
MeteCloud: Meteorological Cloud Computing Platform for Mobile Weather Forecasts based on Energy-aware Scheduling 959

MeteCloud: Meteorological Cloud Computing Platform for

Mobile Weather Forecasts based on Energy-aware Scheduling

Wei Fang1,2
, Victor S. Sheng3

, XueZhi Wen1*

1 School of Computer & Software, Nanjing University of Information Science & Technology, China

2 State Key Lab. for Novel Software Technology, Nanjing University, China

3 Computer Science Department, University of Central Arkansas, USA

 fangwei@nuist.edu.cn, ssheng@uca .edu, ww_pub@163.com

*Corresponding Author: Wei Fang; E-mail:fangwei@nuist.edu.cn

DOI: 10.3966/160792642018051903031

Abstract

Nowadays, more and more large-scale data intensive

applications such as meteorological big data executed in

data centers require a huge amount of electrical energy

and energy costs. Therefore, minimizing the energy

consumption and reducing the environmental impact is

our goal of Green Cloud Computing. In this paper, a new

meteorological cloud computing platform (MeteCloud)

for Mobile Weather Forecasts based on energy-aware

scheduling for improving the energy efficiency is

proposed. This approach is different from the existing

researches, which wants to emphasize the importance of

energy consumption in the study of constructing cloud

computing platform for meteorological applications. And,

a novel MeteCloud architecture and a hybrid scheduling

algorithm are given to testify the availability of

meteorological cloud computing platform. Finally, the

experimental results demonstrate that MeteCloud has

better performance and efficiency.

Keywords: MapReduce, MeteCloud, Energy-aware

scheduling, Meteorological cloud computing

1 Introduction

To the best of our knowledge, it is a higher

requirement for the information technology in the

atmospheric science. A large number of scientific

computing demands in the meteorological science are

increasing every day, in order to obtain accurate

weather forecast information for complex weather

forecasting systems, such as typhoon track forecast [1].

In the past, the meteorological organization used the

traditional "chimney" mode to deploy the application

system. This deployment model from basic (hardware)

to the top (software) looks like a chimney. So, this

model will inevitably lead to wasting all kinds of

resources. Their energy consumption and space

occupation are also very large. Moreover, this

traditional model also makes it very difficult to backup

and update.

Facing above challenge, cloud computing is the best

solution to the problem. The private meteorological

cloud will be able to integrate these isolated servers

into one whole part, as forming a large resource pool.

So, it not only can greatly improve the utilization rate

of resources but also reduces energy consumption. A

significant advantage of cloud computing is that it

reduces the computing cost and improving time

efficiency of applications [3]. Under the support of

cloud computing platforms, users of meteorological

operations can demand access to various services (such

as precision computing, information storage, network

services, software usages, data sharing, etc.). They do

not need to know what cloud computing is or how it

works since cloud computing integrates a large number

of resources together as a virtual resource pool [4].

Meteorological cloud platform (MeteCloud) is the

application of cloud computing technology in

meteorological service, which provides these

capabilities including resource sharing, rapid

expansion, customizable, low-cost of meteorological

data processing and service etc. Meteorological data

are the most crucial and most valuable resource for our

life. With the rapid development of satellite, radar,

automatic weather stations, etc., the large amount of

data grows up in 100TB magnitude annually.

Furthermore, the amount of data observed is also

updated frequently. Towards such a large scale

meteorological data problem, high-efficient computing

power (more than a trillion times) is urgently required.

Therefore, establishing a cloud computing weather

information processing system is very important and

significant. An elastic Meteorological Cloud

Computing platform based on energy-aware scheduling

is proposed in this paper.

 The rest of the paper is organized as follows.

Section 2 discusses some related work. The

architecture and the higher level design of the elastic

meteorological cloud platform in Section 3 are

presented. Section 4 provides the details on specific

960 Journal of Internet Technology Volume 19 (2018) No.3

elastic scheduling used in the elastic meteorological

cloud platform. Section 5 implements this system,

conducts experiments and analyzes the experimental

results. Finally, Section 6 concludes the paper with a

summary.

2 Related Work

As cloud computing better business prospects, some

major companies such as IBM, Google, Microsoft,

Amazon, VMware and Alibaba all have launched their

own cloud computing platform or related products [5],

for examples, IBM Blue Cloud, Google Google App

Engine, Microsoft Azure Service Platform, Amazon

EC2 and VMware vSphere, etc. However, for some

important fields such as military, meteorological, etc.,

are not suitable to use this public cloud according to

security and privacy issues.

