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Abstract 

In recent years, the online blogging community is 

growing bigger as the social network service. When it is 

growing, the blog posts are increasing day by day. 

Generally speaking, people were using the blog search 

engines to search and recommend potentially interesting 

blog posts. When people search from the blog search 

engines, they were faced with two major problems: 

synonymy (two different terms with the same meaning) 

and polysemy (a term with different meanings). In this 

paper, we use two semantic analysis methods, Latent 

Semantic Indexing (LSI) and Probabilistic LSI (PLSI), to 

solve these two problems. LSI uses singular value 

decomposition as the fundamental method to capture the 

synonymous relationship between terms. PLSI uses the 

Expectation-Maximization algorithm for parameter 

estimation to additionally deal with the problem of 

polysemy. Although PLSI can gracefully deal with these 

two semantic problems, it needs a huge computing time. 

To solve the problem of computing time, in this paper, 

we propose a novel termination mechanism to 

dynamically determine the required number of iterations 

for PLSI. According to the experiment results, the result 

derived from our mechanism can not only deal with these 

two semantic problems but also reach a cost-effective 

solution. 

Keywords:  Blog posts, Google blog search, Web 2.0, 

Expectation-maximization algorithm, Semantic 

problems 

1 Introduction 

As information technology advances rapidly, hosts 

with Internet access capability are becoming 

increasingly popular and a growing number of 

applications and services on the web. From the early 

start, web 1.0 is the first generation of the web which 

according to Tim Berners-Lee. In this generation, web 

includes only static web content instead of dynamic 

user-generated content. It is only one way of pushing 

web content to many people via websites visited and 

emails transmitted. 

The key evolution from web 1.0 to web 2.0 is to 

allow the users to build an interactive, collaborative, 

and user-generated content. According to Best [3], the 

main characteristics of web 2.0 compared to web 1.0 

are the following: rich user experience, user 

participation, dynamic content, metadata, web 

standards, and scalability. There are many famous 

examples of web 2.0, including social networking sites, 

blogs, wiki, and stream media video sites. 

One popular web 2.0 application is the blog, a 

hybrid between a diary and an online journal, 

characterized by chronological ordering of information 

[47]. A user can publish a blog post and other users can 

read and comment on it. There are two major 

advantages for creating a blog: (1) it adds some more 

depth to the blog posts; (2) it builds community and 

reader loyalty [46]. 

From the early ages to our recent years, the 

exponential rise in the number of blogs from thousands 

in the late 1990s to hundreds of millions in 2015 [52, 

54] has created a need for effective access and retrieval 

services. Today, there are many blog search engines 

available on the web, such as Google Blog Search, 

Amatomu, Bloglines, BlogScope, IceRocket, Munax, 

Regator, and Technorati to help the users find useful 

blog posts quickly from such huge blogs. 

Blog search engines have become more and more 

sophisticated, helping users find appropriate blog sites 

that offer frequently updated content on pretty much 

any topic users can possibly think of. However, two 

additional problems with most traditional blog search 

engines are the low coverage (or called synonymy) and 

the lack of disambiguation ability (or called polysemy) 

[45, 58, 61]. In some cases two relevant terms never 

occur with each other, and they will not be found by 

the traditional blog search engines. In other cases a 

term may have several different meanings in the search 

results. For example, the search results for an “apple” 

query (by Regator) contain an abundance of pages 

about a computer company and the first search result 

that related to a kind of fruit is located at about the 

30th place. A user must refine his/her query in order to 

find relevant blog posts; this process can be long and 

annoying especially for an inexperienced user.  
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In this paper, we use two semantic analysis methods, 

Latent Semantic Indexing (LSI) [11] and Probabilistic 

LSI (PLSI) [23], to deal with the problems of 

synonymy and polysemy as mentioned above for the 

study of blog search engine. LSI first uses Singular 

Value Decomposition (SVD) to infer the hidden 

relationship between any two terms for all collected 

blog posts. To find the relevant terms, LSI then uses a 

dimensionality reduction technique to remove the noise 

from the result of SVD. However, LSI cannot 

effectively deal with the problem of polysemy because 

of SVD is a one-by-one mapping from a certain term to 

a particular document [13, 37]. PLSI uses the 

Expectation Maximization (EM) algorithm to estimate 

the most likely meanings for each term. PLSI can 

effectively deal with the problems of synonymy and 

polysemy because of the EM algorithm is a statistical 

inference technique that can estimate multiple 

parameters simultaneously [17, 57]. 

However, the running time for PLSI is always huge 

because of the EM algorithm is a time-consuming 

algorithm [4, 25, 40]. This of course will result in PLSI 

is very difficult to be applied to solve the problems of 

large web documents. In this paper, we propose a novel 

intelligent mechanism called EM with Cost-Effective 

Solution (EM-CES) to effectively reduce the problem 

of long running time in PLSI. The detail of EM-CES is 

shown in the following section. Overall, we can 

guarantee that the result obtained from PLSI with EM-

CES is a cost-effective solution.  

The rest of this paper is organized as follows: 

Section 2 presents the related work. This is followed 

by an overview of the method in Section 3. Section 4 

shows the results with some analysis, and finally 

Section 5 concludes the paper and provides possible 

future directions. 

2 Related Work 

In this section, we briefly present some of the 

research literature related to the study of blog search, 

the applications of LSI and PLSI, and the termination 

criteria for EM algorithm. 

