
Prompt Image Search with Deep Convolutional Neural Network via Efficient Hashing Code and Addictive Latent Semantic Layer 949

Prompt Image Search with Deep Convolutional Neural Network

via Efficient Hashing Code and Addictive Latent Semantic Layer

Jun-yi Li, Jian-hua Li*

Shanghai Jiaotong University Electrical and Electronic Engineering College, China

Leejy2006@163.com, lijh888@sjtu.edu.cn

*Corresponding Author: Jun-yi Li; E-mail: Leejy2006@163.com

DOI: 10.3966/160792642018051903030

Abstract

As we know that the nearest neighbor search is a good

and effective method for good-sized image search. This

paper indicates a vision learning framework to generate

compact binary hash codes for quick vision search after

knowing the recent benefits of convolution neural

networks (CNN). Our concept is that binary codes can be

obtained using a hidden layer to present some latent

concepts dominating the class labels with usable data

labels. CNN also can be used to learn image

representations. Binary code learning is required for other

supervised methods. However, our method is effective in

obtaining hash codes and image representations and we use

pretrained model from googlenet for incremental learning

so it is suitable for good-sized dataset. It is demonstrated

in our experiment that this method is better than some

most advanced hashing algorithms in MINIST, NUS-

WIDE and CIFAR-10 dataset. The scalability and

efficiency still needs to be further investigated in a good-

sized dataset.

Keywords: Convolutional neural networks, Nearest

neighbor search, hidden layer, LSH,

Supervised learning

1 Introduction

Image retrieval based on content aims at searching

similar images through image content analysis, so for

such a task, it is quite important for image

representations and similarity measure. There are

many provocative issues in the research and one of it is

about the relationship between the pixel-level

information and high-level semantic [7, 14, 18, 25, 27].

Some manual features proposed to represent the listed

image [2, 7, 19, 22], but such visual descriptors are

not well-performed before the recent discovery in

deep learning. The deep CNN greatly shows such

results in different vision tasks like object detection of

objects, and classification of images. Segmentation is a

fact that has been shown by recent studies [21, 23].

Deep neural network obtains ability to study the rich

mid-level image representations, and because of that

we have got the accomplishment.

Feature vectors on the 7th layer in search of image

was used by Krizhevsky et al. [14, 34], which showed

excellent result on ImageNet, during learning of mid-

level image descriptors. But, since the features of CNN

are high-dimensional and it is not good enough to

directly calculate similarities between such two vectors,

Babenko [1] suggests using PCA and distinctive

dimensionality reduction to make the features of CNN

compact, and finally they have achieved a brilliant

result.

In CBIR, image representations as well as

computational cost are important. Because of the

recent growth of visual contents, people need fast

search in a large database. Many studies aim at

efficiently retrieving the relevant data from the good-

sized database. Because of this high-computational

cost, common linear search is inappropriate for

searching in a large database. The best way for

hashing-based is nearest neiborhood search [6, 15, 20,

28-30]. The high-dimensional features are reflected to

a lower dimensional room by these methods, which

will produce those compact binary codes. Thanks to

this generated binary codes, quick image search is

workable through binary pattern matching or Hamming

distance method. The result is the dramatic reduction

of the computational cost as well as further

optimization of the efficiency of the searches. Part of

the methods is contained using similarity matrix to

describe this relationship between images and the

similarity information is used to study functions of

hash. But, to build the matrix and produce the codes

while handling a good-sized dataset is not easy.

In recent years, deep hashing techniques [3, 11, 13,

33] have developed quickly, and have achieved good

results, though it has made harsh requirement in

hardware condition and training data scale. For

example, the core idea proposed by paper [30] is deep

hash algorithm by CNN, which take the value of

whether two image samples are similar for the value of

similarity matrix element, by decomposing the matrix

and then it get the binary hash code of the sample, and

finally use it to predict the result. The lost function in

this paper used the cross-entropy function. This

950 Journal of Internet Technology Volume 19 (2018) No.3

method has made much improvement in performance

by artificial hand-craft feature. However, this method

has not been designed by end to end method, therefore

it could not update the binary code and play to our

strength. Professor Yan Shui-cheng and Pan Yan

proposed NIN (Network in network), which has

advantage over CNHH [30]. Paper [37] proposed

DSRH (Deep Semantic Ranking Hashing) method,

directly focus on network ranking results. The authors

directly adopt the convex upper bound for optimization.