In the meteorological field, there is a little research

about cloud computing application. Andrew L. Moltha,

et al. focus on weather forecasts and applications

within cloud computing environments. They use the

Amazon Elastic Compute Cloud (EC2) resources to

apply meteorological cloud applications. S.

Venkataraman, et al. propose a cloud system named

CloudCast, an application that provides short-term

weather forecasts depending on users’ current location.

They only apply the cloud computing technology to the

meteorological applications [2]. But they do not

consider the energy consumption issue in their cloud

applications.

One of the first works, Pinheiro et al proposed a

power management method at the data center level of

cloud computing platform [6]. There exists an

extensive research on resource allocation and

scheduling in data centers and cloud computing

construction that does not consider the energy

efficiency issue (e.g., [7-8]). Anton Beloglazov, et al.

designed an architectural framework and principles for

energy-efficient Cloud computing [9]. Calheiros et al.

have investigated the energy problem of mapping VMs

on physical nodes optimizing network communication

between VMs [10]. [11] presented a system named

KMN for analytics frameworks that leverage key

property choices to perform data-aware scheduling. It

is, therefore, imperative that schedulers for cloud

computing exploit the available choices to improve

performance. X.M Zhu etc. thinks energy conservation

is a major concern in cloud computing systems [12].

Then, they propose a novel rolling-horizon scheduling

architecture and energy consumption model for real-

time task scheduling in virtualized clouds. G.V

Laszewski et al. [13] suggests scheduling VM in a

computing cluster to reduce power consumption

through Dynamic Voltage Frequency Scaling (DVFS),

implementation of energy efficient algorithm to

allocate VMs. B.Li et al. proposed an Energy-aware

heuristic algorithm on the base of distributes workload

in VM with a minimum number of VMs or nodes

workload [14]. Z.J. Fu, et al. designed a tree-based

index structure which supports parallel search to take

advantage of the powerful computing capacity and

resources of the cloud server. And, the search

efficiency is well improved [15]. [16] introduces Job

Consolidation Algorithm (JCA) that efficiently utilize

the resource in the cloud considering machine

heterogeneity, and implement DVFS technique which

remains efficiently to produce liable replacement

among jobs guaranteeing a reduction in energy

consumption. It should be noted that these methods do

not consider resource virtualization, the most important

feature of clouds, thus they do not efficiently improve

the resource utilization in real cloud computing

applications, especially in the meteorological field.

To the best of our knowledge, the work presented in

this paper is the first to look into the feasibility of

meteorological and research clouds for real-time

application of weather forecasting using the energy-

aware scheduling. So, the exploration of our novel

approach is timely and crucial considering the

proliferation of cloud computing environments for

large scale of meteorological data applications.

3 MeteCloud Architecture

3.1 Components of MeteCloud

The overall basic architecture of the MeteCloud

based on Xen is shown in Figure 1, which includes

three components, i.e., meteorological users, a

MeteCloud management control center, and a

virtualization cluster. Meteorological users can use PCs,

iPad and Mobile phone to connect to the MeteCloud

management control center, to gain a lease of using

virtual machines, including performing a virtual

machine startup, shutdown, and other operations.

Figure 1. The architecture of MeteCloud

MeteCloud: Meteorological Cloud Computing Platform for Mobile Weather Forecasts based on Energy-aware Scheduling 961

The management control center is the core of the

whole elastic meteorological cloud platform. It

contains a number of modules to perform all

administrative tasks, including a monitoring module, a

scheduling module, a logging module, a paying module,

and a user module. It dynamically schedules virtual

machines for users. Thus, it ensures that the elastic

meteorological cloud platform performs flexible

scheduling.

MeteCloud will organize a wide variety of physical

computing resources in a large resource pool. The

MeteCloud creates a virtual pool above the physical

computer resource pool and turns the virtual pool into a

new meteorological data processing center.

Meteorological users only need to communicate with

MeteCloud by different equipment such as Mobile

phone, iPad, Laptop computer, and remote Server.

3.2 Design of the Virtual Cluster Architecture

The overall architecture of the MeteCloud is based

on Xen. A physical machine is a member of a cluster.