2.1 The Study of Blog Search 

Blog is an abbreviated version of weblog, which is a 

term used to describe websites that maintain an 

ongoing chronicle of information. A blog is a 

frequently updated personal online journal or diary 

kept by a blogger. Blogs range from being some of the 

most influential websites on the Internet like the 

Huffington Post, which is an online newspaper that is 

written by a team of professional journalists, that is 

worth millions, and is influential in business and 

politics; to niche related website like Blog Basics, 

which is focused exclusively on blogging related 

information.  

Many blogs focus on a particular topic or subject 

area, such as politics, travel, sports, or 3C technology. 

Some are more generic, presenting links to all types of 

other sites. And others are more like personal journals, 

presenting the author’s daily life and thoughts. Among 

the many sources and types of blog posts, how to 

effectively search these massive blog posts become a 

key problem in the blog study. Fortunately, there are 

many blog search engines available on the web such as 

Google Blog Search, Amatomu, Bloglines, BlogScope, 

IceRocket, Munax, Regator, and Technorati to help 

users find what users need.  

In recent years, there are many researches which 

focus on how to effectively search the blog posts. 

Takama et al. [59] used a concept of keyword map to 

design an interactive blog search. They designed an 

algorithm to help the users to find some interesting 

blog topics, in which the users are interested on the 

keyword map. Kim et al. [33] proposed a trackback-

rank algorithm for the effective blog search. The 

algorithm ranks all blog posts by calculating the 

reputation scores of bloggers, trackback scores, and 

comment scores based on the features of the blog posts. 

Zhu et al. [69] first analyzed the search results of a 

sequence of temporally-ordered queries returned by a 

blog search engine, and then built and maintained some 

blog profiles for those blogs whose posts frequently 

appear in the top-ranked search results. Jeong and Oh 

[29] proposed a blog search framework which enables 

a more in-depth search on a given topic by extracting 

the collective intelligence features in social community 

sites and through the query extension using these 

features. Kuwata et al. [31] used two processes to 

decide for blog posts to include some product review 

sentences. The first process creates a data set of certain 

product that contains those review sentences. Second 

process is a search for those review sentences. This 

process uses the extracted opinion tuples from one 

sentence of blog posts and creates the data set to decide 

whether a sentence containing the review sentences. 

Kim et al. [32] proposed an algorithm that efficiently 

performs a ranking for the blog posts retrieval in order 

to solve the uncertainty of information in blogosphere. 

2.2 The Applications of LSI and PLSI 

In this paper, we use LSI and PLSI to deal with the 

problems of synonymy and polysemy. LSI use SVD 

and a dimensionality reduction technique to capture the 

relationship between terms for all collected documents. 

The advantage for LSI is that it can handle the problem 

of identifying synonymy via the dimension-reduction 

technique [13]. Conversely, the disadvantage of LSI is 

that it cannot deal with the problem of polysemy 

because of SVD is only a one to one mapping from a 

specific term to a specific document [37]. Several 

researchers have successfully applied LSI to some 

practical applications of web mining. Ozsoy et al. [48] 

presented a generic extractive text summarization 
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system based on LSI. They applied the known and 

proposed LSI-based text summarization approaches to 

the documents with different languages. Assessing the 

semantic similarity of documents is an important steps 

in many real-world applications ranging from 

summarization to educational system [34, 41] to 

automatic detection of duplicate documents. Luh et al. 

[42] used LSI and the genetic algorithm to estimate 

Google’s search engine ranking factors. In their 

conclusions, they suggested that multiple ranking 

criteria can effectively close to the ranking factors of 

Google search engine. Evangelopoulos [15] applied 

LSI to a number of applications from linguistics, 

psychology, cognitive science, education, information 

science, and the analysis of textural data. Kuo et al. [36] 

proposed a framework for background music 

recommendation based on LSI between video and 

music. They addressed the problem of recommending 

appropriate background music for a user-specified 

video.  

PLSI uses the EM algorithm to obtain the maximum 

likelikhood estimates of the parameters between terms. 

Compared to LSI, the advantage of PLSI is that it can 

further handle the problem of identifying polysemy 

because of the EM algorithm is a statistical estimation 

technique that can estimate multiple parameters 

simultaneously [14, 17, 57]. In contrast, the running 

time of PLSI is very huge because of the EM algorithm 

is a time-consuming approach [4, 25, 40]. Many 

researchers have successfully applied PLSI to solve 

some real problems in web mining. Hennig [21] used 

PLSI to complete an automatic multi-document 

summarization task. Multi-document summarization is 

an increasingly important task because of the 

condensation of information from different sources 

into an informative summary helps to reduce 

information overload. Some researchers [66, 68] used 

PLSI to improve human action recognition from the 

query video. Human action recognition is 

automatically to analyze ongoing activities from 

unknown videos. Mesaros et al. [44] used PLSI to 

model the co-occurrence of overlapping sound events 

in audio recordings from everyday audio environments. 

McInerney et al. [43] used PLSI to predict the next 

location for a new user based on a similar pattern 

appears in some historical users. 

2.3 The Termination Criteria for EM Algorithm 

PLSI uses the EM algorithm to estimate the 

probability values which measure the relationships 

between the hidden latent factors and the two sets of 

objects. The EM algorithm is an iterative procedure for 

finding the maximum likelihood estmation’s of the 

parameters in situations where the model depends on 

some missing or latent variables so that computing the 

maximum likelikhoog estimation is not straightforward. 

Each iteration of EM algorithm consists of two steps, 

namely the Expectation (E) step and the Maximization 

(M) step. In the E-step, it computes the expectation of 

the log-likelihood by replacing the unobservables with 

their conditional expectations given the current 

estimates of the parameters and the data; in the M-step, 

it maximizes the expected log-likelihood calculated in 

the E-step. 