Paper [38] proposed DRSCH algorithm (Deep

Regularized Similarity Comparison Hashing DRSCH),

which use weighted hamming distance instead of

hamming distance and use tuple lost function, taking

account of the location of pair-wise images. In 2016,

CPVR paper [39] adopt regularization item to

constraint the network output, which make it closer to

two valued encoding. Based on the development of

deep learning, whether we can use the benefit of deep

CNN to reach hashing is still a question. Is it possible

for us to produce this binary compact codes directly

from this deep CNN rather than use the pair-wised

learning method? To answer these questions, a deep

CNN model which could simultaneously study image

representations and binary codes has been proposed.

This data are labeled is the premise, which mean it is

specially made for supervised learning. Furthermore, it

is debated that when a powerful studying model like

deep CNN is adopted when this data labels are

available, by using some hidden layer which are

utilized to represent these potential image concepts

with binary activation functions like Relu (Rectified

linear unit) and sigmoid, which dominate these image

category labels in buildings. Our method is different

from traditional supervised methods of other kind (e.g

[30]). And if we think about data label but request pairs

of input to this intended studying procedure, the binary

codes can be achieved. That is, by making use of the

incremental studying character (through stochastic

gradient descent) of deep CNN, this method studies

binary hashing codes in the manner of point wise.

Efficient-retrieval learning feature is brought by

employment of deep architecture. Comparing with

conventional methods, this method is appropriate for

good-sized database.

The characteristics of the method are as follows:

A simple and effective supervised learning

framework is introduced for fast image retrieval.

Deep CNN can immediately obtain domain specific

image representation and hashing-like function for

prompt image search with small modifications to the

network model.

The proposed method is better than all of the most

advanced works stored in public database MNIST and

CIFAR-10. 12% precision of CIFAR10 dataset and

0.75% precision of MNIST dataset have been

improved from the previous best retrieval performance.

Comparing with conventional pair-wised methods,

this method adopts the point wise manner to learn

binary hashing codes. Regarding the data size, it is

easily measurable.

From the Figure 1, we can see that our model is

composed of three convolution-pooling layers, and the

added latent semantic layer is set between the orange

signed layer (full-connected layer) and the red signed

layer (output layer).

Figure 1. The framework of image retrieval

framework through classified deep search

Below is the organization of this paper: We

elaborate on the method in part 2, with experimental

results shown in part 3, and conclusion in the final part.

Method

As shown in Figure 1, the devised framework

contains three major elements, among which the first

one is the supervision-based pre-training on this good-

sized ImageNet dataset [14]. Adjusting this network

with the latent layer for simultaneous learning of

feature representation in specific domain and hash-like

function is the second one. The third one retrieves

images similar to this query one through this suggested

classified search. Zhong et al. [34] proposed this pre-

trained CNN model in the google net library, and we

used the three layers for pre-training. Below we’ll

describe the method for learning binary codes.

1.1 Studying Hash-like Binary Codes

That the feature activations of layers F4 induced by

this input image could be regarded as this visual

signatures has been showed by recent studies [1, 5, 7,

14]. It shows great improvement in various aspects,

such as image classification, and search based on mid-

level image representation. But, the signatures are

vectors with high dimension, which are not efficient

for image search in large corpus. In order to promote

good quality image search, it needs to convert this

feature vectors into binary codes to reduce

computational cost. Employing hashing or hamming

distance, we can compare the binary compact codes in

a fast way.

This paper aims to explore domain specific image

representation and hash-like (or binary coded) function.

