
A Novel Judge Mechanism to Enhance the Performance of Google Blog Search 981

A Novel Judge Mechanism to Enhance the Performance of

Google Blog Search

Lin-Chih Chen*

Department of Information Management, National Dong Hwa University, Taiwan

lcchen@mail.ndhu.edu.tw

*Corresponding Author: Lin-Chih Chen; E-mail: lcchen@mail.ndhu.edu.tw

DOI: 10.3966/160792642018081904002

Abstract

In recent years, the online blogging community is

growing bigger as the social network service. When it is

growing, the blog posts are increasing day by day.

Generally speaking, people were using the blog search

engines to search and recommend potentially interesting

blog posts. When people search from the blog search

engines, they were faced with two major problems:

synonymy (two different terms with the same meaning)

and polysemy (a term with different meanings). In this

paper, we use two semantic analysis methods, Latent

Semantic Indexing (LSI) and Probabilistic LSI (PLSI), to

solve these two problems. LSI uses singular value

decomposition as the fundamental method to capture the

synonymous relationship between terms. PLSI uses the

Expectation-Maximization algorithm for parameter

estimation to additionally deal with the problem of

polysemy. Although PLSI can gracefully deal with these

two semantic problems, it needs a huge computing time.

To solve the problem of computing time, in this paper,

we propose a novel termination mechanism to

dynamically determine the required number of iterations

for PLSI. According to the experiment results, the result

derived from our mechanism can not only deal with these

two semantic problems but also reach a cost-effective

solution.

Keywords: Blog posts, Google blog search, Web 2.0,

Expectation-maximization algorithm, Semantic

problems

1 Introduction

As information technology advances rapidly, hosts

with Internet access capability are becoming

increasingly popular and a growing number of

applications and services on the web. From the early

start, web 1.0 is the first generation of the web which

according to Tim Berners-Lee. In this generation, web

includes only static web content instead of dynamic

user-generated content. It is only one way of pushing

web content to many people via websites visited and

emails transmitted.

The key evolution from web 1.0 to web 2.0 is to

allow the users to build an interactive, collaborative,

and user-generated content. According to Best [3], the

main characteristics of web 2.0 compared to web 1.0

are the following: rich user experience, user

participation, dynamic content, metadata, web

standards, and scalability. There are many famous

examples of web 2.0, including social networking sites,

blogs, wiki, and stream media video sites.

One popular web 2.0 application is the blog, a

hybrid between a diary and an online journal,

characterized by chronological ordering of information

[47]. A user can publish a blog post and other users can

read and comment on it. There are two major

advantages for creating a blog: (1) it adds some more

depth to the blog posts; (2) it builds community and

reader loyalty [46].

From the early ages to our recent years, the

exponential rise in the number of blogs from thousands

in the late 1990s to hundreds of millions in 2015 [52,

54] has created a need for effective access and retrieval

services. Today, there are many blog search engines

available on the web, such as Google Blog Search,

Amatomu, Bloglines, BlogScope, IceRocket, Munax,

Regator, and Technorati to help the users find useful

blog posts quickly from such huge blogs.

Blog search engines have become more and more

sophisticated, helping users find appropriate blog sites

that offer frequently updated content on pretty much

any topic users can possibly think of. However, two

additional problems with most traditional blog search

engines are the low coverage (or called synonymy) and

the lack of disambiguation ability (or called polysemy)

[45, 58, 61]. In some cases two relevant terms never

occur with each other, and they will not be found by

the traditional blog search engines. In other cases a

term may have several different meanings in the search

results. For example, the search results for an “apple”

query (by Regator) contain an abundance of pages

about a computer company and the first search result

that related to a kind of fruit is located at about the

30th place. A user must refine his/her query in order to

find relevant blog posts; this process can be long and

annoying especially for an inexperienced user.

982 Journal of Internet Technology Volume 19 (2018) No.4

In this paper, we use two semantic analysis methods,

Latent Semantic Indexing (LSI) [11] and Probabilistic

LSI (PLSI) [23], to deal with the problems of

synonymy and polysemy as mentioned above for the

study of blog search engine. LSI first uses Singular

Value Decomposition (SVD) to infer the hidden

relationship between any two terms for all collected

blog posts. To find the relevant terms, LSI then uses a

dimensionality reduction technique to remove the noise

from the result of SVD. However, LSI cannot

effectively deal with the problem of polysemy because

of SVD is a one-by-one mapping from a certain term to

a particular document [13, 37]. PLSI uses the

Expectation Maximization (EM) algorithm to estimate

the most likely meanings for each term. PLSI can

effectively deal with the problems of synonymy and

polysemy because of the EM algorithm is a statistical

inference technique that can estimate multiple

parameters simultaneously [17, 57].

However, the running time for PLSI is always huge

because of the EM algorithm is a time-consuming

algorithm [4, 25, 40]. This of course will result in PLSI

is very difficult to be applied to solve the problems of

large web documents. In this paper, we propose a novel

intelligent mechanism called EM with Cost-Effective

Solution (EM-CES) to effectively reduce the problem

of long running time in PLSI. The detail of EM-CES is

shown in the following section. Overall, we can

guarantee that the result obtained from PLSI with EM-

CES is a cost-effective solution.

The rest of this paper is organized as follows:

Section 2 presents the related work. This is followed

by an overview of the method in Section 3. Section 4

shows the results with some analysis, and finally

Section 5 concludes the paper and provides possible

future directions.

2 Related Work

In this section, we briefly present some of the

research literature related to the study of blog search,

the applications of LSI and PLSI, and the termination

criteria for EM algorithm.

2.1 The Study of Blog Search

Blog is an abbreviated version of weblog, which is a

term used to describe websites that maintain an

ongoing chronicle of information. A blog is a

frequently updated personal online journal or diary

kept by a blogger. Blogs range from being some of the

most influential websites on the Internet like the

Huffington Post, which is an online newspaper that is

written by a team of professional journalists, that is

worth millions, and is influential in business and

politics; to niche related website like Blog Basics,

which is focused exclusively on blogging related

information.

Many blogs focus on a particular topic or subject

area, such as politics, travel, sports, or 3C technology.

Some are more generic, presenting links to all types of

other sites. And others are more like personal journals,

presenting the author’s daily life and thoughts. Among

the many sources and types of blog posts, how to

effectively search these massive blog posts become a

key problem in the blog study. Fortunately, there are

many blog search engines available on the web such as

Google Blog Search, Amatomu, Bloglines, BlogScope,

IceRocket, Munax, Regator, and Technorati to help

users find what users need.

In recent years, there are many researches which

focus on how to effectively search the blog posts.

Takama et al. [59] used a concept of keyword map to

design an interactive blog search. They designed an

algorithm to help the users to find some interesting

blog topics, in which the users are interested on the

keyword map. Kim et al. [33] proposed a trackback-

rank algorithm for the effective blog search. The

algorithm ranks all blog posts by calculating the

reputation scores of bloggers, trackback scores, and

comment scores based on the features of the blog posts.

Zhu et al. [69] first analyzed the search results of a

sequence of temporally-ordered queries returned by a

blog search engine, and then built and maintained some

blog profiles for those blogs whose posts frequently

appear in the top-ranked search results. Jeong and Oh

[29] proposed a blog search framework which enables

a more in-depth search on a given topic by extracting

the collective intelligence features in social community

sites and through the query extension using these

features. Kuwata et al. [31] used two processes to

decide for blog posts to include some product review

sentences. The first process creates a data set of certain

product that contains those review sentences. Second

process is a search for those review sentences. This

process uses the extracted opinion tuples from one

sentence of blog posts and creates the data set to decide

whether a sentence containing the review sentences.

