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Abstract 

As we know that the nearest neighbor search is a good 

and effective method for good-sized image search. This 

paper indicates a vision learning framework to generate 

compact binary hash codes for quick vision search after 

knowing the recent benefits of convolution neural 

networks (CNN). Our concept is that binary codes can be 

obtained using a hidden layer to present some latent 

concepts dominating the class labels with usable data 

labels. CNN also can be used to learn image 

representations. Binary code learning is required for other 

supervised methods. However, our method is effective in 

obtaining hash codes and image representations and we use 

pretrained model from googlenet for incremental learning 

so it is suitable for good-sized dataset. It is demonstrated 

in our experiment that this method is better than some 

most advanced hashing algorithms in MINIST, NUS-

WIDE and CIFAR-10 dataset. The scalability and 

efficiency still needs to be further investigated in a good-

sized dataset. 

Keywords: Convolutional neural networks, Nearest 

neighbor search, hidden layer, LSH, 

Supervised learning 

1 Introduction 

Image retrieval based on content aims at searching 

similar images through image content analysis, so for 

such a task, it is quite important for image 

representations and similarity measure. There are 

many provocative issues in the research and one of it is 

about the relationship between the pixel-level 

information and high-level semantic [7, 14, 18, 25, 27]. 

Some manual features proposed to represent the listed 

image [2, 7, 19, 22], but such visual descriptors are 

not well-performed before the recent discovery in 

deep learning. The deep CNN greatly shows such 

results in different vision tasks like object detection of 

objects, and classification of images. Segmentation is a 

fact that has been shown by recent studies [21, 23]. 

Deep neural network obtains ability to study the rich 

mid-level image representations, and because of that 

we have got the accomplishment. 

Feature vectors on the 7th layer in search of image 

was used by Krizhevsky et al. [14, 34], which showed 

excellent result on ImageNet, during learning of mid-

level image descriptors. But, since the features of CNN 

are high-dimensional and it is not good enough to 

directly calculate similarities between such two vectors, 

Babenko [1] suggests using PCA and distinctive 

dimensionality reduction to make the features of CNN 

compact, and finally they have achieved a brilliant 

result. 

In CBIR, image representations as well as 

computational cost are important. Because of the 

recent growth of visual contents, people need fast 

search in a large database. Many studies aim at 

efficiently retrieving the relevant data from the good-

sized database. Because of this high-computational 

cost, common linear search is inappropriate for 

searching in a large database. The best way for 

hashing-based is nearest neiborhood search [6, 15, 20, 

28-30]. The high-dimensional features are reflected to 

a lower dimensional room by these methods, which 

will produce those compact binary codes. Thanks to 

this generated binary codes, quick image search is 

workable through binary pattern matching or Hamming 

distance method. The result is the dramatic reduction 

of the computational cost as well as further 

optimization of the efficiency of the searches. Part of 

the methods is contained using similarity matrix to 

describe this relationship between images and the 

similarity information is used to study functions of 

hash. But, to build the matrix and produce the codes 

while handling a good-sized dataset is not easy. 

In recent years, deep hashing techniques [3, 11, 13, 

33] have developed quickly, and have achieved good 

results, though it has made harsh requirement in 

hardware condition and training data scale. For 

example, the core idea proposed by paper [30] is deep 

hash algorithm by CNN, which take the value of 

whether two image samples are similar for the value of 

similarity matrix element, by decomposing the matrix 

and then it get the binary hash code of the sample, and 

finally use it to predict the result. The lost function in 

this paper used the cross-entropy function. This 
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method has made much improvement in performance 

by artificial hand-craft feature. However, this method 

has not been designed by end to end method, therefore 

it could not update the binary code and play to our 

strength. Professor Yan Shui-cheng and Pan Yan 

proposed NIN (Network in network), which has 

advantage over CNHH [30]. Paper [37] proposed 

DSRH (Deep Semantic Ranking Hashing) method, 

directly focus on network ranking results. The authors 

directly adopt the convex upper bound for optimization. 