It is assumed that the classification layer of F5 is

dependent on a batch of hidden attributes. The status of

these attribute is on or off. According to other

viewpoints, any image generating similar or same

binary activation should possess likewise labels. We

embed the latent layer H between F4 and F5 as shown

in the middle row of Table 1 to implement this idea. As

Prompt Image Search with Deep Convolutional Neural Network via Efficient Hashing Code and Addictive Latent Semantic Layer 951

a completely connected layer, neuron activities of

latent layer H are subject to the regulation of the

subsequent layer F4, which is classification of achieves

and encoding of semantics. The latent hash layer H has

to provide an abstraction of rich features from F4, and

connect the learnt mid-level features with image high-

end semantics information. In our method, we activate

the neurons from the latent layer H using relu function,

thus activation is almost equal to {-1, 1}.

We adjust the intended network on this target-

domain database through reverse transferring to realize

domain adaptation. Besides, we also set the original

weight of deep CNN, which is the same with those

weights from the pretraining model. Weights of

classification layer F5 and latent layer H are set at

random. The initial random weight of latent layer H is

the same with that of LSH [6], which is obtained based

on random predictions of setting up hashing bits. The

codes in this case are obtained from LSH and others

appropriate for supervision-based deep network

studying. With striking changes in a deep CNN model,

this target model studies visual descriptors with domain

specific and hashing-like function with efficient image

search.

1.2 Image Search with Hierachical Deep

Search

Zeiler [32] made an analysis on this deep CNN. It

is indicted that we learn the semantic information from

the deep layers and the local image descriptors from

the shallow layers. We applied two-step search method

to achieve prompt and effective image search.

One-step Search: if given one image, we firstly

select the output of hidden layer for image hash sign,

and then we can get binary hash coding by threshold

binary. This we can set the hash threshold value 0.5, if

the hash(x) is larger than 0.5, we can define it 1,

otherwise 0. See formula 1. Therefore, if the inquiry

image of hash value is
v

H , it can be compared with

existing image hash values. Then, we could obtain the

hamming distance between
v

H and
i H

H ∈Κ

1 2
K={I ,I ,...I }

n
,

1 2
={H ,H ,...H }

H n
K , then compute the

candidate dataset P.

k

k
1 Code () 0.5

0 else.

H
H

⎧ ≥
= ⎨
⎩

 (1)

Two-step Search: In the first step, we have obtained

the candidate P pooling dataset
1
,P

K
P , and we defined

similarity distance of the inquiry image I and our P

candidate dataset by cosine distance. The threshold is

between [-1,1]. Here the value of cosine value larger,

the similarity of two images is higher. And finally we

can compute the ranking Top K images.

2 Experimental Results

2.1 Datasets

MNIST Dataset [16] is composed of ten sets of

handwritten digits from 0 to 9, of which we can find

10,000 test images and 60,000 training images, with all

normalized to gray scale image in size 28 × 28.

CIFAR-10 Dataset [12] is composed of ten objects,

each containing up to 6,000 images. That is to say,

there are 60,000 images in total. With 50,000 and

10,000 images respectively, the dataset is divided into

training and test set.

NUS-WIDE Dataset contains 270000 images in

total and 81 categories. By catching the images from

the websites, we collected the dataset. Each image has

been labeled with a category. Each sample image is

readjusted to 64 * 64 to diminish the impact of

complexity, as shown in Figure 2.

Figure 2. Examples of dataset CIFAR-10 (left) and

NUS-WIDE (right)

For the experiments of MNIST and CIFAR-10, those

similar images through the learned binary codes are

searched so that we can compare them with others. For

evaluation, a standard [4] based on ranking is used.

2.2 Results on MNIST Dataset

Image classification performance. In order to

accommodate our deep learning framework to MNIST

data domain, we modified the layer F5 to 10 classes for

the prediction of ten digit classes. The quantity of

neurons h in this latent layer is set to 48. The neurons

are used to investigate the influence of latent semantic

layer in this DCNN before stochastic gradient descent

(SGD) is set to train CNN in MNIST database. We

train this network for 10,000 repetitions with the

learning rate of 0.001.

