
An Evaluation and Analysis of Static and Adaptive Bayesian Spam Filters 1015

An Evaluation and Analysis of Static and Adaptive Bayesian

Spam Filters

Qussai Yaseen1, Yaser Jararweh2, Khanh Nguyen Viet3*

1 Department of Computer Information Systems, Jordan University of Science and Technology, Jordan
2 Department of Computer Science, Jordan University of Science and Technology, Jordan

3 Epic Corporation, Madison, WI, USA

{qmyaseen, yijararweh}@just.edu.jo, knguyenv@uark.edu

*Corresponding Author: Qussai Yaseen; E-mail: qmyaseen@just.edu.jo

DOI: 10.3966/160792642018081904005

Abstract

Spams and spamming methods are increasing vastly

and getting complicated due to the rapid growth in

networks, communications and technologies. Therefore,

spam filters need to be tested continuously to evaluate

their capabilities and efficiency in detecting and

preventing spams. This paper discusses spams filtering

problem using Bayesian classifier. It shows how using a

combination of black and white lists and a customized

spam filter based on users’ feedback can enhance the

performance of Bayesian classifier. The paper evaluates

three models of spam filters which are Static Bayesian

Spam Filter, Light Adaptive Bayesian Spam Filter, and

Enhanced Adaptive Bayesian Spam Filter. The

experiments demonstrate that Enhanced Adaptive

Bayesian Spam Filter, which is the one that uses

black/white lists and users’ feedback, has the highest

performance.

Keywords: Spam filter, Bayesian classifier, Security,

Classification, White lists, Black lists

1 Introduction

Spams are still among the most annoying things in
Internet. As the world has become more connected due
the rapid growth in networks and communications, the
number of spams and spammers has increased, and the
spamming techniques have gotten complicated. The
need to effective spam filters able to stop spams attacks
is increasing. Similarly, existing spam filters need to be
improved to cope with new types of spam attacks.
Therefore, existing spam filters need to be tested
continuously to evaluate their capabilities and
efficiency against spams.

Spam filters are classified into several categories
such as origin-based filters, content-based filters and
collaborative filters [1-3]. Origin-based filters such as
[4-5] use network and routing information of a
message to check it is spam or not. The aforementioned

type may use different methods to detect spams such as
using black and white lists. A black list contains a set
of untrusted IP addresses. Any message that has an IP
address that exists in the black list is considered a spam.
However, this approach suffers from a number of flaws
such as the difficulty of keeping a black list up-to-date,
and the possibilities of using “Zombie” computers to
avoid this type of filters. Another model that belongs to
this category is using whitelists to store trusted
addresses. Any message with an IP address that exists
in the whitelist is considered a legitimate address.
However, the size of such kind of lists grows very
rapidly which makes them difficult to be maintained
and used.

Content-based filters [6-8] use the content of a
message to identify whether if it is spam or not. This
type may use messages headers or common keywords
in messages. Header analysis approach focuses on the
information contained in the header of a message,
including routing and subject information.
Collaborative filters [9-10] combine the experiences of
many users to help identify spams. Spam is often sent
to bulk, therefore, when a user classifies a message as a
spam, other users can rely on that classification without
analyzing the message themselves.

This paper evaluates three Bayesian Spam Filters,
which are Static Bayesian Spam Filter, Light Adaptive
Bayesian Spam Filter, and Enhanced Adaptive
Bayesian Spam Filter. The last two models are based
on the Graham Approach who used a combination of
black-lists, white-lists and Bayesian Classifier to detect
and prevent spams. The paper demonstrates the model,
the algorithm and the simulations that show and
compare the efficiency of the three models.

The rest of the paper is organized as follows. Next
section discusses some related work. Section 3
introduces the State of Art. Section 4 discusses the
Adaptive Bayesian Spam Filter. Section 5
demonstrates the experiments and analysis. Section 6
concludes the work and introduces the future work.

1016 Journal of Internet Technology Volume 19 (2018) No.4

2 Background

Spam filtering is similar to text classification; it is a
supervised learning approach that depends on a
predefined set of labeled messages (spam or not spam)
to predict the class of unlabeled messages [11]. An
extensive research has been performed in designing
spam filters or in evaluating and comparing spam
filters. The goal is to reach an optimal design that
effectively detects and prevents spam messages with
minimum number of false negatives and false positives.
Bayesian spam filter is one of the most effective spam
filters. In this section, we briefly introduce some work
in improving Bayesian spam filters or in comparing it
to other spam filters.