Kim et al. [32] proposed an algorithm that efficiently

performs a ranking for the blog posts retrieval in order

to solve the uncertainty of information in blogosphere.

2.2 The Applications of LSI and PLSI

In this paper, we use LSI and PLSI to deal with the

problems of synonymy and polysemy. LSI use SVD

and a dimensionality reduction technique to capture the

relationship between terms for all collected documents.

The advantage for LSI is that it can handle the problem

of identifying synonymy via the dimension-reduction

technique [13]. Conversely, the disadvantage of LSI is

that it cannot deal with the problem of polysemy

because of SVD is only a one to one mapping from a

specific term to a specific document [37]. Several

researchers have successfully applied LSI to some

practical applications of web mining. Ozsoy et al. [48]

presented a generic extractive text summarization

A Novel Judge Mechanism to Enhance the Performance of Google Blog Search 983

system based on LSI. They applied the known and

proposed LSI-based text summarization approaches to

the documents with different languages. Assessing the

semantic similarity of documents is an important steps

in many real-world applications ranging from

summarization to educational system [34, 41] to

automatic detection of duplicate documents. Luh et al.

[42] used LSI and the genetic algorithm to estimate

Google’s search engine ranking factors. In their

conclusions, they suggested that multiple ranking

criteria can effectively close to the ranking factors of

Google search engine. Evangelopoulos [15] applied

LSI to a number of applications from linguistics,

psychology, cognitive science, education, information

science, and the analysis of textural data. Kuo et al. [36]

proposed a framework for background music

recommendation based on LSI between video and

music. They addressed the problem of recommending

appropriate background music for a user-specified

video.

PLSI uses the EM algorithm to obtain the maximum

likelikhood estimates of the parameters between terms.

Compared to LSI, the advantage of PLSI is that it can

further handle the problem of identifying polysemy

because of the EM algorithm is a statistical estimation

technique that can estimate multiple parameters

simultaneously [14, 17, 57]. In contrast, the running

time of PLSI is very huge because of the EM algorithm

is a time-consuming approach [4, 25, 40]. Many

researchers have successfully applied PLSI to solve

some real problems in web mining. Hennig [21] used

PLSI to complete an automatic multi-document

summarization task. Multi-document summarization is

an increasingly important task because of the

condensation of information from different sources

into an informative summary helps to reduce

information overload. Some researchers [66, 68] used

PLSI to improve human action recognition from the

query video. Human action recognition is

automatically to analyze ongoing activities from

unknown videos. Mesaros et al. [44] used PLSI to

model the co-occurrence of overlapping sound events

in audio recordings from everyday audio environments.

McInerney et al. [43] used PLSI to predict the next

location for a new user based on a similar pattern

appears in some historical users.

2.3 The Termination Criteria for EM Algorithm

PLSI uses the EM algorithm to estimate the

probability values which measure the relationships

between the hidden latent factors and the two sets of

objects. The EM algorithm is an iterative procedure for

finding the maximum likelihood estmation’s of the

parameters in situations where the model depends on

some missing or latent variables so that computing the

maximum likelikhoog estimation is not straightforward.

Each iteration of EM algorithm consists of two steps,

namely the Expectation (E) step and the Maximization

(M) step. In the E-step, it computes the expectation of

the log-likelihood by replacing the unobservables with

their conditional expectations given the current

estimates of the parameters and the data; in the M-step,

it maximizes the expected log-likelihood calculated in

the E-step.

Although the EM algorithm can converge to a local

optimization solution, it may take a very long time to

reach the soution. Many researchers alternatively use

different criteria to determine the algorithm should be

terminated or continued. The termination criteria of the

algorithm can broadly be divided into two main

situations: (1) using a fixed number of iterations as the

maximum predefined number of iteraionts in the

algorithm [12, 19, 49, 60, 63]; (2) setting a predefined

threshold to decide whether the algorithm should be

terminated.

Let us now discuss the second situation as follows.

Bertin et al. [2] first used the manual method to

evalutate the difference performance curves generated

by the algorithm. Then, a predefined threshold is

decided by the average score throughout all the curves.

Park and Ramamohanarao [51] introduced an efficient

method to store all relevant information of the

algorithm. They decided the best threshold for one

group is ten to twenty percent. According to this

predefined threshold, they claimed that the algorithm

can save a lot of storage space. Chou and Chen [10]

proposed an incremental EM model to solve the

problem of online event analysis. They decided a new

document should be created a new event group if its

similarity with all the event group in a certain number

of documents is below to a predefined threshold;

otherwise, it is assigned to the event group that is the

most similar. Xue et al. [67] proposed a new cross-

domain text classification method to integrate the

labelled and unlabelled data that are come from

different but related documents into a topic-bridged

EM model. They used a predefined document

frequency threshold to cut down the number of features

to speed up the classification process. Balog et al. [1]

first used the algorithm to identify a personal name in a

set of documents. Then, they applied a naive Bayes

classifier to measure the similarity between a document

name and a personal name. Finally, they decided that a

document should be assigned to the most likely cluster

of personal name if the similarity score is higher than a

predefined threshold; otherwise, the document should

be assigned to a new cluster. Some of other researchers

used the log-likelihood function [39, 50, 62] as the

performance measure. The iterations of the algorithm

continue to process until the change of performance

measure between two consecutive iterations is smaller

than a predefined threshold.

Regardless of whether using a fixed number of

iterations or a predefined threshold as a termination

criterion for EM algorithm, it may causes two potential

problems. First, a small number of iterations may result

984 Journal of Internet Technology Volume 19 (2018) No.4

in a large difference between the final and local

optimization solutions. Second, a large number of

iterations may result in a small improvement in these

two solutions.

Some researchers [9, 35] provided a probability

model for applying genetic programming to minimize

the total number of individuals that need to be

processed until a predefined maximum number of

iterations are reached. He pointed out that there is a

point after which the cost of extending a given iteration

exceeds the performance obtained from the increase in

the cumulative probability of success. To prevent these

two potential problems as mentioned above, we use

their suggestion to develop our dynamic termination

strategy for EM algorithm.

3 An Overview of Our Study

In this section, we first introduce a flow chart of our

study as shown in Figure 1, then explain the data

source of our study. Next, we discuss some

preprocessing steps to transform the data source into

the input of different semantic models. After that, we

describe the semantic models, namely LSI and PLSI,

used in our study. Finally, we present a novel

termination mechanisam, PLSI with EM-CES, to

achieve a cost-effective solution.

Figure 1. The flow chart of our study

The start point of our study is to fetch the relevant

documents from the data source. In this paper, we take

Google Blog Search’s result as our data source. Google

Blog Search is a specialized search engine for blogs

that currently uses the search tools in Google News to

search all blog posts that have been indexed by Google

Blog Search. We choose Google Blog Search as our

data source because of it is the most widely used and

accurate blog search engine in the world [64].

Today, Google has quitely disabled the Google Blog

Search home page at google.com/blogsearch and

redirects it to the Google home page [55]. Now, if we

want to filter content based on blog posts, we can do so

by going to Google News, clicking on the search tools

and selecting the “All news” drop down and checking

off just “Blogs”.

To significantly reduce documents’ fetching time,

we develop a novel web crawling agent with multi-

threading capability. In short, we can crawl the

documents as much as possible in parallel.

Theoretically, when the factors of network latency and

document processing time are not considered, the

fetching time for many documents is the same as for a

single document.