Several most advanced methods [9, 17, 31] in Table

1 are compared with our result. This method with 48

latent nodes at trains 0.50% error rate and is better than

most of the other methods. We’d like to mention that

this model is made specially for image search while

others are optimized for one classification task via

952 Journal of Internet Technology Volume 19 (2018) No.3

modification of a network. To give you an example,

the [31] proposed activation function is used to show

the accuracy of dropout in model averaging technique.

And there’s some other famous work, one is Network

in Network (NIN) [17], strengthening this

identification of local patches through multi-layer

perception and avoids over fitting by using the

international average pooling, so that the fully

connected layers are left behind.

Table 1. Comparison (Error %) of classification in

MNIST dataset

Method Test Error (%)

2-CNN [31] 0.53

Stochastic Pooling 0.47

NIN [17] 0.47

Conv. maxout[9] 0.45

Our method (48 bit code) 0.485

Images retrieval performance. In the experiment, the

retrieve evaluation is used to retrieves these similar

images with 48 bits binary code. A total of 1,000 query

images are randomly selected from this testing dataset

to search similar ones in training set. In order to assess

the retrieval performance of our method, our results are

compared with some advanced hashing methods,

including supervised [35] and unsupervised methods

[10, 36]. It is shown in Figure 3 and Figure 4 that the

retrieval precision of various methods is correlated

with the total number of searched images. Despite the

number of images retrieved, our method works quite

well (98.2% retrieval precision). In addition, this

method improves the precision from 97.5% achieved

by CNNH+ to 98.2%. And this learns the hashing

functions through dissolution of this similarity

information in pairs. And this indicates that this point-

wised method only asking for class labels is effective.

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of top retrived images

P
re
c
is
io
n

MNIST

Ours

CNNH+

KSH

ITQ-CCA

MLH

BRE

SH

LSH

ITQ

Figure 3. Performance of image retrieval on MINIST

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of hash bit

p
re
c
is
io
n

MNIST

Ours

CNNH+

KSH

ITQ-CCA

MLH

BRE

SH

LSH

ITQ

Figure 4. Precision of different hash bit on MNIST

In this experiment, our method has made

improvement on the precision, and it can be effective

only considering the class label. So we further analyze

and compare the learned hash code with different hash

bit code and return the most similar images.

From figure 5, we can see that with dataset MNIST,

the performance of ours is better than other three hand

craft features such as KSH with LLC feature (Locality-

constrained linear coding), KSH with 1024-d gist in

different hash bit.

Figure 5. Comparison result with different features on

MNIST

Finally, with this dataset, we compare the method

with the liner search in time efficiency. From Figure 6

it can be seen that with 32 bit hash code, we compute

the feature learning with 29 seconds and finally finish

one search task has cost 64 seconds while linear search

will cost 1435 seconds, which shorten 20 times than

before, which has increased in efficiency obviously.

Prompt Image Search with Deep Convolutional Neural Network via Efficient Hashing Code and Addictive Latent Semantic Layer 953

ours linear-scan

0

500

1000

1500

Figure 6. CPU time cost comparison with different

search method on MNIST

2.3 Result from CIFAR 10 Dataset

Image classification performance. We modify F5 to

10-way to predict ten object categories for the purpose

of transferring the deep CNN to the domain of CIFAR-

10, and h is also set as 48. In this case the network

model on this CIFAR-10 database is adjusted with

about 87.5% testing accuracy after 50, 000 repeated

training. As can be seen in Table 2, the method has

better performance than [19, 26, 30-31], which

include KSH (kernel sensitive hashing), CNNH+

(Convolutional Neural Network Hashing+), ITQ-

CCA ((Iterative quantization-canonical correlation

analysis) [8], MLH (Minimal loss hashing), BRE

(Binary Reconstruction Embeddings), SH (Spectral

Hashing) [24], LSH (Locality-Sensitive Hashing), that

also demonstrate that the deep CNN with binary

embedded will not change the effect.

