+1+1+1+2 MwVJVrd 1.52
1+1+3+3+1+2 rAVArd 0.68 2+2+2+2+1+2 ATVwrd 0.35 1+1+3+1+1+2 rAVpVrd 2.47 1+1+2+1+1+1+3 rATAVJVM 0.94
1+2+1+1+2+4 rMLApw 2.15 2+2+3+1+1+2 ATVVrd 1.074 1+1+3+1+1+4 rMLAVJw 0.99 1+1+2+1+1+2+2 rATAVJVd 3.01
1+2+1+1+3+3 rMLAAM 0.32 2+3+1+1+1+3 AVVJVM -0.39 1+2+1+1+2+3 rMLAVwM 0.45 1+1+2+1+2+1+2 rATAVwrd 1.65
1+2+1+2+1+4 rMLVJw 0.19 2+3+1+1+2+2 AVVJVd 1.67 1+2+1+1+3+2 rMLAVVd 2.06 1+1+2+1+1+1+2 rATApVrd 3.31
1+2+1+2+2+3 rMLVwM -0.35 2+3+1+2+1+2 AVVwrd 0.32 1+2+1+2+1+3 rMLApVM 2.11 1+1+2+2+1+1+2 rATVJVrd 1.34
1+2+1+2+3+2 rMLVVd 1.26 2+3+2+1+1+2 AVpVrd 1.97 1+2+1+2+2+2 rMLApVd 4.18 1+1+3+1+1+1+2 rAVVJVrd 1.31
1+2+1+3+1+3 rMLVVM 0.37 3+1+1+1+1+4 MLAVJw 1.22 1+2+1+3+1+2 rMLAArd 1.53 1+2+1+1+1+1+3 Rmlavjvm 0.95
1+2+1+3+2+2 rMVVd 2.44 3+1+1+1+2+3 MLAVwM 0.68 1+2+1+1+1+3 rMLVJVM 0.145 1+2+1+1+1+2+2 rMLAVJVd 3.02
1+2+2+1+1+4 rMwVJw 0.13 3+1+1+1+3+2 MLAVVd 2.29 1+2+1+1+2+2 rMLVJVd 2.21 1+2+1+1+2+1+2 rMLAVwrd 1.66
1+2+2+1+2+3 rMwVwM -0.41 3+1+1+2+1+3 MLApVM 2.34 1+2+1+2+1+2 rMLVwrd 0.86 1+2+1+1+1+1+2 rMLApVrd 3.31
1+2+2+1+3+2 rMwVVd 1.20 3+1+1+2+2+2 MLApVd 4.41 1+2+1+1+1+2 rMLVVrd 1.58 1+2+1+2+1+1+2 rMLVJVrd 1.35
1+2+2+2+1+3 rMwpVM 1.25 3+1+1+3+1+2 MLAArd 1.76 1+2+2+1+1+3 rMwVJVM 0.088 1+3+2+1+1+1+2 rMwVJVrd 1.29
1+2+2+2+2+2 rMwpVd 3.32 3+1+2+1+1+3 MLVJVM 0.37 1+2+2+1+2+2 rMwVJVd 2.16 1+3+1+1+1+1+2 rMAVJVrd 3.27
1+2+2+3+1+2 rMwArd 0.67 3+1+2+1+2+2 MLVJVd 2.44 1+2+2+2+1+2 rMwVwrd 0.80 2+2+1+1+1+1+2 ATAVJVrd 1.65
1+3+1+1+1+4 rMAVJw 2.11 3+1+2+2+1+2 MLVwrd 1.09 1+2+2+1+1+2 rMwpVrd 2.45 3+1+1+1+1+1+2 MLAVJVrd 2.38
1+3+1+1+2+3 rMAVwM 1.57 3+1+3+1+1+2 MLVVrd 1.81 1+3+1+1+1+3 rMAVJVM 2.06
1+3+1+1+3+2 rMAVVD 3.18 3+2+1+1+1+3 MwVJVM 0.317 1+3+1+1+2+2 rMAVJVd 4.13
1+3+1+2+1+3 rMApVM 3.23 3+2+1+1+2+2 MwVJVd 2.39 1+3+1+2+1+2 rMAVwrd 2.78
1+3+1+2+2+2 rMApVd 5.29 3+2+2+1+1+2 MwpVrd 2.68 1+3+1+1+1+2 rMApVrd 4.43
1+3+1+3+1+2 rMAArd 2.65 3+2+1+2+1+2 MwVwrd 1.03 1+3+2+1+1+2 rMVJVrd 2.47

