
3CV3S: Cloud-enabled Cooperative Car Video Share and Search System 995

3CV3S:

Cloud-enabled Cooperative Car Video Share and Search System

Ming-Fong Tsai*

Department of Electronic Engineering, National United University, Taiwan

mingfongtsai@gmail.com

*Corresponding Author: Ming-Fong Tsai; E-mail: mingfongtsai@gmail.com

DOI: 10.3966/160792642018081904003

Abstract

Driver liability in a road accident can be clarified

through the assistance of a car video record. Hence, a

variety of devices and functions have recently emerged in

order to provide related services to vehicle drivers. Such

devices or functions tend to include HD video recording,

wide angle capturing range and night vision support.

However, in circumstances when the vehicle impact takes

place out of sight or is obscured, the above-mentioned

technologies are not able to clarify the accident liability.

In this paper, a Cloud-enabled Cooperative Car Video

Share and Search System (3CV3S) is proposed in which

vehicle information is uploaded periodically to the cloud.

This information includes position, heading and

timestamp. When an accident occurs, the recorded

information can be used to search for and request related

car video from neighbouring cars. In addition, an

interface is implemented to allow drivers to utilise the

proposed 3CV3S functions, that is, uploading and

obtaining car videos, via smartphone.

Keywords: Cooperative, Cloud

1 Introduction

In many circumstances, neighbouring vehicles and

pedestrians contribute to the occurrence of road

accidents via behaviour such as running through a red

light and moving into a blind spot [1]. In order to avoid

such accidents, a variety of active driving safety

assistance systems have been developed for in-vehicle

use, including functions such as lane assist systems,

predictive pedestrian protection and autonomous

emergency braking [2]. After detecting obstacles and

moving objects based on either camera or radar sensors,

these systems are permitted to take control of vehicle

steering, braking and acceleration in case the driver is

in danger. In addition to active systems, a passive

driving safety assistance system has also been

developed that utilises wireless communication

technology in order to broadcast messages to nearby

vehicles. A vehicle will broadcast a warning message

when it is in or poses a danger, such as employing an

emergency brake or having a flat tire. Nearby vehicles

that receive this warning message will note the

situation and thus avoid a potential rear-end crash. In

another work [3], an algorithm is proposed to enhance

the research on forward collision avoidance systems.

The proposed algorithm has the ability of tracking

vehicles in a moving platform and in complicated road

environments effectively and accurately. However,

although the mentioned forms of driving assistance

system aim to avoid collisions, when an accident

occurs they are unable to clarify driver liability. As a

result, in recent years, drivers have been using car

video recorders to record their movement path [4].

Such recorders are typically installed in the vehicle

such that the whole front view is captured, with the

recorded videos then used to recreate an accident scene,

thus clarifying driver liability as long as the crucial

information is not out of sight.

A variety of different functions have been developed

as part of car video recorder research. Chen et al. [5]

propose a safety system for the PAPAGO P3 driving

recorder that includes features such as lane and vehicle

detection, while Baek et al. [6] present a vehicle

driving state system featuring on-board diagnostics

such that more vehicle-related information is recorded.

However, none of the above-mentioned driving

assistance systems are capable of clarifying accident

liability. Hence, a browsing and retrieval system for

driving information is proposed in [7]. Unfortunately,

the latter research focused on self-driving recorder data

retrieval, which is also not capable of clarifying

accident liability when the accident occurs in a blind

spot. Kuo et al. [8] thus proposed a road map utilising a

Global Positioning System (GPS) which is able to

obtain the relative locations of neighbouring cars in a

vehicular network. The effective retrieval of car video

records through matching information with

neighbouring cars is researched in [4], with the authors

presenting a video retrieval algorithm that adopts

feature matching and text motion matching in order to

acquire the desired video segments. However, image

processing time is required to implement the algorithm,

while video segments are usually encoded via data

compression. Furthermore, the matching of scale-

996 Journal of Internet Technology Volume 19 (2018) No.4

invariant feature transforms and text in order to

retrieve the relevant videos can be highly complex. For

the purpose of providing an effective cooperative

driving video retrieval platform, this study enhances

work previously outlined in [9], proposing a 3CV3S.