Table 2. Comparison (mAP,%) of classification

accuracy on the CIFAR-10 dataset

Method Accuracy (%)

Stochastic Pooling [31] 84.87

CNN [26] 85.02

CNNH[30] 53.2

AlexNet + Fine-tuning [14] 89

KSH[19] 35.6

NIN [17] 91.2

Ours 48 nodes 87.5

Image retrieval performance. Compared with other

hashing algorithms, the evaluation method is unified,

and it searches the related images based on Hamming

distance and 48 bits binary codes. The precision curves

are shown in Figure 7, and they are related to various

number of this top retrieved samples. Performance of

other unsupervised and supervised methods are all

inferior than this method. What’s more, the precision

it gets is 71%, and it varies the number of retrieved

images and improves the performance by more than

12% compared to CNNH+. According to the outcome,

i t is a practical method to use a latent layer to

represent these invisible concepts for studying of

efficient binary codes.

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of hash bit

M
A
P

CIRAR-10

Ours

CNNH+

KSH

ITQ-CCA

MLH

BRE

SH

LSH

ITQ

Figure 7. Performance comparison of different hash

bit on CIRAR-10

As we can see in Figure 6, our method is better than

most traditional methods including supervised and

unsupervised hashing methods (such as KSH, MLH,

ITQ-CCA [8], SH [4], BRE), indicating that this

performance is not effected largely even with buried

binary latent layer in the deep CNN.

The searching result is shown in Figure 8. The

proposed latent binary codes search images with

relevant category, relevant appearance. We retrieve

more appearance-relevant images by increasing this bit

numbers from h = 48 according to our sight checking

based on experience.

200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of top retrived images

P
re
c
is
io
n

CIRAR-10

Ours

CNNH+

KSH

ITQ-CCA

MLH

BRE

SH

LSH

ITQ

Figure 8. Performance comparison of different top

retrieval image numbers on CIFAR-10

From Figure 9 we can see that with dataset CIFAR-

10, the performance of ours is better than other three

manual design features such as KSH with LLC feature,

KSH with 1024-d gist in different hash bit.

954 Journal of Internet Technology Volume 19 (2018) No.3

Figure 9. Comparison result with different features on

CIFAR-10

Finally, with this dataset, we compare the method

with the liner search in time efficiency. From figure

10it can be seen that with 32 bit hash code, we

compute the feature learning with 33 seconds and

finally finish one search task has cost 78 seconds while

linear search will cost 1544 seconds, which shorten 20

times than before, which has increased in efficiency

obviously.

2.4 Results on NUS-WIDE Dataset

Image classification performance. We further test it

on the good-sized NUS-WIDE dataset to show the

scalability and efficacy of our method. This dataset is

composed of efficient product images that are uneven

and the background is noisy with different person

posing in it.

In the classification layer, we set h in this latent

layer as 48, and the neuron number as 30. Under such

condition, we adjust our network with the whole

NUS-WIDE dataset. After 100000 repeated trainings;

the accuracy of our method reaches to 78.75% on

this task of 30 classes

Images retrieval performance. This experiment

shows that the method can be used to study efficient

deep binary codes for this dataset of million data. It is

difficult to achieve this by using original pair-wised-

data methods because of the complexity of large time

and storage. Figure 10 shows our searching results.

ours linear-scan

0

200

400

600

800

1000

1200

1400

1600

Figure 10. CPU time cost comparison with different

search method on CIFAR-10

To illustrate the flexibility and effect, we will further

test retrieval on the NUS-WIDE. The Figure 11 show

that the precision with the top retrieved images from

NUS-WIDE dataset, in our experiment, we still use 32

bit hash code value and hamming distance to measure

the related image retrieval performance. The retrieval

has selected randomly 3000 inquiry images from the

test dataset (30 categories, each category for 100

images) to retrieve the related image from the training

set. To evaluate the retrieval effect, we will compare

ours’ method with several advanced hash method and

other unsupervised method ([7, 19, 30) for comparison,

the Figure 10 shows the retrieval precision with

different retrieval number and methods. We can see

that our algorithm has stability performance (62%-

71.75%) under different retrieval image numbers.