3.1 The Preprocessing Stage

In the preprocessing stage, we totally use the Perl

Compatible Recular Expression (PCRE), Natural

Language Processing (NLP), and Matrix Processing

steps to transform the data source into the input of

different semantic models.

First of all, we must establish a method to convert

unstructured HTML documents into structured

documents because of the document returned from the

data source is an unstructured HTML document [8]. In

this paper, we use PCRE [20], which is a regular

expression pattern matching library, to do the

conversion process. Each structured document for our

study consists of a document title, snippet, and URL.

Secondly, we use some NLP techniques to transform

each sentence in the structured document into a series

of meaningful terms. We define that a term is a

meaningful term if and only if each term satisfies the

following three conditions: (1) it does not contain any

stop words; (2) it only contains the root word; (3) it

does not contain any non-word tokens. In this study,

we use the following NLP techniques to satisfy the

above three conditions: Stop-Word, Stemming, and

A Novel Judge Mechanism to Enhance the Performance of Google Blog Search 985

Non-Word. We first use 421 stop words such as

articles, prepositions, pronouns, and so on, as

suggested by Fox [18], to filter out unimportant words.

We also use Porter’s stemming algorithm [53] to

obtain the root word for a given word. Finally, all non-

word characters, such as puncuation and whitespace

with nothing, are stripped off.

Lastly, in the Matrix step, we transform all

meaningful terms into the structured matrix data,

which is the input of LSI and PLSI semantic models.

LSI and PLSI are the well known matrix models [22];

that is, we need to transform the meaningful terms into

a matrix form. In this step, we use the Term

Frequency-Inverse Document Frequency (TFIDF) and

Probability (P) methods to do the transformation task.

The TFIDF method, as shown in the following

equation, gives a high weight to the meaningful terms

occurring frequently in the document but rarely in the

rest of the corpus.

 (,) (,) log(| | / |{ : } |)tfidf t d tf t d D d D t d= × ∈ ∈ (1)

where tfidf(t,d) represents the TFIDF weight of term t

in document d; tf(t,d) is the number of times that term i

occurs in document j; |D| is the total number of

documents in the corpus D; |{d∈D:t∈d}| is the number

of documents where term t appears. The P method sets

a probability weight of term t in document d as shown

in the following equation.

 (,) (,) / (,)
k

P t d tfidf t d tfidf k d= ∑ (2)

where P(t,d) represents the probability weight of term t

in document d and the denominator of P(t,d) is the sum

of each tfidf’s weight in the document d.

3.2 The Semantic Models Stage

In the semantic models stage, we use the LSI and

PLSI semantic models to deal with the problems of

synonymy and polysemy. LSI first uses SVD to

decompose the structured matrix data SM into the

product of three other matrices, as shown in the

following equation.

 T
SM USV= (3)

where U = (u1, u2, …, ur) is a |T|×r matrix of left

singular vectors; S = diag(s1, s2, …, sr) is a r×r

diagonal matrix; V = (v1, v2, …, vr) is a |D|×r matrix of

right singular vectors. LSI then finds a low-rank

reduction matrix ~SM, which is smaller and less noisy

than SM to filter noisy data and absorb synonymy. For

a fixed |Z|<r, using a truncated SVD technique that

conserves |Z| largest singular values in S matrix and set

others to be zero to approximate original SM matrix.

PLSI uses an aspect model to identify the hidden

semantic relationship among terms and documents [23].

It first calculates the join probability of an observed

pair, P(t,d), by summing overall all possible choices of

z from which the observation has been generated, as

shown in the following equation; where p(t|z) denotes

the posterior probability of a particular term t given the

observation laten topic z, p(z) denotes the probability

that z has observed, p(d|z) denotes the posterior

probability of a particular document d given z.

 (,) (|) () (|)
Z

P t d p t z p z p d z= ∑ (4)

To obtain the final result of P(t,d), PLSI follows the

likilihood principle to estimate the parameters of p(t|z),

p(z), and p(d|z) by maximum the likihood function’s

value at iteration i, Li(t,d), as shown in the following

equation.

 (,) log((,))
i t d

L t d SM p t d= ∑ ∑ × (5)

The standard procedure for maximum likelihood

estimation in PLSI is the EM algorithm. Generally, two

steps are needed to perform in the algorithm alternately:

‧ E-step, where the posterior probability of z is

calculated based on the current estimates of

conditional probability, as shown in the following

equation.

(| ,) (|) () (|) / (|) () (|)
z

p z t d p t z p z p d z p t z p z p d z= ∑ (6)

‧ M-step, where the estimated conditional probabilities

are updated and used to maximize the total

likelihood function based on the posterior

probability calculated in E-step, as shown in the

following equations.

(|) (| ,) / (| ,)
d t d

p t z SM p z t d SM p z t d= ∑ × ∑ ∑ × (7)

 () (| ,) /
t d t d

p z SM p z t d SM= ∑ ∑ × ∑ ∑ (8)

(|) (| ,) / (| ,)
t t d

p d z SM p z t d SM p z t d= ∑ × ∑ ∑ × (9)

3.3 The Detail of PLSI with EM-CES

The computational time of PLSI is higly dependent

on the EM algorithm. Hofmann et al. [24] has been

proven that the time complexity of PLSI is

O(|T|×|D|×|Z|), where O(|T|×|D|) is the time complexity

of EM algorithm for each iteration. However, in the

current Internet age, the total number of terms (|T|) and

documents (|D|) are both very huge. At the same time,

the total number of laten topics (|Z|) follows the growth

of |T| and |D| [27]. When PLSI is applied to solve a

large-scale information retrieval problem, in such huge

|T|, |D|, and |Z|, PLSI is prone to the performance

degradation problem.

According to the literature review, the termination

criteria for EM algorithm are divided into two

situations: (1) it converges to a local optimization

solution, and (2) it reaches the maximum allowable

number of iterations. Next, let use discuss these two

situations as follows.

Situation 1: it converges to a local optimization

solution. In this situation, we define that the local

986 Journal of Internet Technology Volume 19 (2018) No.4

optimal solution is reached, as shown in the following

equation, if the improvement value between two

consecutive iterations is less than a predefined small

threshold value.

, 1
(,)

i i
IV t d λ

−

≤ where
, 1 1
(,) (,) (,)

i i i i
IV t d L t d L t d

− −

= − (10)

where Li(t,d), as mentioned in equation (5), is the the

likelihood function’s value at iteration i; λ is the

predefined threshold value; IVi,i-1(t,d) is the

improvement value between iterations i and i-1.

Situation 2: it reaches the maximum allowable

number of iterations. If we set a small number of

iterations to perform the EM algorithm, it may result in

a large difference between the final and local optimal

solutions. Conversely, a large number of iterations to

perform the algorithm may result in a small

improvement in these two solutions. The key point of

these two problems is that cost and performance are

always on the opposite sides.

In our study, we use the suggestion by Koza [35]

that there is a point after which the cost of extending a

given iteration exceeds the performance to develop our

EM-CES termination criterion. According to there

suggestion, we need to define two important curves,

one is the cost curve and the other is the performance

curve.

The cost curve is defined as the number of

successive iterations for which the performance is not

improved. According to this definition, the cost curve

for iteration i, CCi, is shown in the following equation,

where the right-hand side of the “if” condition in

equation (11) is the average value of all improvement

values for each iteration.

1

, 1 , 1

1,

if (,) ((,))

i i

i i i

CC CC

IV t d avg IV t d
γ γ γ

−

− ≤ −

= +

≤ ∑
 (11)

The performance curve for iteration i, PCi, is defined

as following, where |Z| is the total number of laten

topics, σ(IVi,i-1(t,d)) is the standard deviation of all IVγ,γ-

1(t,d) values, avg(Σγ≤i σ(IVγ,γ-1(t,d))) is the average value

of all σ(IVi,i-1(t,d)) values for each iteration.