Although the EM algorithm can converge to a local 

optimization solution, it may take a very long time to 

reach the soution. Many researchers alternatively use 

different criteria to determine the algorithm should be 

terminated or continued. The termination criteria of the 

algorithm can broadly be divided into two main 

situations: (1) using a fixed number of iterations as the 

maximum predefined number of iteraionts in the 

algorithm [12, 19, 49, 60, 63]; (2) setting a predefined 

threshold to decide whether the algorithm should be 

terminated.  

Let us now discuss the second situation as follows. 

Bertin et al. [2] first used the manual method to 

evalutate the difference performance curves generated 

by the algorithm. Then, a predefined threshold is 

decided by the average score throughout all the curves. 

Park and Ramamohanarao [51] introduced an efficient 

method to store all relevant information of the 

algorithm. They decided the best threshold for one 

group is ten to twenty percent. According to this 

predefined threshold, they claimed that the algorithm 

can save a lot of storage space. Chou and Chen [10] 

proposed an incremental EM model to solve the 

problem of online event analysis. They decided a new 

document should be created a new event group if its 

similarity with all the event group in a certain number 

of documents is below to a predefined threshold; 

otherwise, it is assigned to the event group that is the 

most similar. Xue et al. [67] proposed a new cross-

domain text classification method to integrate the 

labelled and unlabelled data that are come from 

different but related documents into a topic-bridged 

EM model. They used a predefined document 

frequency threshold to cut down the number of features 

to speed up the classification process. Balog et al. [1] 

first used the algorithm to identify a personal name in a 

set of documents. Then, they applied a naive Bayes 

classifier to measure the similarity between a document 

name and a personal name. Finally, they decided that a 

document should be assigned to the most likely cluster 

of personal name if the similarity score is higher than a 

predefined threshold; otherwise, the document should 

be assigned to a new cluster. Some of other researchers 

used the log-likelihood function [39, 50, 62] as the 

performance measure. The iterations of the algorithm 

continue to process until the change of performance 

measure between two consecutive iterations is smaller 

than a predefined threshold.  

Regardless of whether using a fixed number of 

iterations or a predefined threshold as a termination 

criterion for EM algorithm, it may causes two potential 

problems. First, a small number of iterations may result 
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in a large difference between the final and local 

optimization solutions. Second, a large number of 

iterations may result in a small improvement in these 

two solutions. 

Some researchers [9, 35] provided a probability 

model for applying genetic programming to minimize 

the total number of individuals that need to be 

processed until a predefined maximum number of 

iterations are reached. He pointed out that there is a 

point after which the cost of extending a given iteration 

exceeds the performance obtained from the increase in 

the cumulative probability of success. To prevent these 

two potential problems as mentioned above, we use 

their suggestion to develop our dynamic termination 

strategy for EM algorithm. 

3 An Overview of Our Study 

In this section, we first introduce a flow chart of our 

study as shown in Figure 1, then explain the data 

source of our study. Next, we discuss some 

preprocessing steps to transform the data source into 

the input of different semantic models. After that, we 

describe the semantic models, namely LSI and PLSI, 

used in our study. Finally, we present a novel 

termination mechanisam, PLSI with EM-CES, to 

achieve a cost-effective solution. 

 

Figure 1. The flow chart of our study 

The start point of our study is to fetch the relevant 

documents from the data source. In this paper, we take 

Google Blog Search’s result as our data source. Google 

Blog Search is a specialized search engine for blogs 

that currently uses the search tools in Google News to 

search all blog posts that have been indexed by Google 

Blog Search. We choose Google Blog Search as our 

data source because of it is the most widely used and 

accurate blog search engine in the world [64].  

Today, Google has quitely disabled the Google Blog 

Search home page at google.com/blogsearch and 

redirects it to the Google home page [55]. Now, if we 

want to filter content based on blog posts, we can do so 

by going to Google News, clicking on the search tools 

and selecting the “All news” drop down and checking 

off just “Blogs”. 

To significantly reduce documents’ fetching time, 

we develop a novel web crawling agent with multi-

threading capability. In short, we can crawl the 

documents as much as possible in parallel. 

Theoretically, when the factors of network latency and 

document processing time are not considered, the 

fetching time for many documents is the same as for a 

single document. 

3.1 The Preprocessing Stage 

In the preprocessing stage, we totally use the Perl 

Compatible Recular Expression (PCRE), Natural 

Language Processing (NLP), and Matrix Processing 

steps to transform the data source into the input of 

different semantic models. 

First of all, we must establish a method to convert 

unstructured HTML documents into structured 

documents because of the document returned from the 

data source is an unstructured HTML document [8]. In 

this paper, we use PCRE [20], which is a regular 

expression pattern matching library, to do the 

conversion process. Each structured document for our 

study consists of a document title, snippet, and URL.  

Secondly, we use some NLP techniques to transform 

each sentence in the structured document into a series 

of meaningful terms. We define that a term is a 

meaningful term if and only if each term satisfies the 

following three conditions: (1) it does not contain any 

stop words; (2) it only contains the root word; (3) it 

does not contain any non-word tokens. In this study, 

we use the following NLP techniques to satisfy the 

above three conditions: Stop-Word, Stemming, and 
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Non-Word. We first use 421 stop words such as 

articles, prepositions, pronouns, and so on, as 

suggested by Fox [18], to filter out unimportant words. 

We also use Porter’s stemming algorithm [53] to 

obtain the root word for a given word. Finally, all non-

word characters, such as puncuation and whitespace 

with nothing, are stripped off. 