0 200 400 600 800 1000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of top retrived images

P
re
c
is
io
n

NUS-WIDE

Ours

CNNH+

KSH

ITQ-CCA

MLH

BRE

SH

LSH

ITQ

Figure 11. Precision comparison with different

retrieval images on NUS-WIDE

To illustrate the flexibility and effect, we will further

test retrieval on the NUS-WIDE. The Figure 12 show

that the MAP with the number of hash bit from NUS-

WIDE dataset. The MAP performance has stable

performance with the hash bit increase.

Figure 12. MAP comparison with different hash bit on

NUS-WIDE

Prompt Image Search with Deep Convolutional Neural Network via Efficient Hashing Code and Addictive Latent Semantic Layer 955

In search precision task, we can see from Figure 13

the trend of the precision with different hash bit is

consistent with the Figure 11 and the algorithm in our

paper is higher than CNNH+ and other methods and

we can demonstrate that it has improvement in effect.

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Hash bit

p
re
c
is
io
n

NUS-WIDE

Ours

CNNH+

KSH

ITQ-CCA

MLH

BRE

SH

LSH

ITQ

Figure 13. Precision comparison with different hash

bit on NUS-WIDE

Finally, with this dataset, we compare the method

with the liner search in time efficiency. From Figure 14,

it can be seen that with 32 bit hash code, we compute

the feature learning with 59 seconds and finally finish

one search task has cost 124.3 seconds while linear

search will cost 9682 seconds, which shorten 77.8

times than before, which has increased in efficiency

obviously.

Figure 14. CPU time cost comparison with different

search method on NUS-WIDE

3 Conclusions

This paper presents an easy and effective deep

studying framework, and creates hash-based binary

learning codes for quick image classification and

search. Besides, it adds a latent feature layer in this

deep network for studying image representations and a

set of hash-like functions. The framework adopts

googlenet for pretraining and fine-tuned for

incremental learning, which improves the learning

speed and efficiency. It is featured as scalable to the

size of dataset. It is shown from experimental results

that this method improves the original search results

with 0.75% and 12% search precision in the datasets of

CIFAR-10 and MNIST, in which there’s just one easy

change of the deep CNN. The scalability and efficacy

of our method on this good-sized dataset with up to 1

million shopping images is further proved.

Acknowledgments

This work has received financial support by the 973

National Fund Project (2013CB329603) and the

National Natural Science Fund (61272441, 61171173).

References

[1] A. Babenko, A. Slesarev, A. Chigorin. V. Lempitsky, Neural

Codes for Image Retrieval, European Conference on

Computer Vision, Zurich, Switzerland, 2014, pp. 584-599.

[2] H. Bay, T. Tuytelaars, L. Van Gool, Surf: Speeded up Robust

Features, European Conference on Computer Vision, Graz,

Austria, 2006, pp. 404-417.

[3] D. Ciresan, U. Meier, J. Schmidhuber, Multi-column Deep

Neural Networks for Image Classification, 2012 IEEE

Conference on Computer Vision & Pattern Recognition,

Providence, RI, 2012, pp. 3642-3649.

[4] J. Deng, A. C. Berg, F. F. Li, Hierarchical Semantic Indexing

for Large Scale Image Retrieval, 2011 IEEE Conference on

Computer Vision & Pattern Recognition, Colorado Springs,

CO, 2011, pp. 785-792.

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E.

Tzeng, T. Darrell, DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition, Proceedings of the

31st International Conference on Machine Learning, Beijing,

China, 2014, pp. 647-655.

[6] A. Gionis, P. Indyk, R. Motwani, Similarity Search in High

Dimensions via Hashing, International Conference on Very

Large Data Bases, Edinburgh, Scotland, 1999, pp. 518-529.

[7] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature

Hierarchies for Accurate Object Detection and Semantic

Segmentation, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Columbus, OH,

2014, pp. 580-587.