Extended Security Analysis of Hollow Captchas 1083

Table 4. Each partition and the corresponding result

for the CmPay sample in Figure 5

Partitions Result Confidence

4+2+1+2 HUQR 1.598

3+3+1+2 KUQR 3.628

2+4+1+2 KUQR 3.786

Note that the techniques we used are generically

applicable to all the hollow schemes. Figure 2 includes

the pipeline of our attack on seven schemes.

6 Evaluations

6.1 Analysis of Our Attack

We have implemented our attack and tested it on all

the 7 hollow schemes. We present our evaluations as

follows.

Data collection. For each of the schemes, we collected

1000 random Captchas as a sample set by mining from

the corresponding websites, and another 500 as a test

set.

Training neural network. The template library for

training our convolutional neural network was

prepared manually. We extracted 4244 characters from

Yahoo! samples, 3754 characters from Tencent

samples, 2680 characters from Sina samples, 3670

characters from CmPay samples, and 2940 characters

from Baidu samples, 3333 characters from Yhd

samples, and 4115 characters from Yandex samples to

train the CNN.

Success rate. We test our attack both on the sample set

and the test set of the all schemes. The success rates

are listed in Table 5. For the Yahoo! scheme, we

achieved a success rate of 56% on the sample set. Then

we ran our attack on the test set, about which our

program had no prior knowledge about any particular

sample within; we achieved a success rate of 36%.

Similarly, for the Tencent scheme, we achieved 93%

success on the sample set and 89% on the test set. For

Sina, we achieved 63% success on the sample set and

59% on the test set. For CmPay, our success was 73%

on the sample set and 66% on the test set. For Baidu,

our success was 57% on the sample set and 51% on the

test set. For Yhd, our success was 36% on the sample

set and 35% on the test set. But for Yandex, our

approach does not work (we will discuss it later).

Table 5. The success rate and speed of our attack

Avg time per

challenge

Avg time per

success(T/R)Scheme
Success

on sample

set

Success

on test

set(T) DFS IP DFS IP

Yahoo! 56% 36% 5.30s 5.17s 14.72s 14.36s

Tencent 93% 89% 1.23s 1.14s 1.38s 1.28s

Sina 63% 59% 1.77s 1.36s 3.00s 2.31s

CmPay 73% 66% 4.25s 3.70s 6.43s 5.61s

Baidu 57% 51% 3.87s 3.52s 7.58s 6.91s

Yhd 36% 35% 0.56s 0.49s 0.78s 0.69s

Yandex 0 0 - - - -

A commonly accepted goal for Captcha robustness

is to prevent automated attacks from achieving a

success rate of higher than 0.01% [4]. But this goal is

considered too ambitious by some researchers. [15]

suggested that a Captcha scheme is broken when the

attacker achieves an accuracy rate of at least 1%.

According to either criterion, six hollow schemes are

successfully and terribly broken by our attack.

In reality, an attacker could achieve a success rate

even higher than reported here, as he could simply skip

a challenge if the confidence level for recognizing it is

not large enough. Instead, he could keep requesting

new challenges, and only when he is confident enough

with a recognition result, he submits the answer to the

Captcha.