Lastly, in the Matrix step, we transform all 

meaningful terms into the structured matrix data, 

which is the input of LSI and PLSI semantic models. 

LSI and PLSI are the well known matrix models [22]; 

that is, we need to transform the meaningful terms into 

a matrix form. In this step, we use the Term 

Frequency-Inverse Document Frequency (TFIDF) and 

Probability (P) methods to do the transformation task.  

The TFIDF method, as shown in the following 

equation, gives a high weight to the meaningful terms 

occurring frequently in the document but rarely in the 

rest of the corpus. 

 ( , ) ( , ) log(| | / |{ : } |)tfidf t d tf t d D d D t d= × ∈ ∈  (1) 

where tfidf(t,d) represents the TFIDF weight of term t 

in document d; tf(t,d) is the number of times that term i 

occurs in document j; |D| is the total number of 

documents in the corpus D; |{d∈D:t∈d}| is the number 

of documents where term t appears. The P method sets 

a probability weight of term t in document d as shown 

in the following equation. 

 ( , ) ( , ) / ( , )
k

P t d tfidf t d tfidf k d= ∑  (2) 

where P(t,d) represents the probability weight of term t 

in document d and the denominator of P(t,d) is the sum 

of each tfidf’s weight in the document d. 

3.2 The Semantic Models Stage 

In the semantic models stage, we use the LSI and 

PLSI semantic models to deal with the problems of 

synonymy and polysemy. LSI first uses SVD to 

decompose the structured matrix data SM into the 

product of three other matrices, as shown in the 

following equation. 

 T
SM USV=  (3) 

where U = (u1, u2, …, ur) is a |T|×r matrix of left 

singular vectors; S = diag(s1, s2, …, sr) is a r×r 

diagonal matrix; V = (v1, v2, …, vr) is a |D|×r matrix of 

right singular vectors. LSI then finds a low-rank 

reduction matrix ~SM, which is smaller and less noisy 

than SM to filter noisy data and absorb synonymy. For 

a fixed |Z|<r, using a truncated SVD technique that 

conserves |Z| largest singular values in S matrix and set 

others to be zero to approximate original SM matrix. 

PLSI uses an aspect model to identify the hidden 

semantic relationship among terms and documents [23]. 

It first calculates the join probability of an observed 

pair, P(t,d), by summing overall all possible choices of 

z from which the observation has been generated, as 

shown in the following equation; where p(t|z) denotes 

the posterior probability of a particular term t given the 

observation laten topic z, p(z) denotes the probability 

that z has observed, p(d|z) denotes the posterior 

probability of a particular document d given z. 

 ( , ) ( | ) ( ) ( | )
Z

P t d p t z p z p d z= ∑  (4) 

To obtain the final result of P(t,d), PLSI follows the 

likilihood principle to estimate the parameters of p(t|z), 

p(z), and p(d|z) by maximum the likihood function’s 

value at iteration i, Li(t,d), as shown in the following 

equation. 

 ( , ) log( ( , ))
i t d

L t d SM p t d= ∑ ∑ ×  (5) 

The standard procedure for maximum likelihood 

estimation in PLSI is the EM algorithm. Generally, two 

steps are needed to perform in the algorithm alternately: 

‧ E-step, where the posterior probability of z is 

calculated based on the current estimates of 

conditional probability, as shown in the following 

equation. 

( | , ) ( | ) ( ) ( | ) / ( | ) ( ) ( | )
z

p z t d p t z p z p d z p t z p z p d z= ∑  (6) 

‧ M-step, where the estimated conditional probabilities 

are updated and used to maximize the total 

likelihood function based on the posterior 

probability calculated in E-step, as shown in the 

following equations. 

( | ) ( | , ) / ( | , )
d t d

p t z SM p z t d SM p z t d= ∑ × ∑ ∑ ×  (7) 

 ( ) ( | , ) /
t d t d

p z SM p z t d SM= ∑ ∑ × ∑ ∑  (8) 

( | ) ( | , ) / ( | , )
t t d

p d z SM p z t d SM p z t d= ∑ × ∑ ∑ ×  (9) 

3.3 The Detail of PLSI with EM-CES 

The computational time of PLSI is higly dependent 

on the EM algorithm. Hofmann et al. [24] has been 

proven that the time complexity of PLSI is 

O(|T|×|D|×|Z|), where O(|T|×|D|) is the time complexity 

of EM algorithm for each iteration. However, in the 

current Internet age, the total number of terms (|T|) and 

documents (|D|) are both very huge. At the same time, 

the total number of laten topics (|Z|) follows the growth 

of |T| and |D| [27]. When PLSI is applied to solve a 

large-scale information retrieval problem, in such huge 

|T|, |D|, and |Z|, PLSI is prone to the performance 

degradation problem.  

According to the literature review, the termination 

criteria for EM algorithm are divided into two 

situations: (1) it converges to a local optimization 

solution, and (2) it reaches the maximum allowable 

number of iterations. Next, let use discuss these two 

situations as follows.  

Situation 1: it converges to a local optimization 

solution. In this situation, we define that the local 
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optimal solution is reached, as shown in the following 

equation, if the improvement value between two 

consecutive iterations is less than a predefined small 

threshold value. 

, 1
( , )

i i
IV t d λ

−

≤  where 
, 1 1
( , ) ( , ) ( , )

i i i i
IV t d L t d L t d

− −

= −  (10) 

where Li(t,d), as mentioned in equation (5), is the the 

likelihood function’s value at iteration i; λ is the 

predefined threshold value; IVi,i-1(t,d) is the 

improvement value between iterations i and i-1. 