Paper [38] proposed DRSCH algorithm (Deep 

Regularized Similarity Comparison Hashing DRSCH), 

which use weighted hamming distance instead of 

hamming distance and use tuple lost function, taking 

account of the location of pair-wise images. In 2016, 

CPVR paper [39] adopt regularization item to 

constraint the network output, which make it closer to 

two valued encoding. Based on the development of 

deep learning, whether we can use the benefit of deep 

CNN to reach hashing is still a question. Is it possible 

for us to produce this binary compact codes directly 

from this deep CNN rather than use the pair-wised 

learning method? To answer these questions, a deep 

CNN model which could simultaneously study image 

representations and binary codes has been proposed. 

This data are labeled is the premise, which mean it is 

specially made for supervised learning. Furthermore, it 

is debated that when a powerful studying model like 

deep CNN is adopted when this data labels are 

available, by using some hidden layer which are 

utilized to represent these potential image concepts 

with binary activation functions like Relu (Rectified 

linear unit) and sigmoid, which dominate these image 

category labels in buildings. Our method is different 

from traditional supervised methods of other kind (e.g 

[30]). And if we think about data label but request pairs 

of input to this intended studying procedure, the binary 

codes can be achieved. That is, by making use of the 

incremental studying character (through stochastic 

gradient descent) of deep CNN, this method studies 

binary hashing codes in the manner of point wise. 

Efficient-retrieval learning feature is brought by 

employment of deep architecture. Comparing with 

conventional methods, this method is appropriate for 

good-sized database. 

The characteristics of the method are as follows: 

A simple and effective supervised learning 

framework is introduced for fast image retrieval. 

Deep CNN can immediately obtain domain specific 

image representation and hashing-like function for 

prompt image search with small modifications to the 

network model. 

The proposed method is better than all of the most 

advanced works stored in public database MNIST and 

CIFAR-10. 12% precision of CIFAR10 dataset and 

0.75% precision of MNIST dataset have been 

improved from the previous best retrieval performance. 

Comparing with conventional pair-wised methods, 

this method adopts the point wise manner to learn 

binary hashing codes. Regarding the data size, it is 

easily measurable.  

From the Figure 1, we can see that our model is 

composed of three convolution-pooling layers, and the 

added latent semantic layer is set between the orange 

signed layer (full-connected layer) and the red signed 

layer (output layer). 

 

Figure 1. The framework of image retrieval 

framework through classified deep search 

Below is the organization of this paper: We 

elaborate on the method in part 2, with experimental 

results shown in part 3, and conclusion in the final part. 

Method 

As shown in Figure 1, the devised framework 

contains three major elements, among which the first 

one is the supervision-based pre-training on this good-

sized ImageNet dataset [14]. Adjusting this network 

with the latent layer for simultaneous learning of 

feature representation in specific domain and hash-like 

function is the second one. The third one retrieves 

images similar to this query one through this suggested 

classified search. Zhong et al. [34] proposed this pre-

trained CNN model in the google net library, and we 

used the three layers for pre-training. Below we’ll 

describe the method for learning binary codes. 

1.1 Studying Hash-like Binary Codes 

That the feature activations of layers F4 induced by 

this input image could be regarded as this visual 

signatures has been showed by recent studies [1, 5, 7, 

14]. It shows great improvement in various aspects, 

such as image classification, and search based on mid-

level image representation. But, the signatures are 

vectors with high dimension, which are not efficient 

for image search in large corpus. In order to promote 

good quality image search, it needs to convert this 

feature vectors into binary codes to reduce 

computational cost. Employing hashing or hamming 

distance, we can compare the binary compact codes in 

a fast way. 

This paper aims to explore domain specific image 

representation and hash-like (or binary coded) function. 

It is assumed that the classification layer of F5 is 

dependent on a batch of hidden attributes. The status of 

these attribute is on or off. According to other 

viewpoints, any image generating similar or same 

binary activation should possess likewise labels. We 

embed the latent layer H between F4 and F5 as shown 

in the middle row of Table 1 to implement this idea. As 
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a completely connected layer, neuron activities of 

latent layer H are subject to the regulation of the 

subsequent layer F4, which is classification of achieves 

and encoding of semantics. The latent hash layer H has 

to provide an abstraction of rich features from F4, and 

connect the learnt mid-level features with image high-

end semantics information. In our method, we activate 

the neurons from the latent layer H using relu function, 

thus activation is almost equal to {-1, 1}.  