Attack speed. We implemented our attack in C# and

tested it on a desktop computer with a 2.53 GHz Intel

Core 2 CPU and 4 GB RAM. The attack was run ten

times on each data set, and the average speed was

recorded. Table 5 summarizes the speed of our attack

on each scheme. On average, it takes only seconds to

attack a Captcha in any of these schemes. Besides, we

also estimate an average time for successfully breaking

a Captcha in each scheme: on average, it takes 1 to 15

seconds. Clearly, our attack is efficient and poses a

realistic threat to all the hollow schemes.

Table 5 also compares the speed of precious DFS

algorithm and our IP search algorithm. It is clearly that

our IP Search algorithm is better than the previous DFS

algorithm in attack speed, because the IP algorithm

reduces the search space. With the same success rates,

our attack speeds on Yahoo!, Tencent, Sina, CmPay

and Baidu in table 5 are all faster than before.

Specifically, the time consumption of Yahoo!, Tencent,

Sina, CmPay, Baidu and Yhd was decreased by 2.5%,

5.7%, 23.2%, 12.9%, 9.0% and 12.5%.

Other classifiers. We also tested other classifiers such

as Support Vector Machine, Back-Propagation Neural

Network and template matching. The CNN engine has

achieved the best overall performance for both attack

speed and success rate.

6.2 Faliures of Our Attack

The experiments show our attack is general for

attacking most hollow schemes, except for Yandex.

For Yandex scheme, there are two main reasons for the

failure results. See Figure 2(g). First, the contour lines

are seriously broken, and there are many break points

marked after using Lee’s algorithm [21]. Second, the

interference arcs are similar to the contour line. Badly

broken and partially overlap with the character strokes,

make it especially difficult to segment.

Besides, we also test our approach on some non-

hollow schemes and find it not suitable for these

schemes without change. We test our approach on

Amazon and Yahoo! non-hollow Captchas, the success

rate are all 0%, as the key component of our attack is

using CFS to extract character strokes from hollow

1084 Journal of Internet Technology Volume 19 (2018) No.4

fonts. The solid stroke means we can’t use CFS to

extract the stroke components. The only few color

chunks we extracted are the noise chunks (Figure 7).

(a) Amazon (b) Yahoo!

Figure 7. Non-hollow captchas using CFS

7 Discussions

7.1 Novelty

To our best knowledge, this is the most detailed

security analysis on the state of the art of hollow

Captchas. We used some standard techniques in pre-

processing, and also used CFS, which has been a

standard method for analyzing text Captcha robustness

since its introduction in [4]. However, the key

component of our attack, the graph search algorithm

based segmentation and recognition, is novel. Overall,

the combination of these and other techniques has led

to a novel attack.

State of the art attacks on the CCT based Captchas,

such as [15], [3] and [27], do not work on the hollow

Captchas studied in this paper. On the other hand,

hollow Captchas are converted into CCT schemes after

filling hollow part with CFS. Admittedly, it is possible

to use those anti-CCT techniques to break the filled

hollow Captchas. However, it also introduces the issue

of segmentation which is the major challenge of

breaking Captchas, as [28] suggested that the

robustness of text-based Captchas should rely on the

difficulty of finding where each character is

(segmentation). After extracting character strokes, our

method has segment adjacent characters totally, but

each character is also separated into a few components.

It is easy for our IP algorithm to find the best

combinations of the extracted character components. In

a word, our method is more simple and effective than

using anti-CCT algorithms after CFS.

Among all the related work we have discussed

earlier, two attacks have some similarity with ours.

One is the attack reported in [14] on a MegaUpload

Captcha. However, that attack was designed for a

single Captcha; it is ad hoc and not applicable to

attacking hollow Captchas. Moreover, that attack

focused on segmentation, and did not involve character

recognition at all. The other is [6], their idea of

combining segmentation and recognition in a single

step is somewhat like ours. But different from ours,

they use a brute-force similar approach with five steps

included to look for possible segmenting points.