Situation 2: it reaches the maximum allowable 

number of iterations. If we set a small number of 

iterations to perform the EM algorithm, it may result in 

a large difference between the final and local optimal 

solutions. Conversely, a large number of iterations to 

perform the algorithm may result in a small 

improvement in these two solutions. The key point of 

these two problems is that cost and performance are 

always on the opposite sides. 

In our study, we use the suggestion by Koza [35] 

that there is a point after which the cost of extending a 

given iteration exceeds the performance to develop our 

EM-CES termination criterion. According to there 

suggestion, we need to define two important curves, 

one is the cost curve and the other is the performance 

curve.  

The cost curve is defined as the number of 

successive iterations for which the performance is not 

improved. According to this definition, the cost curve 

for iteration i, CCi, is shown in the following equation, 

where the right-hand side of the “if” condition in 

equation (11) is the average value of all improvement 

values for each iteration. 

 
1

, 1 , 1

1,

if ( , ) ( ( , ))

i i

i i i

CC CC

IV t d avg IV t d
γ γ γ

−

− ≤ −

= +

≤ ∑
 (11) 

The performance curve for iteration i, PCi, is defined 

as following, where |Z| is the total number of laten 

topics, σ(IVi,i-1(t,d)) is the standard deviation of all IVγ,γ-

1(t,d) values, avg(Σγ≤i σ(IVγ,γ-1(t,d))) is the average value 

of all σ(IVi,i-1(t,d)) values for each iteration. 

, 1 , 1

, 1 , 1

( , ) ( ( , ))
| |

( ( , )) ( ( , ))

i i i i

i

i i

IV t d IV t d
zPC

avg IV t d avg t d
γ γ γ γ γ γ

σ

σ

− −

≤ − ≤ −

⎡ ⎤
× ×=⎢ ⎥∑ ∑⎣ ⎦

 (12) 

We then disscuss the performance curve as follows. 

According to the above discussion, the time 

complexity of PLSI is O(|T|×|D|×|Z|). Obviously, the 

total number of iterations required by PLSI is closely 

related to the total number of laten topics |Z|; thus, we 

set |Z| as a dominant parameter of the performance 

curve. 

We also use the rate of historical performance 

improvement (IVi,i-1(t,d)/avg(Σγ≤iIVγ,γ-1(t,d))) and the 

rate of variable performance improvement (σ(IVi,i-

1(t,d))/avg(Σγ≤i σ(IVγ,γ-1(t,d)))) as the other two domiant 

parameters of the performance curve. We assume that 

there is an insignificant performance improvement or 

variable performance improvement in the likelihood 

function if either the rate of historical performance 

improveent or the rate of variable performance 

improvement is less. The situation 2 can use Figure 2 

to represent it. 

Iterations number

i

 

Figure 2. A diagram illustration of the cost and 

performance curves 

Lastly, by the definition of the above two situations, 

we can define our dynamic termination strategy for 

EM algorithm as follows. 

 
, 1

( , )
i i

IV t d λ
−

≤  or 
i i

CC PC≥  (13) 

4 The Results and Discussion of the 

Experiment 

In this section, we perform two experiments to 

illustrate the effectiveness and efficiency of the 

proposed method. In the first experiment, we want to 

compare the performance of different semantic models 

and WordNet. In the second experiment, we perform a 

simulation to verify that the result obtained from our 

PLSI with EM-CES mechanisam is a cost-effective 

solution. 

4.1 Experimental Data and Measures 

In this study, the experimental data is selected from 

top 10 searched keywords on Google and Yahoo in 

2012, 2013, and 2014. By screening all keywords, we 

delete some repeating keywords and retain only one 

keyword. The full set of experimental data is shown in 

[5]. We first send the selected keywords to Google 

Blog Search and then do all tasks in Figure 1. Actually, 

for each keyword, Google Blog Search can return from 

350 to 400 search results; thus, we respectively choose 

10, 20, 40, 80, 160, 240, and 350 documents as the data 

source of our experiment. 

Due to the result of LSI and PLSI is a matrix form, 

we need to find some similarity functions to calculate 

the similarity measure between two term vectors in a 
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term-by-document matrix. The similarity function can 

be any similarity measure. The most commonly used 

are cosine and correlation coefficient similarity 

measures [6]; thus, in this paper, we use these two 

similarity measures to evaluate the performance of 

different experiments. 

Next, we use an example to illustrate how to use the 

similarity functions to calculate the average similarity 

measure of the matrix. Assume Table 1 is the final 

result of the semantic model when the user’s query is 

processed. 

Table 1. The final result of the Y semantic model, 

where Y∈{LSI, PLSI} 

 d1 d2 d3 

t1 0.56 0.12 0.33 

t2 0.34 0.25 0.25 

t3 0.74 0.33 0.15 

 

We first calculate the cosine similarity score of the 

term vectors t1 (<0.56, 0.12, 0.33>) and t2 (<0.34, 0.25, 

0.25>). The calculation process is shown below. 

 
1 2

2 2 2 2 2 2

.56 .34 .12 .25 .33 .25
( , )

.56 .12 .33 .34 .25 .25

0.93424

Cos t t
× + × + ×

=

+ + × + +

=

  

Similarly, we also can calculate the cosine similarity 

scores for Cos(t1,t3)=0.92443 and Cos(t2,t3)=0.91938. 

We now can calculate the average cosine similarity 

measure of the matrix by an average of these three 

cosine similarity scores, so the average cosine 

similarity measure of the matrix is 0.92602. 

We then calculate the correlation coefficient 

similarity score of the term vectors t1 and t2 where the 

average values of t1 and t2 are 
1
t =0.34 and 

2
t =0.28, 

respectively. The calculation process is shown below. 