Nodes are the basic cluster infrastructure, and they can

fault tolerant in order to achieve high availability for

instance. A virtual machine can run on a cluster. In

Figure 2, VM1, VM2, and VM3 are virtual machines,

which are used to construct the virtual cluster. Each

virtual machine is a virtual cluster computing node

running Xen virtualization software. The virtual

machines perform a variety of complex scientific

computing, in response to various requests submitted

by users. The number of jobs allocated to each VM is

dynamically changed by elastic scheduling module

operations. If current virtual machine node doesn’t

process so many submitted jobs timely and accurately,

then a flexible scheduling system will adjust its load by

assigning some jobs to another virtual machine node,

according to the scheduling policy of the virtual

machines in the cluster. Under this situation, the

number of running virtual machines is increased. When

the amount of work is reduced, some virtual machines

in the cluster will be idle. Then the flexible scheduling

system recycles these idle virtual machines and

releases the resources to improve the utilization of

CPU and memory [17-18].

Figure 2. Virtual cluster architecture

The cluster work management system is an

important component of the whole cluster system,

which used widely in the PBS, CONDOR, LSF,

TORQUE etc. And, PBS [19] (Portable Batch System)

is an open source, easy using, and a complete API,

which can apply the new scheduling strategy, be

supported by multiple operating modes.

3.3 Modules of the Management Control

Center

Monitoring module. The monitoring module consists

of two parts. One part is located on the physical host

server-side, and another is the client of the part on the

server-side. The part of the server side is responsible

for monitoring the physical hosts and virtual machine

resource usage. The part as the client issues the

requests of aggregating data to the server-side on a

regular basis. This module is constructed by using the

Libvirt library. With Libvirt, the monitoring module of

a virtual machine can provide a series of operations,

such as start, pause, stop, restoration, preservation, and

migration. It can also get the running status and the

resource usage information of physical hosts and

virtual machines.

The monitoring method using Libvirt is shown in

Figure 3. The libvirtd program is the server side

daemon component of the libvirt virtualization

management system. Physical hosts on Libvirtd are

registered in the virtual machine cluster. A domain

(refer to Dom0 shown in Figure 3) is running in a

virtual machine, whose main responsibility is to collect

the usages of physical hosts, virtual machine CPUs and

memory, and network resources. Through the API and

the Libvirt, the monitor module defines common

protocols for remote communications of transferring

monitoring data. Then, it defines data structures to

obtain the usages of physical hosts and virtual machine

resources. The data structure is shown as follows.

Figure 3. Monitor modular using Libvirt

Struct DomainInfo

{ Unsigned char state; //Current status

Unsigned long maxMem; //Maximum memory

Unsigned long memory; //Usage memory

Unsigned short nrVirtCpu; //Virtual CPU number

Unsigned long cpuTime; // Virtual CPU Running

time

Unsigned long network; //Network brand

}

962 Journal of Internet Technology Volume 19 (2018) No.3

Scheduling module. The Scheduling problem is the

map between tasks and resources. There are values of

N independent tasks that have same QoS requirement

and values of M heterogeneous computing resources

that meet the computing requirement in the cloud. The

scheduling objective is to minimize Makespan and

total energy consumption between tasks and resources.

Power consumption by computing in cloud platform

is mostly determined by the CPU, memory, disk

storage, and network interfaces. And the CPU

consumes the major part of entire energy [19]. Then,

this paper focuses on CPU power consumption to

monitor the CPU utilization. The Scheduling module

can obtain the running data including CPU, memory,

storage, network, etc. When a user presets a threshold

and a scheduling strategy, the scheduling module

chooses virtual machines as well as objects to migrate

within the virtualization cluster. And, the number of

applications running on each virtual machine of

MeteCloud is different. The loading issue of each

physical host and each virtual machine can be solved

using a loading balancing and scheduling policy. The

procedure of loading balancing and scheduling policy

is as follows. The virtualized cloud is represented by

infinite set H={h1,h2,…, hm} of physical computing

hosts. For a given host hi, it is characterized by its CPU

performance, the amount of Memory, storage and

network bandwidth, then, hi={ci, mi, si, ni}, where ci, mi,

si, ni denote the CPU capability, Memory, storage and

network bandwidth of the i-th host, respectively.

We define C={R,T} as resource-task model, where

resource R={r1,r2, …, rm} denotes a set of resources, ri

is the i-th resource. Task T={t1,t2, …, tn }represents a

set of independent tasks, where tj is the j-th task.
In this work, we use the power model defined in (1) to

obtain the CPU monitoring values.