[8] Y. Gong, S. Lazebnik, A. Gordo, F. Perronnin, Iterative

Quantization: A Procrustean Approach to Learning Binary

Codes for Large-scale Image Retrieval, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 35, No. 12,

pp. 2916-2929, December, 2013.

[9] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y.

Bengio, Maxout Networks, Proceedings of the 30th

International Conference on International Conference on

Machine Learning - Volume 28, Atlanta, GA, 2013, pp. 1319-

1327.

956 Journal of Internet Technology Volume 19 (2018) No.3

[10] P. Jain, B. Kulis, K. Grauman, Fast Image Search for Learned

Metrics, IEEE Conference on Computer Vision and Pattern

Recognition, Anchorage, AK, 2008, pp. 1-8.

[11] Y. Jia, E. Shellhamer, J. Donahue, S. Karayev, J. Long, R.

Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional

Architecture for Fast Feature Embedding, Proceedings of the

22nd ACM International Conference on Multimedia, Orlando,

Florida, 2014, pp. 675-678.

[12] A. Krizhevsky, Learning Multiple Layers of Features from

Tiny Images, http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.222.9220&rep=rep1&type=pdf.

[13] A. Krizhevsky, G. E. Hinton, Using Very Deep Autoencoders

for Content-Based Image Retrieval, European Symposium on

Artificial Neural Networks, Bruges, Belgium, 2011, pp. 489-

494.

[14] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet

Classification with Deep Convolutional Neural Networks,

Advances in Neural Information Processing Systems 25

(NIPS 2012), Lake Tahoe, NV, 2012, pp. 1097-1105.

[15] B. Kulis, T. Darrell, Learning to Hash with Binary

Reconstructive Embeddings, Advances in Neural Information

Processing Systems 22 (NIPS 2009), Vancouver, British

Columbia, Canada, 2009, pp. 1042-1050.

[16] Y. LeCun, The MNIST Database of Handwritten Digits,

http://yann.lecun.com/exdb/mnist/.

[17] M. Lin, Q. Chen, S. Yan, Network In Network, arXiv preprint

arXiv:1312.4400, December, 2013.

[18] W. Liu, J. Wang, R. Ji, Y. G. Jiang, S. F. Chang, Supervised

Hashing with Kernels, 2012 IEEE Conference on Computer

Vision and Pattern Recognition, Providence, RI, 2012, pp.

2074-2081.

[19] D. G. Lowe, Distinctive Image Features from Scale-Invariant

Keypoints, International Journal of Computer Vision, Vol. 60,

No. 2, pp. 90-110, November, 2004.

[20] M. Norouzi, D. J. Fleet, Minimal Loss Hashing for Compact

Binary Codes, Proceedings of the 28th International

Conference on Machine Learning, Bellevue, WA, 2011, pp.

353-360.

[21] M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and

Transferring Mid-level Image Representations Using

Convolutional Neural Networks, 2014 IEEE Conference on

Computer Vision and Pattern Recognition, Columbus, OH,

2014, pp. 1717-1724.

[22] G. Qiu, Indexing Chromatic and Achromatic Patterns for

Content-based Colour Image Retrieval, Pattern Recognition,

Vol. 35, No. 8, pp. 1675-1686, August, 2002.

[23] A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN

Features Off-the-shelf: An Astounding Baseline for

Recognition, 2014 IEEE Conference on Computer Vision and

Pattern Recognition Workshops, Columbus, OH, 2014, pp.

512-519.

[24] R. Salakhutdinov, G. Hinton, S. Hashing, International Journal

of Approximate Reasoning, Vol. 50, No. 7, pp. 969-978, July,

2009.

[25] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, R.

Jain, Content-based Image Retrieval at the End of the Early

Years, IEEE Transactions on Pattern Analysis & Machine

Intelligence, Vol. 22, No. 12, pp. 1349-1380, December, 2000.