The most recent attack reported in [26] also

analyzed two hollow Captcha schemes, Yahoo! and

QQ (Tencent), which are same with the Yahoo! and

Tencent schemes presented in this paper. It utilized

Gabor filters to extract character components. However,

this method doesn’t work well on hollow Captchas

formed by thin contour lines. The Yahoo! scheme

received the lowest success rate (5.0%) in [26] since its

extraction method breaks a thin text string into a large

number of tiny components, which produces a huge

possible set of combination, whereas ours achieved a

much higher success rate of 36%. Even for Tencent

which is formed by thick contour lines, our approach is

also much effective than theirs (89% vs. 56%).

7.2 Generic Value

Our attack is applicable to a variety of hollow

Captchas. It works on schemes with thin contours (e.g.

Yahoo!) and on schemes with thick contours (e.g.

Tencent and Yhd); on schemes with interference arcs

(e.g CmPay) and on schemes without such arcs (e.g.

Yahoo!); on schemes with a fixed length (e.g. Sina)

and on schemes with a varied length (e.g. Yahoo!).

Table 6 summarizes the main features of these schemes.

As they represent different designs, each with

distinctive features, our attack is of some generic value.

Table 6. Main features of seven hollow Captchas

Scheme
Interference

Arcs

Broken

Contour Line

Contour Line

Thickness
Hollow Styles String Length

Character

Overlap

Aplhabet

Size

Yahoo! No Sometimes Uniform Varied Varied (6-8) Yes 28

Tencent No No Varied Uniform Fixed (4) Yes 25

Sina No No Varied Uniform Fixed (4) Yes 28

CmPay Yes After binarization Varied Uniform Fixed (4) Yes 30

Baidu Yes No Varied Uniform Fixed (4) Yes 51

Yhd No Yes Varied Uniform Fixed (4) Yes 32

Yandex Yes Yes Uniform Uniform Fixed (6) Yes 10

C. Lessons

We also analyze which design features contribute to

a hollow Captcha’s security, and which do not. Design

features that do help security include the following.

Overlapped or connected characters are still the

most crucial security feature, as by design it provides

(some) segmentation resistance. It significantly

contributes to the security of all the 7 schemes.

String length matters. This was first observed in [4]

and then confirmed in [15]. First, it is good to use a

Extended Security Analysis of Hollow Captchas 1085

relatively large length. The more characters used in a

Captcha image, the more components remain after

preprocessing, and the larger the solution space will be.

This will decrease an attack’s success and speed. The

more characters used, the harder for brute-force

guessing, too. Second, it is good to use a varied length,

which does not give away useful information to aid

attackers.

Attackers have to try multiple possible lengths,

which increases the search space for our graph

algorithm, and could decrease its success and speed.

Broken contours considerably increase the difficulty

level of designing and implementing an effective attack.

In particular, they disable the otherwise powerful CFS.

Our failure on Yandex, which formed by seriously

broken contour lines, is a good explanation. Broken

contours introduced by design or after binarization are

both good for security, but the former wins our

recommendation as it is probably easier to control by a

Captcha generator.

Interference arcs cut across characters, not just

dividing characters to fragments but also introducing

noise components. This considerably increases the

difficulty level of designing and implementing an

effective attack.

Hollow styles. Varying thickness of hollow portions is

an important style feature that contributes to security.

Some hollow portions in the Yahoo! scheme were so

thin that their contour lines were squashed together,

which prevents the portions from being picked up by

CFS. This not only increases the number of strokes in

an image, but also makes it a challenge to cope with

those squashed strokes.

In the Yahoo! scheme, another variation in hollow

styles is heavily used. Namely, two font types are used,

creating two styles: one we call the ‘thick strokes’, and

the other the “thin strokes” (Figure 8). Until now, what

is explicitly discussed in this paper is the ‘thin strokes’.

In the “thick strokes”, character strokes can be

completely picked up by CFS, leading to not just fewer

components than in the ‘thin strokes’, but also a

simplified treatment by the follow-up attack

procedures. That is, “thick strokes” is a weaker design

than ‘thin strokes’ in terms of security. Note that our

attack is applicable to both types, and our program

automatically handles both the types.