We adjust the intended network on this target-

domain database through reverse transferring to realize 

domain adaptation. Besides, we also set the original 

weight of deep CNN, which is the same with those 

weights from the pretraining model. Weights of 

classification layer F5 and latent layer H are set at 

random. The initial random weight of latent layer H is 

the same with that of LSH [6], which is obtained based 

on random predictions of setting up hashing bits. The 

codes in this case are obtained from LSH and others 

appropriate for supervision-based deep network 

studying. With striking changes in a deep CNN model, 

this target model studies visual descriptors with domain 

specific and hashing-like function with efficient image 

search.  

1.2 Image Search with Hierachical Deep 

Search  

Zeiler [32] made an analysis on this deep CNN. It 

is indicted that we learn the semantic information from 

the deep layers and the local image descriptors from 

the shallow layers. We applied two-step search method 

to achieve prompt and effective image search.  

One-step Search: if given one image, we firstly 

select the output of hidden layer for image hash sign, 

and then we can get binary hash coding by threshold 

binary. This we can set the hash threshold value 0.5, if 

the hash(x) is larger than 0.5, we can define it 1, 

otherwise 0. See formula 1. Therefore, if the inquiry 

image of hash value is
v

H , it can be compared with 

existing image hash values. Then, we could obtain the 

hamming distance between 
v

H  and 
i H

H ∈Κ  

1 2
K={I ,I ,...I }

n
, 

1 2
={H ,H ,...H }

H n
K , then compute the 

candidate dataset P. 

 
k

k
1 Code ( ) 0.5

0 else.

H
H

⎧ ≥
= ⎨
⎩

 (1) 

Two-step Search: In the first step, we have obtained 

the candidate P pooling dataset 
1
,P

K
P , and we defined 

similarity distance of the inquiry image I and our P 

candidate dataset by cosine distance. The threshold is 

between [-1,1]. Here the value of cosine value larger, 

the similarity of two images is higher. And finally we 

can compute the ranking Top K images. 

2 Experimental Results 

2.1 Datasets 

MNIST Dataset [16] is composed of ten sets of 

handwritten digits from 0 to 9, of which we can find 

10,000 test images and 60,000 training images, with all 

normalized to gray scale image in size 28 × 28. 

CIFAR-10 Dataset [12] is composed of ten objects, 

each containing up to 6,000 images. That is to say, 

there are 60,000 images in total. With 50,000 and 

10,000 images respectively, the dataset is divided into 

training and test set. 

NUS-WIDE Dataset contains 270000 images in 

total and 81 categories. By catching the images from 

the websites, we collected the dataset. Each image has 

been labeled with a category. Each sample image is 

readjusted to 64 * 64 to diminish the impact of 

complexity, as shown in Figure 2. 

 

Figure 2. Examples of dataset CIFAR-10 (left) and 

NUS-WIDE (right)  

For the experiments of MNIST and CIFAR-10, those 

similar images through the learned binary codes are 

searched so that we can compare them with others. For 

evaluation, a standard [4] based on ranking is used.  

2.2 Results on MNIST Dataset 

Image classification performance. In order to 

accommodate our deep learning framework to MNIST 

data domain, we modified the layer F5 to 10 classes for 

the prediction of ten digit classes. The quantity of 

neurons h in this latent layer is set to 48. The neurons 

are used to investigate the influence of latent semantic 

layer in this DCNN before stochastic gradient descent 

(SGD) is set to train CNN in MNIST database. We 

train this network for 10,000 repetitions with the 

learning rate of 0.001. 

Several most advanced methods [9, 17, 31] in Table 

1 are compared with our result. This method with 48 

latent nodes at trains 0.50% error rate and is better than 

most of the other methods. We’d like to mention that 

this model is made specially for image search while 

others are optimized for one classification task via 
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modification of a network. To give you an example, 

the [31] proposed activation function is used to show 

the accuracy of dropout in model averaging technique. 

And there’s some other famous work, one is Network 

in Network (NIN) [17], strengthening this 

identification of local patches through multi-layer 

perception and avoids over fitting by using the 

international average pooling, so that the fully 

connected layers are left behind.  