, 1 , 1

, 1 , 1

(,) ((,))
| |

((,)) ((,))

i i i i

i

i i

IV t d IV t d
zPC

avg IV t d avg t d
γ γ γ γ γ γ

σ

σ

− −

≤ − ≤ −

⎡ ⎤
× ×=⎢ ⎥∑ ∑⎣ ⎦

 (12)

We then disscuss the performance curve as follows.

According to the above discussion, the time

complexity of PLSI is O(|T|×|D|×|Z|). Obviously, the

total number of iterations required by PLSI is closely

related to the total number of laten topics |Z|; thus, we

set |Z| as a dominant parameter of the performance

curve.

We also use the rate of historical performance

improvement (IVi,i-1(t,d)/avg(Σγ≤iIVγ,γ-1(t,d))) and the

rate of variable performance improvement (σ(IVi,i-

1(t,d))/avg(Σγ≤i σ(IVγ,γ-1(t,d)))) as the other two domiant

parameters of the performance curve. We assume that

there is an insignificant performance improvement or

variable performance improvement in the likelihood

function if either the rate of historical performance

improveent or the rate of variable performance

improvement is less. The situation 2 can use Figure 2

to represent it.

Iterations number

i

Figure 2. A diagram illustration of the cost and

performance curves

Lastly, by the definition of the above two situations,

we can define our dynamic termination strategy for

EM algorithm as follows.

, 1

(,)
i i

IV t d λ
−

≤ or
i i

CC PC≥ (13)

4 The Results and Discussion of the

Experiment

In this section, we perform two experiments to

illustrate the effectiveness and efficiency of the

proposed method. In the first experiment, we want to

compare the performance of different semantic models

and WordNet. In the second experiment, we perform a

simulation to verify that the result obtained from our

PLSI with EM-CES mechanisam is a cost-effective

solution.

4.1 Experimental Data and Measures

In this study, the experimental data is selected from

top 10 searched keywords on Google and Yahoo in

2012, 2013, and 2014. By screening all keywords, we

delete some repeating keywords and retain only one

keyword. The full set of experimental data is shown in

[5]. We first send the selected keywords to Google

Blog Search and then do all tasks in Figure 1. Actually,

for each keyword, Google Blog Search can return from

350 to 400 search results; thus, we respectively choose

10, 20, 40, 80, 160, 240, and 350 documents as the data

source of our experiment.

Due to the result of LSI and PLSI is a matrix form,

we need to find some similarity functions to calculate

the similarity measure between two term vectors in a

A Novel Judge Mechanism to Enhance the Performance of Google Blog Search 987

term-by-document matrix. The similarity function can

be any similarity measure. The most commonly used

are cosine and correlation coefficient similarity

measures [6]; thus, in this paper, we use these two

similarity measures to evaluate the performance of

different experiments.

Next, we use an example to illustrate how to use the

similarity functions to calculate the average similarity

measure of the matrix. Assume Table 1 is the final

result of the semantic model when the user’s query is

processed.

Table 1. The final result of the Y semantic model,

where Y∈{LSI, PLSI}

 d1 d2 d3

t1 0.56 0.12 0.33

t2 0.34 0.25 0.25

t3 0.74 0.33 0.15

We first calculate the cosine similarity score of the

term vectors t1 (<0.56, 0.12, 0.33>) and t2 (<0.34, 0.25,

0.25>). The calculation process is shown below.

1 2

2 2 2 2 2 2

.56 .34 .12 .25 .33 .25
(,)

.56 .12 .33 .34 .25 .25

0.93424

Cos t t
× + × + ×

=

+ + × + +

=

Similarly, we also can calculate the cosine similarity

scores for Cos(t1,t3)=0.92443 and Cos(t2,t3)=0.91938.

We now can calculate the average cosine similarity

measure of the matrix by an average of these three

cosine similarity scores, so the average cosine

similarity measure of the matrix is 0.92602.

We then calculate the correlation coefficient

similarity score of the term vectors t1 and t2 where the

average values of t1 and t2 are
1
t =0.34 and

2
t =0.28,

respectively. The calculation process is shown below.

1 2

2 2 2 2 2 2

(,)

(.56 .34) (.34 .28) (.12 .34) (.25 .28) (.33 .34) (.25 .28)

[(.56 .34) (.12 .34) (.33 .34)] [(.34 .28) (.25 .28) (.25 .28)]

0.87884

t tρ

− × − + − × − + − × −
=

− + − + − × − + − + −

=

Similarly, we also can calculate the correlation

coefficient similarity scores for ρ(t1,t3)=0.69701 and

ρ(t2,t3)=0.95468. We now can calculate the average

correlation coefficient similarity measure of the matrix

by an average of these three correlation coefficient

similarity scores, so the average correlation coefficient

similarity measure of the matrix is 0.84351.

4.2 Experiment with Different Semantic

Models and WordNet

We input a keyword “mobile phone jb” to Google

Blog Search to carefully detail and explain the

synonymous and polysemous problems how to impact

the performance on different semantic models. Table 2

shows the results of cosine and correlation coefficient

measures for different analysis models. Let us look at

the table; we observe that the cosine and correlation

coefficient measures for LSI and PLSI semantic

models are significantly better than non-semantic

TFIDF model. Next, we analyze the reason for it.

Table 2. The results of cosine and correlation

coefficient measures for different analysis models

(a) TFIDF matrix

 d1 d2 d3 d4 d5

mobile phone 0 0 0 0 0

jb 0 0.67 0 0.44 0.66

jailbreaking 0.67 0 0.67 0 0.44

cellular phone 0 0.48 0.19 0.10 0.29

jelly been 0 0.80 0 1.59 0

Cosine-0.48257, Correlation Coefficient-0.40253

(b) LSI matrix

 d1 d2 d3 d4 d5

mobile phone 0.53 0.47 0.28 0.38 0.61

jb 0.25 0.31 0.42 0.36 0.19

jailbreaking 0.28 0.52 0.33 0.28 0.22

cellular phone 0.46 0.43 0.24 0.37 0.57

jelly been 0.32 0.37 0.52 0.54 0.25

Cosine-0.91671, Correlation Coefficient-0.66927

(C) PLSI matrix

 d1 d2 d3 d4 d5

mobile phone 0.38 0.22 0.35 0.37 0.27

jb 0.32 0.35 0.27 0.29 0.31

jailbreaking 0.45 0.37 0.40 0.43 0.34

cellular phone 0.43 0.36 0.44 0.40 0.35

jelly been 0.38 0.29 0.37 0.41 0.34

Cosine-0.98961, Correlation Coefficient-0.70190

Let us look at the table again in detail, we find that

two terms, “mobile phone” and “cellular phone” have

the feature of synonymy. Similarly, the terms, “jb” and

“jailbreaking” (or “jelly bean”), also have the feature

of synonymy; that is, the abbreviation of “jailbreaking”

or “jelly bean” is “jb”. In this experiment, the cosine

and correlation coefficient measures for LSI are

significantly improved to 0.91671 and 0.66927,

respectively, compared to TFIDF model, respectively.

That is, by filtering the noise data from the non-

semantic TFIDF matrix, LSI can group the semantic-

related terms with the same topic together to enhance

the retrieval performance.