 P(u) = k ∙ Pmax+(1-k) ∙ Pmax ∙ u (1)

Where Pmax is the maximum power consumed when

the server is fully utilized; k is the fraction of the power

consumed by the idle server (i.e.70%), and u is the

CPU utilization. In our experiments, Pmax is set to

300W. The CPU utilization is a function of time and is

represented as u(t). Then, the basic energy

consumption Ebasic within a period of time [t0,t1] by a

physical node Hi is defined in (2).

 Ebasic=
1

0

(())
t

i
t

P u t dt∫ (2)

When loading exceeds the threshold on a virtual

machine, the scheduling module will observe the next

N monitoring values every ten minutes. Within the N

monitoring values, if there are more than K values

exceeding the threshold (i.e. 0.95), then the scheduling

module is triggered to conduct the resource re-

allocation or dynamic migration. Note that the number

N is decided by the elastic meteorological cloud

platform. K is determined based on the indicated ratio

K/N set up in advance by a meteorological user. That is,

meteorological users can choose the scheduling policy

automatically by setting up the ratio K/N. If a user

selects the ratio value close to 0, it means that the users

adopt a more aggressive scheduling strategy in the

peak to virtual machine scheduling. If the user selects

the ratio value close to 100%, then the user adopts a

more conservative scheduling policy to a certain peak

to schedule virtual machines. Current studies seldom

consider the energy consumption of migration. This

work considers this issue. Suppose there is a period of

time [t0,t1], a VM running in the cloud server Hi

migrates to cloud server Hk, let ts be the start time of

VM migration, and let tc be the complete time of VM

migration, where t0≤ts ≤tc≤t1 . Then the energy

consumption of migration Emigrate is denoted in (3):

 (()) (())
c c

s s

t t

migrate i k
t t

E P u t dt P u t dtβ= ∝ ⋅ + ⋅∫ ∫ (3)

Where, α and β represent the CPU usage of host Hi

and Hk, respectively. Consequently, the total energy

consumption to execute all the allocated tasks in a

cloud server can be denoted as (4):

 Etotal = Ebasic+Emigrate (4)

From the above analysis of energy consumption, the

less running costs, the less migration, and the less

energy consumption can be obtained. To make virtual

machine scheduling decisions, the scheduling module

first determines the usage of resources in the virtual

machine, and further determines whether the physical

host of the virtual machine needs to re-allocate

appropriate resources. Thus, it can reduce the network

overload via virtual machine migrations.

Paying module. The paying module calculates the cost

of different users according to the statistics of different

users. Then it sends the cost of the subscriber module.

The cost is corresponding to the scheduling policy in

accordance with the thresholds set up by users, and

their physical resource usages. Besides, the standards

and methods of payments are different for different

storage usages, memory usages, numerical calculations,

CPU usages, and network usages. It also decides the

demand for computing resources and priority service

allocations effectively.

And, let P(Rk)= (, , ,)k k k k

c m s n
P P P P as the CPU

capability, Memory, storage and network bandwidth of

k-th host price, respectively. The cost only considers

the energy consumption and VM migration. Given an

assignment A0, performance profit function is B(A), the

cost of energy consumption is P(A), the cost of

migration is Mig, then as to every assignment A, we

want to find an Aj(Where xi,j represents the assigned

resources to application Vi in Host Hj), So the

maximum profit is in (5):

,

1 1 1

max () () (,)
N m M

i j I O I

i j j

b x P A Mig A A
= = =

− −∑∑ ∑ (5)

MeteCloud: Meteorological Cloud Computing Platform for Mobile Weather Forecasts based on Energy-aware Scheduling 963

Log module. After the information is obtained from

the monitoring module, the log module records the

state of the physical hosts, virtual machines running

within the MeteCloud, resource usages, users, and the

virtual machine operating conditions, which are used

by users. The log module is conducive to the user who

has rented the virtual machine management. The

feedbacks of the virtual machine operating and the

control center, which are recorded in the log module,

will facilitate the user at any time to view. The log

module is also convenient for managing the elastic

meteorological cloud platform. The administrative

center of virtual machines is responsible for virtual

machine crashes when the user rents it. The cause of

the crash and other information will be written to the

log module, so it is convenient for inspection

technicians to find the cause of the crash, and to help

us restore the system. These historical data of the

resource usage and log can be used to improve

resource allocation decisions.