[26] J. Snoek, H. Larochelle, R. P. Adams, Practical Bayesian

Optimization of Machine Learning Algorithms, Advances in

Neural Information Processing Systems, Lake Tahoe, NV,

2012, pp. 2951-2959.

[27] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, J. Li,

Deep Learning for Content-Based Image Retrieval: A

Comprehensive Study, Proceedings of the 22nd ACM

International Conference on Multimedia, Orlando, Florida,

2014, pp. 157-166.

[28] J. Wang, S. Kumar, S. F. Chang, Semi-supervised Hashing

for Scalable Image Retrieval, 2010 IEEE Conference on

Computer Vision & Pattern Recognition, San Francisco, CA,

2010, pp. 3424-3431.

[29] Y. Weiss, A. Torralba, R. Fergus, Spectral Hashing, Advances

on Neural Information Processing Systems 21 (NIPS 2008),

Vancouver, British Columbia, Canada, 2008, pp. 1753-1760.

[30] R. Xia, Y. Pan, H. Lai, C. Liu, S. Yan, Supervised Hashing

for Image Retrieval via Image Representation Learning,

Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence, Québec, QC, 2014, pp. 2156-2162.

[31] M. D. Zeiler, R. Fergus, Stochastic Pooling for Regularization

of Deep Convolutional Neural Networks, arXiv preprint

arXiv:1301.3557, December, 2013.

[32] M. D. Zeiler, R. Fergus, Visualizing and Understanding

Convolutional Networks, European Conference on Computer

Vision, Zurich, Switzerland, 2014, pp. 818-833.

[33] K. Lin, H. F. Yang, J. H. Hsiao, C. S. Chen, Deep Learning of

Binary Hash Codes for Fast Image Retrieval, 2015 IEEE

Conference on Computer Vision and Pattern Recognition

Workshops, Boston, MA, 2015, pp. 27-35.

[34] Z. Zhong, L. Jin, Z. Xie, High Performance Offline

Handwritten Chinese Character Recognition Using

GoogLeNet and Directional Feature Maps, 13th International

Conference on Document Analysis and Recognition, Tunis,

Tunisia, 2015, pp. 846-850.

[35] D. Tian, D. Tao, Global Hashing System for Fast Image

Search, IEEE Transactions on Image Processing, Vol. 26, No.

1, pp. 79-89, January, 2017.

[36] M. Niu, L. Wu, J. Zeng, Locality Preserving Hashing for Fast

Image Search: Theory and Applications, Journal of

Experimental & Theoretical Artificial Intelligence, Vol. 29,

No. 2, pp. 349-359, 2017.

[37] F. Zhao, Y. Huang, L. Wang, T. Tan, Deep Semantic Ranking

based Hashing for Multi-label Image Retrieval, 2015 IEEE

Conference on Computer Vision and Pattern Recognition,

Boston, MA, 2015, pp. 1556-1564.

[38] R. Zhang, L. Lin, R. Zhang, W. Zuo, L. Zhang, Bit-Scalable

Deep Hashing With Regularized Similarity Learning for

Image Retrieval and Person Re-Identification, IEEE

Transactions on Image Processing, Vol. 24, No. 12, pp.

4766-4779, December, 2015.

[39] H. Liu, R. Wang, S. Shan, X. Chen, Deep Supervised

Hashing for Fast Image Retrieval, Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

Las Vegas, NV, 2016, pp. 2064-2072.

Prompt Image Search with Deep Convolutional Neural Network via Efficient Hashing Code and Addictive Latent Semantic Layer 957

Biographies

Jun-yi Li finished his Ph.D. study at

Shanghai Jiaotong University Cyber

Space Security Institute in 2015 and

he completed a MSc in

telecommunication Engineering in

2009, a BSc in electronic engineering

in 2006. His research interest is

focused on image search, image processing, machine

learning and distributed system design.

Jian-hua Li is a full professor in the

Cyber Space Security Institute of

Shanghai Jiaotong University, China.

His research interest is focused on

internet and space security, network

communication. He is the lead of the

college of Information and Security.

958 Journal of Internet Technology Volume 19 (2018) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