Moreover, the term “jb” is also a polysemous term

because of it has at least two distinct meanings,

“jailbreaking” and “jelly bean”. Looking the result of

PLSA, we find that the cosine and correlation

coefficient measures for PLSI are further enhanced to

0.98961 and 0.70190, respectively, compared to LSI

model. This performance improvement is because

PLSI can further deal with the problem of polysemy.

This result also echoed the finding of Ishida and Ohta

[28]; that is, LSI and PLSI can effectively deal with the

problem of synonymy, but LSI lacks capability to deal

with the problem of polysemy, because, by using SVD

technology, a row vector in a matrix can only represent

988 Journal of Internet Technology Volume 19 (2018) No.4

a term. PLSA uses the aspect model to estimate the

joint probability of terms and documents. By using the

latent probability method, we can clearly distinguish

different meanings and types between terms so PLSA

can gracefully deal with the problem of polysemy.

Next, we conduct an extended experiment on a

large-scale dataset. For the above-mentioned 49

keywords, we also use Google Blog Search to crawl

the HTML documents, and then perform the

preprocessing stage in Figure 1 to produce a term-by-

document matrix required by different analysis models.

We also use the cosine and correlation coefficient

measures to measure the performance of different

analysis models.

The performance of different analysis models based

on different number of latent topics as shown in the

subfigures (a) and (b) of Figure 3. Each dot in these

subfigures is the average value of all different number

of documents (10, 20, 40, 80, 160, 240, and 350).

According to the results of these two subfigures, the

similarity value is decreased along with the total

number of latent topics |Z| is increased. The best and

worst semantic models are P-PLSI and TFIDF-LSI,

respectively. Note that, in Figure 3, X-Y denotes that

the input of Y semantic model is the result of X method

where X ∈{TFIDF, P}, Y ∈{LSI, PLSI}, and TFIDF

not X-Y denotes the non-semantic model’s result.

Figure 3. The performance comparison for different analysis models

The similarity difference between TFIDF-LSI and P-

PLSI is largest when |Z| is equal to 2, and the

difference is getting smaller when |Z| is getting larger.

For some special cases (|Z| = 2 or |Z| = 10), the

performance of TFIDF-LSI is better than TFIDF-PLSI,

but in other cases (|Z|>10), the performance of TFIDF-

PLSI is better than TFIDF-LSI. This implies that PLSI

has a better performance when |Z| is getting larger.

Compared to P-PLSI and TFIDF-PLSI, we find that the

performance of P-PLSI is always better than TFIDF-

PLSI and this implies that a mixed input method P,

which is a probability processing of TFIDF as

described in section 3.1, can be used to improve the

performance.

A Novel Judge Mechanism to Enhance the Performance of Google Blog Search 989

Similarly, the performance of different analysis

models based on different number of documents as

shown in the subfigures (c) and (d) of Figure 3. Each

dot in theses subfigures is the average value of all

different number of topics (2, 10, 20, 30, 40, and 50).

According to the results of these two subfigures, the

performance is increased along with the number of

documents |D| is increased. This implies that the

performance is getting better when the number of

document is getting larger. According to the above

analysis, the performance derived from the PLSI-like

model is better than the LSI-like model, and this

implies that PLSI can achieve a better semantic

processing ability than LSI.

Let us now compare the models of P-PLSI and P-

PLSI with EM-CES, the performance difference is

between 1.067% to 1.992%. However, according to the

result of experiment on the cost-effective solution as

shown in the next experiment, P-PLSI needs more

execution time than P-PLSI with EM-CES at least

240%. This implies that the performance improvement

of PLSI is negligible after iteration i decide by PLSI

with EM-CES. PLSI with EM-CES can significantly

reduce the execution time and maintain the

performance. That is, we can guarantee that the result

generated from our PLSI with EM-CES model is a

cost-effective solution.

Finally, let use compare the result of non-semantic

TFIDF and semantic X-Y models. According to the

result of Figure 3, we find that the performance of X-Y

is improved between 3.754% to 26.409% compared to

TFIDF model. This implies that, by using the semantic

analysis method, we can effectively deal with the

problems of synonymy and polysemy.

WordNet is a lexical database of English which

groups lexical units, nouns, verbs, adjectives and

adverbs, according to their semantic and lexical

relations. In the latest version, it contains 155287

words organized in 117,659 synsets (a set of words

having the same or close meaning) for a total of

206941 word-sense pairs [65]. One of the traditional

ways to solve the problems of synonymy and polysemy

is to use WordNet as a corpus-based dictionary to

measure the similarity of two words [16, 30, 56]. Next,

we use WordNet as a word corpus to measure the

average similarity of the matrix.

The detailed process of WordNet processing is

described as follows: we first use the preprocessing

stage of Figure 1 to generate a TFIDF matrix based on

the user’s query. Then, for any terms tx and ty in a

document, we update the weights of tx and ty to the

maximum weight for the weights of tx and ty if the

weights of tx and ty are not 0 where tx and ty are the

same synset in the WordNet corpus. To generate a

TFIDF-WordNet, we repeatedly update the weights for

each cell of the original TFIDF matrix until all cells are

compared. Table 3 shows the results of cosine and

correlation coefficient measure for TFIDF, TFIDF-

WordNet, and TFIDF-LSA.

Table 3. The comparison of TFIDF, TFIDF-WordNet,

and TFIDF-LSA

Cosine

 |Z|=2 |Z|=10 |Z|=20 |Z|=30 |Z|=40 |Z|=50

TFIDF 0.38127 0.26987 0.25107 0.20315 0.19170 0.16711

TFIDE-WordNet 0.41265 0.31234 0.28124 0.23141 0.22178 0.19144

TFIDF-LSI 0.63064 0.49008 0.38296 0.34017 0.31506 0.29162

Improved Rate 52.827% 56.906% 36.168% 46.999% 42.060% 52.330%

Correlation Coefficient

 |Z|=2 |Z|=10 |Z|=20 |Z|=30 |Z|=40 |Z|=50

TFIDF 0.36143 0.22215 0.09885 0.07701 0.06559 0.05119

TFIDE-WordNet 0.38245 0.24135 0.12351 0.09877 0.08912 0.07643

TFIDF-LSI 0.56673 0.34649 0.19185 0.15217 0.10313 0.08992

Improved Rate 48.184% 43.563% 55.332% 54.065% 15.720% 17.650%

In the table, the row of “Improved Rate” represents

the improvement rate of the LSI semantic model

(TFIDF-LSI) compared to the WordNet dictionary

model (TFIDF-WordNet). For example, in the cosine

measure, the improvement rate of TFIDF-LSI is

(0.63064-0.41265)/0.41265=52.827% for |Z|=2 compared

to TFIDF-WordNet. Totally, the improvement rate of

the LSI semantic model can range from 15.720% to

56.906%. The reasons are as following: (1) on the one

hand, in the WordNet corpus, it only covers a limited

amount of words, but in the field of blog search, they

have many new terminologies not in the WordNet

corpus; (2) on the other hand, in the WordNet corpus,

it is based on the word rather than the term as the basic

element of NLP processing, however the meaning of

word is always less than the whole term. This implies

that the performance of the semantic model is

significantly better than the dictionary model in the

field of blog search.

4.3. Experiment on the Cost-effective Solution

In this experiment, we want to verify the result

generated from our PLSI with EM-CES model is a

cost-effective solution. We randomly generate the

following parameters: |T| (total number of terms), |D|

(total number of documents), |Z| (total number of latent

topics), and the elements in TFIDF matrix. Interested

readers can simulate this experiment at http://cayley.

sytes.net/simulation/em-ces.php. All other parameters,

including i, IVi,i-1(t,d), avg(Σγ≤iIVγ,γ-1(t,d)), σ(IVi,i-1(t,d)),

avg(Σγ≤iσ(IVγ,γ-1(t,d))), PCi, CCi, and Li(t,d), are defined

in section 3.