The system is designed to retrieve related car videos

when there is a need to clarify accident liability,

without the need of going through a complex process

such as extraction of image processing time from the

compressed video. Vehicles are equipped with radar

sensors such that neighbouring cars can be detected,

with useful vehicle information such as position,

heading, vehicle type, speed and acceleration broadcast

to other vehicles through VANET. The information

received by neighbouring cars is then processed by a

car video retrieval algorithm. In this way useful car

videos can be determined and the user may send a

request to the video owner to retrieve the car video.

Although the car video retrieval algorithm is

essentially implementable in the car video recorder, it

should be kept in mind that the latter is an embedded

system with a generally limited computational resource.

A complex algorithm will extend the loading time of

the video recorder and thus should be kept simple in

design. However, Cloud Computing can overcome this

situation. In such a case, the algorithm is implemented

outside the video recorder, with the integration of car

video recorder and cloud omitting inter-vehicular

information transfer and instead uploading it to the

cloud. All computational processes are performed by

the cloud as well. A Geographic Information System

(GIS) also plays a role in the video retrieval algorithm

such that a correct decision can be made. Indeed, the

research presented in [10] states that cloud computing

can be applied to overcome challenges in the

application of GIS, providing a brief evaluation of

cloud computing with respect to GIS and also

proposing a multi-tiered architecture for a GIS cloud

system. A cloud-based interface that handles data of

smart cars efficiently was designed in [11]. However,

the integrated service system is focused on the

collection of information from smart cars rather than

driving videos. Some studies have proposed a traffic

video sharing platform [12], which shares a similar

function as our proposed work. However, the driving

video and GPS track data are required to be uploaded

manually. The data are not uploaded periodically; there

might be insufficient data when a user tries to retrieve

the relevant data from the platform. Furthermore, the

video must be in the database in order to be retrieved,

playing the role of burden for the server. In the system

proposed in the present paper, each vehicle uploads its

information to the cloud periodically, including

timestamp, position, heading and speed. However, the

uploading of a car video is optional so that the quantity

of uploaded data can be controlled. This means the

3CV3S database requires fields for path information,

which is not the case for video recorder data. In order

to search for related videos, the user sends a request

message to the system. By providing the timestamp,

position and heading of the vehicle, the video search

algorithm will be able to search for neighbouring

vehicles that may have critical videos recorded when

the accident took place. When a critical video is found,

if the video has not already been uploaded to the

system an upload request will be sent to the video

owner.

This paper is structured in 4 sections, including the

present introduction section. Section 2 outlines the

proposed method. Section 3 presents the implementation

of 3CV3S. In the final section, conclusions and future

work are discussed.

2 Cloud-enabled Cooperative Car Video

Share and Search System

2.1 System Overview

Figure 1 demonstrates an example of a car accident

in which the crash occurs in the victim vehicle’s car

video recorder blind spot. It can be seen that even

though Car 1 is equipped with a car video recorder,

driver liability cannot be clarified by its video record

since it is hit from the rear by Car 2, which is out of the

video recorder’s line of sight. If Car 2 leaves the scene

rapidly, the perpetrator may not be identified. However,

the accident also takes place just ahead of Car 3, with

the whole scenario recorded by Car 3’s video recorder.

Hence, if Car 3 is able to share its recorded car video,

Car 1 will be able to identify the perpetrator of the

accident [13]. In the present paper, a 3CV3S is

proposed that aims to provide a platform for the

sharing and searching of car videos in case of accident.

Through the utilisation of the cloud, both the uploaded

car videos and the periodically uploaded vehicle

information can be stored and remain available at all

times, making 3CV3S more reliable. As 3CV3S

purposely serves as a cooperative platform; the

utilisation of cloud computing is essential in order to

handle information from numerous users.