Table 1. Comparison (Error %) of classification in 

MNIST dataset 

Method Test Error (%) 

2-CNN [31] 0.53 

Stochastic Pooling 0.47 

NIN [17] 0.47 

Conv. maxout[9] 0.45 

Our method (48 bit code) 0.485 

 

Images retrieval performance. In the experiment, the 

retrieve evaluation is used to retrieves these similar 

images with 48 bits binary code. A total of 1,000 query 

images are randomly selected from this testing dataset 

to search similar ones in training set. In order to assess 

the retrieval performance of our method, our results are 

compared with some advanced hashing methods, 

including supervised [35] and unsupervised methods 

[10, 36]. It is shown in Figure 3 and Figure 4 that the 

retrieval precision of various methods is correlated 

with the total number of searched images. Despite the 

number of images retrieved, our method works quite 

well (98.2% retrieval precision). In addition, this 

method improves the precision from 97.5% achieved 

by CNNH+ to 98.2%. And this learns the hashing 

functions through dissolution of this similarity 

information in pairs. And this indicates that this point-

wised method only asking for class labels is effective. 
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Figure 3. Performance of image retrieval on MINIST 
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Figure 4. Precision of different hash bit on MNIST  

In this experiment, our method has made 

improvement on the precision, and it can be effective 

only considering the class label. So we further analyze 

and compare the learned hash code with different hash 

bit code and return the most similar images. 

From figure 5, we can see that with dataset MNIST, 

the performance of ours is better than other three hand 

craft features such as KSH with LLC feature (Locality-

constrained linear coding), KSH with 1024-d gist in 

different hash bit. 

 

Figure 5. Comparison result with different features on 

MNIST 

Finally, with this dataset, we compare the method 

with the liner search in time efficiency. From Figure 6 

it can be seen that with 32 bit hash code, we compute 

the feature learning with 29 seconds and finally finish 

one search task has cost 64 seconds while linear search 

will cost 1435 seconds, which shorten 20 times than 

before, which has increased in efficiency obviously. 
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Figure 6. CPU time cost comparison with different 

search method on MNIST 

2.3 Result from CIFAR 10 Dataset 

Image classification performance. We modify F5 to 

10-way to predict ten object categories for the purpose 

of transferring the deep CNN to the domain of CIFAR-

10, and h is also set as 48. In this case the network 

model on this CIFAR-10 database is adjusted with 

about 87.5% testing accuracy after 50, 000 repeated 

training. As can be seen in Table 2, the method has 

better performance than [19, 26, 30-31], which 

include KSH (kernel sensitive hashing), CNNH+ 

(Convolutional Neural Network Hashing+), ITQ-

CCA ((Iterative quantization-canonical correlation 

analysis) [8], MLH (Minimal loss hashing), BRE 

(Binary Reconstruction Embeddings), SH (Spectral 

Hashing) [24], LSH (Locality-Sensitive Hashing), that 

also demonstrate that the deep CNN with binary 

embedded will not change the effect.  

Table 2. Comparison (mAP,%) of classification 

accuracy on the CIFAR-10 dataset 

Method Accuracy (%) 

Stochastic Pooling [31] 84.87 

CNN [26] 85.02 

CNNH[30] 53.2 

AlexNet + Fine-tuning [14] 89 

KSH[19] 35.6 

NIN [17] 91.2 

Ours 48 nodes 87.5 

 

Image retrieval performance. Compared with other 

hashing algorithms, the evaluation method is unified, 

and it searches the related images based on Hamming 

distance and 48 bits binary codes. The precision curves 

are shown in Figure 7, and they are related to various 

number of this top retrieved samples. Performance of  

other unsupervised and supervised methods are all 

inferior than this method. What’s more, the precision 

it gets is 71%, and it varies the number of retrieved 

images and improves the performance by more than 

12% compared to CNNH+. According to the outcome, 

i t  is a practical method to use a latent layer to 

represent these invisible concepts for studying of 

efficient binary codes. 
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Figure 7. Performance comparison of different hash 

bit on CIRAR-10 

As we can see in Figure 6, our method is better than 

most traditional methods including supervised and 

unsupervised hashing methods (such as KSH, MLH, 

ITQ-CCA [8], SH [4], BRE), indicating that this 

performance is not effected largely even with buried 

binary latent layer in the deep CNN. 