Figure 4 is a simulation run for our PLSI with EM-

CES model. In the first situation, IVi,i-1(t,d)≤λ, we set λ

equal to 0.01, and it means that the situtation is met if

the improvement value between two consecutive

iterations is less than or equal to a relatively small

value λ. In Figure 4, the local optimal solution is

reached at iteration iteration 71 and its likelihood

function’s value is 821.461 (L71(t,d) = 821.461). In the

second situtation, CCi ≥ PCi, our PLSI with EM-CES

990 Journal of Internet Technology Volume 19 (2018) No.4

model stops to run at iteration 30 and its likelihood

function’s value is 812.247 (L30(t,d) = 812.247). In this

simulation, PLSI with EM-CES decides to stop the EM

algorithm at iteration 30 rather than 71 because of it

takes an extra 41 (71-30) iterations to result in a

slightly 9.214 improvement. This implies that the

performance improvement is negligible after iteration i

decided by PLSI with EM-CES.

Figure 4. A simulation run for our PLSI with EM-CES

model

To verify the solution derived from the second

situtation is a cost-effective solution, we use a Cost-

Benefit (CB) metric to compare some predefined

number of iterations and the iteration i decided by the

second situtation (i = i). In this experiment, we perform

1000 simulation runs and use the following predefined

number of iterations: i=20, i=40, i=60, i=80, and i=100.

In the CB metric, we need to define two submetrics,

Cost (C) and Benefit (B). The formula of C submetric

is shown below, where Ri(t,d) and Roptimal(t,d) denote

the required number of iterations calculated by

iteration i and the local optimal solution, respectively.

 (,) / (,)i i optimalC R t d R t d= (14)

The subfigure (a) of Figure 5 is the distribution over

C submetric. To understand and simplify the

complexity of Figure 5, each dot in the figure

represents the average value of 100 simulation runs.

The average C values for different number of iterations

are 0.18543 (i=20), 0.39380 (i=40), 0.57742 (i=60),

0.77120 (i=80), 0.97433 (i=100), and 0.28369 (i=i),

respectively.

The formula of B submetric is shown below, where

Li(t,d) and Loptimal(t,d) denote the likelihood function’s

value calculated by iteration i and the local optimal

solution, respectively.

 (,) / (,)i i optimalB L t d L t d= (15)

The subfigure (b) of Figure 5 is the distribution over

B submetric. The average B values for different

number of iterations are 0.88224 (i=20), 0.97126

(i=40), 0.98223 (i=60), 0.98562 (i=80), 0.98793

(i=100), and 0.95582 (i=i), respectively.

(a) The distribution over C submetric (a) The distribution over B submetric

Figure 5. The distribution over C and B submetrics

Although a lower C value will result in using less

computer resources, it will result in a lower B value.

Let us now find the relationship between C and B. For

any pair of different number of iterations i1 and i2,

where i1 ≥ i2, we define our CB metric as follows.

1 2 1 2 1 2
,

() /()
i i i i i i

CB B B C C= − − (16)

A Novel Judge Mechanism to Enhance the Performance of Google Blog Search 991

We use i2 = 20 as our performance benchmark to

verify the solution derived from the second situtation is

a cost-effective solution. Table 4 shows the different

CBi1,20 values based on i2 = 20. According to the result

of Table 4, we find that the CB value derived from the

second situtation, i1 = i, is always significantly better

than other i1 values at least 32.161% (0.74883 -

0.42722). Moreover, the CB value declines very

significantly when the required number of iterations is

larger than i1 = i. Therefore, the solution derived from

our PLSI with EM-CES is a cost-effective solution.

Table 4. The different CB values based on i2 = 20

 i2=20 i1=40 i1=60 i1=80 i1=100 i1=i

B 0.88224 0.97126 0.98223 0.98562 0.98793 0.95582

C 0.18543 0.39380 0.57742 0.77120 0.97433 0.28369

CB 0.42722 0.25508 0.17649 0.13397 0.74883

5 Conclusions and Future Work

In the blog search study, it often faces two semantic

problems, synonymy and polysemy. In this paper, we

applied LSI and PLSI to deal with these two semantic

problems. LSI can identify the synonymous

relationship between terms. PLSI can further deal with

the polysemous problem. Although, PLSI can

gracefully deal with these two semantic problems, it

needs a huge computing time. To solve the problem of

computing time, in this paper, we proposed a novel

termination mechanism for PLSI, called PLSI with

EM-CES, to dynamically determine the required

number of iterations for PLSI. According to the

analysis and experiment results, the final result derived

from PLSI with EM-CES can not only deal with the

problems of synonymy and polysemy but also reach a

cost-effective solution.

Due to EM-CES is a post-processing mechanism for

EM algorithm, so that, in theory, it can be applied to

solve any EM-like problems, such as data clustering in

data learning and machine learning [38], statistical

natural language processing [7], probabilistic context-

free grammars [68], and hidden Markov model

estimation [26]. Furthermore, we intend to apply EM-

CES to solve other EM-like problems to drastically

reduce the computing time.

Acknowledgements

We would like to thank anonymous reviewers of the

paper for their constructive comments which help us to

improve the paper in serveral ways. This work was

supported in part by Ministry of Science and

Technology, Taiwan under Grant Most 107-2410-H-

259-016, 106-2410-H-259-011, 105-2221-E-259-030

& 104-2221-E-259-038.

References

[1] K. Balog, L. Azzopardi, M. de Rijke, Personal Name

Resolution of Web People Search, Proceedings of WWW2008

workshop NLP Challenges in the Information Explosion Era

(NLPIX 2008), Beijing, China, 2008, pp. 1-10.

[2] N. Bertin, R. Badeau, E. Vincent, Enforcing Harmonicity and

Smoothness in Bayesian Non-Negative Matrix Factorization

Applied to Polyphonic Music Transcription, IEEE Transactions

on Audio, Speech, and Language Processing, Vol. 18, No. 3,

pp. 538-549, March, 2010.

[3] D. Best, Web 2.0 Next Big Thing or Next Big Internet

Bubble?, http://zh.scribd.com/doc/4635236/Web-2-0#scribd.

[4] A. V. Brahmane, A. Amune, A Survey of Dynamic Distributed

Network Intrusion Detection Using Online Adaboost-Based

Parameterized Methods, International Journal of Innovative

Research in Advanced Engineering, Vol. 1, No. 9, pp. 256-

262, October, 2014.

[5] CayleyGroup, The Full Queries Set for Google Blog Search,

http://cayley.sytes.net/list/full%20set%20queries.pdf.

[6] S. P. Charaniya, W.-S. Hu, G. Karypis, Mining Bioprocess

Data: Opportunities and Challenges, Trends in Biotechnology,

Vol. 26, No. 12, pp. 690-699, December, 2008.

[7] N. Chater, C. D. Manning, Probabilistic Models of Language

Processing and Acquisition, Trends in Cognitive Sciences,

Vol. 10, No. 7, pp. 335-344, July, 2006.

[8] L.-C. Chen, Improving the Performance of Wikipedia Based

on the Entry Relationship between Articles, Journal of

Internet Technology, Vol. 19, No. 3, pp. 711-723, May, 2018.

[9] L.-C. Chen, C.-J. Luh, C. Jou, Generating Page Clippings

from Web Search Results Using a Dynamically Terminated

Genetic Algorithm, Information Systems, Vol. 30, No. 4, pp.