(a) thick strokes vs (b) thin strokes

(both after CFS)

Figure 8. Yahoo!’s hollow styles

Having multiple designs and deploying them

alternately in a random order is good for security, as

first suggested in [23] and then confirmed in [15].

However, randomly alternating two hollow styles in

the Yahoo! scheme is probably only marginally useful

for improving security, as the alternatives are not

equally strong.

Varying width of individual characters is a design

feature that is somehow related to hollow styles but

beyond that. It contributes to security for the following

reasons. The larger the width difference between the

thinnest character and the fattest one, the larger a

search space faces our graph search algorithm, and the

more likely it will give inaccurate results.

Design features that do not help security include:

Complete contours, which help CFS to pick up

character strokes.

Contour thickness. Thinning [24] contour lines to a

uniform thickness is useful for our attack, but not

essential. Therefore, we do not consider variations in

contour thickness contribute much to security.

Thin interference arcs, which are easily removed by

binarization. Note that ‘thin’ here means the arcs are

much thinner than the character contour lines.

Fixed string length, which gives away useful

information to aid segmentation.

Short string length, which reduces an attack’s search

space and increase its chance of success.

This set of “Do” and “Don’t” constitutes a set of

design guidelines for the security of hollow Captchas.

It also provides a method for comparing different

designs, as well as explaining and pinpointing why one

scheme is better than the other in terms of security.

Apparently, Yandex is the best among all the 7

schemes. Overlapped, seriously broken contour lines,

interference arcs and variations in the width of

individual characters width, all make great

contributions to its unique strength.

The Yahoo! scheme is the most time consuming

among all the 6 broken schemes, and the following

features contribute to it: (1) Using a relatively large

string length, and the length is not fixed. (2) Variations

in hollow portions thickness. (3) Variations in the

width of individual characters width. To the contrary,

Tencent is the worst design, as it made the worst

choices for almost all security features.

7.3 Towards Better Designs

From our attack process and the above lessons, we

can see that Yandex scheme has the most security

mechanism, and Yahoo! scheme, although broken,

have some good security features. Yhd scheme, though

not recommended, provides a new thought of security

mechanism. We will follow their success design and

explore how to evolve these schemes into better

designs. Plausible options include the following.

Using broken contours more often. In Yandex,

Yahoo! and Yhd, the broken contours are used. Among

them, the Yandex scheme used this design in all of its

challenges. But not all of the Yahoo! and Yhd

1086 Journal of Internet Technology Volume 19 (2018) No.4

challenges contain broken contours. Using broken

contours is meaningful, since this will likely decrease

our attack’s success rate and increase the time it takes

to succeed.

More fundamentally, introducing more broken

points in each challenge will likely significantly

increase security. Breaking contour lines badly or at

least creating a large number of broken points at

random locations will make it hard to repair the

contours. If the repair algorithm does not work,

attackers will be unable to rely on the otherwise

effective CFS method to extract character strokes any

more.

Introducing interference arcs which similar to

character strokes to cut through characters so that when

adjacent strokes are combined for tests, combined

characters contain extra strokes parts. This will confuse

the CNN engine, leading to incorrect recognition

results. Also, cutting-through arcs can be used to create

a large number of components in an image. The more

components the CNN engine has to try to combine, the

lower the attack’s success rate and speed.

Increasing the alphabet size. This is a simple but

effective solution, and with little negative impact on

usability (if confusing characters are excluded from the

alphabet).

Increasing the length of each Captcha string helps,

too, for the same reason as above.

Increasing the variation in character widths. The

larger the gap between the smallest and largest width

of individual characters in an image, the more possible

combinations it will produce, and the larger a solution

set our graph search algorithm is required to go

through. This might significantly slow down our attack

and decrease the attack success rate.