Figure 1. Blind spot scenario

3CV3S: Cloud-enabled Cooperative Car Video Share and Search System 997

A system overview of the proposed 3CV3S is shown

in Figure 2. The system can be divided into the

following four main parts: the upload of path

information, video requesting, video upload request,

and the upload of car video. The upload of path

information updates the movement path of the vehicle

and includes fields such as vehicle ID, timestamp and

GPS information. The ID field provides user

identification information, which does not involve any

privacy issues, while the timestamp field records the

time of the vehicle available at a specific position.

Finally, the GPS field includes the position, speed and

heading of the vehicle at that particular moment. The

timestamp and GPS data play a particularly important

role in the 3CV3S video search service, as this

information is used to search for related car videos. In

the video requesting process, users request related car

videos by uploading timestamp and GPS information

to the 3CV3S cloud, with 3CV3S then using this

information to search for vehicle data with similar

timestamp and GPS values. For example, a user may

select data falling within the range of a distance of 3

metres and time of 10 seconds. As mentioned above,

although a vehicle’s timestamp and GPS information

will be available in the 3CV3S database, the

corresponding video might not be available because

video upload is optional. Thus, during the next stage,

when the required videos are targeted, 3CV3S will

send request messages to the video owners to prompt

them to upload the corresponding videos. It is then up

to the video owner to decide whether to provide the

video or not. If the video owner decides to share the

car video, the user who requested the video will be able

to download it after the owner successfully uploads the

video.

Figure 2. System overview

2.2 Retrieval Method

The retrieval of car videos is based on timestamp

and GPS information. In 3CV3S, as it is compulsory to

upload this information periodically, the system is able

to identify related videos as well as the video owners

when a user makes a video search request. However,

the frequency of video uploads is defined by users

themselves, with the car video recorder’s video files

able to be uploaded either at a configured frequency or

only upon request by other users.

An example of retrieval method application is

shown in Figure 3, in which Car 1 and Car 2 have

similar GPS heading values. Since Car 2’s position is

behind Car 1, the GPS value of Car 2 is thus also

behind that of Car 1. Therefore, if the driver of Car 1

sends a video request in that situation, the video

recorder data of Car 2 will be targeted, with 3CV3S

then requesting the owner of Car 2 to upload the car

video. In Figure 3, Car 3 also has an approximately

similar GPS value to that of Car 1, with the exception

of the opposite heading value. Hence, even if Car 1

sends a request, the car video recorder data of Car 3

will not be requested by the system. In the proposed

method, the timestamp deviation is set to ±60 seconds,

the position deviation to ±10 metres and the heading

deviation to an angle of ±90°. These settings are also

configurable by the user, who can obtain a more

accurate result by setting stricter limits (although fewer

videos will be retrieved).

Figure 3. Example of retrieval method scenario

In order to acquire accurate position deviation and

heading deviation data, a vector graph is used to

compute the relationship between cars. The

construction of the vector graph for the given scenario

is shown in Figure 4, in which the coordinate of Car 1

is (x1, y1) and that of Car 2 is (x2, y2). The distance

between Car 1 and Car 2 can be calculated through

equation (1), where d is the distance:

 2 2

2 1 2 1
() ()d x x y y= − + − (1)

Figure 4. Constructing vector graph

998 Journal of Internet Technology Volume 19 (2018) No.4

However, since the values of x and y represent the

longitude and latitude of the cars, the correct formula

with which to calculate the distance between the two

cars should be the Haversine formula, in which the

radius of the Earth (R) is considered, as shown in

equation (2):

1 2 22 1 2 1

1 2
2 sin (sin () cos cos sin ())

2 2

x x y y
d R x x−

− −

= × + (2)

In order to compute the heading deviation, two

vectors are needed. The first vector,
1

V , is the direction

from Car 2 to Car 1 and is obtained by

1 2 1 2 1
(,)V x x y y= − − . Similarly,

2
V is the heading

direction from Car 1 to Car 2, where

2 2 2 2 2
(,) (0,).V x x y n y n= − − = − Referring to the

formula of the angle between two vectors (3), the angle

θ can be obtained using equation (4).