Sahami et al. [7] proposed a machine learning
algorithm for spam filtering. They used a Naïve
Bayesian Classifier that was trained on a manually
categorized spams and hams (not spams). They showed
that Bayesian filter has an impressive performance on
unseen incoming messages. The filter needs a training
set of spam and legitimate messages (hams). It extracts
three sets of words (tokens), which are words that
occur only in spam messages, words that exist only in
legitimate messages, and words that occur in both
messages (spams and hams). Based on these sets,
incoming unknown messages are classified to either
spams or hams. Unlike Sahami, Androutsopoulos et al.
[12] used ten-fold cross-validation to reduce the prone
to random validation. Moreover, they discussed the
effect of attribute-set size, training-corpus size and
stop-lists on the filtering process. Vikas et al. [13]
claimed that content-based filters that use Bayesian
approach alone is not sufficient to function as a spam
filter due to the large number of false positives.
Therefore, to obtain an optimal spam filter, they
suggested the use of a lemmatizer in Bayesian spam
filter, where a lemmatizer is a stop-list and integration
with other techniques such as the blacklist and rule-
based methods.

Many researchers conducted experiments to
compare and evaluate spam filters such as Cormak and
Bratko [14] who showed that SVM and Naive
Bayesian outperforms Knn on full email messages.
Niimi et al. [15] evaluated both Bayesian and SVM
spam filters and showed that these filters have high
performance in detecting spams. Moreover, they
showed that embedding URL pre-fetch method
improves the performance of Bayesian filter.
Androutsopoulos et al. [16] compared Naive Bayesian
and Keyword-Based Spam Filters, and showed that the
Naive Bayesian filter greatly outperforms the keyword-
based filter, even with very small training set.

Some researchers evaluated spam filters on short
messages such as Zelikovitz and Hirsh [17] and Healy
et al. [18]. The problem of short messages is that they
consist of few words composed of abbreviations and
idioms. The authors in [18] compared Knn and SVM,

and Naïve Bayesian Classifiers on SMS messages and
hotel comment forms. Based on their results, SVM and
Naive Bayesian considerably outperformed Knn.
Similarly, Mahmoud and Mahfouz [19] proposed an
approach for filtering SMS messages. The authors used
a model based on Artificial Immune System (AIS) that
uses some features such as Phone Numbers, Spam
Words and Detectors to detect spams.

An interesting work was performed by Metsis et al.
[20] who compared five different versions of the Naive
Bayes classifier. They claimed that the best
performance was achieved by two Naïve Bayesian NB
versions that have been used less in spam filtering,
which are Flexible Bayes and the multinomial Naïve
Bayesian with Boolean attributes.

Bayesian filters have shown robust and high
precision approach in filtering data. In addition to
Bayesian spam filter, which is the scope of this paper,
Bayesian filters was used in different research areas
such as particle filtering [21] and adaptive systems.

3 State of Art

A Bayesian spam classifier is similar to documents
classification using Bayesian theorem. The model
discussed in this paper is called an adaptive classifier
since the Bayesian spam filter for a user is updated
continuously depending on the user’s feedback about
the emails he/she receives. Basically, Bayesian
classifier is used to filter emails using the following
formula:

(|) * ()

(|)
((|) * () (|) * ())

P W S P S
P S W

P W S P S P W H P H
=

+

 (1)

Where P(S|W) is the probability that an email is a
spam given that it contains the word W, P(W|S) the
probability that a word W appears in spam emails,
P(W|H) is the probability that a word W appears in
ham (non-spam) emails, P(S) is the probability that an
email is a spam message without any given
information and P(H) is the probability that an email is
a ham message without any given information.

P(W|S) and P(W|H) are computed based on the
training set used in the Bayesian Classifier, where
P(W|S) is computed as the ratio of the number of spam
messages that contain the word W to the total number
of spam messages, and P(W|H) is the ratio of the
number of ham messages that contains the word W to
the total number of ham messages. P(S) and P(H)
depends on the assumption of the probability of these
values in the real word. Both of them can be
considered as 50% if we assume that the probability of
the spam and ham emails are the same, or they can be
considered as 30% and 70% respectively depending on
the assumption that the percentage of spam emails and
ham emails on a person’s email box is 30% and 70%.