User module. The user module includes both servers

and clients. A user can send a request by a client to its

server-side, which can create, start, pause, stop,

restoration and preservation of the operation of a

virtual machine, and can also set their own scheduling

threshold and strategy of the virtual machine. The user

can also get the running state of the virtual machine

leased, such as the status of its memory, CPU, and

network, and the fees to be paid. The corresponding

server receives the request from the user module and

then passes the request to the monitoring module to

process. The user’s settings, such as the threshold and

the scheduling policy, are passed to the dispatch center,

while the state of the virtual machine hired and the cost

is returned back to the user.

4 Energy-Aware Scheduling Methods of

MeteCloud

4.1 Dynamic Resource Allocation

When the resources and services that current

physical servers provide does not meet the operational

requirements of the virtual machine, the virtual

machine can also be migrated to a higher level physical

server to get better service resources.

We use the minimization of migration policy in our

MeteCloud system. The Minimization of Migrations

(MM) policy selects the minimum number of VMs

needed to migrate from a host to lower the CPU

utilization below the upper utilization threshold if the

upper threshold is violated. Let Vj be a set of VMs

currently allocated to the host j. Then P(Vj) represents

the power set of Vj. The MM policy gets a set R∈P(Vj)

defined in equation (6) [9].

| (), () , | | min ,

,

,

j j a u

S

j

S S P V u u T S

R V

υ

υ

φ

∈

⎧⎧ ⎫
∈ − < →⎨ ⎬⎪

⎩ ⎭⎪
⎪
⎨
⎪
⎪
⎪⎩

∑ if ;

if ;

j u

j l

u T

u T

otherwise

>

> (6)

Where Tu refers the upper utilization threshold; Tl

represents the lower utilization threshold; uj is the

current CPU utilization of the host j, and ua(v) is the

fraction of the CPU utilization allocated to the VM v.

4.2 Hybrid Energy-aware Scheduling Policy

The computing resources of the dynamic virtual

machine with the elastic scheduling module can solve

this issue to meet the needs of the user. The elastic

scheduling module dynamically adds new computing

resources to the virtual cluster [20-21]. The workflow

of the elastic scheduling module is shown in Figure 4.

Figure 4. Work flow of the elastic scheduling module

According to Figure 4, the main function of the

elasticity scheduling module is shown as following:

(1) Create a virtual machine (VM)

(2) Start a VM and log in the VM

(3) Refresh the current computing resources

(4) Release the idle computing resources

Our hybrid Energy-aware schedulig policy can

obtain a good trade-off between the guarantee ratio and

energy saving by dynamically starting hosts, closing

hosts, creating VMs, placing VMs and migrating VMs

according to the system workload. The pseudo code of

Minimization of Migrations algorithm and Energy-

aware Best Fit Decreasing algorithm are as follows.

964 Journal of Internet Technology Volume 19 (2018) No.3

Algorithm 1: Minimization of Migrations (MM)

Input: hostList, VMList,

threshold_Up Tu, threshold_Low Tp

Output:Migration VMList

for each h in hostList do

 VMList←h.getVMList()

 VMList.sortDecreasingbyCPUUtilization

 hostUtil←host.Util()

bestFitUtil←MAX

While hostUtil> Tu do

 For each vm in VMList do

 if VM.getUtil()>hostUtil- Tu then

 tmp←VM.getUtil()-hostUtil+ Tu

 if tmp<bestFitUtil then

 bestFitUtil←tmp

bestFitVM←vm

end if FitVM

else if bestFitUtil=MAX then

 best←vm

 break

 end if

end for

 hostUtil←hostUtil-bestFitVM.getUtil()

 migrationList.add(bestFitVM)

 VMList.remove(bestFitVM)

 End While

 If hostUtil< Tp then

 migrationList.add(host.getVMList())

VMList.remove(host.getVMList())

 End if

End for

Return migrationList

We sort all migration VMs in decreasing order of

their current CPU utilizations and allocate each VM to

a host that provides the least increase energy

consumption of all object hosts. The complexity of the

allocation algorithm is n• m, where n is the number of

VMs that have to be allocated and m is the number of

hosts. The pseudo code of Energy-aware Best Fit

Decreasing (EBFD) is Algorithm 2.

5 Experiments and Result Analysis

In this section, we conduct experiments to compare

the effectiveness between the physical host and the

elastic MeteCloud. And, we also evaluate our design

with existing algorithms: Power-aware scheduling

algorithm and Energy-aware heuristic algorithm.

Power-Aware scheduling algorithm [13]. It

calculates cluster to minimize power consumption via

Dynamic Voltage frequency scaling (DVFS). And it can

make significant energy savings without increasing

execution time by varying scheduling granularity.