299-316, June, 2005.

[10] T.-C. Chou, M. C. Chen, Using Incremental Plsi for

Threshold-Resilient Online Event Analysis, IEEE Transactions

On Knowledge and Data Engineering, Vol. 20, No. 3, pp.

289-299, March, 2008.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,

R. Harshman, Indexing by Latent Semantic Analysis, Journal

of the American Society for Information Science, Vol. 41, No.

6, pp. 391-407, September, 1990.

[12] Y. Dorfan, G. Hazan, S. Gannot, Multiple Acoustic Sources

Localization Using Distributed Expectation-Maximization

Algorithm, Proceedings of the 2014 Hands-free Speech

Communication and Microphone Arrays, Villers-les-Nancy,

France, 2014, pp. 72-76.

[13] S. T. Dumais, Latent Semantic Analysis, Annual Review of

Information Science and Technology, Vol. 38, No. 1, pp. 188-

230, 2004.

[14] T. Eda, M. Yoshikawa, T. Uchiyama, T. Uchiyama, The

Effectiveness of Latent Semantic Analysis for Building up a

Bottom-up Taxonomy from Folksonomy Tags, World Wide

Web, Vol. 12, No. 4, pp. 421-440, December, 2009.

[15] N. E. Evangelopoulos, Latent Semantic Analysis, Wiley

Interdisciplinary Reviews: Cognitive Science, Vol. 4, No. 6,

pp. 683-692, November/December, 2013.

992 Journal of Internet Technology Volume 19 (2018) No.4

[16] C. Fellbaum, Wordnet: An Electronic Lexical Database, MIT

Press, 1998.

[17] R. Fernandez-Beltran, F. Pla, Incremental Probabilistic Latent

Semantic Analysis for Video Retrieval, Image and Vision

Computing, Vol. 38, No. C, pp. 1-12, June, 2015.

[18] C. Fox, A Stop List for General Text, ACM SIGIR Forum,

Vol. 24, No. 1-2, pp. 19-35, Fall, 1989.

[19] R. GajšEk, F. Mihelič, S. DobrišEk, Speaker State Recognition

Using an Hmm-Based Feature Extraction Method, Computer

Speech & Language, Vol. 27, No. 1, pp. 135-150, January,

2013.

[20] P. Hazel, Pcre- Perl Compatible Regular Expressions, http://

www.pcre.org/pcre.txt.

[21] L. Hennig, Topic-Based Multi-Document Summarization

with Probabilistic Latent Semantic Analysis, Proceedings of

the International Conference on Recent Advances in Natural

Language Processing, Borovets, Bulgaria, 2009, pp. 144-149.

[22] T. Hofmann, Unsupervised Learning by Probabilistic Latent

Semantic Analysis, Machine Learning, Vol. 42, No. 1-2, pp.

177-196, Juauary, 2001.

[23] T. Hofmann, Latent Semantic Models for Collaborative

Filtering, ACM Transactions on Information Systems, Vol. 22,

No. 1, pp. 89-115, January, 2004.

[24] T. Hofmann, B. Schölkopf, A. J. Smola, Kernel Methods in

Machine Learning, The Annals of Statistics, Vol. 36, No. 3,

pp. 1171-1220, June, 2008.

[25] J.-W. Hsieh, L.-C. Chen, S.-Y. Chen, D.-Y. Chen, S.

Alghyaline, H.-F. Chiang, Vehicle Color Classification under

Different Lighting Conditions through Color Correction,

IEEE Sensors Journal, Vol. 15, No. 2, pp. 971-983, February,

2015.

[26] D. Hsu, S. M. Kakade, T. Zhang, A Spectral Algorithm for

Learning Hidden Markov Models, Journal of Computer and

System Sciences, Vol. 78, No. 5, pp. 1460-1480, September,

2012.

[27] M. Inoue, The Remarkable Search Topic-Finding Task to

Share Success Stories of Cross-Language Information

Retrieval, SIGIR 2006 Workshop: New Directions In

Multilingual Information Access, Seattle, USA, 2006, pp. 61-

64.

[28] K. Ishida, T. Ohta, An Approach for Organizing Knowledge

According to Terminology and Representing It Visually,

IEEE Transactions on Systems, Man, and Cybernetics- Part

C: Applications and Reviews, Vol. 32, No. 4, pp. 366-373,

November, 2002.

[29] O.-R. Jeong, J. Oh, Social Community Based Blog Search

Framework, in: H. Yu, G. Yu, W. Hsu, Y. S. Moon, R.

Unland, J. Yoo (Eds.), Database Systems for Advanced

Applications, DASFAA 2012, Lecture Notes in Computer

Science, Vol. 7240, Springer, Berlin, 2012, pp. 130-141.

[30] N. K. Jha, A. Jethva, N. Parmar, A. Patil, A Review Paper on

Deep Web Data Extraction Using Wordnet, International

Research Journal of Engineering and Technology, Vol. 3, No.

3, pp. 1003-1006, March, 2016.

[31] H. Kuwata, M. Oka, H. Mori, Searching Blog Sites with

Product Reviews, in: S. Yamamoto (Ed.), Human Interface

and the Management of Information, Information and

Interaction for Learning, Culture, Collaboration and

Business, HIMI 2013, Lecture Notes in Computer Science,

Vol. 8018, Springer, Berlin, 2013, pp. 495-500.

[32] J. Kim, U. Yun, G. Pyun, H. Ryang, G. Lee, E. Yoon, K. H.

Ryu, A Blog Ranking Algorithm Using Analysis of Both

Blog Influence and Characteristics of Blog Posts, Cluster

Computing, Vol. 18, No. 1, pp. 157-164, March, 2015.

[33] J.-H. Kim, T.-B. Yoon, K.-S. Kim, J.-H. Lee, Trackback-

Rank: An Effective Ranking Algorithm for the Blog Search,

Proceedings of the 2008 Second International Symposium on

Intelligent Information Technology Application - Volume 03,

Shanghai, China, 2008, pp. 503-507.

[34] R. Klein, A. Kyrilov, M. Tokman, Automated Assessment of

Short Free-Text Responses in Computer Science Using Latent

Semantic Analysis, Proceedings of the 16th Annual Joint

Conference on Innovation and Technology in Computer

Science Education, Darmstadt, Germany, 2011, pp. 158-162.

[35] J. R. Koza, Genetic Programming: On the Programming of

Computers by Means of Natural Selection, MIT Press, 1992.

[36] F.-F. Kuo, M.-K. Shan, S.-Y. Lee, Background Music

Recommendation for Video Based on Multimodal Latent

Semantic Analysis, Proceedings of the 2013 IEEE

International Conference on Multimedia and Expo, San Jose,

CA, 2013, pp. 1-6.

[37] T. K. Landauer, D. S. McNamara, S. Dennis, W. Kintsch,

Handbook of Latent Semantic Analysis, Psychology Press,

2013.

[38] M. H. C. Law, M. A. T. Figueiredo, A. K. Jain, Simultaneous

Feature Selection and Clustering Using Mixture Models,

IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 26, No. 9, pp. 1154-1166, September, 2004.

[39] H. Li, G. Ye, J. Wang, A Modified Algorithm for the

Improvement of Composite Interval Mapping, Genetics, Vol.

175, No. 1, pp. 361-374, January, 2007.

[40] M. Li, W. K. Li, G. Li, On Mixture Memory Garch Models,

Journal of Time Series Analysis, Vol. 34, No. 6, pp. 606-624,

November, 2013.