 1 2

1 2

cos

V V

V V
θ

⋅

=

� �

� � (3)

1 2 1 2 1 2

2 2 2 2

2 1 2 1 2

1 2 1

2 2

2 1 2 1

() 0 () ()
cos ()

() () 0 ()

()
cos ()

() ()

x x y y y n

x x y y y n

y y

x x y y

θ
−

−

− ⋅ + − ⋅ −

=

− + − ⋅ + −

−

=

− + −

(4)

Different values of d and θ , which can be adjusted

by users, determine the cars to which the system will

send a video upload request.

2.3 System Flowchart

In 3CV3S, the movement trajectory (path history) of

each vehicle is uploaded to the cloud periodically, for

example at a frequency of 1 Hz, including information

such as GPS position, speed, heading direction and

timestamp. The movement trajectory of each vehicle is

stored by the system cloud and can be referred back to

at any time when requested. With reference to the

system flowchart of 3CV3S shown in Figure 5, the

3CV3S cloud is always on standby for user requests to

search for a car video. For example, assume that an

accident has occurred and the victim decides to search

for car videos that recorded the scene. A search request,

including vehicle position, heading and timestamp, is

sent to the 3CV3S cloud; the 3CV3S video retrieval

algorithm then filters and selects the required video

recorder data based on the provided information, with

the corresponding vehicle of the selected video

recorder data being the neighbouring vehicle of the

accident victim when the accident took place. Then,

the 3CV3S cloud transmits an upload request to the

selected video recorder data’s owner, who has the right

to decide whether to share the video with the cloud or

not. In addition, it is possible to retrieve multiple

videos if there are multiple data that satisfy the

retrieval conditions.

Figure 5. System flowchart

3 System Implementation

3.1 Implementation Concept

3CV3S is composed of two main parts. First, an

Android application, which can be easily installed in a

smartphone device, serves as the 3CV3S client side.

Second, the 3CV3S cloud, which is a web service in

cluster form, supported by 8 servers. In the present

paper, both parts are implemented. While the Android

application uploads the GPS information to the web

server at a frequency of 1 Hz, video data are stored via

a built-in camera sensor. The application is also able to

listen to requests from the web server, which prompt

the user to upload video data. The web server is in turn

able to receive GPS information from each smartphone

device, as well as search for neighbouring cars’ videos

when the user inputs the GPS information via the

system website.

System architecture is shown in Figure 6. In addition

to being responsible for uploading GPS information

periodically, the Android application is the client side

with which the user can send a query request for videos

to the cloud platform. The event handler, which

distinguishes the message sent by the client side, is

compulsory because there are two actions that the

client can perform: First, the upload of GPS and

vehicle information (car ID, timestamp…etc.), which

upon receipt is stored in the database, and second, a

query request. In the latter case, the car ID of the

request sender, as well as the requested information

such as timestamp, is transferred to the Location-based

Query Engine. Although the Query Engine enables all

neighbouring cars to be found based on location and

timestamp, the initial result will be too general and

contain a large amount of unrelated data. For example,

a neighbouring car with a different heading and

direction may not have captured the critical scene on

camera. Hence, all the candidate cars are then

processed by the video retrieval algorithm such that

3CV3S: Cloud-enabled Cooperative Car Video Share and Search System 999

those neighbouring cars that potentially recorded the

critical video scene can be identified. The system then

sends a request message to the selected car owners to

prompt them to upload their car videos to the 3CVCS

cloud. Figure 7 shows the software stack of 3CV3S, for

which Hadoop is used as the distributed computing

platform and MongoDB as the database. The video

retrieval algorithm and data analytic functions are

implemented in the MapReduce programming model.

The GPS track and uploaded driving videos of vehicles

are stored in the cloud; these collected data can be used

for further work, such as, tracing and studying the

behaviour of users, performing graphical analysis, and

determining a high accident rate area. If sufficient

bandwidth is available, further services such as real-

time video sharing may be applied.