Algorithm 2: Energy-aware Best Fit Decreasing

(EBFD)

Input: hostList, VMList

Output: allocation of VMs

 VMList.sortDecreasingbyCPUUtilization()

For each vm in VMList do

 minPower←MAX

 allocatedHost←NULL

 For each host in hostList do

 If host has enough resource for vm then

 power←estimatePower(host,vm)

 if power<minPower then

 allocatedHost←host

 minPower←power

 end if

 end if

end for

if allocatedHost ≠NULL then

 allocate vm to allocatedHost

 end if

return allocation

Energy-Aware heuristic scheduling algorithm [14].

It can estimate the number of future requests to predict

the future state of the system and perform necessary

reallocations. If it is low then energy consumption

reduces, it schedules VM workload in such a way that

it requires less number of VMs. The algorithm contains

these processes of workload migration, virtual machine

migration and resizes of workload.

Note that the same amount of meteorological queries

from several users completely runs on the physical host

and on the elastic cloud platform respectively. The

amount of time used on the physical host and on the

elastic cloud platform is shown in Table 1 respectively,

where the operating time of the physical host takes its

running time and waiting time into consideration. Time

spending by the elastic cloud platform includes run

time and the time of creating a virtual machine.

Table 1. Running time

Number of

Jobs (×103)

Running Time on

a physical host

/waiting time (S)

Jobs Running Time on the

elastic cloud platform/

creating VM time (S)

1 436.45/0.00 440.55/0.00

2 436.56/0.00 441.45/0.00

3 874.82/436.89 681.01/232.64

4 871.61/434.72 808.03/348.24

6 1310.41/878.05 871.54/372.16

8 1749.34/1311.90 920.40/398.28

As shown in Table 1, the running time for both the

physical host and the elastic MeteCloud platform is

increasing with the increment of the number of

meteorological job submissions. However, the

increment of the running time of the elastic cloud

platform is much smaller than that of the physical host.

The more the number of meteorological job

MeteCloud: Meteorological Cloud Computing Platform for Mobile Weather Forecasts based on Energy-aware Scheduling 965

submissions, the more significant the advantage of the

elastic MeteCloud is.

5.1 Comparison of Jobs effectiveness between

physical host and MeteCloud

As shown in Figure 5(a), along with the job

submitted by the increase in the amount of elastic

weather cloud platform through elastic scheduling

technique and the virtualization technology to create a

new virtual machine computing node and added to the

virtual cluster to meet the demand for the computing

resources of the job, reduce the waiting execution time.

All jobs run less than the time it takes from submission

to completion of the run time spent on physical hosts.

This shows that the elasticity of the Metecloud

platform scheduling jobs caused by the lack of

computing resources and technology can effectively

solve queued for too long or do not run.

One of the main criteria for evaluating the

performance of the elastic meteorological cloud

platform is the scheduling performance. The

scheduling performance is measured in term of CPU

usages. The experiments are conducted to evaluate the

scheduling performance of the virtual scheduling,

compared with the physical host under different levels

of loads. The experimental results are shown in Figure

5(b). Our elastic scheduling module increases its

physical CPU resources in a timely manner. Thus, our

elastic scheduling approach ensures the high

availability of the CPU. However, when a virtual

machine enters its idle state, the elastic scheduling

module releases its physical CPU allocation, so that

these recycled CPU resources can be reallocated to

other virtual machines.

(a) Jobs running times

(b) Scheduling performance under Different Loads

Figure 5. Running performance of MeteCloud

5.2 Scheduling Performance

In our simulations, a data center comprising 100

physical nodes. Each node has 4GB RAM, 1 TB of

storage and one CPU core and with the CPU

performance equivalent to 1,500 MIPS, 2,000 MIPS, or

2,500 MIPS. The energy consumption rate of the three

different kinds of hosts is 200, 250, or 400 W. The

start-up time of a host is 85 s and the creation time of a

VM is 15s. And, the simulations generate 1000 VMs

and test several Terasort workloads from the HiBench

benchmark set [14]. The task is set to 2500*24*60*

60MI.

The Minimization of Migrations (MM) policy and

Energy-aware Best Fit Decreasing (EBFD) policy to

the benchmark experiment compared with existing

Power-aware scheduling algorithm (PS) [13] and

Energy-aware heuristic algorithm (EH) [22] is

performed. First, the experiment runs 30 times

respectively and take the average result of experiments

as the data of figures. The results are shown in Figure 6.