1 2

2 2 2 2 2 2

( , )

(.56 .34) (.34 .28) (.12 .34) (.25 .28) (.33 .34) (.25 .28)

[(.56 .34) (.12 .34) (.33 .34) ] [(.34 .28) (.25 .28) (.25 .28) ]

0.87884

t tρ

− × − + − × − + − × −
=

− + − + − × − + − + −

=

 

Similarly, we also can calculate the correlation 

coefficient similarity scores for ρ(t1,t3)=0.69701 and 

ρ(t2,t3)=0.95468. We now can calculate the average 

correlation coefficient similarity measure of the matrix 

by an average of these three correlation coefficient 

similarity scores, so the average correlation coefficient 

similarity measure of the matrix is 0.84351. 

4.2 Experiment with Different Semantic 

Models and WordNet 

We input a keyword “mobile phone jb” to Google 

Blog Search to carefully detail and explain the 

synonymous and polysemous problems how to impact 

the performance on different semantic models. Table 2 

shows the results of cosine and correlation coefficient 

measures for different analysis models. Let us look at 

the table; we observe that the cosine and correlation 

coefficient measures for LSI and PLSI semantic 

models are significantly better than non-semantic 

TFIDF model. Next, we analyze the reason for it. 

Table 2. The results of cosine and correlation 

coefficient measures for different analysis models 

(a) TFIDF matrix 

 d1 d2 d3 d4 d5 

mobile phone 0 0 0 0 0 

jb 0 0.67 0 0.44 0.66 

jailbreaking 0.67 0 0.67 0 0.44 

cellular phone 0 0.48 0.19 0.10 0.29 

jelly been 0 0.80 0 1.59 0 

Cosine-0.48257, Correlation Coefficient-0.40253 

(b) LSI matrix 

 d1 d2 d3 d4 d5 

mobile phone 0.53 0.47 0.28 0.38 0.61 

jb 0.25 0.31 0.42 0.36 0.19 

jailbreaking 0.28 0.52 0.33 0.28 0.22 

cellular phone 0.46 0.43 0.24 0.37 0.57 

jelly been 0.32 0.37 0.52 0.54 0.25 

Cosine-0.91671, Correlation Coefficient-0.66927 

(C) PLSI matrix 

 d1 d2 d3 d4 d5 

mobile phone 0.38 0.22 0.35 0.37 0.27 

jb 0.32 0.35 0.27 0.29 0.31 

jailbreaking 0.45 0.37 0.40 0.43 0.34 

cellular phone 0.43 0.36 0.44 0.40 0.35 

jelly been 0.38 0.29 0.37 0.41 0.34 

Cosine-0.98961, Correlation Coefficient-0.70190 

 

Let us look at the table again in detail, we find that 

two terms, “mobile phone” and “cellular phone” have 

the feature of synonymy. Similarly, the terms, “jb” and 

“jailbreaking” (or “jelly bean”), also have the feature 

of synonymy; that is, the abbreviation of “jailbreaking” 

or “jelly bean” is “jb”. In this experiment, the cosine 

and correlation coefficient measures for LSI are 

significantly improved to 0.91671 and 0.66927, 

respectively, compared to TFIDF model, respectively. 

That is, by filtering the noise data from the non-

semantic TFIDF matrix, LSI can group the semantic-

related terms with the same topic together to enhance 

the retrieval performance. 

Moreover, the term “jb” is also a polysemous term 

because of it has at least two distinct meanings, 

“jailbreaking” and “jelly bean”. Looking the result of 

PLSA, we find that the cosine and correlation 

coefficient measures for PLSI are further enhanced to 

0.98961 and 0.70190, respectively, compared to LSI 

model. This performance improvement is because 

PLSI can further deal with the problem of polysemy. 

This result also echoed the finding of Ishida and Ohta 

[28]; that is, LSI and PLSI can effectively deal with the 

problem of synonymy, but LSI lacks capability to deal 

with the problem of polysemy, because, by using SVD 

technology, a row vector in a matrix can only represent 
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a term. PLSA uses the aspect model to estimate the 

joint probability of terms and documents. By using the 

latent probability method, we can clearly distinguish 

different meanings and types between terms so PLSA 

can gracefully deal with the problem of polysemy. 

Next, we conduct an extended experiment on a 

large-scale dataset. For the above-mentioned 49 

keywords, we also use Google Blog Search to crawl 

the HTML documents, and then perform the 

preprocessing stage in Figure 1 to produce a term-by-

document matrix required by different analysis models. 

We also use the cosine and correlation coefficient 

measures to measure the performance of different 

analysis models. 

The performance of different analysis models based 

on different number of latent topics as shown in the 

subfigures (a) and (b) of Figure 3. Each dot in these 

subfigures is the average value of all different number 

of documents (10, 20, 40, 80, 160, 240, and 350). 

According to the results of these two subfigures, the 

similarity value is decreased along with the total 

number of latent topics |Z| is increased. The best and 

worst semantic models are P-PLSI and TFIDF-LSI, 

respectively. Note that, in Figure 3, X-Y denotes that 

the input of Y semantic model is the result of X method 

where X ∈{TFIDF, P}, Y ∈{LSI, PLSI}, and TFIDF 

not X-Y denotes the non-semantic model’s result. 

 

Figure 3. The performance comparison for different analysis models 

The similarity difference between TFIDF-LSI and P-

PLSI is largest when |Z| is equal to 2, and the 

difference is getting smaller when |Z| is getting larger. 