[41] M. Lintean, C. Moldovan, V. Rus, D. McNamara, The Role

of Local and Global Weighting in Assessing the Semantic

Similarity of Texts Using Latent Semantic Analysis,

Proceedings of the 23th International Florida Artificial

Intelligence Research Society Conference, Daytona Beach,

FL, 2010, pp. 235-240.

[42] C.-J. Luh, S.-A. Yang, D. T.-L. Huang, Estimating Search

Engine Ranking Function with Latent Semantic Analysis and

a Genetic Algorithm, Proceedings of the 2012 3rd

International Conference on E-Business and E-Government,

Shanghai, China, 2012, pp. 439-442.

[43] J. McInerney, A. Rogers, N. R. Jennings, Improving Location

Prediction Services for New Users with Probabilistic Latent

Semantic Analysis, Proceedings of the 2012 ACM Conference

on Ubiquitous Computing, Pittsburgh, Pennsylvania, 2012, pp.

906-910.

[44] A. Mesaros, T. Heittola, A. Klapuri, Latent Semantic Analysis

in Sound Event Detection, Proceedings of the 19th European

A Novel Judge Mechanism to Enhance the Performance of Google Blog Search 993

Signal Processing Conference, Barcelona, Spain, 2011, pp.

1307-1311.

[45] G. Mishne, M. de Rijke, A Study of Blog Search, in: M.

Lalmas, A. MacFarlane, S. Rüger, A. Tombros, T. Tsikrika, A.

Yavlinsky (Eds.), Advances in Information Retrieval, ECIR

2006, Lecture Notes in Computer Science, Vol. 3936,

Springer, Berlin, 2006, pp. 289-301.

[46] B. A. Nardi, D. J. Schiano, M. Gumbrecht, L. Swartz, Why

We Blog, Communications of the ACM, Vol. 47, No. 12, pp.

41-46, December, 2004.

[47] D. E. O’Leary, Blog Mining-Review and Extensions: From

Each According to His Opinion, Decision Support Systems,

Vol. 51, No. 4, pp. 821-830, November, 2011.

[48] M. G. Ozsoy, F. N. Alpaslan, I. Cicekli, Text Summarization

Using Latent Semantic Analysis, Journal of Information

Science, Vol. 37, No. 4, pp. 405-417, August, 2011.

[49] M. Pajovic, D. S. Millar, T. Koike-Akino, K. Kojima, V.

Arlunno, K. Parsons, Multi-Pilot Aided Carrier Phase

Estimation for Single Carrier Coherent Systems, Proceedings

of the 2015 Signal Processing in Photonic Communications,

Boston, Massachusetts, 2015, pp. SpT4D.4.

[50] Z. A. Pardos, N. T. Heffernan, Navigating the Parameter

Space of Bayesian Knowledge Tracing Models: Visualizations

of the Convergence of the Expectation Maximization

Algorithm, Proceedings of the third International Conference

on Educational Data Mining, Pittsburgh, PA, 2010, pp. 161-

170.

[51] L. A. F. Park, K. Ramamohanarao, Efficient Storage and

Retrieval of Probabilistic Lantent Semantic Information for

Information Retrieval, The VLDB Journal, Vol. 18, No. 1, pp.

141-155, January, 2009.

[52] Pingdom, 2015 the Web Shown in Numbers!, from http://fast-

traffic-seo.blogspot.tw.

[53] M. Porter, R. Boulton, Snowball: A Language for Stemming

Algorithms, from http://snowball.tartarus.org/.

[54] Prayiush, Number of Blogs up from 35 Million in 2006 to

181 Million by the End of 2011, http://tinyurl.com/q9unvyy.

[55] B. Schwartz, Google Blog Search Now within Google News

Search, http://searchengineland.com/google-blog-search-now-

within-google-news-search-202202.

[56] J.-R. Shieh, C.-Y. Lin, S.-X. Wang, J.-L. Wu, Relational

Term-Suggestion Graphs Incorporating Multipartite Concept

and Expertise Networks, ACM Transactions on Intelligent

Systems and Technology, Vol. 5, No. 1, pp. Article No. 19,

December, 2013.

[57] A. Siddiqui, N. Mishra, J. S. Verma, A Survey on Automatic

Image Annotation and Retrieval, International Journal of

Computer Applications, Vol. 118, No. 20, pp. 27-32, May,

2015.

[58] J. Simões, F. Azeiteiro, J. Bernardino, Wise Blogs: A Special

Blog Search Engine, Proceedings of the Eighth International

C* Conference on Computer Science & Software Engineering,

Yokohoma, Japan, 2015, pp. 144-145.

[59] Y. Takama, T. Kajinami, A. Matsumura, Blog Search with

Keyword Map-Based Relevance Feedback, in: L. Wang, Y.

Jin (Eds.), Fuzzy Systems and Knowledge Discovery. FSKD

2005, Lecture Notes in Computer Science, Vol. 3614,

Springer, Berlin, 2005, pp. 1208-1215.

[60] T. Temel, A New Digital Cochlea Model Neuro-Spike

Representation of Auditory Signals and Its Application to

Classification of Bat-Like Biosonar Echoes, Neural Network

World, Vol. 20, No. 2, pp. 223-239, May, 2010.

[61] M. Thelwall, L. Hasler, Blog Search Engines, Online

Information Review, Vol. 31, No. 4, pp. 467-479, February,

2007.

[62] K.-P. Tung, W.-Z. Shi, R. De Silva, E. Edwards, D. Rueckert,

Automatical Vessel Wall Detection in Intravascular Coronary

Oct, Proceedings of the 2011 Biomedical Imaging: From

Nano to Macro, Chicago, IL, 2011, pp. 610-613.

[63] W.-L. Zhang, B.-C. Li, W.-Q. Zhang, Compact Acoustic

Modeling Based on Acoustic Manifold Using a Mixture of

Factor Analyzers, Proceedings of the 2013 Automatic Speech

Recognition and Understanding, Olomouc, Czech Republic,

2013, pp. 37-42.

[64] Wikipedia, Google Blog Search, https://en.wikipedia.org/

wiki/Google_Blog_Search.

[65] WordNet, Wordnet Statistics, http://wordnet.princeton.edu/

wordnet/man/wnstats.7WN.html.

[66] J. Xu, G. Ye, Y. Wang, G. Herman, B. Zhang, J. Yang,

Incremental Em for Probabilistic Latent Semantic Analysis on

Human Action Recognition, Proceddings of the 6th IEEE

International Conference on Advanced Video and Signal

Based Surveillance, Genova, Italy, 2009, pp. 55-60.

[67] G.-R. Xue, W. Dai, Q. Yang, Y. Yu, Topic-Bridged Plsa for

Cross-Domain Text Classification, Proceedings of the 31st

Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, Singapore, 2008,

pp. 627-634.

[68] J. Zhang, S. Gong, Action Categorization by Structural

Probabilistic Latent Semantic Analysis, Computer Vision and

Image Understanding, Vol. 114, No. 8, pp. 857-864, August,

2010.

[69] L. Zhu, A. Sun, B. Choi, Online Spam-Blog Detection through

Blog Search, Proceedings of the 17th ACM Conference on

Information and Knowledge Management, Napa Valley, CA,

2008, pp. 1347-1348.

Biography

Lin-Chih Chen is an associate

professor in the Department of

Information Management at National

Dong Hwa University, Taiwan. His

research interests include Web

Intelligent and Web Technology. He

develops many Web Intelligent systems include Cayley

search engine, On-The-Fly Document Clustering, LI

keyword suggestion system, WSC clustering system,

Cayley Scholar.

994 Journal of Internet Technology Volume 19 (2018) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