An Evaluation and Analysis of Static and Adaptive Bayesian Spam Filters 1017

To compute the probability that a given email D is a
spam or ham, the probabilities of all words in a
document is combined as follows:

1

1 1

(|)

(1)

n

i

i

n n

j j

j j

P

P S D

P P

=

= =

=

+ −

∏

∏ ∏

Where Pi=P(S|Wi), and D = {W1, W2, …, Wn}.

(2)

Different approaches for using Bayesian classifier as
a spam filter have been suggested. One approach is
suggested by Sahami et el. [7], where each message is
represented by a vector space model in which each
dimension of this space is corresponding to a given
word in the entire messages corpus. Therefore, each
message can be represented as a binary vector denoting
which words are found or not in the message.
Therefore, the classifier is used to detect junk emails
after the classifier learns from a pre-classified set of
training messages. Sahami’s approach used different
features for classifying emails such as using single
words learnt from a set of pre-classified junk mails,
specific phrases like “Free!” or “only $”, domain-
specific non-textual features and the percentage of non-
alphanumeric characters in the subject of a mail
message like “$$$big money$$$”. Single word
features are extracted in the learning phase using pre-
classified emails. Learning phase is performed by
removing words that appear fewer than three times,
computing the mutual information between each
feature and each class (spam or ham), giving each
feature a rank that represents how much the feature is
close to a given class, and finally, selecting the top 500
features to build the classifier. After the learning
process completes, incoming emails can be classified
using the features learnt from the learning phase.

Graham [8] used a different style in applying
Bayesian classifier as a spam filter. His approach starts
with two equal corpuses of spam messages and ham
messages. After that, the spam corpus is scanned to
count the frequencies of words and to store the
frequencies in a hash table. Next, the ham corpus is
scanned to count the frequencies of words and to store
the frequencies in a hash table. Then, a third hash table
is created and each token (word) is mapped to the
probability that an email containing it is a spam using
the following formula.

((() /())

Pr(|)
(() /() (() /)

B W Nbad
S W

G W Ngood B W Nbad
=

+

 (3)

Where B(W) is the frequency of the word W in the
spam hash table, Nbad is the number of spam messages,
G(W) is the frequency of W in the ham hash table and
Ngood is the number of ham messages.

To test an incoming email, the email is tokenized
and the probability of the words is extracted. Based on
the probabilities, the top 15 words are chosen. After
that, the probability of a spam is computed using
formula 2. If the result is greater than 0.9, the email is
considered a spam. Otherwise, it is as a ham. To
enhance the efficiency of the filter, Graham considered
words that occur more than five times only. In addition,
he chose a probability of 1% and 99% for words that
occur in one corpus and not occur in the other corpus.
Moreover, he assigned a probability of 40% for words
that not exist in the two corpuses. These values were
chosen by trial and error. Graham suggested that each
user should build his/her spam corpus. Thus, the spam
filter is customized by building a profile for each user.
This approach provides three advantages. Firstly, it
makes filters more effective. Secondly, each user
defines his precise definition of spam. Finally, it is
difficult to spammers to tune mails to get through
filters since there are many individuals databases. The
work in this paper is based on Graham’s ideas and uses
black and white lists in the filtering process. The model
is discussed in the next section, and the evaluation of
the model is demonstrated in sections 4.

4 Adaptive Bayesian Spam Filter

Each user should have his own definition about
spam, and a spam for a user may not be a spam for
others. However, some emails are considered spams
for all users. Therefore, in order to construct a
successful spam filters, content-based filtering,
whitelist and blacklist should be combined, where a
whitelist is defined formally as follows.
Definition 1 (Whitelist). A list WL = {ID1, ID2, …,
IDn}, where IDi is an email address, is called a
whitelist for a user U if for all IDk ∈ WL, IDk is a
trusted email address according to U.