Figure 6. Energy consumption of the three energy-

saving algorithms under the different number of cloud

servers

It can be seen that our scheduling policy has a

significant improvement in saving energy consumption

compared to other algorithms. When the CPU

utilization load is certain, with the increase in the

number of cloud servers, PS algorithm only consider

the idle energy consumption and dynamic adjustment

of the operating frequency and voltage of CPU (DVFS)

will be as much as possible the cloud server for

computing, resulting in high energy consumption of

the cloud servers. And EH algorithm through some

heuristics for dynamic adaption of VM allocation at

runtime in terms of energy saving than the PS

algorithm has been greatly improved. If less number of

machines is used then power is conserved. Our hybrid

algorithm proposed has better energy saving effect than

the other two algorithms, which is in the way to choose

the best migration VM and the deployment of the VM.

6 Conclusion

This paper proposes an elastic cloud platform

966 Journal of Internet Technology Volume 19 (2018) No.3

(MeteCloud) based on Energy-aware Scheduling for

querying and processing meteorological information.

MeteCloud integrated the resource management,

flexible computing, disaster recovery, and other policy

configurations together. In addition, the cloud platform

facilitates and expands traditional meteorological

industries. Many other real application systems can be

developed under the same framework of MeteCloud.

With the rise of cloud computing, the data center will

become increasingly large scale. Energy issues will

become increasingly prominent. However, how to

apply the existing virtualization to a larger scale

computing environment efficiently and reduce the

virtualization overhead has become new challenges.

For the future, the scheduling algorithm and

visualization clustering will be improved again. We

look forward to a new energy-saving technology,

which can be realized in various levels of virtualization

computing architecture.

Acknowledgements

This work was supported in part by Soft Science

Program of China Meteorological Administration

(2017 [29]), the Priority Academic Program

Development of Jiangsu Higher Education Institutions.

References

[1] J. T. Overpeck, G. A. Meehl, S. Bony, D. R. Easterling,

Climate Data Challenges in the 21st Century, Science, Vol.

331, No. 6018, pp. 700-702, February, 2011.

[2] D. K. Krishnappa, D. Irwin, E. Lyons, M. Zink, CloudCast:

Cloud Computing for Short-term Mobile Weather Forecasts,

Proc. of 2012 IEEE 31st International Performance

Computing and Communications Conference, Austin, TX,

2012, pp. 61-70.

[3] J. Dean, S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, Proc. of OSDI’04: 6th

Symposium on Operating Systems Design and Implementation,

San Francisco, CA, 2004, pp. 137-150.

[4] A. L. Molthan, J. L. Case, J. Venner, R. Schroeder, M. R.

Checchi, B. T. Zavodsky, A. Limaye, R. G. O’Brien, Clouds

in the Cloud: Weather Forecasts and Applications within

Cloud Computing Environments, American Meteorological

Society, Vol. 96, No. 8, pp. 1369-1379, August, 2015.

[5] C. Deed, P. Cragg, Business Impacts of Cloud Computing,

Cloud Computing Service and Deployment Models: Layers

and Management, IGI Global, 2013.

[6] E. Pinheiro, R. Bianchini, E. V. Carrera, T. Heath, Load

Balancing and Unbalancing for Power and Performance in

Cluster-based Systems, Proc. of the Workshop on Compilers

and Operating Systems for Low Power, Barcelona, Spain,

2001, pp. 182-195.

[7] L. Mashayekhy, M. M. Nejad, D. Grosu, A Truthful

Approximation Mechanism for Autonomic Virtual Machine

Provisioning and Allocation in Clouds, Proc. of the ACM

Cloud and Autonomic Computing Conference, Miami, Florida,

2013, pp. 1-10.

[8] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, N. Linge, A

Speculative Approach to the Spatial‐ Temporal Efficiency

with Multi ‐ objective Optimization in a Heterogeneous

Cloud Environment, Security and Communication Networks,

Vol. 9, No. 17, pp. 4002-4012, November, 2016.

[9] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware

Resource Allocation Heuristics for Efficient Management of

Data Centers for Cloud Computing, Future Generation

Computer Systems, Vol. 28, No. 5, pp. 755-768, May, 2012.

[10] R. N. Calheiros, R. Buyya, C. A. F. D. Rose, A Heuristic for

Mapping Virtual Machines and Links in Emulation Testbeds,

Proc. of the 38th International Conference on Parallel

Processing, Vienna, Austria, 2009, pp. 518-525.