Figure 6. System architecture of the cloud platform

Figure 7. 3CV3S software stack

3.2 Implementation Considerations

In general, Apache Hadoop is considered a popular

framework for the establishment of cloud platforms,

being a reliable and scalable open-source software

programme. In Apache Hadoop, the distribution

process of large data sets across clusters of computers

is allowed via the use of a simple programming model

known as MapReduce [14]. Apache Hadoop is also

able to scale up servers to the thousands, as well as

having the ability to detect and recover software

failures. There are several modules of Apache Hadoop,

including the Hadoop Distributed File System (HDFS)

for high throughput access to data, the Hadoop YARN

[15] framework for job scheduling and cluster resource

management, and the Hadoop MapReduce programming

model, which can handle the parallel processing of

large volumes of data. In order to integrate with the

Apache Hadoop framework, a scalable, distributed

database known as HBase [16] has been developed.

However, the HBase database system is less

convenient when dealing with geographic location

queries, such as those employed in searching for

neighbouring cars in 3CV3S. Thus, HBase is not a

suitable database to be implemented in 3CV3S in order

to maintain system simplicity and performance. Instead,

MongoDB [17] was chosen for use in 3CV3S, as it is a

document-oriented NoSQL database and supports

geographic query, which is essential for effective

3CV3S performance.

4 System Results

The interface of the 3CVCS client side Android

application contains a Record button and an Upload

button; a more detailed review can be found in [9].

When the user clicks the Record button, the system

will start to upload the self-supplied GPS information

to the web server at a frequency of 1 Hz.

Simultaneously, the recorded video data will be stored

as separate files in the smartphone device every 30

seconds. If the Upload button is then clicked, the

recorded video files will be uploaded to the web server.

The same Upload button can be pushed when an

upload request is received from the server. The 3CV3S

website mainly shows a map, on which users can either

input their longitude and latitude or select a location

directly; again, further detail can be found in [9]. The

web server then uses the user-input GPS information to

search for neighbouring cars’ video data from the

database. In default mode, the timestamp deviation is

set to ±60 seconds, the position deviation to ±10 metres

and the heading deviation to an angle of ±90°. Search

results are then marked with a location tag on the map.

If the timestamp deviation, position deviation and

heading deviation are configured in a strict manner,

fewer videos will meet the requirements and thus fewer

results will be found. When the results are displayed,

users can click on any tag to obtain the associated

video data. If the selected video is not yet uploaded, an

upload request will be sent to the video owner.

The cloud platform is formed by 8 hp servers with

quad core Intel i7 CPU and 4GB RAM, while the web

application framework is Flask and the implemented

database is MongoDB. Flask is a lightweight web

application framework written in Python and based on

the WSGI toolkit and the Jinja2 template engine. Flask

was selected for 3CV3S because it maintains the

flexibility of Python, providing a simple template and

thus saving time in web application development. In

this implementation, the query response time of the

MongoDB database when there are approximately

100,000 records is less than 1 second. As an

experiment, the query result was tested by applying

different timestamp, position and heading deviations.

In order to carry out this experiment, the traffic

1000 Journal of Internet Technology Volume 19 (2018) No.4

situation was simulated as indicated in Figure 8. A

total of 1,000 cars were randomly generated to drive on

a map consisting of 9 intersections, with a distance of

50 metres between each intersection. Each car took 20

seconds to drive from the entrance to the exit of the

map, while the total simulation time was 20 minutes. In

order to simplify the simulation, the cars drove straight

through the intersections without changing direction.

Approximately 15~20 cars were present on the map at

any one time.

Figure 8. The simulation scenario

The number of cars with critical videos found by the

proposed video retrieval algorithm is shown in Figures

9(a)~(d), for applied timestamp deviations of ±5, ±10,

±15 and ±20 seconds, position deviations of ±5, ±10

and ±15 metres, and heading deviations of ±30°, ±60°

and ±90°. Analysis of these figures reveals that number

of cars found increases with both greater timestamp

deviation and position deviation values. However, in

the experiment, the number of cars found with critical

videos did not increase when the heading deviation

increased. This is because the distance between each

intersection was 50 metres. In the experiment for

which the result is shown in Figure 9, the position

deviation ranged between ±5 ~ ±15 metres. Therefore,

only cars that drive across the intersection where an

accident takes place will be selected. In this situation,

an increase in the heading deviation will not increase

the number of cars selected by the algorithm. Figure 10

illustrates that when a position deviation of between

±20 and ±60 metres is used, the heading deviation

value will have a greater influence on the result when

the position deviation is set to ±60 metres. This is due

to the fact that cars driving across intersections

adjacent to the accident location can be found by the

video retrieval algorithm when the heading deviation is

set to ±90°, as shown in Figure 11. However, if the

position deviation is less than 50 metres, those vehicles

driving through adjacent intersections and for whom

the accident scene is not visible will not be seen as

candidates to upload videos.