A whitelist indicates that a user trusts a number of
senders from whom a spam will not be sent. Thus,
using whitelists increases the precision of the filter and
reduces the amount of processing time needed for
filtering. Whitelists can be built by keeping a list of
every address to whom the user has ever sent an email.
In addition, blacklists, which contain the addresses of
senders from whom the user does not like to receive,
can be used. A content-based filtering is used to check
the contents of the email to decide whether an email is
a spam or not when the address of the sender is not in
the blacklist and the whitelist of the user. Some
researchers such as Graham [8] talked about using
whitelists, blacklists and contents-based filtering in
order to prevent spams. In this paper, we introduce a
model for an adaptive Bayesian spam filter that uses
the aforementioned ideas, and show how we can
combine them to prevent spams with the least
processing time.

1018 Journal of Internet Technology Volume 19 (2018) No.4

Algorithm 1 discusses the model in details. The
algorithm uses a general (global) blacklist that blocks
well known spam emails and addresses common spams
for all users (step 2-4). If a sender’s address of an
email is not in the global black list, the email is sent to
the customized spam filter engine (step 5). In this phase,
the email is blocked if the sender’s address exists in the
User-Black-List (steps 6-8). Otherwise, the email is
checked against the User-White-List. If the sender’s
address exists in the User-White-List, the email is
considered a ham (not spam), and is forwarded to the
user (steps 9-12). However, if the sender’s address is
not in the User- White-List, the email is forwarded to
the Bayesian Spam Filter Engine (step 13). The
structure of the aforementioned engine is discussed in
section 5. If the engine considers the email a spam, the
sender’s address is added to the User-Black-List, and
the email is rejected (steps 14-17). Otherwise, the

email is forwarded to the user. After finishing this
phase, the algorithm asks the user to send his/her
feedback about the emails that are considered hams. If
the user discovers that one of the forwarded emails is a
spam, the sender’s address of that email is added to the
User-Black-List, and the tokens of the email are added
to Spam-Tokens-Database (steps 23-25). The latter
steps represent the learning phase, where the engine is
updated to reject those emails that were previously
considered as hams using the older version of Spam-
Tokens-Database. However, if the user confirms that
the email is a ham, the sender’s address is added to the
User-White-List (if it is not there already) (steps 26-
27). These steps are used to reduce the processing time
needed to filter incoming emails. Figure 1 demonstrates
the model based on algorithm 1. Hence, the model
shows the customized Bayesian Spam Filter Engine
and does not contain the Global Black List.

Algoirthm 1. Adaptive Bayesian Spam Filter
Input: User U, UserWhitelist (UWL) ={}, UserBlacklist (UBL) = {}, GlobalBlacklist (GBL) = {S1, S2,….., Sn},

SpamTokensDatabase (STD), Ham = {}.

Method: Use Global Black list and User Black list to reject spams immediately, use User White list to forward hams

immediately, and use Bayesian Spam Filter Engine to detect spams from the uncertain emails.

1. For each E // E is an incoming Email.

2. If SenderAddress(E) ∈ GBL // The sender in the Global Black List

3. E � Spam // E is a spam

4. Reject E // E is filtered as a spam

5. Else // Forward to the customized spam filter engine

6. If SenderAddress(E) ∈ UBL(U) // The sender in the User Black List

7. E �Spam

8. Reject E

9. Else if SenderAddress(E) ∈ UWL(U) // The sender in the User White List

10. E �Ham // E is a ham (not spam)

11. Ham = Ham ∪ {E} // Add E to ham list

12. Forward E to U // Forward the email E to the user U

13. Else // Send E to the Bayesian Spam Filter Engine (BSFE)

14. If Check (E, BSFE) = True // Using Bayesian Spam Filter Engine (BSFE), E is a spam

15. E � Spam

16. UBL = UBL ∪ SenderAddress(E) // Add the sender address to the user black list

17. Reject E

18. Else // Using Bayesian Spam Filter Engine (BSFE), E is not a spam

19. E � Ham

20. Ham = Ham ∪ {E}

21. Forward E to U

22. For Each E in Ham // Checking the feedback of the user

23. If FeedBack(U, E) = Spam // if the user marked it as a spam

24. STD = STD ∪ Tokens(E) // Update the spam tokens database SED

25. UBL = UBL ∪ SenderAddress(E) // Add the sender address to the user black list

26. Else // if the user didn’t mark it as a spam

27. UWL =UWL∪SenderAddress(E)// Add sender address to user white list if it is not there

An Evaluation and Analysis of Static and Adaptive Bayesian Spam Filters 1019

Figure 1. An adaptive Bayesian spam filter model

5 Experiments

5.1 Program Structure

Evaluating the model needs an interactive interface
that enables users to send their feedback about the
arrived emails. Therefore, the program was designed
with an interactive web-interface. This is actually the
adaptive learning feature. After letting the system
check the email, the user can click on the “This is a
SPAM” button to confirm that the email is actually a
spam. By doing that, the entered email will also be
added to the spam-corpus, and the program will “learn”
one new sampling of a spam regarding to that user and
become more efficient on spam-detection. Similarly,
the user can click on “NOT SPAM” button to clarify
that the message is a good (normal) email. The email
will be added to the ham-corpus and will be useful for
non-spam detection in the future.