For some special cases (|Z| = 2 or |Z| = 10), the 

performance of TFIDF-LSI is better than TFIDF-PLSI, 

but in other cases (|Z|>10), the performance of TFIDF-

PLSI is better than TFIDF-LSI. This implies that PLSI 

has a better performance when |Z| is getting larger. 

Compared to P-PLSI and TFIDF-PLSI, we find that the 

performance of P-PLSI is always better than TFIDF-

PLSI and this implies that a mixed input method P, 

which is a probability processing of TFIDF as 

described in section 3.1, can be used to improve the 

performance. 
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Similarly, the performance of different analysis 

models based on different number of documents as 

shown in the subfigures (c) and (d) of Figure 3. Each 

dot in theses subfigures is the average value of all 

different number of topics (2, 10, 20, 30, 40, and 50). 

According to the results of these two subfigures, the 

performance is increased along with the number of 

documents |D| is increased. This implies that the 

performance is getting better when the number of 

document is getting larger. According to the above 

analysis, the performance derived from the PLSI-like 

model is better than the LSI-like model, and this 

implies that PLSI can achieve a better semantic 

processing ability than LSI. 

Let us now compare the models of P-PLSI and P-

PLSI with EM-CES, the performance difference is 

between 1.067% to 1.992%. However, according to the 

result of experiment on the cost-effective solution as 

shown in the next experiment, P-PLSI needs more 

execution time than P-PLSI with EM-CES at least 

240%. This implies that the performance improvement 

of PLSI is negligible after iteration i decide by PLSI 

with EM-CES. PLSI with EM-CES can significantly 

reduce the execution time and maintain the 

performance. That is, we can guarantee that the result 

generated from our PLSI with EM-CES model is a 

cost-effective solution. 

Finally, let use compare the result of non-semantic 

TFIDF and semantic X-Y models. According to the 

result of Figure 3, we find that the performance of X-Y 

is improved between 3.754% to 26.409% compared to 

TFIDF model. This implies that, by using the semantic 

analysis method, we can effectively deal with the 

problems of synonymy and polysemy. 

WordNet is a lexical database of English which 

groups lexical units, nouns, verbs, adjectives and 

adverbs, according to their semantic and lexical 

relations. In the latest version, it contains 155287 

words organized in 117,659 synsets (a set of words 

having the same or close meaning) for a total of 

206941 word-sense pairs [65]. One of the traditional 

ways to solve the problems of synonymy and polysemy 

is to use WordNet as a corpus-based dictionary to 

measure the similarity of two words [16, 30, 56]. Next, 

we use WordNet as a word corpus to measure the 

average similarity of the matrix. 

The detailed process of WordNet processing is 

described as follows: we first use the preprocessing 

stage of Figure 1 to generate a TFIDF matrix based on 

the user’s query. Then, for any terms tx and ty in a 

document, we update the weights of tx and ty to the 

maximum weight for the weights of tx and ty if the 

weights of tx and ty are not 0 where tx and ty are the 

same synset in the WordNet corpus. To generate a 

TFIDF-WordNet, we repeatedly update the weights for 

each cell of the original TFIDF matrix until all cells are 

compared. Table 3 shows the results of cosine and 

correlation coefficient measure for TFIDF, TFIDF-

WordNet, and TFIDF-LSA. 

Table 3. The comparison of TFIDF, TFIDF-WordNet, 

and TFIDF-LSA 

Cosine 

 |Z|=2 |Z|=10 |Z|=20 |Z|=30 |Z|=40 |Z|=50 

TFIDF 0.38127 0.26987 0.25107 0.20315 0.19170 0.16711

TFIDE-WordNet 0.41265 0.31234 0.28124 0.23141 0.22178 0.19144

TFIDF-LSI 0.63064 0.49008 0.38296 0.34017 0.31506 0.29162

Improved Rate 52.827% 56.906% 36.168% 46.999% 42.060% 52.330% 

Correlation Coefficient 

 |Z|=2 |Z|=10 |Z|=20 |Z|=30 |Z|=40 |Z|=50 

TFIDF 0.36143 0.22215 0.09885 0.07701 0.06559 0.05119

TFIDE-WordNet 0.38245 0.24135 0.12351 0.09877 0.08912 0.07643

TFIDF-LSI 0.56673 0.34649 0.19185 0.15217 0.10313 0.08992

Improved Rate 48.184% 43.563% 55.332% 54.065% 15.720% 17.650% 

 

In the table, the row of “Improved Rate” represents 

the improvement rate of the LSI semantic model 

(TFIDF-LSI) compared to the WordNet dictionary 

model (TFIDF-WordNet). For example, in the cosine 

measure, the improvement rate of TFIDF-LSI is 

(0.63064-0.41265)/0.41265=52.827% for |Z|=2 compared 

to TFIDF-WordNet. Totally, the improvement rate of 

the LSI semantic model can range from 15.720% to 

56.906%. The reasons are as following: (1) on the one 

hand, in the WordNet corpus, it only covers a limited 

amount of words, but in the field of blog search, they 

have many new terminologies not in the WordNet 

corpus; (2) on the other hand, in the WordNet corpus, 

it is based on the word rather than the term as the basic 

element of NLP processing, however the meaning of 

word is always less than the whole term. This implies 

that the performance of the semantic model is 

significantly better than the dictionary model in the 

field of blog search. 