(a) Timestamp deviation: ±5s (b) Timestamp deviation: ±10s

(c) Timestamp deviation: ±15s (d) Timestamp deviation: ±20s

Figure 9. Simulation results showing the number of cars found by the 3CV3S video retrieval algorithm for

different time deviation, position deviation and heading deviation values

3CV3S: Cloud-enabled Cooperative Car Video Share and Search System 1001

Figure 10. Simulation result for a position deviation of

between ±20 ~ ±60 metres

Figure 11. Effectiveness of heading deviation for ±60

metres position deviation

In 3CV3S, the car video retrieval method is

integrated with cloud computing technology due to the

latter’s high level of efficiency and reliability.

Reliability is particularly important for 3CV3S because

users must be able to retrieve all related video

recordings. System reliability was tested in a further

experiment in which servers were manually shut down

one by one at an interval of 10 minutes. In this

experiment, the timestamp deviation and heading

deviation were ±20 s and ±30°, respectively, while the

position deviation varied between ±5 and ±15 metres.

The experimental result shown in Figure 12 reveals

that the recorded videos were still available when

either one, two or three servers were not available, thus

proving the data reliability of 3CV3S thanks to the

implementation of cloud technology. Fault tolerance is

achieved via HDFS, in which datanodes send

heartbeats periodically to the namenode. Therefore, the

namenode recognises the availability of all datanodes.

Whenever a datanode is detected as unavailable by the

namenode, a backup mechanism such as block

replication will be launched in order to ensure data

availability. In the experiment, data blocks were

replicated three times in HDFS. In order to detect an

offline datanode before losing all data blocks, the

offline datanode must be detected within 20 minutes.

This is because the time interval in which the

datanodes go offline is 10 minutes. Datanode timeout

is configured by the parameters “dfs.namenode.heartbeat.

recheck.interval” and “dfs.heartbeat.interval” in the

configuration files.

Figure 12. Simulation result obtained when machines

fall offline one by one at an interval of 10 minutes

5 Conclusion

The number of drivers who install video recorders in

their vehicles will increase as the problem of accident

liability clarification is paid more attention. Here we

present 3CV3S, a system that enables users to search

for and share videos with neighbouring cars. 3CV3S is

implemented in a smartphone device that serves as the

client side, with the 3CV3S cloud including a web

server, a distributed database and a video retrieval

method. The client side uploads vehicle information

such as position, heading and timestamp periodically,

while the recorded video is uploaded when requested

by another user. Each user’s car information is

recorded in the 3CV3S cloud, with a video retrieval

algorithm employed to search for critical videos when

GPS information and user-defined conditions are

provided. In future work, 3CV3S will be integrated

with another NoSQL database system, HBase, in order

to fulfil Big Data requirements. Furthermore, an active

safety method will be designed aimed at protecting

real-time information collected and uploaded to the

cloud. On the other hand, seeking to provide a better

video uploading experience, an improvement will be

made such that the quality of the video upload will

change dynamically according to available bandwidth.

1002 Journal of Internet Technology Volume 19 (2018) No.4

Acknowledgments

The author would like to thank the Ministry of

Science and Technology of the Republic of China for

financially supporting this research under grant number

MOST 105-2221-E-035-065, MOST104-2221-E-035-

021 and MOST103-2218-E-035-013.

References

[1] Y. Chen, C. Yang, Vehicle Red-light Violation Detection

base on Region, IEEE International Conference on Computer

Science and Information Technology, Chengdu, China, 2010,

pp. 700-703.

[2] H. Kopetz, S. Poledna, Autonomous Emergency Braking: A

System-of-systems Perspective, IEEE Conference on

Dependable Systems and Networks Workshop, Budapest,

Hungary, 2013, pp. 1-7.