The program uses one Black-list, one White-list, and
two wordlist dictionary files. The first dictionary file
(kDict.fin) stores all words (terms), along with the
occurrence frequency of each word appears in the

spam ham corpuses. The second dictionary file
(kWord.fin) stores a pair of word – spam value which
indicates that this word is more likely used in spam or
ham message. The program consists of two server-
webpages and four C++ programs:

(1) Token (ktoken.lex) to tokenize (separates) all the
terms in the spam and ham corpus.

(2) kBW (kBWList.lex) to write the senders’
addresses to black or white lists.

(3) kCalc (kCalculate.cpp to count how many
messages in the Spam and Ham corpus.

(4) kCheck (kCheck.lex) to calculate the overall
spam-probability of the email.

The filtering process consists of two phases: the
tokenizing (preparation) phase and the retrieval

(checking) phase, which are discussed in the following
subsections.

The tokenizing phase uses the Token and kBW
programs to generate the two dictionary files and the
Black/White lists. As shown in Figure 2, the Spam and
Ham messages are used by two programs, which are
Token and kBW, to produce the dictionary files and
the Black / White lists. The Token program has two
sub-processes as follows:

Figure 2. Tokenizing (preparation) phase diagram

1020 Journal of Internet Technology Volume 19 (2018) No.4

The Retrieval phase mainly uses the kCheck
program to calculate the likelihood that a user’s email
is a spam. This phase also uses both webpages as
communicating terminal with the user, where the
webpage transfers user’s email input to the kCheck
program and displays the result back to the user. This
program will tokenize the input email, select the most
popular fifteen words, read their spam-value from the

dictionary file, and then apply the overall-formula (in
section 3) to get the overall probabilistic value of the
input email. If this overall value is greater than 0.9
(90%), the input email is considered as spam.
Otherwise (value less than 0.9), it is regarded as
normal (legitimate) email. Figure 3 shows the retrieval
phase.

Figure 3. Retrieve (checking) phase diagram

5.2 Results

A corpus of 400 spam emails and 400 ham emails
was used in the learning phase, which was extracted
from the Apache SpamAssassin Project [23]. The
testing process in this model was performed manually
to get the feedback from users. Therefore, the testing
corpus, which is 200 emails (100 ham and 100 spam),
was relatively small.

During the tokenizing (preparation) process, the
program produced one Black-list, one White-list, and
two wordlist dictionary files. The contents of the body
and the header of emails were used in the learning and
the testing phase. To test the program, 200 emails were
used. The testing sample was split into five groups, and
each group contained 40 emails: 20 hams and 20 spams.
The testing phase was performed in three phases. In the
first phase, a Static Bayesian Spam Filter (SBSF) was
tested. In this model, the spam tokens and the black
and white lists were not updated. The purpose of this
stage is to show the difference in performance between
the static model and the adaptive model. In the second
phase, a Light Adaptive Bayesian Spam Filter (LABSF)
was tested using the same corpus used in the first phase.
LABSF learns from incoming emails and updates the
Spam Database engine that contains the tokens of
spams. However, this model was tested without using
black and white lists. The goal of this phase is to show
the advantage of constructing a customized Bayesian
Spam Filter for each user and how this approach
improves the spam filtering process. In the final phase,

the Enhanced Adaptive Bayesian Spam Filter (EABSF)
was tested. The EABSF is a combination of LABSF
and black and white lists. The purpose of this phase is
to show what improvement to the LABSF the black
and white lists add. Actually, using these lists improves
the accuracy of the spam filter by reducing the number
of false positives and false negatives. This result is
achieved since using white and black lists reduces the
number of emails filtered by the adaptive Bayesian
spam filter. In other words, the known spam emails or
known ham emails according to the black lists and the
white lists of a user are classified and removed earlier
by the system. Thus, there is no probability to
classify them mistakenly by the Bayesian spam filter.
Moreover, using these lists reduces the time of the
filtering process since known emails according to these
lists are not tested using the filter.