Some of these measures (such as increasing the

string length) only have a linear effect on the search

space, but methods such as ‘using broken contours

more often’ theoretically would be much more

effective in thwarting attacks.

Careful studies are still needed to establish how well

these advised measures will work, and more

importantly, some measures may decrease recognition

success for humans. It is important to strike the right

balance between security and usability. It remains an

open problem what design will be eventually both

secure and usable, and whether this design is mission

impossible. Nonetheless, our discussions offer practical

suggestions for improving hollow Captcha designs.

8 Summary and Conclusion

8.1 About Hollow Schemes

We proposed a simple attack on hollow Captchas

and have shown that this new type of text scheme has

serious security problems. With an effective attack, we

have broken the hollow schemes deployed by Yahoo!,

Tencent, Sina, CmPay, Baidu and Yhd with a success

rate of 36%, 89%, 59%, 66%, 51% and 35%

respectively, and it only takes just seconds for our

attack to break each of the scheme on a standard

desktop computer. As these schemes are different from

each other, and each with distinctive design features,

our work casts serious doubt on the current generation

of hollow Captchas.

Hollow Captcha is a clever idea in that it improves

usability while keeping characters connected or

touching each other, but this idea is not as secure as

expected. A key issue in text Captcha design is to find

a segmentation-resistant mechanism that is secure and

user-friendly simultaneously. The hollow Captcha

approach does not achieve this goal yet.

Our attack helped to identify good design features

for better security by comparing representative designs

of popular hollow Captchas, we have also discussed

how to create next generation of better designs.

However, it remains an open problem how to design

Captchas that are both secure and usable, and this is

our ongoing work.

8.2 Application Extension

Our attack inherently leverages the components

information to segment the Captchas. As our

segmentation algorithms are designed for hollow

schemes, our attack is only suitable for hollow schemes

specifically. The attack cannot be directly applied to

attack non-hollow schemes, but the attack procedure

reveals useful insights, find a generic method to get the

character components’ information, whether it is

hollow or non-hollow, and then get the best partition.

Specifically, the segmentation is not limited to

segmenting between characters. If we can find a

method that can divide a Captcha challenge into many

components, then we can use this information to

reconstruct the character, and then find the most likely

string.

After the traditional segmentation algorithms failed

in separating the hollow characters apart, we use the

CFS algorithms to get the strokes of each character

successfully. By analyzing all possible combinations,

we get the most likely to be the correct one. So, for the

non-hollow characters, if we find a method to get the

information of each character, then our approach will

likely be extended to non-hollow schemes.

What’s more important, the attack approaches are no

longer confined to the segment then recognize

approach. The boundaries between segmenting and

recognizing become fuzzy.

8.3 Future Work

Given the practical relevance and intellectual

interest of the hollow Captcha technology, we have

proved the insecurity of hollow Captchas. However,

there have emerged many other Captchas with

sophisticated design features, e.g. complex background,

Extended Security Analysis of Hollow Captchas 1087

using both hollow and solid characters and two-layer

Captchas. It is therefore natural to ask an essential

question: Are these Captchas as secure as their

designers expected? This is our ongoing work.

On the other hand, a lot of text-based Captchas had

have been broken, especially some state-of-art works

claimed that they can attack a variety of text-based

Captchas deployed in the wild via a single step method

[26]. It is clearly the common practice in text-based

Captcha designs is dubious and shaking. The

increasing insecurity of text-based Captchas creates a

radical question: Can text Captchas still take the

responsibility of Internet security? This is an open

problem we share with whole research communities.

Acknowledgements

We thank anonymous reviewers for helpful

comments. This project is supported by the National

Natural Science Foundation of China (61472311) and

the Fundamental Research Funds for the Central

Universities.

References

[1] L. Von Ahn, M. Blum, J. Langford, Telling Humans and

Computers Apart Automatically, Communications of the

ACM, Vol. 47, No. 2, pp. 56-60, February, 2004.