[3] P. Liu, W. Li, Y. Wang, H. Ni, On-road Multi-vehicle

Tracking Algorithm based on An Improved Particle Filter,

IET Intelligent Transport Systems, Vol. 9, No. 4, pp. 429-441,

May, 2015.

[4] K.-H. Lee, J.-N. Hwang, J.-H. Yoo, K.-H. Choi, Effective Car

Video Retrieval using Feature Matching in a Mobile Video

Cloud, IEEE International Conference on Distributed Smart

Cameras, Hong Kong, China, 2012, pp. 1-6.

[5] W. Chen, L. Jian, S. Kuo, Video-based on-road Driving

Safety System with Lane Detection and Vehicle Detection,

IEEE International Conference on ITS Telecommunications,

Taipei, Taiwan, 2012, pp. 537-541.

[6] S.-H. Baek, D.-W. Jeong, Y.-S. Park, H.-S. Kim, M.-J. Kim,

J.-W. Jang, Implementation Vehicle Driving State System

with OBD-II, MOST Network, 17th Asia-Pacific Conference

on Communications, Sabah, Malaysia, 2011, pp. 709-714.

[7] M. Naito, C. Miyajima, T. Nishino, N. Kitaoka, K. Takeda, A

Browsing and Retrieval System for Driving Data, IEEE

Intelligent Vehicles Symposium, San Diego, CA, 2010, pp.

1159-1165.

[8] C.-I. Kuo, P.-C. Wang, C.-H. Lin, C.-K. Shieh, M.-F. Tsai,

Implementation of Radar Map Using GPS in Vehicular

Networks, International Computer Symposium, Hualien,

Taiwan, 2012, pp. 663-672.

[9] M. F. Tsai, S. W. Huang, C. M. Chiu, L. D. Sun, C. K. Shieh,

Cooperative Car Video Share and Search System, Applied

Mechanics and Materials, Vols. 764-765, pp. 853-857, May,

2015.

[10] M. A. Bhat, R. M. Shah, B. Ahmad, Cloud Computing: A

Solution to Geographical Information Systems (GIS),

International Journal on Computer Science and Engineering,

Vol. 3, No. 2, pp. 594-600, February, 2011.

[11] Y. Xu, J. Yan, A Cloud-based Design of Smart Car

Information Services, Journal of Internet Technology, Vol. 13,

No. 2, pp. 317-326, March, 2012.

[12] S.-M. Yuan, C.-Y. Chiang, S.-B. Yang, Y.-L. Chen, A Traffic

Video Searching and Sharing Platform based on Smart

Wearable Devices, IEEE International Conference on

Consumer Electronics, Las Vegas, NV, 2014, pp. 85-86.

[13] C.-S. Li, H.-C. Chao, IPv6 Auto-configuration VANET Cross

Layer Design based on IEEE 1609, IET Networks, Vol. 1, No.

4, pp. 199-206, December, 2012.

[14] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M.

Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B.

Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, E.

Baldeschwieler, Apache Hadoop Yarn: Yet Another Resource

Negotiator, ACM Symposium on Cloud Computing, Santa

Clara, CA, 2013, pp. 1-16.

[15] L. George, HBase: The Definitive Guide, O’Reilly Media,

2011.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, R. E. Gruber, Bigtable: A

Distributed Storage System for Structured Data, International

Conference on USENIX Symposium on Operating Systems

Design and Implementation, Seattle, WA, 2006, pp. 1-14.

[17] P. Membrey, E. Plugge, T. Hawkins, The Definitive Guide to

MongoDB: The NoSQL Database for Cloud and Desktop

Computing, Apress, 2010.

Biography

Ming-Fong Tsai received the Ph.D.

degree from the Department of

Electrical Engineering, Institute of

Computer and Communication

Engineering, National Cheng Kung

University, Taiwan. He is currently an

Assistant Professor with the Department of Electronic

Engineering, National United University, Taiwan. His

current research interests include Internet of Things,

Vehicular Communications and Multimedia

Communications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