Figure 4 shows the results of false positives
produced in the three phases. As shown, in some
testing groups, the number of false positives produced
by three models is the same (group 2). However, in
other testing groups (groups 1, 3, 4, and 5) the
performance of the SBSF was the worst. Moreover, the
performance of the LABSF and EABSF was similar in
3 groups out of 5. Nonetheless, the performance of the
EABSF was the best among the three models regarding
the produced false positives.

An Evaluation and Analysis of Static and Adaptive Bayesian Spam Filters 1021

Figure 4. False positives for the three models

Figure 5 compares the number of false negatives
produced by three models. As shown in the figure, the
worst performance is by the SBSF, while the best
performance was achieved by the EABSF. Obviously,
adding the learning feature to the Bayesian spam filter
increased its performance. Furthermore, combining the
learning with the black and white lists has boosted the
performance and increased the accuracy in EABSF.

Figure 5. False negatives for the three models

Figure 6 shows the overall recall and precision of
the three models. As shown in the figure, the
performance of the Bayesian Spam Filter increases as
the user feedback and black and white lists are added.
That is, the EABSF has the best performance among
all models with a recall value of 95% and a precision
of 97.9%.

Figure 6. The recall and precision values of the three
models

5 Conclusions

This paper has shown the advantages of using a
customized Bayesian spam filter for each user. The

model in this paper uses a combination of adaptive
Bayesian classifier, black lists and white lists. It
updates the spam tokens depending on users’ feedback
so that it builds the spam classifier depending on the
precise definition of the spam of each individual. In
addition, it updates the white lists and the black lists
for each user depending on his/her feedback as well,
which increases the accuracy of the spam filter. The
paper has introduced an algorithm that shows how the
model works in details. In addition, the paper has
demonstrated experiments that compare three models
of Bayesian spam filters, which are Static Bayesian

Spam Filter, Light Adaptive Bayesian Spam Filter, and
Enhanced Adaptive Bayesian Spam Filter. The paper
has shown that the Enhanced Adaptive Bayesian Spam
Filter has the best performance among all models.

References

[1] G. Schryen, Anti-spam Measures: Analysis and Design,

Springer, 2007.

[2] J. Goodman, G. V. Cormack, D. Heckerman, Spam and the

Ongoing Battle for the Inbox, Communications of the ACM,

Vol. 50, No. 2, pp. 24-33, February, 2007.

[3] F. D. Garcia, J.-H. Hoepman, J. van Nieuwenhuizen, Spam

Filter Analysis, Proceedings of the 19th IFIP International

Information Security Conference, Toulouse, France, 2004, pp.

395-410.

[4] D. Cook, J. Hartnett, K. Manderson, J. Scanlan, Catching

Spam before It Arrives: Domain Specific Dynamic Blacklists,

Proceedings of the 2006 Australasian Workshops on Grid

Computing and E-research, Hobart, Australia, 2006, pp. 193-

202.

[5] J. Golbeck, J. Hendler, Reputation Network Analysis for

Email Filtering, Proceedings of the Conference on Email and

Anti-Spam (CEAS), Mountain View, CA, 2004, pp. 54-58.

[6] P. Pantel, D. Lin, SpamCop: A Spam Classification and

Organization Program, AAAI-98 Workshop on Learning for

Text Categorization, Madison, WI, 1998, pp. 95-98.

[7] M. Sahami, S. Dumais, D. Heckerman, E. Horvitz, A

Bayesian Approach to Filtering Junk E-Mail, AAAI Workshop

on Learning for Text Categorization, Madison, WI, 1998, pp.

55-62.

[8] P. Graham, A Plan for Spam, http://www.paulgraham.com/

spam.html.

[9] J. S. Kong, B. A. Rezaei, N. Sarshar, V. P. Roychowdhury, P.

O. Boykin, Collaborative SPAM Filtering Using E-Mail

Networks, IEEE Computer, Vol. 39, No. 8, pp. 67-73, August,

2006.