4.3. Experiment on the Cost-effective Solution 

In this experiment, we want to verify the result 

generated from our PLSI with EM-CES model is a 

cost-effective solution. We randomly generate the 

following parameters: |T| (total number of terms), |D| 

(total number of documents), |Z| (total number of latent 

topics), and the elements in TFIDF matrix. Interested 

readers can simulate this experiment at http://cayley. 

sytes.net/simulation/em-ces.php. All other parameters, 

including i, IVi,i-1(t,d), avg(Σγ≤iIVγ,γ-1(t,d)), σ(IVi,i-1(t,d)), 

avg(Σγ≤iσ(IVγ,γ-1(t,d))), PCi, CCi, and Li(t,d), are defined 

in section 3. 

Figure 4 is a simulation run for our PLSI with EM-

CES model. In the first situation, IVi,i-1(t,d)≤λ, we set λ 

equal to 0.01, and it means that the situtation is met if 

the improvement value between two consecutive 

iterations is less than or equal to a relatively small 

value λ. In Figure 4, the local optimal solution is 

reached at iteration iteration 71 and its likelihood 

function’s value is 821.461 (L71(t,d) = 821.461). In the 

second situtation, CCi ≥ PCi, our PLSI with EM-CES 
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model stops to run at iteration 30 and its likelihood 

function’s value is 812.247 (L30(t,d) = 812.247). In this 

simulation, PLSI with EM-CES decides to stop the EM 

algorithm at iteration 30 rather than 71 because of it 

takes an extra 41 (71-30) iterations to result in a 

slightly 9.214 improvement. This implies that the 

performance improvement is negligible after iteration i 

decided by PLSI with EM-CES. 

 

Figure 4. A simulation run for our PLSI with EM-CES 

model 

To verify the solution derived from the second 

situtation is a cost-effective solution, we use a Cost-

Benefit (CB) metric to compare some predefined 

number of iterations and the iteration i decided by the 

second situtation (i = i). In this experiment, we perform 

1000 simulation runs and use the following predefined 

number of iterations: i=20, i=40, i=60, i=80, and i=100. 

In the CB metric, we need to define two submetrics, 

Cost (C) and Benefit (B). The formula of C submetric 

is shown below, where Ri(t,d) and Roptimal(t,d) denote 

the required number of iterations calculated by 

iteration i and the local optimal solution, respectively. 

 ( , ) / ( , )i i optimalC R t d R t d=   (14) 

The subfigure (a) of Figure 5 is the distribution over 

C submetric. To understand and simplify the 

complexity of Figure 5, each dot in the figure 

represents the average value of 100 simulation runs. 

The average C values for different number of iterations 

are 0.18543 (i=20), 0.39380 (i=40), 0.57742 (i=60), 

0.77120 (i=80), 0.97433 (i=100), and 0.28369 (i=i), 

respectively. 

The formula of B submetric is shown below, where 

Li(t,d) and Loptimal(t,d) denote the likelihood function’s 

value calculated by iteration i and the local optimal 

solution, respectively. 

 ( , ) / ( , )i i optimalB L t d L t d=   (15) 

The subfigure (b) of Figure 5 is the distribution over 

B submetric. The average B values for different 

number of iterations are 0.88224 (i=20), 0.97126 

(i=40), 0.98223 (i=60), 0.98562 (i=80), 0.98793 

(i=100), and 0.95582 (i=i), respectively. 

 

(a) The distribution over C submetric (a) The distribution over B submetric 

Figure 5. The distribution over C and B submetrics 

Although a lower C value will result in using less 

computer resources, it will result in a lower B value. 

Let us now find the relationship between C and B. For 

any pair of different number of iterations i1 and i2, 

where i1 ≥ i2, we define our CB metric as follows. 

 
1 2 1 2 1 2
,

( ) /( )
i i i i i i

CB B B C C= − −   (16) 
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We use i2 = 20 as our performance benchmark to 

verify the solution derived from the second situtation is 

a cost-effective solution. Table 4 shows the different 

CBi1,20 values based on i2 = 20. According to the result 

of Table 4, we find that the CB value derived from the 

second situtation, i1 = i, is always significantly better 

than other i1 values at least 32.161% (0.74883 - 

0.42722). Moreover, the CB value declines very 

significantly when the required number of iterations is 

larger than i1 = i. Therefore, the solution derived from 

our PLSI with EM-CES is a cost-effective solution. 

Table 4. The different CB values based on i2 = 20 

 i2=20 i1=40 i1=60 i1=80 i1=100 i1=i 

B 0.88224 0.97126 0.98223 0.98562 0.98793 0.95582

C 0.18543 0.39380 0.57742 0.77120 0.97433 0.28369

CB  0.42722 0.25508 0.17649 0.13397 0.74883

5 Conclusions and Future Work 

In the blog search study, it often faces two semantic 

problems, synonymy and polysemy. In this paper, we 

applied LSI and PLSI to deal with these two semantic 

problems. LSI can identify the synonymous 

relationship between terms. PLSI can further deal with 

the polysemous problem. Although, PLSI can 

gracefully deal with these two semantic problems, it 

needs a huge computing time. To solve the problem of 

computing time, in this paper, we proposed a novel 

termination mechanism for PLSI, called PLSI with 

EM-CES, to dynamically determine the required 

number of iterations for PLSI. According to the 

analysis and experiment results, the final result derived 

from PLSI with EM-CES can not only deal with the 

problems of synonymy and polysemy but also reach a 

cost-effective solution. 

Due to EM-CES is a post-processing mechanism for 

EM algorithm, so that, in theory, it can be applied to 

solve any EM-like problems, such as data clustering in 

data learning and machine learning [38], statistical 

natural language processing [7], probabilistic context-

free grammars [68], and hidden Markov model 

estimation [26]. Furthermore, we intend to apply EM-

CES to solve other EM-like problems to drastically 

reduce the computing time. 
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