[2] J. Yan, A. S. E. Ahmad, Usability of Captchas or Usability

Issues in Captcha Design, Proceedings of the 4th Symposium

on Usable Privacy and Security, Pittsburgh, PA, 2008, pp.

44-52.

[3] A. S. El Ahmad, J. Yan, M. Tayara, The Robustness of

Google CAPTCHAs, Computing Science Technical Report

CS-TR-1278, September, 2011.

[4] J. Yan, A. S. El Ahmad, A Low-cost Attack on a Microsoft

Captcha, Proceedings of the 15th ACM Conference on

Computer and Communications Security, Alexandria, VA,

2008, pp. 543-554.

[5] Vicarious Inc, Vicaricous- Turing Test 1: Captcha,

http://vimeo.com/77431982.

[6] E. Bursztein, J. Aigrain, A. Moscicki, J. C. Mitchell, The End

is Nigh: Generic Solving of Text-based Captchas, 8th

USENIX Workshop on Offensive Technologies(WOOT 14),

San Diego, CA, 2014, pp. 1-15.

[7] M. Naor, Verification of A Human in the Loop or Identification

via the Turing Test, http://www.wisdom.weizmann.ac.il/

˜naor/PAPERS/humanabs.html.

[8] M. D. Lillibridge, M. Abadi, K. Bharat, A. Z. Broder, Method

for Selectively Restricting Access to Computer Systems, Feb.

27 2001, US Patent 6,195,698B1.

[9] G. Mori, J. Malik, Recognizing Objects in Adversarial Clutter:

Breaking A Visual Captcha, Proceedings of 2003 IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition, Vol. 1, Madison, WI, 2003, pp. I-134-I-

141.

[10] G. Moy, N. Jones, C. Harkless, R. Potter, Distortion

Estimation Techniques in Solving Visual Captchas,

Proceedings of the 2004 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, Vol. 2,

Washington, DC, 2004, pp. II-23-II-28.

[11] K. Chellapilla, P. Y. Simard, Using Machine Learning to

Break Visual Human Interaction Proofs (Hips), Advances in

Neural Information Processing Systems 17 (NIPS 2004),

Vancouver, Canada, 2005, pp. 265-272.

[12] J.-S. Lee, M.-H. Hsieh, Preserving User-participation for

Insecure Network Communications with CAPTCHA and

Visual Secret Sharing Technique, IET Networks, Vol. 2, No.

2, pp. 81-91, June, 2013.

[13] J. Yan, A. S. El Ahmad, Breaking Visual Captchas with

Naive Pattern Recognition Algorithms, Twenty-Third Annual

Computer Security Applications Conference, Miami Beach,

FL, 2007, pp. 279-291.

[14] A. S. El Ahmad, J. Yan, L. Marshall, The Robustness of A

New Captcha, Proceedings of the Third European Workshop

on System Security, Paris, France, 2010, pp. 36-41.

[15] E. Bursztein, M. Martin, J. Mitchell, Text-based Captcha

Strengths and Weaknesses, Proceedings of the 18th ACM

Conference on Computer and Communications Security,

Chicago, IL, 2011, pp. 125-138.

[16] Y. Xu, G. Reynaga, S. Chiasson, J.-M. Frahm, F. Monrose, P.

Van Oorschot, Security and Usability Challenges of Moving-

object Captchas: Decoding Codewords in Motion, in 21st

USENIX Security Symposium, Bellevue, WA, 2012, pp. 1-16.

[17] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based

Learning Applied to Document Recognition, Proceedings of

the IEEE, Vol. 86, No. 11, pp. 2278-2324, November, 1998.

[18] S. D. Boutas, L. E. Anagnostopoulos, V. Loumos, E. Kayafas,

An Intelligent Web Recommendation System for Ubiquitous

Geolocation Awareness, International Journal of Ad Hoc and

Ubiquitous Computing, Vol. 14, No. 1, pp. 1-15, September,

2013.