[11] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J.

Franklin, I. Stoica, The Power of Choice in Data-Aware

Cluster Scheduling, Proc. of 11th USENIX Symposium on

Operating Systems Design and Implementation, Broomfield,

Co, 2014, pp. 301-316.

[12] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, X. Liu, Real-

time Tasks Oriented Energy-aware Scheduling in Virtualized

Clouds, IEEE Transactions on Cloud Computing, Vol. 2, No.

2, pp. 168-180, April-June, 2014.

[13] G. V. Laszewski, L. Z. Wang, A. J. Younge, X. He, Power-

Aware Scheduling of Virtual Machines in DVFS-enabled

Clusters, Proc. of IEEE International Conference on Cluster

Computing and Workshops, New Orleans, LA, 2009, pp. 1-10.

[14] B. Li, J. X Li, J. P. Huai, T. Y. Wo, Q. Li, L. Zhong,

EnaCloud: An Energy-saving Application Live Placement

Approach for Cloud Computing Environments, Proc. of IEEE

International Conference on Cloud Computing, Bangalore,

India, 2009, pp. 17-24.

[15] Z. J. Fu, X. M. Sun, Q. Liu, L. Zhou, J. G. Shu, Achieving

Efficient Cloud Search Services: Multi-keyword Ranked

Search over Encrypted Cloud Data Supporting Parallel

Computing, IEICE Transactions on Communications, Vol.

E98-B, No. 1, pp. 190-200, 2015.

[16] P. Sanjeevi, P. Viswanathan, Towards Energy-aware Job

Consolidation Scheduling in Cloud, IEEE International

Conference on Inventive Computation Technologies, Coimbatore,

India, 2016, pp. 1-6.

[17] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P.

Patchin, S. M. Rumble, E. de Lara, M. Brudno, M.

Satyanarayanan, SnowFlock: Rapid Virtual Machine Cloning

for Cloud Computing, Proc. of the 4th ACM European

Conference on Computer Systems, Nuremberg, Germany,

2009, pp. 1-12.

[18] N. Bhatia, J. S. Vetter, Virtual Cluster Management with Xen,

in: L. Bougé, M. Forsell, J. L. Träff, A. Streit, W. Ziegler, M.

Alexander, S. Childs (Eds.), Euro-Par 2007 Workshops:

Parallel Processing, Euro-Par 2007, Lecture Notes in

Computer Science, Vol. 4854, Springer, 2008, pp. 185-194.

[19] Y. Kong, M. Zhang, D. Ye, A Belief Propagation-based

Method for Task Allocation in Open and Dynamic Cloud

MeteCloud: Meteorological Cloud Computing Platform for Mobile Weather Forecasts based on Energy-aware Scheduling 967

Environments, Knowledge-based Systems, Vol. 115, pp. 123-

132, January, 2017.

[20] W. Fang, W. B. Pan, Z. M. Cui, View of MapReduce:

Programming Model, Methods and its Applications, IETE

Technical Review, Vol. 29, No. 5, pp. 380-387, September,

2012.

[21] L. Mashayekhy, M. M. Nejad, D. Grosu, D. Lu, W. Shi,

Energy-aware Scheduling of MapReduce Jobs, 2014 IEEE

International Congress on Big Data, Anchorage, AK, 2014,

pp. 32-39.

[22] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, The Hibench

Benchmark Suite: Characterization of the MapReduce-based

Data Analysis, Proc. of the IEEE 26th Conf. on Data

Engineering Workshops, Long Beach, CA, 2010, pp. 41-51.

Biographies

Wei Fang is an associate professor in

the Jiangsu Engineering Center of

Network Monitoring at the NanJing

University of Information Science &

Technology in China. His research

interests are in the areas of Big Data

Mining and Cloud Computing. He is a

member of ACM.

Victor S. Sheng received his Ph.D.

Degree in Computer Science from the

University of Western Ontario in 2007.

He is an assistant professor in the

Department of Computer Science at

UCA, and the founding director of

Data Analytics Lab (DAL). His

research interests are data mining and machine learning,

and related applications. He is a member of ACM and

IEEE.

XueZhi Wen is an associate professor

with the School of Computer and

Software, Nanjing University of

Information Science and Technology,

China. He is a member of ACM. His

research interests include Pattern

Recognition, Image Processing and

Cloud computing.

968 Journal of Internet Technology Volume 19 (2018) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