The searching result is shown in Figure 8. The 

proposed latent binary codes search images with 

relevant category, relevant appearance. We retrieve 

more appearance-relevant images by increasing this bit 

numbers from h = 48 according to our sight checking 

based on experience.  
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Figure 8. Performance comparison of different top 

retrieval image numbers on CIFAR-10  

From Figure 9 we can see that with dataset CIFAR-

10, the performance of ours is better than other three 

manual design features such as KSH with LLC feature, 

KSH with 1024-d gist in different hash bit. 
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Figure 9. Comparison result with different features on 

CIFAR-10 

Finally, with this dataset, we compare the method 

with the liner search in time efficiency. From figure 

10it can be seen that with 32 bit hash code, we 

compute the feature learning with 33 seconds and 

finally finish one search task has cost 78 seconds while 

linear search will cost 1544 seconds, which shorten 20 

times than before, which has increased in efficiency 

obviously. 

2.4 Results on NUS-WIDE Dataset 

Image classification performance. We further test it 

on the good-sized NUS-WIDE dataset to show the 

scalability and efficacy of our method. This dataset is 

composed of efficient product images that are uneven 

and the background is noisy with different person 

posing in it. 

In the classification layer, we set h in this latent 

layer as 48, and the neuron number as 30. Under such 

condition, we  adjust our network with the whole 

NUS-WIDE dataset. After 100000 repeated trainings; 

the accuracy of our method reaches to 78.75% on 

this task of 30 classes 

Images retrieval performance. This experiment 

shows that the method can be used to study efficient 

deep binary codes for this dataset of million data. It is 

difficult to achieve this by using original pair-wised-

data methods because of the complexity of large time 

and storage. Figure 10 shows our searching results. 
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Figure 10. CPU time cost comparison with different 

search method on CIFAR-10 

To illustrate the flexibility and effect, we will further 

test retrieval on the NUS-WIDE. The Figure 11 show 

that the precision with the top retrieved images from 

NUS-WIDE dataset, in our experiment, we still use 32 

bit hash code value and hamming distance to measure 

the related image retrieval performance. The retrieval 

has selected randomly 3000 inquiry images from the 

test dataset (30 categories, each category for 100 

images) to retrieve the related image from the training 

set. To evaluate the retrieval effect, we will compare 

ours’ method with several advanced hash method and 

other unsupervised method ([7, 19, 30) for comparison, 

the Figure 10 shows the retrieval precision with 

different retrieval number and methods. We can see 

that our algorithm has stability performance (62%-

71.75%) under different retrieval image numbers. 
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Figure 11. Precision comparison with different 

retrieval images on NUS-WIDE 

To illustrate the flexibility and effect, we will further 

test retrieval on the NUS-WIDE. The Figure 12 show 

that the MAP with the number of hash bit from NUS-

WIDE dataset. The MAP performance has stable 

performance with the hash bit increase.  

 

Figure 12. MAP comparison with different hash bit on 

NUS-WIDE 
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In search precision task, we can see from Figure 13 

the trend of the precision with different hash bit is 

consistent with the Figure 11 and the algorithm in our 

paper is higher than CNNH+ and other methods and 

we can demonstrate that it has improvement in effect. 
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Figure 13. Precision comparison with different hash 

bit on NUS-WIDE 

Finally, with this dataset, we compare the method 

with the liner search in time efficiency. From Figure 14, 

it can be seen that with 32 bit hash code, we compute 

the feature learning with 59 seconds and finally finish 

one search task has cost 124.3 seconds while linear 

search will cost 9682 seconds, which shorten 77.8 

times than before, which has increased in efficiency 

obviously. 

 

Figure 14. CPU time cost comparison with different 

search method on NUS-WIDE 

3 Conclusions 

This paper presents an easy and effective deep 

studying framework, and creates hash-based binary 

learning codes for quick image classification and 

search. Besides, it adds a latent feature layer in this 

deep network for studying image representations and a 

set of hash-like functions. The framework adopts 

googlenet for pretraining and fine-tuned for 

incremental learning, which improves the learning 

speed and efficiency. It is featured as scalable to the 

size of dataset. It is shown from experimental results 

that this method improves the original search results 

with 0.75% and 12% search precision in the datasets of 

CIFAR-10 and MNIST, in which there’s just one easy 

change of the deep CNN. The scalability and efficacy 

of our method on this good-sized dataset with up to 1 

million shopping images is further proved. 
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