[10] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati,

P2P-Based Collaborative Spam Detection and Filtering,

Proceedings of the 4th International Conference of Peer-to-

Peer Computing, Zurich, Switzerland, 2004, pp. 1-8.

[11] F. Sebastiani, Machine Learning in Automated Text

Categorization, ACM Computing Surveys, Vol. 34, No. 1, pp.

1-47, March, 2002.

1022 Journal of Internet Technology Volume 19 (2018) No.4

[12] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G.

Paliouras, C. D. Spyropoulos, An Evaluation of Naive

Bayesian Anti-Spam Filtering, the Workshop on Machine

Learning in the New Information Age, Proceedings of the

11th European Conference on Machine Learning, Barcelona,

Spain, 2000, pp. 9-17.

[13] V. P. Deshpande, R. F. Erbacher, C. Harris, An Evaluation of

Naïve Bayesian Anti-Spam Filtering Techniques, Proceedings

of the IEEE SMC Workshop on Information Assurance and

Security, West Point, NY, 2007, pp. 333-340.

[14] G. V. Cormack, A. Bratko, Batch and Online Spam Filter

Comparison, Proceedings of the 3rd Conference on Email

and Anti-Spam (CEAS), Mountain View, CA, 2006.

[15] A. Niimi, H. Inomata, M. Miyamoto, O. Konishi, Evaluation

of Bayesian Spam Filter and SVM Spam Filter, Proceedings

of the 2nd International Conference on Soft Computing and

Intelligent Systems, Okayama, Japan, 2004, pp. 1-5.

[16] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, C. D.

Spyropoulos, An Experimental Comparison of Naive

Bayesian and Keyword-Based Anti-Spam Filtering with

Personal E-mail Messages, Proceedings of the 23rd Annual

International ACM SIGIR Conference on Research and

Development in Information Retrieval, Athens, Greece, 2000,

pp. 160-167.

[17] S. Zelikovitz, H. Hirsh, Improving Short-Text Classification

Using Unlabeled Data for Classification Problems,

Proceedings of the 17th International Conference on

Machine Learning, San Francisco, CA, 2000, pp. 1191-1198.

[18] M. Healy, S. J. Delany, A. Zamolotskikh, An Assessment of

Case-based Reasoning for Short Text Message Classification,

Proceedings of the 15th Irish Conference on Artificial

Intelligence and Cognitive Science, Castlebar, Ireland, 2004,

pp. 9-18.

[19] T. Mahmoud, A. M. Mahfouz, SMS Spam Filtering

Technique based on Artificial Immune System, International

Journal of Computer Science, Vo. 9, No. 2, pp. 589-597,

March, 2012.

[20] V. Metsis, I. Androutsopoulos, G. Paliouras. Spam Filtering

with Naive Bayes – Which Naive Bayes?, Proceedings of the

3rd Conference on Email and Anti-Spam, Mountain View,

CA, 2006, pp. 1-9.

[21] L. Liu, W. Wei, X. Li, Y. Pan, H. Song, Visual Attention

Model Based on Particle Filter, Proceedings of the KSII

Transactions on Internet and Information Systems, Vol. 10,

No. 8, pp. 3791-3805, August, 2016.

[22] W. Chin, D. Ward, and A. Constantinides. Semi-blind

MIMO Channel Tracking using Auxiliary Particle Filtering,

Global Telecommunications Conference, Taipei, Taiwan,

2002, pp. 322-325.

[23] The Apache Spam Assassin Project, http://spamassassin.

apache.org/publiccorpus/.

Biographies

Qussai Yaseen received his Ph.D. in
Computer Science from the
University of Arkansas at Fayetteville,
AR, USA in 2012. In 2014, Dr.
Yaseen joined Jordan University of

Science and Technology. Currently, he is working on
Fog and Cloud Security, IoT security, Wireless Sensor
Networks Security, and Insider Threat Mitigation.

Yaser Jararweh received his Ph.D. in
Computer Engineering from the
University of Arizona in 2010. He is
currently an associate professor of
computer sciences at Jordan

University of Science and Technology. He has co-
authored several papers in established journals in fields
related to cloud computing, security and Big Data.

Khanh Nguyen Viet got his maser
degree in computer science from
University of Arkansas at Fayetteville,
USA in 2010. He is currently a
Software Developer at Epic
Corporation at Madison, WI, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