[19] P. Y. Simard, D. Steinkraus, J. C. Platt, Best Practices for

Convolutional Neural Networks Applied to Visual Document

Analysis, Seventh International Conference on Document

Analysis and Recognition, Edinburgh, UK, 2003, pp. 958-963.

[20] N. Otsu, A Threshold Selection Method from Gray-level

Histograms, IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 9, No. 1, pp. 62-66, January, 1979.

[21] J. H. Hoel, Some Variations of Lee’s Algorithm, IEEE

Transactions on Computers, Vol. C-25, No. 1, pp. 19-24,

January, 1976.

[22] Hai-Chang Gao, W. Wang, J. Qi, X. Wang, X. Liu, J. Yan,

The Robustness of Hollow Captchas, Proceedings of the

2013 ACM SIGSAC Conference on Computer &

Communications Security, Berlin, Germany, 2013, pp. 1075-

1086.

[23] B. B. Zhu, J. Yan, Q Li, C. Yang, J. Liu, N. Xu, M. Yi, K. Cai,

Attacks and Design of Image Recognition Captchas,

Proceedings of the 17th ACM Conference on Computer and

Communications Security, Chicago, IL, 2010, pp. 187-200.

1088 Journal of Internet Technology Volume 19 (2018) No.4

[24] T. Y. Zhang, C. Y. Suen, A Fast Parallel Algorithm for

Thinning Digital Patterns, Communications of the ACM, Vol.

27, No. 3, pp. 236-239, March, 1984.

[25] C. Hong, B. Lopez-Pineda, K. Rajendran, A. Recasens,

Breaking Microsoft’s CAPTCHA, https://courses.csail.mit.edu/

6.857/2016/files/hong-lopezpineda-rajendram-recansens.pdf

[26] H. Gao, J. Yan, F. Cao, Z. Zhang, L. Lei, M. Tang, A Simple

Generic Attack on Text Captchas, Proceedings of Network

and Distributed System Security Symposium (NDSS), San

Diego, CA, 2016, pp.1-14.

[27] H. Gao, W. Wang, Y. Fan, J. Qi, X. Liu, The Robustness of

“Connecting Characters Together” Captchas, Journal of

Information Science and Engineering, Vol. 30, No. 2, pp.

347-369, March, 2014.

[28] K. Chellapilla, K. Larson, P. Y. Simard, M. Czerwinski,

Computers Beat Humans at Single Character Recognition in

Reading based Human Interaction Proofs (Hips), CEAS 2005

- Second Conference on Email and Anti-Spam, Stanford CA,

2005, pp.1-8.

[29] Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard,

L. D. Jackel, D. Henderson, Handwritten Digit Recognition

with a Back-propagation Network, Advances in Neural

Information Processing Systems 2, Denver, CO, 1989, pp.

396-404.

[30] T. A. Rashid, A. L. Jabar, Improvement on Predicting

Employee Behaviour through Intelligent Techniques, IET

Networks, Vol. 5, No. 5, pp. 136-142, September, 2016.

Biographies

Haichang Gao is a professor in

Xidian University and a member of

the IEEE. He has published more than

thirty papers. Now he is in charge of a

project of the National Natural

Science Foundation of China. His

current research interests include

CAPTCHA, computer security and machine learning.

Ping Wang is a doctoral degree

candidate in School of Computer

Science and Technology at Xidian

University. Her current research

interests are CAPTCHA and

authentication.

Jeff Yan is a professor in Department

of Computer and Information Science,

Linköping University. He interested in

most aspects of computer and network

security, both theoretical and practical,

and his recent work focuses on

systems security, including human

aspects of security (e.g. usable security). His previous

contributions illustrate both his view of security and

research methodology.

Mengyun Tang is a master degree

candidate in computer science at

Xidian University. Her current research

interest is CAPTCHA.

Fang Cao is a master in computer

science at Xidian University. His

current research interest is CAPTCHA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

